GHG emission in agriculture in Vietnam

Assessing Low Carbon Potentials for the Viet Nam Green Growth Strategy Mai Van Trinh, Agricultural team leader Institute for Agricultural Environment (IAE)

GHG emission in Vietnam

The first (1994) and the second (2000) GHG inventories results from agricultural sector (thousand tonnes years⁻¹)

	Greenhouse gases				Total	
					In CO ₂	
Subsector	CH ₄	N_2O	CO	NOx	equivalent	%
1994*						
Enteric Fermentation	336.6	0.001			7070	13.5
Manure Management	129.0				2710	5.2
Rice Cultivation	1,559.7				32750	62.4
Agricultural Soil		26.0			8060	15.4
Prescribed Burning of Savannas	15.9	0.2	417.5	7.1	400	0.7
Field Burning of Agricultural Residues	51.7	1.2	1,086.1	43.2	1460	2.8
Total 1994	2,092.9	27.4	1,503.6	50.3	52450	100
2000**						
Enteric Fermentation	368.12				7,730.54	11.9
Manure Management	164.16				3,447.30	5.3
Rice Cultivation	1,782.37				37,429.77	57.5
Agricultural Soil		45.87			14,219.70	21.8
Prescribed Burning of Savannas	9.97	1.23	261.71	4.46	590.67	0.9
Field Burning of Agricultural Residues	59.13	1.39	1,214.68	50.28	1672.63	2.6
Total 2000	2,383.75	48.49	1,476.39	54.74	65,090.61	100

Sources: * VINC (2003); ** VNSNC (2010)

Viet Nam Green Growth Strategy (9/2012)

- Reduce the intensity of green house gas emissions and promote the use of clean and renewable energies
 Reduce the intensity of GHG emissions by 8-10% compared to 2010, 10% - 20% for energy sector
- Greening production :
- Key indicators: value of high-tech and green-tech products will make a share of 42-45% in GDP
- Greening lifestyle and promoting sustainable consumption
 Key indicators: waste water meet regulated standards, low grade
 cities and craft villages environment quality improved 40-60%

National Action Plan on Green Growth in Vietnam

March 2014

GHG reduction plan by Ministry of Agriculture (20%)

- Crop production: SRI, 3R3G, 1M5R, residue reuse
- Livestock: feed dosage change; MUB, biogas, compost
- Fishery/aquaculture: change in fishing vessel (more energy efficient engines), technical-improvement; aquaculture feed supply and aqua-cultural practice;
- Irrigation: saving energy, improved capacity
- Rural environmental management: waste management; fuel change, saving energy, cleaner production

Methodological Choice

- Guided by Key source analysis
- Decision trees in GPG 2000 and 2003
 - ✓ Tier 1 are simple methods with default values
 - ✓ Tier 2 are similar but with country specific emission factors and other data
- ✓ Tier 3 are more complex approaches, possibly models. However should be compatible with lower tiers.
 Sources: Simon Eggleston

Technical Support Unit, National Greenhouse Gas Inventory Programme, IPCC

Methodology for GHG quantifying

- Method to calculate GHG emission
- •GHG emission from Enteric fermentation calculated by IPCC1996 (Tear1)
- •GHG emission from Manure management calculated by IPCC1996 (Tear 1)
- •GHG emission from prescribed burning of savannas was calculated by IPCC1996 (Tear 1)
- •GHG emission from field burning of agricultural residues calculated by IPCC1996 (Tear 1)
- •GHG emission from rice cultivation and agricultural soils were calculated by
- GIS based DNDC with overlaying of Land use map in 2005, soil map and
- provincial climate data (2010, scenario of 2015, 2020, 2025 and 2030 following
- climate change scenario of MONRE, 2011 Tear 2)
- MACC curve is developed based on an "expert based approach"

Methodology

Total GHG emission from crop production

63 provincex11 soilsx5 clima

Methodology - mitigation

Results and Findings: Total GHG emission for scenarios

Innovations

Create high resolution database to store data as reference for estimation of GHG for given technology:

Overlay of

- climate x soil x
- land use

potential

Thank you for your attention!