Nutrition Indicators for Biodiversity

U. Ruth CharrondiereBarbara BurlingameFAO, Rome, Italy

Outline

- Introduction
- Nutrition indicator for biodiversity
 - 1. Food composition
 - 2. Food consumption
- Conclusion

Definition Biodiversity

Biodiversity covers diversity within species, between species and of ecosystems; *synonyms*: biological diversity, ecological diversity

Schema of taxonomic names

Schema	Plant – example	Plant – example	Fish - example	Animal – example
Family	Rosaceae – Rose family	Poaceae– Grass family	Pleuronectidae	Bovidae Caprinae
Genus	Prunus L. – plum	Triticum L. – wheat	Platichthys	Ovis
Species	Prunus domestica L. – European plum	Triticum aestivum L. – common wheat	Platichthys fles us (Linnaeus, 1758)	Ovis aries – sheep
Subspecies	Prunus domestica L. subsp. domestica			(rarely used)
Variety Cultivar Breed	Prunus domestica L. var. domestica – European plum Prunus domestica 'Cacak's Beauty'	Triticum aestivum 'Pioneer 2163'	Platichthys fles us var. marmorata No rdmann, 1840 - European flounder	Suffolk

Differences in food composition

	Protein g	Fibre g	Iron mg	Vitamin C mg	Beta-Carotene mcg
Rice	5.6 - 14.6		0.7 - 6.4		
Cassava	0.7-6.4	0.9-1.5	0.9-2.5	25-34	<5-790
Potato	1.4-2.9	1-2.23	0.3-2.7	6.4-36.9	1-7.7
Sweet potato	1.3-2.1	0.7-3.9	0.6-14	2.4-35	100-23100
Taro	1.1-3	2.1-3.8	0.6-3.6	0-15	5-2040
Eggplant		9 - 19		50 - 129	
Mango	0.3 - 1.0	1.3-3.8	0.4-2.8	22-110	20 – 4320
GAC					6180 – 13720
Apricot	0.8-1.4	1.7-2.5	0.3-0.9	3.5-16.5	200-6939 (beta carotene equivalent)
Banana			0.1-1.6	2.5-17.5	<1 - 8500

Impact of food biodiversity on dietary adequacy

Protein content	Protein content (g/100 g)	Cassava intake in Congo g/d/p	Part of the RDI for protein covered by cassava intake, in %
Average	3.24	286	20.6
Minimum	0.95	286	6.0
Maximum	6.42	286	40.8

Banana	β-carotene content in mcg/100 g	Banana intake in Philippines in g/d/p	Vitamin A intake through banana in mcg RE/d/p	RDI for vitamin A covered by banana intake, in %
USDA	26	93	4	0.7
Lacatan	360	93	56	9.3
Utin Iap	8508	93	1318.7	219.8

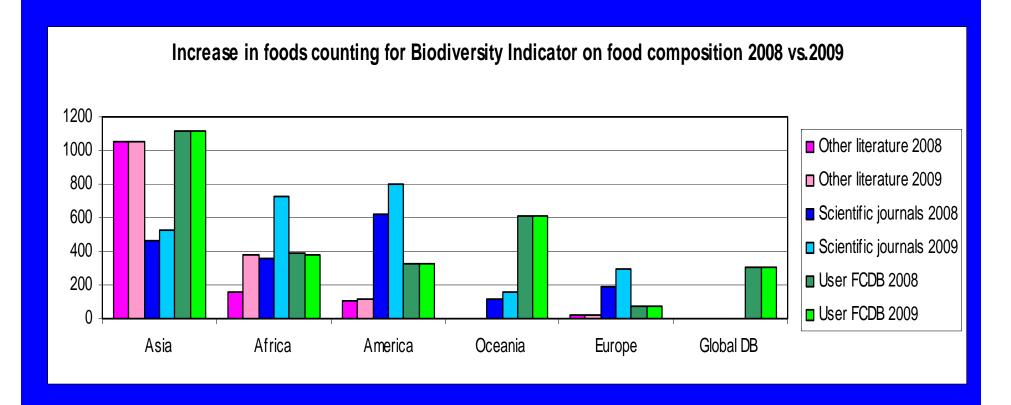
The Indicators

Expert Consultation on Nutrition Indicators for Biodiversity

1. Food composition

Expert Consultation on Nutrition Indicators for Biodiversity

2. Food consumption


Nutrition indicators for biodiversity - objectives

- To monitor biodiversity over time by measuring the composition and consumption of food and medicinal plant and animal genetic resources
- To encourage researchers to generate and compile more food consumption and compositional data for food biodiversity
- To enable more research on food biodiversity and nutrition and health
- To raise awareness of the population, researchers and governments on food biodiversity and their impact on dietary adequacy
- To understand the impact of food biodiversity on food security

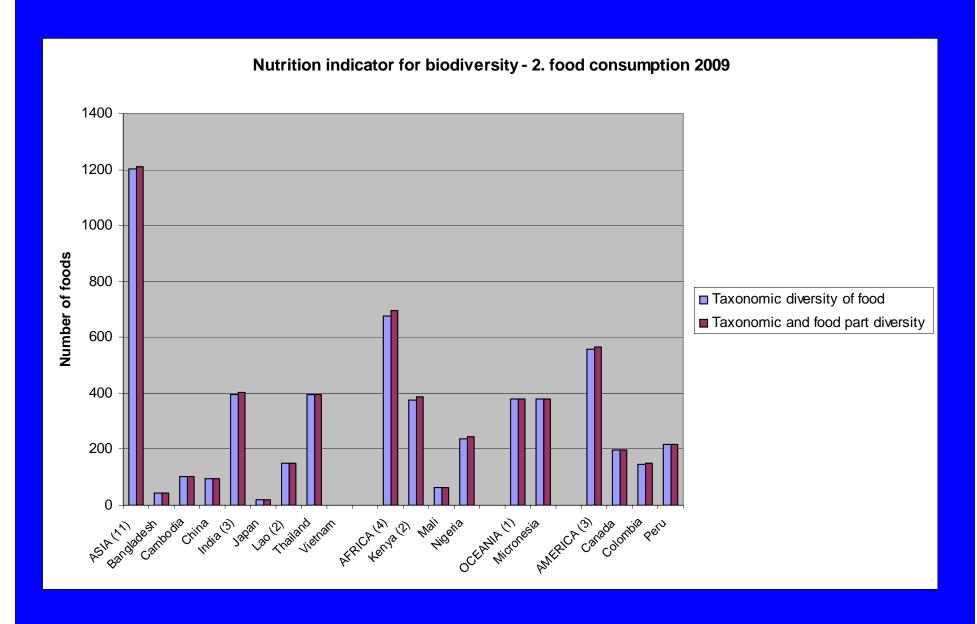
Nutrition indicators for biodiversity 1. Food composition (2007)

It counts the number of foods

- at variety/ cultivar/ breed level for common foods
- species level for wild/ indigenous/ underutilized foods
- with at least one value for component
- found in published and unpublished literature
- Baseline collected in 2008 and for 2009

Coverage: over 50 countries and 300 publications

FAO/INFOODS database on biodiversity


- compiled with FAO/INFOODS Compilation Tool
- data from published and unpublished sources on varieties, cultivars, breeds and wild and underutilized foods
- now with data on potato, milk, fruits and vegetables
- in future also on fish, cereals etc and more data

At http://www.fao.org/infoods/biodiversity/index_en.stm

Nutrition indicator for biodiversity 2. Food consumption (2009)

• count:

- total number of foods consumed counting for biodiversity. Definition of foods is similar as for food composition
- number of surveys with at least one reported food counting for biodiversity
- which will be reported with additional information on
 - Study (scope, date, number and description of subjects, geographical/ethnic coverage, instrument used; reference, total number of studies examined)
 - Food (number of foods reported, food list)

2817 (2852) foods reported worldwide counting for biodiversity, most in Asia

Biodiversity & Nutrition – implications

For food composition database compilers:

- Sample and generate nutrient data for wild foods and individual cultivars, also by ecosystem
- Compile these data comprehensively, systematically and centrally, and disseminate widely

For food consumption surveys

- Include biodiversity questions and/or prompts in food consumption surveys
- Report food consumption also by ecosystem and/or ethnic group
- Communicate to food composition database compilers the need for compositional data for these specific foods

For nutrition research/education

- Investigate traditional foods and varieties and their impact on food and nutrition security
- Promote the most nutritious foods

For agriculture policies and programmes

Nutrient content needs to be among criteria in promoting food biodiversity

Conclusions

Food composition data are fundamental for nutrition, health and agriculture and need more recognition and funding

Biodiversity can make the difference between nutritional adequacy and inadequacy and professionals and consumers need to know more about it

Sustainable diets are essential to feed future generations

- → Basis to improve nutrition, health and food security based on FOODS
- → Contribute to preparedness to effects of climate change

More information ...

INFOODS webpage

- on biodiversity
 http://www.fao.org/infoods/biodiversity/index_en.stm
- in Food Composition Study Tool module 12 on biodiversity http://www.fao.org/infoods/publications_en.stm
- publication of a food composition databse on food biodiversity

Bioversity International webpage on biodiversity and nutrition

http://www.bioversityinternational.org/Themes/Nutrition/index.asp

Mainstreaming Biodiversity

- include biodiversity in our work
- talk about biodiversity widely (conferences, meetings...)
- get more professionals and consumers convinced about the importance of food biodiversity

→ contribute to conserving and valuing our food biodiversity for our children and grandchildren