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FOREWORD

Changes in the world's climate, due to increases in the
concentration of carbon dioxide and other greenhouse gases in the
Earth's atmosphere, have the potential to significantly affect forests
and the practice of forestry. The probability of climate change is
one of today's leading environmental concerns. The issue is
complex and filled with uncertainties. Information available on the
subject is often confusing and conflicting.

Climate is the key factor which determines the distribution of
vegetation. The relation of climate change to the conservation and
development of the world's forests is therefore, an important issue
to consider. Forests can contribute to the greenhouse effect, they
can also be affected by climate change and they offer opportunities
to mitigate its effects.

It is important for foresters to have an understanding of the climate
change issue and its implications. This document, which is
presented in question and answer format, is designed to serve as a
general reference on the subject of climate change and forests. The
answers are based on the current world's literature including the
most recent analyses by the Intergovernmental Panel on Climate
Change (IPCC). It is hoped that forest planners and managers will
find it useful in the preparation and implementation of their
programmes and in providing advice to decision makers.

J. P. Lanly, Director
Forest Resources Division

Forestry Department
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INTRODUCTION

The likelihood of global climate change and its possible effects,
including its effects on forests, is one of the most hotly
debated environmental issues of the decade of the 90s. Will
the Earth's climate change in the future? The answer must be
an unqualified yes. There have been alternating periods of
cool and warm climate throughout our planet's 3.5 billion year
history. Therefore, there is no reason to expect that the
Earth's present climate, during which virtually all human
development has taken place, will remain constant.

The more important and difficult questions are:

How will the Earth's climate change?

How will a changing climate affect the abilities
of human societies to maintain and enhance
their quality of life?

What actions can be taken to adapt to or
mitigate the effects of climate change?

Many scientists argue that the present period of relatively mild
temperatures which have dominated the Earth since the last
great continental ice sheets began to recede some 10 000
years ago is a short interlude. They predict that another ice
age will, once again, cover large areas of the Earth's surface.

A more near term concern is that the increasing evidence that
certain human activities, such as burning of fossil fuels,
conversion of forests to agricultural land at unprecedented
rates and other activities are causing significant, increases in
the levels of carbon dioxide (002) and other "greenhouse"
gases in the atmosphere. These changes could lead to global
warming at an unprecedented rate and could have serious
implications for agriculture, fisheries, forestry and human
development. Strategies for adapting to and mitigating the
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effects of an increased greenhouse effect are presently being
considered at the national, regional and international level.

There is much confusion and uncertainty associated with the
climate change issue. During the past decade, many studies,
designed to improve our capacity to predict future climatic
trends and the ways in which human society might be
affected, have been conducted. The results of these studies
are often conflicting and unclear.

The issues related to forestry are especially complex. Forests
and human uses of forests can contribute to increases in
atmospheric levels of greenhouse gases. Forests are also
affected by changes in climate. In addition, trees and forests,
because of their ability to absorb CO2 and store carbon in
woody tissue, offer an opportunity to help mitigate future
climate change.

The complexity of forests, their relatively long life span and
their multifaceted relationship with climate change pose many
questions. How will forests be affected by climate change?
How can foresters respond? Can forest management help
mitigate the effects of climate change?

The purpose of this paper is to provide a broad overview of
the climate change issue as it relates to forestry and forest
management. It also attempts to provide some insights as to
how foresters can respond to the challenges posed by possible
future climate change. The material is presented in question
and answer form in eight chapters. These focus on various
aspects of the climate change issue including the dynamic
nature of climate, the greenhouse effect, predictions of climate
change and its effects, the global carbon cycle, forests as
sources and sinks of carbon, the effects of predicted climate
change on forests, strategies for helping forests adapt to
climate change and the ways in which forests can mitigate the
effects of climate change.
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The material contained in this paper is designed for use by
field foresters, programme managers and policy advisors at the
national, regional and international level.
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Chapter 1
THE EARTH'S CLIMATE - A DYNAMIC ENTITY

HOW ARE WEATHER AND CLIMA TE DEFINED?

Weather is the atmospheric condition prevailing in an area at
a given time, resulting in heat or cold, clearness or cloudiness,
dryness or moisture, wind or calm.

Climate, as defined by the World Meteorological Organization
(WMO), is the "synthesis of weather conditions in a given area
as defined by long term statistics of the variables of the state
of the atmosphere". Seasonal changes such as the transition
from winter to spring, summer and autumn in temperate zones
and from wet to dry in the tropics are also part of climate.

Climate is a key factor which determines the distribution of
plants and animals and in the formation of soils through the
weathering of geological materials and the decomposition or
preservation of organic matter.

TO WHAT EXTENT HAS THE EARTH'S CLIMA TE
CHANGED DURING THE COURSE OF GEOLOGIC
HISTORY?

While the Earth's climate has been sufficiently stable to
support life for millions of years, climate is dynamic and
subject to change. There is ample evidence from the fossil
record and other indicators such as tree ring widths, growth
rates of marine organisms and types of vegetation, as
indicated by fossil pollen, that the Earth's climate has been
characterized by periods of warm and cool weather ever since
its existence (Fig 1.1). For example, over 230 million years
ago, during the latter part of the Palaeozoic Era, glaciers
covered much of today's tropics. During much of the
Mesozoic Era, however, when dinosaurs and other reptiles
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dominated the Earth (180 million to 65 million years ago),
temperatures were much warmer than they are today.

Over the past million years, the Earth's climate has been
characterized by long periods of cold weather when
continental glaciers covered large areas. Each of these lasted
from 80 000 to 100 000 years and were interspersed by
shorter periods of warmer weather which ranged from 10 000
to 15 000 years each. At the peak of the last glacial period,
some 18 000 years ago, ocean levels were 130 m lower than
they are today. The Bahamas were a substantial land mass
during that time and the Sahel region of Africa was a desert.
The continental glaciers began to retreat about 10 000 years
ago. Some 6 000 years ago, as the glaciers were still in
retreat, the Earth entered a period during which average
temperatures were about what they are today but with slightly
warmer summers and colder winters. Rainfall increased over
the African Sahel and Lake Chad rose to more than 40 m
above its present level. Human cultures in Africa were
considerably more advanced than those in Europe. As the
glacial ice sheets continued to retreat northvvard, the Sahel
again became a region of marginal rainfall, with its northern
regions invaded by the Sahara desert.

Many scientists believe that the present period of relatively
mild temperatures which we enjoy today will eventually give
way to another ice age (Easterling 1990, Harrington 1987).

3, WHAT CHANGES HA VE OCCURRED IN THE EARTH'S
CLIMA TE SINCE THE BEGINNING OF RECORDED
HUMAN HISTORY?

Historical records show that over the past 1 100 years, the
Earth has experienced swings in climate, at least on a regional
basis, which have been sufficiently stable and have persisted
long enough to be considered clirnate changes (Easterling
1990).
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Figure 1.1 - A generalised history of changes in temperature and
precipitation during geologic history. The curves indicate departures
from today's global means. Periods colder than today are shaded.
Dashed lines indicate sparse data (Source: Goodess et al (1992).
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During the period in European history known as the Middle
Ages, a warm climate, lasting from about A.D. 900 to A.D.
1 200 dominated most of Europe and was known as the
Medieval Optimum. This period allowed human habitation to
extend into regions which would be considered climatically too
harsh today. During the Medieval Optimum, oats and barley
were grown in Iceland and vineyards flourished in southern
England. Canadian forests extended north for a considerable
distance from where they are today, agricultural settlements
flourished in the northern highlands of Scotland and a Viking
colony was established in Greenland.

The Medieval Optimum ended during the 13th century and
was replaced by 600 years of pronounced cooling. As the
cooling intensified, this period became known as the Little Ice
Age. Snow and ice cover were more extensive during this
period than at any time since the Pleistocene Period and its
extensive glaciers. Viking colonies which existed in Greenland
between AD 985 and 1500 died out (McGovern 1981). North
American forests retreated southward and canals in Northern
Europe were often frozen throughout the winter, bringing
water transportation to a halt.

By the time the Little Ice Age lessened its grip on Europe's
climate during the mid-1800s, various climatic parameters
such as temperature and precipitation were beginning to be
routinely recorded 1. These data show that by the end of the
19th century, a warming trend began to occur in both the
northern and southern hemispheres. This trend reached an
initial peak during the 1930's. In the years immediately
following, global temperatures cooled slightly before resuming
their upward trend. The cooling trend was more pronounced
in the northern hemisphere.

Temperature and precipitation records for parts of Europe are available as
far back as the 12th century. A summary of wet and dry summers in northern
Germany is given by Finck (1985).
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Box 1.1 Historic droughts in California and
Patagonia.

While Europe was basking in the Medieval
Optimurn, other parts of the world
apparently were suffering from prolonged
drought. According to a recently completed
study, which included analysis of ancient
submerged tree stumps, the area of present
day California, USA, was affected by two
long and severe droughts during most of the
Medieval Optimum. These were separated
by a period of unusual wetness which
lasted less than a century. The first of
these droughts lasted for more than two
centuries. The second persisted for over
140 years. There is evidence from the
Patagonia Region of South America that it
also was affected by drought during this
time period.

The droughts in California may have been
the result of a northward shift of
summertime storms.

California is presently home to 30 million
people. Consequent/y, a present day
drought of this magnitude would be
devastating (Stine 1994).
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The world climatic record for the past two decades indicates
that global surface air temperatures have increased above the
1930 maximums. This warming trend extends to both the
Southern and Northern Hemisphere (Couglan and Nyenzi 1990)
and has resulted in a global mean surface temperature increase
of about 0.45° C since the middle of the last century.

4. WHAT FACTORS CAN CAUSE CHA NGES IN THE
EARTH'S CLIMA TE?

Changes in the Earth's temperature and associated changes in
climate have complex causes. These can be classified into the
following categories:

Astronomical factors - such as changes in solar
activity, variations in the eccentricity of the Earth's
orbit around the sun, changes in the tilt of the Earth's
axis (obliquity) precession of the Earth's axis and
collisions with asteroids or comets.

Geological factors - such as continental drift, changes
in the topography of the ocean floor, volcanic
eruptions, mountain building, erosion and weathering of
rock.

Oceanic Factors - such as the El Niño effect, changes
in ocean circulation, sea level changes, ice formation,
phytoplankton blooms and dimethysulphide production.

Land Surface Factors - including the effect of
vegetation on surface albedo (the whiteness or degree
of reflection of incident light from an object), and
evapo-transpiration, open water effects including
irrigation and dust.
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Atmospheric Factors - such as the effect of greenhouse
gases, sulphur dioxide and air pollutants, cloud effects
and interactions between the air, the land and the sea.

Some examples of the influence of these factors on global
climate are described in the following paragraphs.

Changes in solar activity, such as the frequency and intensity
of sunspots, or the gradual warming of the sun as its supply
of hydrogen is consumed, are believed to have significant
effects on climate. The virtual cessation of sunspot activity
for about 70-80 years in the 17th century, for example,
coincides with the peak of the Little Ice Age, a period when a
series of disastrous harvests in Europe resulted in decades of
hardship and social unrest. The warming trend, which
followed the Little Ice Age, coincided with a resumption in
sunspot activity. The recent period of warmer temperatures,
is associated with exceptionally strong sunspot activity
beginning in the late 1980s (Harrington 1987, Windelius and
Tucker 1990). However the measured increase in solar energy
received by the Earth during peaks of sunspot activity does
not appear to be sufficient to cause significant changes in
climate.

In rare instances, large asteroids have collided with the Earth.
Such a collision can have a number of catastrophic effects,
including the development of a layer of fine dust in the
atmosphere which reduces the amount of solar energy
reaching the Earth's surface. This can cause reduced
temperatures and light intensities. Some scientists believe
that the collision of an asteroid of about 10 km in diameter
with the Earth, some 65 million years ago, resulted in the
drastic cooling that brought an end to the age of dinosaurs.
Approximately one half of the genera of plants and animals
living during this period became extinct (Harrington 1987).

The Milankovitch theory of ice age occurrence is based on long
term variation in solar radiation received at the polar latitudes
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during certain seasons of the year. These are caused by
changes in the eccentricity of the Earth's orbit around the sun,
which varies between the limits of 0 and 0.06 with an average
period of 93 000 years; the angle of tilt of the Earth's axis,
which varies between 22.1 and 24.5° with an average of
41 000 years and the precession of the Earth's axis, which
varies with an average period of 21 000 years (Weertman
1976).

Volcanoes occasionally erupt with such violence that large
quantities of dust and gas are projected high into the
atmosphere. Particles which reach the stratosphere may
persist for several years. They cause cooler temperatures by
reflecting solar radiation. The Little Ice Age was a period
characterized by frequent volcanic activity when compared to
the present century. The eruption of the Indonesian volcano,
Tambora in 1815, the largest eruption in recorded history, was
followed by a period of cool weather in portions of Europe,
North America and possibly other parts of the world, known
as "The Year Without Summer." This resulted in a failure of
the corn crop in portions of the United States and massive
crop failures in western Europe (Stommel and Stommel 1983).
In Ghent, Belgium, for example, the summer of 1816 was the
coldest recorded between the years 1753 and 1960 (Gommes
1980). Volcanic emissions due to the eruption of El Chichón
in Mexico in 1982 and Pinatubo in the Philippines in 1991 also
caused a slight cooling effect.

The ocean plays an essential role in the global climate system.
Over half of the solar radiation reaching the Earth's surface is
first absorbed by the ocean, where it is stored and
redistributed by ocean currents before escaping into the
atmosphere. The ocean currents are driven by the exchange
of momentum, heat and water between the ocean and the
atmosphere (Cubasch and Cess 1990).

An ocean current which is known to have a significant
influence on global climate is known as El Niño (Spanish for
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Christ Child). El Niño is a warm ocean current that typically
appears along the coast of western South America around
Christmas and lasts for several months. An El Niño is initiated
by the Southern Oscillation (ENSO), which arises from the
gradient between a low pressure system which lies over
portions of Indonesia and Malaysia and a high pressure system
in the South Pacific. When the difference in pressure between
these two systems is reduced, the westward trade winds are
weakened, causing a warming of the ocean surface off the
coast of Peru. This causes the low pressure system to shift
eastward and leads to a decrease in rainfall over Malaysia and
Indonesia and increased precipitation over the west coast of
Central and South America. A particularly severe ENSO during
1982-83 caused a severe drought on the island of Borneo
resulting in the most extensive forest fires in recorded history.
Approximately 3.5 million ha of primary and secondary rain
forests in East Kalimantan, Indonesia were burned as a result
of these fires (Goldammer and Seibert 1990). This same
ENSO resulted in severe storms and massive flooding along
the west coast of South America. ENSO events are known to
influence weather worldwide. This is the principal global scale
environmental factor which affects Atlantic seasonal hurricane
activity. Hurricanes are suppressed during seasons when
warm equatorial eastern and central Pacific water
temperatures occur. Activity is enhanced during seasons with
cold water climates (Grey 1993). There is also evidence that
ENSOs are linked to below average rainfall in southern Africa
(Cane et al 1994).

The oceans also contain chemical and biological mechanisms
which are important in controlling CO2. CO2 is transferred
from the atmosphere into the ocean by differences in the
partial pressure of CO2 in the ocean and the lowest layers of
the atmosphere. The oceans also contain phytoplankton
which convert dissolved CO2 into particulate carbon which
sinks into deep water (Cubasch and Cess 1990).
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Box 1.2 Did the rising of the Tibetan
Plateau cool the world?

The Tibetan Plateau, which lies between the
Himalayas in the south and the Kunlun
Mountains in the north is believed to have
been caused by continental drift ending with
India and Asia colliding. The Plateau covers
about 2.2 million square kilometres and is
equivalent to 0.4% of the Earth's total
surface area. Average elevation is 5

kilometres above sea level. It has been
suggested that the uplift of the plateau
created patterns of air circulation which
bring water laden air off the Indian Ocean in
summer and deliver monsoonal rains to the
Indian subcontinent. Atmospheric carbon
dioxide is dissolved in the torrential rains,
forming a weak solution of carbonic acid
which erodes the plateau's bedrock and is
delivered to the ocean as bicarbonates.
This process is believed to have removed
large quantities of carbon dioxide from the
Earth's atmosphere resulting in a global
cooling effect (Patterson 1993).
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The average temperature of the Earth is presently 15°C. This
is largely due to the effects of radiative or "greenhouse" gases
which are present in the atmosphere. Without these gases,
the Earth's average temperature would be -18°C. This is
equivalent to the temperature of the surface of the moon and
life, as we know it, would not be possible. Most of the short
wavelength radiation which the Earth receives from the sun
passes through these gases and warms the Earth's surface.
The surface, in turn, emits long wave thermal radiation back
to the atmosphere. This is absorbed by the greenhouse gases
and heats the atmosphere. The atmosphere emits long wave
radiation into space and downward to further heat the Earth's
surface (See question 5 for a more detailed explanation).
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Chapter 2
THE GREENHOUSE EFFECT

5. WHAT IS THE "GREENHOUSE EFFECT" AND HOW
DOES IT INFLUENCE THE EA i TH'S CLIMA TE?

The greenhouse effect is the retention of heat in the lower
atmosphere due to absorption and re-radiation by clouds and
certain gases. The Earth receives its energy from the sun as
solar radiation. Short-wave solar (visible) radiation received
from the sun passes through the atmosphere with little or no
interference and warms the Earth's surface. Long-wave
thermal radiation emitted by the warmed surface of the Earth
is partially absorbed by a number of trace or "greenhouse"
gases (GHGs). These gases occur in small amounts in the
atmosphere and reflect the long wave thermal radiation in all
directions. Some of the radiation is directed downwards
toward the Earth's surface (Fig 2.1).

The amount of GHGs in the atmosphere can influence global
temperatures. If these gases were to increase, temperatures
could rise. If they were to decrease, global temperatures
would cool.

The greenhouse effect is a well understood phenomenon
based on established scientific principles. The Earth's average
surface temperature, for example, is warmer by about 33°C
than it would be without the presence of these gases.
Satellite observations of the radiation emitted from the Earth's
surface and through the atmosphere confirm the effects of
greenhouse gases. The composition of the atmospheres of
Venus, the Earth and Mars are quite different but their surface
temperatures are in general agreement with the principles of
greenhouse effect. Finally, measurements from ice cores
going back 160 000 years show that the Earth's temperature
closely paralleled the amount of carbon dioxide and methane,
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Figure 2.1 - A simplified diagram of the greenhouse effect (Source:
Houghton 1991).

two of the more important greenhouse gases in the
atmosphere (Fig 2.2). The changes in the amounts of these
gases may be some, but not all, of the reason for the large (5-
7°C) global temperature differences between the ice ages and
the interglacial periods (Houghton 1991). Recent studies
indicate that the temperatures and GHGs are so closely
correlated that it is difficult to determine which is the cause
and which is the effect.
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with average temperatures over the past 160 000 years (Watson et
al 1990).
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6. WHICH GASES ARE CONSIDERED TO BE GHGS AND
WHAT ARE THE SOURCES OF THESE GASES?

Greenhouse gases (GHGs) present in the Earth's atmosphere
include water vapour (H20), carbon dioxide (CO2), methane
(CH4), nitrous oxide (N20), nitrogen oxides (NO.), ozone (03),
carbon monoxide, (CO) and chlorofluorocarbons (CFC). The
concentrations of these gases in the Earth's atmosphere have
changed over geological time scales. Since the last glacial
period, the levels of these gases remained relatively constant.
As agriculture and animal husbandry developed, the world's
population increased and human society became more
industrialized, the levels of some of these gases increased
significantly (Houghton 1991). Descriptions of the important
GHGs and their sources are as follows:

WATER VAPOUR (F120) - Water vapour is the most abundant
of the GHGs and has the largest greenhouse effect. The
amount of water vapour is only slightly affected by human
activities such as irrigation and development of reservoirs.
The amount of water vapour vvill increase if the atmosphere
becomes warmer. Increased amounts of water vapour could
enhance the greenhouse effect.

CARBON DIOXIDE (CO2) - Carbon dioxide is the most
important of the GHGs influenced by human activity both in
terms of the amount in the atmosphere and potential effects
on global warming. This gas is a product of respiration by
animals and plants, the burning of fossil fuels and the burning
or decomposition of plants and trees. Cement factories are
another important source of CO, (IPCC 1992).

Since the beginning of the Industrial Revolution, in the mid
18th century, the burning of fossil fuels has increased.
Extensive deforestation and burning of debris has also
occurred. These and other human activities have resulted in
an increase in the concentration of carbon dioxide in the
atmosphere by about 25% from 290 ppmv (parts per million
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by volume) to 355 ppmv at present. Most of this increase has
taken place since 1940 (Hair and Sampson 1992). Recently
a reduction in the rate of increase of atmospheric CO2 has
been detected (Sarimento 1993, see box 2.1).

METHANE (CH4) - The major source of methane is anaerobic
decomposition (decomposition by micro-organisms without the
presence of free oxygen in the air). This occurs in rice paddies
and natural wetlands. Methane is also a product of cattle and
other ruminants, including wildlife whose digestive systems
rely on enteric fermentation. Another source of methane is
termites, which are present in large numbers in tropical forests
(Zimmerman et al 1982). Other sources include biomass
burning and decomposition from landfills and wetlands. Forest
fires emit one unit of methane for every 100 units of carbon
dioxide. The level of methane in the atmosphere has increased
from 0.8 ppmv in 1850 to 1.7 ppmv at present. Since 1970,
for reasons unknown, the rate of increase of CH4 in the Earth's
atmosphere has declined from about 20 ppbv/yr to as low as
10 ppbv/yr (IPCC 1992).

NITROUS OXIDE (N20) - This gas is emitted as a result of
deforestation and associated burning, biomass burning,
intensification of soil nitrification and denitrification processes
in intermittently wet areas, application of nitrogen fertilizers
and combustion of fossil fuels.
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Box 2.1. What happened to atmospheric
CO2 levels in 1991 ?

According to data from the Mauna Loa
Observatory in Hawaii, USA, a 35 year
trend of steadily increasing levels of
atmospheric CO2 was broken beginning in
mid-1991 when CO2 levels were
approximately 355 ppmv. By late 1993, a
reduction of 1.5 parts per million (ppmv) of
atmospheric CO2 was detected. If this were
applied to the entire northern hemisphere, it
would equate to a loss of 1.6 Gt (1.6 x 109
tonnes) of carbon. This reduction in rate of
CO2buildup began shortly after the eruption
of the Philippine volcano, Mt. Pinatubo in
1991 and occurred despite the fact that an
ENSO occurred during 1991-92. ENSOs
normally result in a temporary increase in
atmospheric 002.

The cause of this phenomenon is not
known. Some scientists believe that a
natural factor involving the oceans or the
terrestrial biosphere is responsible. One
possibility is that ash fallout, high in iron
oxides, from the eruption of Mt. Pinatubo
caused an iron fertilization of the oceans
which temporarily increased their ability to
absorb CO2 (Sarimento 1993). If the
Pinatubo eruption is the main cause, then
the slowdown should be short lived.
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Relatively little is presently known about the rates of release
of this gas from soils in natural and disturbed ecosystems and
from burning of biomass. The present level of N20 in the
atmosphere is about 0.3 ppmv and is increasing at the rate of
0.2 to 0.3% per year.

CARBON MONOXIDE (CO) - Carbon monoxide is not a true
GHG. However it influences the oxidizing capacity of the
Earth's atmosphere and thus contributes to increased
concentrations of methane and nitrous oxides. Burning of
savanna grasslands as a form of livestock and pasture
management may be the largest single source because large
quantities of CO are emitted as a result of incomplete
combustion and smouldering rather than hot, rapid burning.

NITROGEN OXIDES (NO), SULPHUR DIOXIDE (SO2). OZONE
(03) AND CHLOROFLUOROCARBONS (CFC-11 and CFC-12) -
These GHGs are the result of non-biotic, industrial processes
such as the burning of fossil fuels, the chemical industry and
certain household appliances. Forestry and land use practices
are not sources of these GHGs.

Ozone is a gas which occurs throughout the atmosphere
although most of it resides in the stratosphere where it acts as
a protective shield and prevents harmful ultraviolet (UV)
radiation from reaching the Earth's surface. In the lower
atmosphere (troposphere) 0.3 is formed as a result of lightning
or as a component of photochemical smog. Exposure to
elevated levels of tropospheric 03 can cause damage to plants
and be detrimental to human health. Certain varieties of beans
and tobacco are known to be sensitive to elevated levels of
03. Several species of trees can sustain injury as a result of
exposure to elevated levels of this gas (Jacobson and Hill
1970).

CFCs, which were once used as aerosol propellants and are
still used in air conditioning systems promote the destruction
of stratospheric 03 and contribute to its depletion. This is
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believed to cause seasonal ozone holes to appear over the
polar regions.

WHAT IS THE SIGNIFICANCE OF HUMAN SOURCES
OF GHGS?

Human activities are causing increases in the emissions of
some GHGs into the atmosphere. Major human sources of
GHG emissions include the burning of fossil fuels,
deforestation (and associated burning) to make additional land
available for agriculture and grazing and the burning of wood
and charcoal. Approximately 7 Gt of CO2 were released into
the atmosphere each year during the 1980s from human
sources (see question 23). Approximately 75-80% of this
increase is due to industrial sources. Most of the remainder is
due to deforestation and land use practices (Watson et al
1990). Other sources of GHGs include paddy rice production
and animal husbandry. The latter two activities are sources of
methane.

For over a century, scientists have warned that these
increasing emissions may effect the atmosphere's radiative
balance leading to a significant and long-term increase in the
Earth's temperature (Plass 1959, Hepting 1963).

DO ALL GHGS HA VE AN EQUAL WARMING EFFECT?

No; GHGs vary both in the time they are present in the
atmosphere before they break down (residence times) and in
their radiative, or warming effect relative to carbon dioxide.
Scientists have designated carbon dioxide the benchmark GHG
against which the properties of all other GHGs are measured.
In order to compare these gases, the concept of relative global
warming potential (GWP) was developed as a means of
accounting for differences in residence times and the radiative
effects of GHGs (Table 2.1). Methane, for example, is a
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relatively short-lived gas, consequently emissions from this gas
would have their greatest impacts on climate change during
the first few decades after they are released. Nitrous oxide
and CFCs, on the other hand, contribute to the greenhouse
effect for hundreds of years because they are more stable and
decompose very slowly in the atmosphere (IPCC 1992, 1994).

9. WHAT EVIDENCE EXISTS TO SUPPORT THE IDEA
THAT GHG LEVELS IN THE ATMOSPHERE ARE
INCREASING?

There is strong evidence that the levels of several atmospheric
GHGs have increased over the past 150 years.

In 1958, the first continuous CO2 monitoring programmes
began at stations in Mauna Loa, Hawaii and Antarctica. Data
from this monitoring clearly shows an annual increase in the
mean annual concentration of CO2. As of 1990, the global
mean value was 355 ppnnv. This is 25% above the 1850 value
of 280-290 ppmv (Fig 2.3) (Houghton 1991, Siegenthaler and
Sanhuezza 1991).

The concentration of methane in the atmosphere is presently
1.7 ppmv, more than double the 1850 value. Ice core
analyses show that levels of this gas remained fairly constant
during the 2000 years prior to industrialization. During the ice
ages, the concentration of methane in the atmosphere was
half of the present day level. Today's concentration of this
gas is higher than at any time in the past 150 000 years.

During the 1980s, the rates of methane increase declined,
dropping from 16 ppbv/yr in 1980 to about 10 ppbv/yr by
1990. Rates of methane buildup slowed dramatically in 1991
and 1992 but there are indications that they increased again
late in 1993 (IPCC 1994).
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DIRECT GLOBAL WARMING POTENTIAL OF REPRESENTATIVE
GREENHOUSE GASES FOR A 100 YEAR TIME HORIZON

(Source: IPCC 1992, 1 9 9 4)
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Figure 2.3 - Changes in the levels of atmospheric CO2 over the past
250 years as indicated by analysis of ice core data from the
Antarctic and by atmospheric measurements at Mauna Loa, Hawaii
since 1958 (Source: Siegenthaler and Sanhuezza (1991)

GHG Global Warming Potential
Relative to Carbon Dioxide

CO2 1

CH4 11

N20 320
CFC-1 1 4000
CFC- 1 2 8 500
HCFC-2 2 1 700
HFC-1 34a 1 300
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The present day concentration of nitrous oxides is about 0.31
ppmv (parts per million by volume). This is 8% higher than
pre-industrial times. CFCs are exclusively of human origin and
are recent components of the Earth's atmosphere. They have
been studied intensively not only because of their greenhouse
effect but because they are depleting stratospheric ozone. In
1990, the atmospheric concentration of the two most
important CFCs, CFC-11 and CFC-12 were 0.28 ppmv and
0.48 ppmv respectively (Houghton 1990).

WHICH COUNTRIES PRESENTL Y MAKE THE
CREA TEST CONTRIBUTION TO ELEVA TED LEVELS OF
GHGS?

The ten leading contributors of GHG emissions are the USA,
the former USSR, Brazil, China, India, Japan, Germany, UK,
Indonesia and France. Many of these countries have a large
industrial and service sector and burn large volumes of fossil
fuels (Watson et al 1990). Developing countries (including
China and the former USSR) accounted for 36% of the global
energy related carbon emissions in 1990. This represents an
increase from an estimated 28% in 1970 (Global
Environmental Change Report 1994).

HOW CAN AEROSOLS COUNTERACT THE EFFECTS
OF GHGS?

Aerosols consist of dust and other tiny particles which are
released into the Earth's atmosphere. Many aerosols act as
nuclei for the condensation of water droplets which make up
clouds. Without condensation nuclei, clouds cannot form and
rain could not occur.

There are numerous natural and human sources of aerosols.
Dust from erupting volcanos or desert sand storms are two
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examples of natural sources. The black soot produced by
forest, savanna and rangeland fires can be either a natural or
human source depending on the cause of the fire. The most
significant human source of aerosols is the emission of
sulphates from power generating stations which can cause
acid rain (IPCC 1994).

Aerosols may counteract the warming effect caused by
elevated levels of GHGs. They help to cool the atmosphere in
two ways. The primary effect is to scatter sunlight, reducing
the amount that reaches the Earth's surface. An increase in
the level of aerosols can alter the density and consequently
the reflectance of clouds and cause a cooling effect. There is
evidence from Australia, the United States and countries of
the former USSR that the amount of cloud cover over these
regions has increased. Consequently, some climatologists
predict that some areas of the world may actually experience
a cooling effect in the future (Pearce 1994).
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Chapter 3
PREDICTED CHANGES IN THE EARTH'S

CLIMATE AND EXPECTED EFFECTS

IN GENERAL, WHAT ARE THE PREDICTED EFFECTS
OF INCREASED LEVELS OF GHGS ON THE EARTH'S
CLIMA TE?

Increases in atmospheric levels of CO2 and other GHGs can
have far reaching effects. They include increases in average
temperatures and changes in precipitation, numbers of frost
free days and the frequency and severity of storms (see
question 15). There is also a likelihood that ocean levels may
rise (see question 17).

Green plants utilize CO2 during photosynthesis. Consequently
increased levels of GHGs can have potentially significant
effects on the growth and survival of green plants, including
trees (see question 18). In addition, changes in climate could
effect the distribution of animals and plants (see questions 33
and 34) and the processes involved in soil formation (see
question 19). These effects could have serious implications in
the future for agriculture, fisheries and forestry.

HOW ARE CHA NGES IN THE EARTH'S CLIMATE
PREDICTED?

The general circulation model or GCM is the most highly
developed tool available with which to predict changes in the
future world's climate. At least 12 different GCMs are now in
use. These are based on the laws of physics and use
descriptions of natural processes such as cloud development
and deep mixing in the oceans. In the most recent GCMs, an
atmospheric component, essentially the same as a weather
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prediction model, is coupled to a model of the ocean. Some
of the more widely used GCMs are:

GISS - Goddard Institute of Space
Sciences

NCAR - National Center for Atmospheric
Research

UKLO, UKHI - UK Meteorological Office

GFLO, GFHI - Geophysical Fluid Dynamics
Laboratory

CCC - Canadian Climate Centre

To make a forecast of future climate, the model is first run
over a simulated period of a few decades with no changes in
the present atmospheric levels of GHGs. The statistical output
is a description of the model's predicted climate which, if the
model is a good one, will bear a close resemblance to today's
climatic conditions. The exercise is then repeated with a new
set of atmospheric conditions (e.g. the equivalent of a
doubling of CO2 levels, see question 8, Table 2.1). The
differences between the outputs of the two simulations (e.g.
mean temperature or inter-annual variability) provide an
estimate of climate change (Fig 3.1). The long term change in
surface air temperature following a doubling of carbon dioxide
is used as a standard to compare predictions by different
GCMs. The outputs are different between models which take
an immediate doubling of CO2 as a starting point when
compared to transient models which apply more gradual
increases in CO2 concentrations.
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Figure 3.1 - An example of a prediction of global change in
precipitation for winter (top) and spring (bottom) produced by the
UKHI GCM. Areas of decrease are stippled.
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Another approach to predicting future climate change is to
search for periods in the Earth's past when global mean
temperatures were similar to those at present or expected in
the future. It is necessary for factors such as greenhouse gas
levels, orbital variations, and other conditions such as ice
cover and topography to be similar in order to get a good
prediction using this approach. Periods in the Earth's history
with levels of GHGs which are similar to today's or predicted
for the next 100-200 years have not yet been found
(Houghton 1991).

14. HOW RELIABLE ARE PRESENT PREDICTIONS OF
CLIMA TE CHANGE?

Predictions of climate change are uncertain because of our
imperfect knowledge of future rates of emissions, the climatic
response to these changes and of weaknesses inherent in the
models used to forecast climate change.

Future climate changes will depend, among other factors, on
the rate at which GHGs are emitted (see question 9). This will
be influenced by a number of inter-related socio-economic
factors. In addition, because of our imperfect level of
knowledge of the sources and sinks of GHGs, there are
uncertainties in the calculations of future concentrations
arising from any emissions scenario entered into a GCM.
Because natural sources and sinks of GHGs are themselves
sensitive to changing climate, they could substantially modify
future concentrations. For example, if wetlands were to
become warmer, methane emissions could increase. If they
were to become drier, more methane would be absorbed.
There are also important processes in the oceans which can
effect GHG concentrations (see question 4).

The models used to predict climate change are only as good as
our understanding of the processes which affect climate.
Presently this is far from perfect. The range of variability of
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climate predictions by different GCMs reflects model
imperfections. The largest of these uncertainties is our
understanding of the factors which affect cloud abundance
and distribution and the interaction of clouds with solar
radiation. Other uncertainties arise from the transfer of energy
between the atmosphere and the ocean, the atmosphere and
land surfaces, and between the various layers in the ocean
(Maunder 1990).

Another point to keep in mind is that present GCMs describe
the climate for an equilibrium situation (eg the situation arising
from a doubling of CO2 concentration in the atmosphere).
They give no indication of how this equilibrium will be reached
or how much time will be required to reach it.

15. WHAT CHANGES IN CLIMA TE ARE PREDICTED WITH
A DOUBLING OF CO2 FROM PRE-INDUSTRIAL
REVOLUTION LEVELS?

Based on outputs of several GCMs; temperatures are expected
to rise, precipitation will generally increase, the climate may
become more variable and there could be an increase in
incidence of tropical storms. These changes are discussed in
more detail in the following paragraphs.

TEMPERATURE - GCMs predict a range of temperature
increase between 1.5 to 4.5°C with a doubling of CO2
equivalents from level present during the middle of the 19th
century. This is expected to occur at the rate of 0.3°C ( ±
0.2-0.5') per decade during the next century and could result
in a temperature increase of 1°C above present day levels by
the year 2025 and of 2°C before the end of the next century
(Houghton 1991). According to some scientists, this rate of
change is unprecedented in geologic history.
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PRECIPITATION - Increased warming of the Earth's surface
will lead to increased evaporation and greater average global
precipitation. However, some regions may have reduced
rainfall. High latitude regions are expected to experience
increased movement of warm moist air toward the poles,
leading to increased annual precipitation and river runoff.
Existing GCMs give widely different estimates of new
geographic patterns of precipitation/evaporation ratios.

CLIMA TIC VARIABILITY - Changes in the variability of weather
and the frequency of extreme climatic events will generally
have more impact than changes in the average conditions.
However, with the possible exception of an increase in the
number of intense showers, there is no clear evidence that
weather variability will change in the future. Assuming no
change in temperature range, but a modest increase in the
average temperature, the number of days with very high
temperatures could increase substantially. There could also be
a decrease in days with very cold temperatures. Consequently
the number of very hot or cold days could change substantially
without changes in the variability of the weather. The number
of days with a minimum threshold amount of soil moisture
required for certain crops could be affected by changes in
average precipitation (Houghton 1991).

STORMS - Tropical storms such as typhoons and hurricanes
develop when ocean surface temperatures are in excess of
26°C. Higher ocean surface temperatures could therefore
result in an increase in tropical storms and resultant damage
including damage to forest resources (Fig 3.2). While systems
are available to forecast storms in advance (Gray 1993),
present day GCMs are unable to make such predictions.
Consequently there is a great deal of uncertainty presently
associated with the effects of climate change on storm events
(Houghton 1991).
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16. IS THE CLIMA TE OF SOME REGIONS OF THE WORLD
EXPECTED TO CHA NGE TO A CREA TER DEGREE
THAN OTHERS?

Yes; there is general agreement among GCMs that there could
be a broad latitudinal climate response due to an increased
greenhouse effect. Warming could be much greater in the
high latitudes and much less toward the equator. The most
extreme temperature increases are likely to occur in winter in
the high latitude of the northern hemisphere where changes
could be a much as 2 1/2 times greater than the global
average. The least amount of change is predicted to occur in
the tropics.

Predictions of regional changes in climate are less clear. One
study, which compares the predictions of severa! GCMs,
indicates increased evaporation leading to increased summer
dryness in mid-latitude continental interiors. Many of these
regions are of great agricultural importance (Easterling 1990).
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Figure 3.2 - Increases in the number of tropical storms, which can
damage many resources including forests, are a possible, but
uncertain outcome of global climate change.
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WHAT CHANGES IN THE LEVEL OF THE OCEANS ARE
EXPECTED DUE TO CLIMA TE CHANGE?

An overall rise in sea level is predicted. This is based on the
assumption that current rates of increase in the levels of GHGs
continue as predicted. By 2100, a rise in ocean levels of 60
cm is expected. This is largely due to thermal expansion of
the surface waters of the oceans. This could have severe
effects on small island nations, countries with large areas of
low lying coastal plains and where large population centres are
concentrated in coastal regions.

A rise in the ocean level is not expected to be uniform over the
entire globe. Thermal expansion, changes in ocean circulation
and surface air pressure will vary from region to region as the
climate changes. The magnitude of these changes is not yet
known.

The most severe effects of sea level rise are likely to result
from extreme climatic events, such as storm surges, the
incidence of which could also be affected by a changing
climate (Houghton 1991). This, however, is one of the less
certain predictions of the effects of global climate change.

HOW WILL PLANTS, INCLUDING TREES, BE
INFLUENCED BY CHA NGES IN THE LEVELS OF GHGs
IN THE EARTH'S ATMOSPHERE AND RESULTANT
CHANGES IN TEMPERA TURE AND PRECIPITATION ?

The changes in levels of GHGs in the Earth's atmosphere and
expected changes in climate can have both positive and
negative effects on plants.

One of the potential positive effects of increased levels of
atmospheric CO2 is known as the "CO2 fertilization effect". It
is known that CO2 is a limiting factor in plant growth.
Increased atmospheric CO2 allows more photosynthesis by
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plants, resulting in at least a temporarily higher growth rate
and rate of removal of atmospheric carbon by plants, provided
that other requirements for plant growth are satisfied.
Laboratory and field experiments indicate an increase in
photosynthesis of about 30% in plants which use the C3
photosynthesis process with increasing root/shoot ratios
implying more underground storage of carbon 2. An increase
in the rate of photosynthesis of about 10% is expected in
plants which use the C4 process. It is likely that the gradual
increase in atmospheric CO2 over the past century has
contributed partially to the approximate doubling of agricultural
production worldwide which has been achieved largely through
improved farming practices and genetic improvement of plant
materials over the same period. Research trials indicate that
this fertilizing effect would be most effective in the lower
ranges of the CO2 increase.

Related to the fertilizing, effect is the fact that plants contract
their stomatal openings at higher levels of atmospheric CO2.
This results in less water vapour loss and an increase in the
plant's water use efficiency. This implies that increased plant
growth may be possible in regions of the world where there is
low precipitation. A study of the possible effects of higher
water use efficiency by plants, combined with the CO2
fertilization effect, indicates that the area where tropical
rainforests could grow might increase by 75% with a doubling
of atmospheric CO2 and the area of deserts could shrink by
60% (Sombroek 1991).

2
Most plants assimilate carbon by one of two photosynthetic pathways.

These are commonly referred to as the C., and C4 pathways. During the first stages
of CO2 absorption, C3 plants manufacture a molecule with three carbon atoms and C4
plants manufacture a four atom molecule. The C4 molecule enables the plant to
assimilate CO, more efficiently. C, plants depend on simple diffusion of CO2 through
their tissue and therefore benefit more than C4 plants froirn higher CO, concentrations.
Plants possessing the C3 pathway account for 85% of all plant species and include
all trees and woody plants. Plants with the C4 pathway are tropical and temperate
grasses which grow in areas of abundant warm season precipitation. Sugar cane,
maize, sorghum and millet are all C4 plants.
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A higher global temperature implies a degree of increase in
plant production, especially in high latitudes where the
temperature rise would be proportionally greater according to
the predictions of all GCMs.

Potential negative effects of changes in temperature and
precipitation on plants include (FAO 1990):

High daily temperatures, even of a few hours
duration, can cause pollen sterility in some
crops such as rice and wheat.

Increased cloud cover and precipitation in some
regions could result in reduced yields of many
crops. Rice yields, for example, can be 1 to 2
tonnes less per hectare in rainy seasons than in
dry seasons when grown under the same
conditions.

Areas with present day Mediterranean climates
(mild, wet winters and hot dry summers) are
predicted to become drier resulting in reduced
soil moisture, especially during the growing
seasons. This would result in reduced crop
production, reduced growth rates in forests and
increased risk of wildfires.

The same conditions which result in increased
crop yields will also favour weeds, enabling
them to be more competitive with crops.

Increased temperatures could cause pests and
diseases to extend their ranges, particularly
northward and into tropical highland regions.
Survival of overwintering populations could be
higher and breeding cycles shorter with
consequent increases in the frequency and
intensity of outbreaks.
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The areas where certain agricultural crops and
tree species can grow may shift. One study
indicates that climate change could result in a
shift of several hundred kilometres of the North
American corn belt from the Southwest to the
Northeast (Easterling 1990). Depending on
location, this could be both a positive and
negative effect.

19. HOW MIGHT SOILS BE AFFECTED BY CHANGES IN
CLIMA TE?

Changing temperatures can alter the rate of microbial activity
in soils. If temperatures increase, the rate of microbial activity
will increase proportionally. This will cause organic matter to
break down at faster rates, which in turn will accelerate the
rate of CO2 release. The amount of carbon stored in soils is
estimated to be almost twice that in the atmosphere (see
question 20). Consequently, a small increase in the rate of
microbial activity can be expected to make a significant
contribution to amount of CO2 in the atmosphere. Some soils
are also sources of NO and CH,.

Breakdown of organic matter in soils results in a release of
nitrogen and makes it available for plant growth. The rate of
chemical weathering of mineral soil is also expected to
increase with increased temperatures, making additional
nutrients available for plant growth. Increased availability of
soil nutrients could contribute to accelerated plant growth
(Grace 1991).
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20. IS THERE ANY EVIDENCE WHICH INDICA TES THAT
CLIMA TE CHANGES MA Y HA VE ALREAD Y
OCCURRED DUE TO INCREASES IN GHG LEVELS?

In 1988, a drought occurred over the central portions of North
America resulting in massive crop failures. This raised
speculation among scientists and the general public that this
drought was the result of an increased greenhouse effect.
More recent climatic events, such as a drought over much of
eastern and southern Africa which began during the
1991/1992 season and affected nearly 100 million people
(Cane et al 1994), several severe hurricanes which battered
the east coast of North America, the major flooding which
occurred in the Mississippi and Missouri River Basins of the
United States in 1993, and record high temperatures in Europe
and North America in the early 1990s could also lead one to
believe that the Earth is beginning to feel the effects of climate
change.

Most climatologists insist however that there is not enough
information to determine if these events are due to a changing
climate or are part of normal climatic variation. Droughts,
floods and severe storms have always affected human
societies. At least one study indicates that the features of the
North American drought of 1988 were consistent with
droughts which occurred earlier this century. This would
suggest that there is nothing new or particularly surprising
about this drought. In fact, precipitation over the past decade
in the Midwestern United States has been above normal,
particularly during the summer, a trend contrary to that which
some GCMs predict for an increased greenhouse response in
this region (Easterling 1990). In addition, in 1988, the year of
the North American drought, precipitation in the Sahel region
of West Africa began to return to normal levels after a drought
which lasted over 25 years (Gommes 1993).
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Another complicating factor is that human populations have
increased significantly over the past two to three decades.
Consequently when climatic anomalies such as droughts
occur, more people are affected. High human population
densities also lead to less resilient agricultural production
systems. This amplifies climatic anomalies. Land degradation,
cultivation of marginal lands with low natural fertility or water
holding capacity and shorter fallow periods can exacerbate
drought conditions (Gommes 1993). This is especially true of
regions such as Sudo-Sahelian Africa and northeastern Brazil
which have been historically prone to drought events.

The average global temperature has shown a gradual increase
of 0.3 to 0.5 °C since the 1850s. However this trend is so
masked by annual and regional variations that it is virtually
impossible to attribute the increase to a specific cause.
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Chapter 4
THE GLOBAL CARBON CYCLE

21, WHAT PROCESSES EXIST FOR THE EXCHANGE OF
CARBON BETWEEN THE ATMOSPHERE, THE OCEANS
AND THE LAND?

There is a finite but extremely large amount of carbon on the
Earth (Table 4.1). Carbon occurs in the ocean, in soils, fossil
carbon reserves, bedrock, the atmosphere and plant biomass.
The carbon cycle is the movement of carbon, in its various
forms, between the Earth's surface, its interior and
atmosphere. The major pathways of the exchange of carbon
are photo-synthesis, respiration and oxidation. Movement
occurs between living organisms, the atmosphere, the land
and water (Fig 4.1). Over the course of millions of years, the
carbon cycle has concentrated large amounts of carbon in
bedrock, primarily as limestone and in fossil fuels.

The carbon cycle is thought of as four interconnected
reservoirs or pools; the atmosphere, the terrestrial biosphere
(including fresh water systems), the oceans and the sediments
(including fossil fuels). The exchange rate of carbon between
pools is referred to as flux. These reservoirs are either carbon
sources and sinks. Carbon sinks absorb carbon from another
part of the carbon cycle while carbon sources release carbon.
For example, green plants absorb carbon from the atmosphere
and are considered a carbon sink. An industrial plant which
releases carbon in the atmosphere is considered a carbon
source.

40 Climate Change. Forests and Forest Management 

Chapter 4 
THE GLOBAL CARBON CYCLE 

21. WHAT PROCESSES EXIST FOR THE EXCHANGE OF 
CARBON BETWEEN THE A TMOSPHERE. THE OCEANS 
AND THE LAND? 

There is a finite but extremely large amount of carbon on the 
Earth (Table 4.1). Carbon occurs in the ocean, in soils, fossil 
carbon reserves, bedrock. the atmosphere and plant biomass. 
The carbon cycle is the movement of carbon, in its various 
forms, between the Earth's surface. its interior and 
atmosphere. The major pathways of the exchange of carbon 
are photo-synthesis, respiration and oxidation. Movement 
occurs between living organisms, the atmosphere, the land 
and water (Fig 4.1). Over the course of millions of years, the 
carbon cycle has concentrated large amounts of carbon in 
bedrock, primarily as limestone and in fossil fuels. 

The carbon cycle is thought of as four interconnected 
reservoirs or pools; the atmosphere, the terrestrial biosphere 
(including fresh water systems), the oceans and the sediments 
(including fossil fuels). The exchange rate of carbon between 
pools is referred to as flux. These reservoirs are either carbon 
sources and sinks. Carbon sinks absorb carbon from another 
part of the carbon cycle while carbon sources release carbon. 
For example, green plants absorb carbon from the atmosphere 
and are considered a carbon sink. An industrial plant which 
releases carbon in the atmosphere is considered a carbon 
source. 



Climate Change, Forests and Forest Management 41

22. HOW ARE EXCHANGES OF CARBON BETWEEN
RESERVOIRS EXPRESSED?

Exchange between reservoirs involves large amounts of
carbon. This is expressed in multiples of metric tonnes. The
units used throughout this paper are those widely used in the
literature on climate change and carbon flux and are defined as
follows:

1 .teragramme (Tg) = 1012 grams or 106 tonnes.
1 petagramme (Pg) = 1015 grams or 109 tonnes.
1 gigatonne (Gt) -= 109 tonnes or 1 Pg.
1 Pg 1 Gt.

Concentration of GHGs in the atmosphere are expressed as
follows:

Parts per million by volume.
Parts per billion (thousand
million) by volume.
Parts per trillion (million million)
by volume.

TABLE 4.1

ESTIMATED DISTRIBUTION OF THE GLOBAL
CARBON POOL (Source: Sombroek et al 1993)

Component GtC

Oceans 38000
Fossil carbon

reserves 6000
Soils

Organic carbon 1200
Calcium carbonate 720

Atmosphere 720
Plant biomass 560-835

Total 47220-47495

ppmv =
ppbv =

pptv =
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Figure 4.1 - Schematic representation of the global carbon cycle
showing movement of carbon (in Gt) betvveen carbon sources and
sinks (Source: Watson et al 1990).
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23. WHAT IS THE PRESENT LEVEL OF CARBON
EXCHANGE BETWEEN THE ATMOSPHERE, THE
OCEANS AND THE LAND?

According to estimates for the decade 1980-89, annual carbon
fluxes due to CO2 exchanges were as follows (IPCC 1994):

CO2 sources:

Fossil fuel emissions 5.5 ±0.5 GtC/yr

Net emissions from tropical
land use (deforestation etc)
Total emissions

CO2 sinks:

Additional terrestrial sinks
(eg CO2 fertilization effect,
nitrogen fertilization and
climatic effects)

1.6 ± 1.0
7.0± 1.1

Accumulation in the
atmosphere 3.2 ±0.2

Uptake by the ocean 2.0 ±0.8

Uptake by northern hemisphere
forest regrowth 0.5 ±0.5

1.4±1.5

The "additional terrestrial sinks" have not yet been quantified
but are believed to be the primary components of the so called
"missing carbon sink" which is yet to be accounted for.
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* Includes Russia

main stems of trees. Because of the long life span of most
trees and their relatively large sizes, trees and forests are
storehouses of carbon. Overall, forests store from 20 to 100
times more carbon per unit area than croplands and play a
critical role in regulating the level of atmospheric carbon.
The world's forests have been estimated to contain up to 80%
of all above ground terrestrial carbon and approximately 40%
of all below ground terrestrial carbon (soil, litter and roots).
This amounts to roughly 1146 GtC. Approximately 37% of
this carbon is stored in low latitude (tropical) forests, 14% in
mid latitude (temperate) forests and 49% in high latitude
forests (Dixon et al 1994).

When trees die or are harvested, the stored carbon is released.
Some of the carbon becomes part of the organic matter
component of forest soils where, depending on climatic
conditions, it can remain for long periods. The remainder is
released into the atmosphere, largely as CO2 but also as CH,
or other GHGs. The rate of release may be slow, as in the
case of a single tree dying and being subject to years of
breakdown and decay by fungi, insects, bacteria and other

TABLE 5.1

LAND AREA COVERED BY FORESTS AND OTHER WOODED
AREAS BY REGION (1980) (Source: Lanly 1989, FAO, unpublished data)

Region Forests (%) Other wooded
(%)

Total
(%)

Africa 18.0 21.3 39.3
Americas 37.0 15.2 55.2
Asia-Pacific 19.0 7.0 26.0
Europe 27.0 8.6 35.6

WORLD 27.0 13.0 40.0
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organisms. On the other hand, a sudden disturbance, such as
a wildfire or clearing and burning of forests for agriculture and
settlement by humans, can cause a rapid release of large
volumes of GHGs into the atmosphere.

HOW MUCH CARBON IS RELEASED AND HOW MUCH
IS TAKEN UP ANNUALL Y BY FORES Ts?

Estimates for the year 1 990 indicate that the low latitude
forests emitted 1.6 ± 0.4 GtC per year into the atmosphere,
primarily due to deforestation. This is equivalent to
apprOximately 23% of the total carbon emissions including the
burning of fossil fuels. This was offset by a sequestration of
0.7 ± 0.2 GtC per year by forest expansion and growth in the
mid and high latitudes (Table 5.2). Consequently, there is
presently a net carbon contribution of 0.9 ± 0.4 GtC per year
to the atmosphere from the world's forest ecosystems (Dixon
et al 1994). This is undoubtedly due to increased rates of
tropical deforestation during the decade of the 1980s (see
question 25). At the beginning of the decade, the estimated
accumulation of carbon in recovering tropical landscapes
which had previously been disturbed was roughly equal to net
carbon emissions due to tropical deforestation and associated
burning (Lugo and Brown 1992).

DO DIFFERENT FOREST ECOSYSTEMS VARY IN THEIR
CAPACITY TO ABSORB AND STORE CARBON?

Forests vary considerably in their capacity to absorb and store
carbon. Factors which influence carbon absorption rates
include temperature, precipitation, stocking, soil, slope,
elevation, site conditions, growth rates and age. Generally
speaking, closed forests have a greater capacity to store
carbon than open forests and woodlands. Undisturbed forests
store more carbon than degraded forests. Wet or moist
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TABLE 5.2

ESTIMATED ANNUAL RATES OF CARBON
EXCHANGE BETWEEN THE WORLD'S

FORESTS AND THE ATMOSPHERE

* Includes continental USA and Alaska.
** Includes Nordic countries
*** + Indicates transfer from atmosphere to forest.

- Indicates transfer from forest to atmosphere.

Source: Dixon et al 1994

Latitudinal Belt Carbon Exchange
(GtfYear) ***

High
Russia +0.30 to +0.50
Canada +0.08

Subtotal +0.48 ±0.1

Mid
USA* +0.10 to +0.25
Europe*" +0.09 to +0.12
China -0.02
Australia trace

Subtotal +0.26 ±0.09

Low
Asia -0.50 to -0.90
Africa -0.25 to -0.45
Americas -0.50 to -0.70

Subtotal -1.65 ± 0.40

Total -0.9 ± 0.4
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forests store more carbon than dry or semi-arid forests and
mature forests store greater quantities of carbon than do
young forests.

Many studies have been conducted to estimate the biomass of
forest ecosystems. These can be used to estimate carbon
storage. The ratio of dry total biomass to carbon is roughly
2:1. The carbon content of an undisturbed tropical moist
forest can range has high as 250 tC/ha of standing, above
ground biomass. The carbon content of tropical, dry forests
with open, discontinuous canopies, on the other hand,
generally averages less than 40 tC/ha (Brown and Lugo 1984)
(Table 5.3).

Forest soils also store carbon. A recent study indicates that
84.3% of the total carbon content of high latitude forests is
stored in the soil. For mid-latitude forests, 63% is stored in
the soil and for low latitude forests, the proportion is 50.4%
(Dixon et al 1994) (Table 5.4).

28. DO TREES AND FORESTS REMOVE CARBON FROM
THE EARTH'S ATMOSPHERE AT DIFFERENT RATES
DURING DIFFERENT STAGES IN THEIR LIVES?

The rate of carbon absorption by trees and forests is a
function of growth rates and age. Generally speaking, trees
and forests remove atmospheric carbon at high rates when
they are young and fast growing. As stands approach
maturity and growth rates are reduced, the net carbon
absorption is also reduced. In theory, mature forests reach a
stage of equilibrium with respect to carbon absorption.
Roughly an equal amount of carbon is released through decay
of dead and diseased trees as is absorbed. However this is
rarely achieved in natural forests. Mature forests, if left
undisturbed, as is the case in reserved or protected forests,
are carbon reservoirs but not necessarily net carbon sinks.
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TABLE 5.3

ESTIMATES OF AVERAGE ABOVE GROUND STORED
CARBON/HA BY VARIOUS VEGETATION COMMUNITIES

(Based on biomass values from Olsen et al(1983))

Holdridge Life Zone tC/ha

Forest

Tropical wet 100
Tropical moist 70
Tropical dry 50
Subtropical wet 65
Subtropical moist 35

Warm temperate 50
Warm dry temperate 25
Cool temperate 50

Wet boreal 55
Moist boreal 40

Non Forest

Tropical thorn woodland 15
Temperate thorn steppe 8

Cool temperate steppe 5
Tropical desert bush 2
Temperate desert bush 3

Boreal desert 5

Tundra 2.5
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Includes Nordic countries.

Source: Dixon et al 1994.

TABLE 5.4

ESTIMATED CARBON DENSITIES PER UNIT OF FOREST AREA
IN VEGETATION AND SOILS OF THE WORLD'S FORESTS

Latitudinal Belt Carbon Densities (tC/ha)

Vegetation Soils

High
Russia 83 281
Canada 28 484
Alaska 39 212

Mean 64 (15.7%) 343 (84.3%)

Mid
USA 62 108
Europe* 32 90
China 114 136
Australia 45 83

Mean 57 (37%) 96 (63%)

Low
Asia 132-174 139
Africa 99 120
Americas 130 120

Mean 121 (49.6%) 123 (50.4%)
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Box 5.1 The role of forest plantations in
New Zealand's carbon balance.

According to estimates made by a team of
research scientists in New Zealand, the
country's 1.24 million ha of plantation
forests absorbed 4.5 ± 0.8 million tonnes
of carbon between 1 April 1988 and 1 April
1989. The total above ground carbon
stored in New Zealand's forest plantation
estate is approximately 88 million tonnes.

Carbon absorption by New Zealand's forest
plantations for the period studied was
equivalent to approximately 70% of the
country's fossil fuel emissions but <0.1%
of the total global fossil fuel emissions.

The high annual rate of carbon uptake by
these plantations is a consequence of the
large area of new plantings established
during the 1970s and 1980s. Without
continued new plantings, the net annual
rate of carbon absorption of these
plantations will rapidly approach zero
(Hollinger et al 1993) .
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Studies of carbon absorption rates in tropical forest plantations
indicate that maximum growth and carbon uptake occurs
during age classes 0-5 and 6-10 years (62%). Carbon uptake
decreases by about 50% during the next 5 years and
decreases even further after age 16 (Brown et al 1986).29.

29. WHICH HUMAN ACTIVITIES IN FORESTS AND
WOODLANDS CONTRIBUTE TO INCREASES IN THE
LEVELS OF GHGS?

DEFORESTA TION - Felling and burning of forests to make land
available for agriculture or livestock grazing, is the major forest
sector contributor to increases in the levels of GHGs and is the
second largest human caused source of GHGs.

Human societies have been cutting forests for millennia. Until
the early part of this century, deforestation occurred mainly in
temperate forests. More recently, it has been concentrated in
the tropics. Deforestation, and associated burning, results in
a massive and rapid release of carbon into the atmosphere,
primarily as CO2. Smaller amounts of CH4 and CO are also
emitted. Tropical forests play an important role in the global
carbon cycle because they store about 50% of the world's
living terrestrial carbon (Dixon et al 1994). High rates of
deforestation in the tropics is the reason that forests presently
make a net contribution to atmospheric carbon, despite the
fact that they are able to store large quantities of carbon.

Deforestation can also alter climate directly by increasing
reflectivity (albedo) and decreasing evapo-transpiration.
Experiments with climate models predict that the replacement
of all of the forests of the Amazon Basin with grassland would
reduce the rainfall over the basin by about 20% and increase
the average regional temperature by several degrees (Maunder
1990).
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sector contributor to increases in the levels of GHGs and is the 
second largest human caused source of GHGs. 

Human societies have been cutting forests for millennia. Until 
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the tropics. Deforestation, and associated burning, results in 
a massive and rapid release of carbon into the atmosphere, 
primarily as CO 2 , Smaller amounts of CH, and CO are also 
emitted. Tropical forests play an important role in the global 
carbon cycle because they store about 50% of the world's 
living terrestrial carbon (Dixon et al 1994). High rates of 
deforestation in the tropics is the reason that forests presently 
make a net contribution to atmospheric carbon, despite the 
fact that they are able to store large quantities of carbon. 

Deforestation can also alter climate directly by increasing 
reflectivity (albedo) and decreasing evapo-transpiration. 
Experiments with climate models predict that the replacement 
of all of the forests of the Amazon Basin with grassland would 
reduce the rainfall over the basin by about 20% and increase 
the average regional temperature by several degrees (Maunder 
1990). 
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BIOMASS BURNING - The term "biomass burning" includes
all intentional human activities associated with forest clearing,
the burning of savanna vegetation to stimulate regeneration of
grasses for livestock, burning of fuel wood and charcoal and
consumption of agricultural residues. The area of savanna
vegetation burned each year is estimated at 750 million ha.
About half of this area is in Africa (Fig 5.1). Shifting
cultivation, a practice in which the natural vegetation is
cleared, used for agriculture for 2 to 5 years and then allowed
to remain fallow and revegetate with natural vegetation for 7
to 12 years before being cleared again, is practised by 200
million people world wide on 300 to 500 million ha.
Approximately 87% of the biomass burning occurs in the
tropics.

WILDFIRES - A "wildfire" is defined as any fire occurring on
wild (undeveloped) lands except a fire under prescription (one
which is set intentionally) (FAO 1986). Recent estimates
indicate that between 12 and 13 million ha of forests and
other wooded lands are burned annually (Calabri and Ciesla
1992). With the exception of remote forest areas in portions
of North America and Siberia, most forest and other wildland
fires are of human origin. Human causes of wildfires include
escaped prescribed fires, carelessness, and arson. Natural
causes of wildfires are lightning storms, volcanic activity and
burning of underground peat and coal deposits.

OTHER ACTIVITIES - Other human activities connected with
forests and forest products which contribute to elevated levels
of greenhouse gases include degradation of forests and
disposal of wood products, especially paper products, after
they have served their period of usefulness.
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Figure 5.1 - An aerial view of a brush fire in the Sudan. Roughly
750 million ha of savanna vegetation are burned annually, resulting
in a massive release of greenhouse gases.

30. WHAT ARE THE CURRENT RATES OF
DEFORESTATION IN THE WORLD'S FORESTS?

The average annual rate of tropical deforestation during the
decade of 1981-90 was 15.4 million ha (FAO 1993). These
rates of deforestation are roughly equivalent to the total land
area of Nepal, Nicaragua or Greece and resulted in a reduction
in the area of tropical forests from 1 910 million ha at the end
of 1980 to 1 756 million ha at the end of 1990. On a regional
basis, the annual loss of forest cover was: Latin America and
the Caribbean, 7.4 million ha (0.8% of the total forest area),
Asia and the Pacific, 3.9 million ha (1.2 %) and Africa, 4.1
million ha (0.7%). The forest area of the temperate and boreal
zones did not change significantly during the same period.
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Annual rates of deforestation in the tropics have increased
when compared to the previous decade. During the 1980s,
the annual rate of tropical deforestation was 11.3 million ha
(Lanly 1982).

Forests in developed temperate regions now cover much
smaller areas than in the past. These forests have historically
contributed heavily to global carbon emissions as forests in
Europe and North America were cleared for agriculture.
However, the area of these forests has stabilized and even
increased slightly over the past 100 years as agricultural lands
were abandoned and reverted to forest cover. France, for
example, had forest cover on only 14% of the country's land
area in 1798. Today 27% of its land area is forested.
Deforestation and agricultural development in the state of
Vermont, USA had reduced the surface area of forest cover to
about 15% of the total land area about 100 years ago. Today
the state is 85% forested.

31. HOW ARE FOREST SOILS AFFECTED BY
DEFORESTATION?

In addition to increasing susceptibility of soils to erosion by
wind and water, the clearing of forests and woodlands to
support agriculture in the tropics can result in a loss of 20 to
50% of the soil carbon contained in the topsoil. Some
estimates indicate that deforestation in the tropics caused a
net release of between 0.1 and 0.3 Gt of soil carbon in the
years around 1990 compared with 0.3 and 1.3 Gt as a result
of burning and decay of vegetation respectively (Sombroek et
al 1993).
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Chapter 6
POSSIBLE EFFECTS OF CLIMATE

CHANGE ON FORESTS

32. WHAT CHANGES IN GRO WTH AND YIELD OF TREES
AND FORESTS CAN BE EXPECTED AS A RESULT OF
CLIMA TE CHANGE?

The implications of CO2 enrichment on growth and yield of
trees and forests are still unclear. Laboratory studies on
growth rates and yield of plants grown in elevated CO2
environments have documented increased rates of
photosynthesis, lowered plant water use requirements,
increased carbon sequestration and increased soil microbial
activity. These result in higher rates of nitrogen fixation,
thereby stimulating growth. However in a natural ecosystem,
where animals graze on plants, disease organism cause
damage and tree death and plants compete for available light,
water and nutrients, there are serious doubts that production
would actually increase. In addition, higher growth and yield
could be offset by higher losses due to fire, insects and
disease (See questions 35 and 36).

To date, little work has been done to test the effects of higher
CO2 concentrations on forests or other natural plant
communities over extended time frames. Therefore the net
effect of climate change on forest growth and yield uncertain.
Sedjo and Solomon (1989) conclude that the phenomenon of
CO2 fertilization has not yet been detected in trees, despite
extensive searches for it in the field and in growth chambers.
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33. WHAT CHANGES CAN BE EXPECTED IN THE
NATURAL RANGES OF TREE SPECIES AND PLANT
COMMUNITIES DUE TO CLIMA TE CHANGE?

When temperature and rainfall patterns change, the ranges of
both animal and plant species change. As the Earth warms,
species tend to shift their distributions toward higher latitudes
and altitudes. For each 1°C of warming, tree ranges in the
northern hemisphere have the potential to expand 100 km
northward while southern boundaries retreat. This is a
process which has been tracked since the last Ice Age (Davis
1989).

There is ample evidence in the fossil record that plants have
undergone significant range shifts in response to changing
climates. Analysis of fossil pollen data also provides
information on the composition of past vegetation (Brubaker
1975, Solomon and Bartlein 1992) (Fig 6.1). During the
Pleistocene interglacial eras, temperatures in North America
were from 2° to 3° C higher than they are now. Tree species
such as sweetgum, Liquidambar styraciflua, and Osage
orange, Maclura pomifera, which today are considered typical
components of forest vegetation in the southeastern United
States, occurred near Toronto, Canada. During the last
interglacial era, which ended more than 100 000 years ago,
areas covered presently with boreal vegetation in northwestern
Europe, were predominantly temperate. More recently in
Sweden, the range of the birch, Betula pubescens, responded
rapidly to warming during the first half of the twentieth
century by expanding its range northward into the tundra
(Peters 1990).

Shifts in the ranges of tree species could be important for
several reasons. First, there are indications that climate could
change faster than some tree species can respond through
migration. Second, new sites may not be edaphically suitable
for the migration of species. Finally, future climate zones,
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Figure 6.1 - Fossil pollen diagrams made from analysis of lake
sediments in the Upper Peninsula of Michigan, USA. These data
provide clues as to the composition of forests which occupied this
area in the past (Source: Solomon and Bartlein 1992).

leading to displaced forest ecosystems will not be related to
current political boundaries and (or) land use patterns (Izrael et
al 1990).

Studies have been done which predict shifts in the natural
ranges of plant ecosystems (Fig 6.2) and individual tree
species which could result from temperature and moisture
changes due to atmospheric levels of GHGs. Miller et al
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Figure 6.3 - Possible redistribution of loblolly pine, Pinus taeda in the
southeastern United States due to a doubling of atmospheric CO2
(Source - Miller et al 1987).

Legend
Loblay pine range

1 (Gain)

-2 (No change)

3 (Loss)

Figure 6.4 - Examples of species redistribution in high mountain
regions due to a 2°C increase in mean annual temperature: a =
mountains of eastern Africa resulting in a relatively small increase in
area and b = highlands of Uganda resulting in a near disappearance
of a high elevation vegetation zone (Source: Sombroek 1990).
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Box 6.1 Will the future forests of the world
be drier?

Plants may have reduced rates of
transpiration in an atmosphere with elevated
levels of CO2. The outcome could be a
world with reduced cloud formation and less
rain, according to a report by the Terrestrial
Initiative on Global Environmental Research
(TIGER) of the Natural Environmental
Research Council of the United Kingdom.

Several research groups have successfully
linked computer models of land surface
processes to climate prediction models. A
simple climate model predicted nearly 10%
more evaporation and 3% more rainfall over
the tropical rain forests in a future high CO2
environment. However, when the rainforest
was described more realistically, a new
chain of events was started, leading to less
water being available for cloud formation
and less evaporation and rain (WMO 1994).
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Sea level rise, associated with rising temperatures, could
effect the distribution and abundance of mangrove forests.
These coastal forests provide a wealth of wood and non wood
forest products and services. In addition to meeting needs for
wood products for the inhabitants of coastal zones in the
tropics, they provide a rich habitat for fisheries and
aquaculture. They also protect coastal zones from tropical
storms and shoreline erosion and offer breeding sites for a
large number of wildlife species (FAO 1994, Gable et al 1990).

Future shifts in the natural ranges of trees and forest
communities could have both positive and negative effects on
supplies of lumber and other forest products, distance to
markets, species diversity and susceptibility to fire, pests and
disease.

34. WHAT IS THE LIKELIHOOD THAT CLIMA TE CHANGE
COULD THREA TEN SOME SPECIES OR PLANT
COMMUNITIES WITH EXTINCTION?

The likelihood that plant or animal species could be lost due to
climate change is uncertain. Because of their mobility, animals
are generally at less risk because they are able to disperse to
habitats which are more favourable. Plants, on the other
hand, are stationary, and must rely on dispersal of seeds from
areas which are no longer favourable to new areas resulting in
a gradual shift in the their natural ranges. During the
Pleistocene glacial eras many tree species were lost from the
boreal and temperate forests of Europe because they were
unable to shift their ranges southward due to the presence of
the Alps, the Pyrenees and other predominantly east-west
mountain ranges which served as a natural barrier to plant
migration. Consequently, the forests of northern Europe
contain considerably fewer species than those which occur at
equivalent latitudes in Asia and North America.
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In general, plant ecologists believe that plant species with
broad geographic ranges and many populations will be the
most likely to survive climate change. Examples include
species such as Pinus sylvestris, which occurs from western
Europe to Siberia, Populus tremula and P. tremuloides, both of
which have transcontinental distributions. Rare or
geographically restricted species would be at greater risk of
extinction. This is especially true of species restricted to high
elevation zones which would ultimately be unable to shift their
ranges further upslope in response to a warmer climate. An
example is the Fraser or southern balsam fir, Ab/es fraseri, a
tree whose natural range is restricted to the highest elevations
of six areas in the Southern Appalachian Mountains in the
United States (Fig 6.5). Another category of plants which are
at some risk of extinction are those with heavy seeds which
are not readily dispersed.

Figure 6.5 - A forest of Ab/es fraseri and Picea rubens straddles the
highest ridges in the Black Mountains of North Carolina, USA.
Forests such as these would be unable to shift their ranges upslope
in response to a warming climate.
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Other ecologists argue that the risk of extinction of plant
species and resultant loss of biodiversity is minimal because
plants possess genetic variation which allows them to adapt
to changing environmental conditions. Genetic variation is a
prerequisite for evolution and a powerful mechanism which
allows both animals and plants to change and adapt (Eriksson
et al 1993).

35. HOW MIGHT CLIMATE CHA NGE INFLUENCE THE
INCIDENCE AND INTENSITY OF WILDFIRES?

As the structure, composition and biomass of forests respond
to changing climate, so will the behaviour of fire (Fosberg et
al 1990). Some expected changes include increases in the
frequency and severity of fires and a lengthening of fire
seasons in areas which are already prone to fire events.

Some tropical rain forests are subject to periodic episodes of
prolonged droughts such as those caused by the El Niño
Southern Oscillation (ENSO). These droughts can drastically
change the fuel conditions and flammability of the vegetation.
Once precipitation falls below 100 mm per month, and periods
of two or more weeks without rain occur, the forest
vegetation sheds its leaves progressively with increasing
drought stress. In addition, the moisture content of surface
fuels is lowered, while fallen woody material and loosely
packed leaf litter contributes to the build-up and spread of
surface fires. Aerial fuels such as desiccated climbers and
lianas become fire ladders leading to crown fires (Goldammer
and Seibert 1990). It is this sequence of events which set the
stage for the catastrophic fires which occurred in East
Kalimantan, Indonesia during 1982-83 and resulted in the
destruction of over 3.5 million ha of primary and secondary
moist forest. Some global circulation models (GCM) predict
increased drought episodes in some tropical forests.
Consequently the incidence of large wildfires, such as the ones
which occurred in East Kalimantan, could increase.
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Certain tropical rain forests, especially those in the sub-
equatorial tropics (from 10 to 23° latitude) are subject to
hurricanes. Damage associated with these storms promotes
invasion of vines, which can contribute to foliar biomass
accumulation on soil surface openings, particularly during
occasional dry spells. This results in fuel loadings that can
lead to fires (Mueller-Dombois and Goldammer 1990).

Fuel accumulation resulting from the direct effects of tropical
storms can also increase the hazard of wildfire. In 1988,
Hurricane Gilbert swept across part of Mexico's Yucatan
Peninsula and damaged over 1 million ha of tropical forests.
The volume of combustible fuel created by the debris
increased the risk of wildfire. During the following year, over
120,000 ha of Mexico's largest area of tropical forest burned
(Ciesla 1993). One of the more uncertain effects of predicted
climate change is the possibility of an increased frequency and
intensity of tropical storms. This would increase the levels of
combustible fuels.

In some remote forest areas, lightning is a major cause of fire.
A study using GCMs was done to determine lightning
frequency for a doubled CO, climatic regime. This study
predicts an increase in lightning frequency at all latitudes with
a mean global increase of 26% (Fosberg et al 1990).

36. WHAT ARE THE EXPECTED EFFECTS OF CLIMA TE
CHANGE ON FOREST HEALTH INCLUDING
SUSCEPTIBILITY TO PESTS AND DISEASE OR
DECLINE?

An increase in insect and disease caused losses in forests
could become one of the first observed effects of climate
change. Evidence of this can be found in the pest epidemics
which are the result of stress brought on by periodic drought
or excess rainfall. Reviews by Kristiansen (1993) and
Sauerbeck (1992) of potential effects of climate change on
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pests and diseases in agriculture provide a framework from
which to identify potential forest sector effects. They include
both positive and negative responses.

Some anticipated negative effects on forest health are:

In a given location, higher temperatures could
result in more generations of insect pests per
year, thus increasing their destructive potential.
This is especially true for those insects which
already have more than one generation a year.
An example of a destructive forest insect of
tropical forests whose number of generations
could increase under a warming scenario is the
pine caterpillar, Dendrolimus punctatus, an
important defoliator of tropical pines in southern
China and Southeast Asia (Fig 6.6)

The ratios of pest species to their natural
enemies could change in favour of the pests.
This would increase the reproductive potential
of destructive pests and result in higher levels
of damage.

Increased climatic anomalies are predicted to
occur as part of climate change. A higher
incidence of droughts, storms, deep freeze
events or periods of excess rainfall will put
additional stresses on trees and forests making
them more susceptible to attack by pests and
disease. Climatic anomalies may also increase
the sensitivity of trees to air pollution frorn
anthropogenic sources. Episodes of forest
decline may also increase. These are the result
of a complex interaction of forests with climate,
site, pests and disease and, in many cases,
human activities (Mueller-Dombois 1992).
Examples include diebacks of Metrosideros
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Figure 6.6 - Insects such as the pine caterpillar, Dendrolimus
punctatus, a destructive defoliator of tropical pines in Southeast
Asia, can undergo additional generations in warmer climates.
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polymorpha in the Hawaiian Islands, USA, Azadirachta indica
in the Sahel region of Africa, Acacia nilotica in the Sudan and
Eucalyptus spp in Australia and South America (Ciesla and
Donaubauer 1994).

Widening carbon/nitrogen ratios in trees due to
elevated levels of CO2 could increase foliage
consumption by insects as has been
demonstrated in laboratory studies. For
example, Lincoln et al (1984) showed that
feeding rates of lepidopterous larvae rose with
corresponding increases in atmospheric CO2.
Forest defoliators such as the spruce
budworms, Choristoneura spp., in North
America and pine caterpillars, Dendrolimus spp.
in Asia could be similarly affected. As a result
outbreaks could cause more severe defoliation.
More recently Lincoln (1993) showed similar
feeding responses from larvae representing
another group of foliage feeding insects; pine
sawflies, Neodiprion sp. (Hymenoptera:
Diprionidae).

A higher incidence of insect and disease
outbreaks due to stress on trees associated
with climate change will result in higher levels
of combustible fuels in forests increasing the
risk of wildfires. In the conifer forests of
western North America, recent outbreaks of
several species of bark beetles (Family
Scolytidae) have increased the volumes of
flammable fuels to dangerously high levels
These have resulted in large fires of high
intensity including the 1988 fire in Yellowstone
National Park in the USA. These outbreaks are
believed to be related to fire exclusion and not
climate change, however they serve as an
example of what could happen as a result of
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predicted climate change (Hessburg et al 1994,
USDA 1994)

Some possible positive effects are:

The higher growth rates which are projected by
some scientists, due to warmer temperatures
and elevated CO2 levels might allow forests to
sustain higher levels of insect and disease
damage without reductions in growth and yield.

The increased vigour of trees and forests
growing in elevated CO2 levels could be more
resistant to attack by insects and disease.

Elevated CO2 may benefit plant health and
productivity by altering the morphology and
physiology of plants to the detriment of disease
causing organisms.

The hazard of destructive insect and disease outbreaks in
tropical forests is believed to be minimal when compared to
temperate and boreal forests because of their inherent
diversity. While this may be true in tropical forests of natural
origin, it must be kept in mind that many tropical countries, to
meet their needs for wood products, rely on single species
plantations, often of fast growing exotics. Many of these
plantations are established with material representing a narrow
genetic base. These are often unable to adapt to changing
environmental conditions. In 1990, there were an estimated
30.7 million ha of forest plantations in 90 tropical countries
(FAO 1993). A total of 23% were of Eucalyptus spp and 10%
were of various species of Pinus. These are subject to attack
by a variety of pests, many of which are accidentally
introduced. An excellent review of forest insect and disease
plantation pests of the Asia-Pacific Region is provided by
Hutacharern et al (1990). This review clearly indicates that in
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tropical managed forests, there is an ample number of insect
and disease pests which could respond to changes in climate.
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Box 6.2. Dieback of Juaiperus procera in
Kenya - an example of the effects of a
regional climate change?

Die back and mortality of Juniperus procera,
an irnportant component of highland forests
in Kenya has been occurring at least since
the early 1980's. In some places, up to
90% of the trees have been affected. The
heaviest dieback and mortality occurs in the
drier low elevation forests. Higher elevation
stands, which receive more precipitation
and grow on better soils appear to be in a
reasonably good state of health.

The factors responsible for this condition
are unknown. One hypothesis is that these
forests have been stressed by a long term
regional warming and drying trend which
has affected the low elevation sites to the
point where they are no longer suitable for
this species (Ciesla et al 1994). As a result,
the altitudinal range of this species could
become more restricted in the future.
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Chapter 7
HELPING FORESTS ADAPT TO CLIMATE CHANGE

37. HOW CAN WE RESPOND TO PREDICTED CLIMATE
CHANGE?

There are two overall approaches to responding to predicted
climate change; adaptation and mitigation. These approaches
apply to all sectors involved in the climate change issue.

ADAPTATION is concerned with responses to the effects of
climate change. It refers to any adjustment, whether passive,
reactive or anticipatory that can be adopted to ameliorate the
anticipated expected or actual adverse consequences effects
of climate change. Adaptation also includes taking advantage
of any possible beneficial effects such as longer growing
seasons which might allow planting of certain crops at higher
latitudes.

Many adaptation policies make good sense regardless of
climate change because present day climatic variability and
extreme climatic events, such as droughts, severe storms and
floods already cause significant damage in most parts of the
world. Adaptation to these events can help reduce damage in
the short term regardless of any long term changes in climate.

MITIGATION or "limitation" attempts to address the causes of
climate change. It achieves this through actions which
prevent or retard increases in levels of atmospheric GHGs by
limiting current and future emission sources and enhancing
potential sinks of GHGs.

Both adaptation and mitigation strategies should be considered
in an integrated approach when designing responses to climate
change. This chapter addresses opportunities for helping
forests adapt to climate change while Chapter 8 addresses
mitigation options.
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DO NATURAL PROCESSES EXIST WHICH CAN HELP
TREES AND FORESTS ADAPT TO A CHANGING
CLIMA TE?

Some populations of trees, because of their genetic variability,
will be able to survive the effects of climate change by
adjusting to the new conditions through acclimation rather
than by migrating to new locations with climates similar to the
original habitat. Another potential adaptive mechanism is that
certain physiological and developmental traits will undergo
permanent changes as a result of evolution.

In many cases, the boundaries of a species' range may be a
consequence of factors operating in addition to climate. One
of these factors is competition. In the northern hemisphere,
the southern limits or lower elevation limits of the ranges of
many species are determined by competitive relationships with
species to the south or at lower elevations. Thus, many
northern species grow quite well in non-competitive situations
far south of their natural ranges. If climate changes, these
species may be able to persist in their original locations if the
better competitors do not invade immediately.

Often, reproduction and seedling establishment is more
sensitive to climate change than is the survival of mature
individuals. In such cases, adult individuals may persist in an
area long after regeneration has disappeared.

HOW CAN FOREST MANAGEMENT HELP FORESTS
ADAPT TO CLIMA TE CHANGE?

Good silvicultural practices, including maintenance of optimum
stocking levels and selection of trees which are best adapted
to existing sites should ensure that forests remain vigorous
and relatively free of site and stand related stress. These
practices should help forests adapt to climate change.
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feasible in mixed species plantings, which are
well adapted to local sites and climatic
conditions and meet national needs for forest
products and services.

Establish in-situ and ex-situ reserves of key
forest species to ensure that a gene pool of
sufficient variability is available for tree
improvement programmes which have the
objective of developing varieties capable of
adapting to climate change.

Accelerate timber salvage and fuel management
programmes to reduce the hazard of wildfire in
forests, especially those which have suffered
from high levels of pest and disease damage or
forest decline events.

Design insect and disease monitoring
programmes which are capable of detecting
increases in the occurrence and intensity of
forest decline events and in the activity of new
pests and diseases (both indigenous and
introduced) in addition to those which have
historically caused losses. Monitoring systems
should also be capable of detecting changes in
the biology, ecology and natural ranges of pest
species including timing of key events in their
life histories, number of generations, feeding
patterns and pest/host interactions.

Initiate research programmes to determine
effects of long term climate change on the
biology and pest-disease/host interactions of
traditional pest species. In addition, identify
those species which have a potential for
becoming pests under a climate change
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scenario. Integrate new research information
into operating programmes as soon as possible.

Conduct studies on the effects of fire, insects
and disease on biodiversity in terms of
colonizers, successional and climax species.
Determine the degree of "disruptions" in the self
repairing process of vegetation systems due to
climate change. Examples include the inability
of forests to re-invade burned or harvested
areas, or an "arrested" succession, where scrub
or liana vegetation is no longer replaced by
forest.

Initiate studies to determine the effects of
climatic anomalies on forest stability.
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CHAPTER 8
THE ROLE OF FORESTS AND FORESTRY FOR

MITIGATING THE EFFECTS OF CLIMATE CHANGE

41. WHAT OPPORTUNITIES DO FORESTS AND FOREST
MANAGEMENT OFFER FOR MITIGATING THE
EFFECTS OF PREDICTED CLIMA TE CHANGE?

Forests provide opportunities to partially mitigate the predicted
effects of climate change. This can be accomplished through
three overall approaches:

Reducing sources of greenhouse gases.

Maintaining existing sinks of greenhouse gases.

Expanding sinks of greenhouse gases.

Specific actions under each of these approaches are described
in sections 8A - 8C of this chapter.

Two things must be kept in mind when planning forest sector
strategies and programmes designed to mitigate effects of
climate change:

Trees and forests are only temporary carbon sinks.
When trees are harvested, burned or die, some of the
stored carbon is again released into the atmosphere.
Forest sector policies and strategies therefore should
aim at prolonging the carbon storage capacity of trees
and forests as long as possible.

Any forest sector mitigation measures must be done in
concert with mitigation measures in other sectors that
contribute significantly to the build up of GHGs in the
atmosphere such as industry, agriculture,
transportation and power generation.
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WHAT FEATURES SHOULD CHARACTERIZE ACTIONS
TAKEN TO MITIGA TE POTENTIAL EFFECTS OF
CLIMA TE CHANGE?

Regardless of what actions are taken to mitigate the predicted
affects of climate change, they should have the following
characteristics:

Ecologically Sustainable - Actions should provide for
the long term needs of both present and future
generations.

Economically Viable - Proposed actions should have
low start up costs and be socially integrative, building
on local needs, life styles and traditions.

Technologically Simple - Actions should be capable of
being implemented successfully under a variety of
conditions with a minimum of specialized equipment,
training or procedures.

Adaptable - They should have sufficient flexibility to
adapt to changing economic, political, social, ecological
and climatic conditions.

Socially Acceptable - Proposed actions should have
immediate and clear benefits, especially to local
residents.

WHAT ADDITIONAL RESEARCH IS NEEDED TO MORE
FULL Y UNDERSTAND THE POTENTIAL EFFECTS OF
CLIMA TE CHANGE ON TREES AND FORESTS AND TO
DEVELOP ADAPTATION AND MITIGATION TACTICS?

There are many uncertainties associated with all aspects of the
global climate change issue. With regard to forests and
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forestry there are uncertainties concerning the impact of
possible climate change on forest ecosystems, the adaptation
of forests to climate change and the potential for mitigating
predicted adverse effects of climate change by forests.

During a Ministerial Conference on the Protection of Forests in
Europe held in Helsinki, Finland in 1993, the European states
and the European Union agreed to a programme of intensified
research and cooperation on forestry and climate change. This
programme provides a comprehensive model for national and
(or) regional efforts and recommends the following lines of
investigation:

Achieve a greater understanding of the linkages
between climate change and forest ecosystems,
including feed-backs from ecosystems to the
climate system.

Quantify the role of forests, forest soils and
peatlands as reservoirs, sinks and sources of
carbon and understand the role of forests in the
global carbon cycle. Research in this field may
include the development of common
methodologies for research, for national and
regional inventories and the development and
maintenance of data bases on reservoirs, sinks
and sources of carbon in terrestrial ecosystems.

Identify the genetic variability associated with
regionally important tree species and their ability
to respond to changes in climate and increased
concentration of carbon dioxide, and on the
degree and rate of evolutionary processes and
adaptation.

Determine the dynamic equilibrium of host-
parasite relationships in new climatic
environments.
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Study changes in soil formation processes,
including the mineralisation of organic matter
and leaching, in response to climate change.

Develop process-based predictive ecosystem
models applicable on a regional scale which may
be used in to integrate anticipated changes in
climate, interactions with air pollution, effects
on forest ecosystems, fluxes of greenhouse
gases and effects on forests and forest
management.

Define ways to alter forest management
systems to optimise adaptation to climate
change, ensure the health and functions of
forests and to optimise the sequestration and
storage of carbon.

A conceptual plan for research in forest/atmospheric
interactions in the United States has also been designed by
USDA Forest Service (USDA 1988).

44. DO INTERNATIONAL AGREEMENTS EXIST WHICH
ENCOURAGE DEVELOPMENT AND PROTECTION OF
FORESTS TO ENHANCE THEIR ABILITY TO MITIGA TE
THE EFFECTS OF CLIMATE CHANGE?

Several international instruments and targets have been
developed which support large scale forest sector development
as a means of mitigating the effects of predicted climate
change.

One of the first international accords on climate change which
referred directly to forestry was the Nordwijk Declaration on
Climate Change which was developed in 1989. This
declaration established a target of a net growth in forest area
of 12 million ha/yr by the beginning of the next century. A
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follow up workshop held in Bangkok, Thailand in 1991
concluded that the prospect for attaining such a target was
very limited (IPCC 1992).

During the United Nations Conference on Environment and
Development (UNCED), held in Rio de Janiero, Brazil, a
Framework Convention on Climate Change, designed to
control and reduce future GHG emissions was signed. This
convention was ratified by 100 signatory countries by
December 1994.

A non-legally binding authoritative statement entitled
"Principles for a Global Consensus on the Management,
Conservation and Sustainable Development of all Types of
Forests" was adopted at the UNCED conference. The
statement stresses that forest lands should be sustainably
managed to meet the social, economic, ecological, cultural and
spiritual human needs of present and future generations.
These principles and Agenda 21, an environmental programme
for the 21st century which was also promulgated at UNCED,
propose forest conservation measures to conserve carbon
pools and increase the security of these pools.

These statements which must be translated into action
programmes at the country and community level in order to be
implemented. Several countries, including China, Denmark,
Finland, France and Italy have developed strategic action plans
under the umbrella of these international agreements. France,
for example, has targeted the addition of 30 000 ha of
afforestation annually for the next 50 years and the promotion
of more durable uses of wood (e.g. in construction) (Ministère
de l'Agriculture et de la Pbche 1994).

International agencies, such as FAO, can provide a wide range
of technical assistance and training related to climate change
and identification of opportunities for forests to mitigate its
effects.
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45. HOW CAN THE TROPICAL FORESTS ACTION
PROGRAMME (TFAP) ASSIST IN DEVELOPING FOREST
SECTOR PROGRAMMES TO HELP MITIGA TE EFFECTS
OF CLIMA TE CHANGE?

TFAP is designed to assist countries in the conservation and
sustainable use of tropical forest resources. The plan grew
out of parallel efforts sponsored by FAO, The World Bank
(WB), the United Nations Development Programme (UNDP) and
the World Resources Institute (WRI). The Programme was
formalized in 1987 and strengthened in 1991. Leadership for
the programme is housed in FAO.

TFAP is a country-driven approach to forest resource planning
and management. The process involves a high level of
participation by local people and non-government
organisations, is multidisciplinary and intersectorial. TFAP
begins with the formulation or revision of a long term forest
policy and strategy and the development of a national forest
plan. This process can facilitate the integration of clinnate
change considerations into the development and
implementation of long range forest sector policies, strategies
and plans.
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8A
REDUCING SOURCES OF GREENHOUSE GASES

46. WHAT ACTIONS CAN BE TAKEN TO REDUCE THE
CURRENT RATES OF TROPICAL DEFORESTATION
AND HOW MIGHT THIS AFFECT EMISSIONS OF GHGS
FROM FORESTS?

Arresting the current rates of deforestation requires actions
which reduce pressures to convert forest lands to other uses
and to protect remaining forests so that they can be managed
on a sustainable basis. Most deforestation is caused by the
expansion of agriculture. This is in direct response to
expanding human populations and economic development.
Programmes aimed at reducing deforestation must, therefore,
be accompanied by efforts to increase productivity and
sustainability of existing agricultural lands so that production
keeps pace with increasing demands. In many cases,
deforestation has been considered as being only a forest
sector problem when in reality it is a multisectoral issue.

According to one estimate, as much as 80% of forest clearing
for shifting and sedentary agriculture can be eliminated by
substituting sustainable cropping systems (Lashof and Tirpak
(1989). They suggest the following actions for reducing the
expansion of agriculture into tropical forests:

* Introduce crop mixes, planting and management
systems and improved genetic strains of crops
to increase productivity per unit area on existing
agricultural lands. In some cases, investment in
fertilizers, irrigation systems and capital (high
input systems) will be needed to achieve
adequate agricultural intensification and
sustainability.

86 Climate Change, Forests and Forest Management 

8A 
REDUCING SOURCES OF GREENHOUSE GASES 

46. WHAT ACTIONS CAN BE TAKEN TO REDUCE THE 
CURRENT RA TES OF TROPICAL DEFORESTA TlON 
AND HOW MIGHT THIS AFFECT EMISSIONS OF GHGS 
FROM FORESTS? 

Arresting the current rates of deforestation requires actions 
which reduce pressures to convert forest lands to other uses 
and to protect remaining forests so that they can be managed 
on a sustainable basis. Most deforestation is caused by the 
expansion of agriculture . This is in direct response to 
expanding human populations and economic development. 
Programmes aimed at reducing deforestation must. therefore. 
be accompanied by efforts to increase productivity and 
sustainability of existing agricultural lands so that production 
keeps pace with increasing demands. In many cases. 
deforestation has been considered as being only a forest 
sector problem when in reality it is a multisectoral issue. 

According to one estimate , as much as 80% of forest clearing 
for shifting and sedentary agriculture can be eliminated by 
substituting sustainable cropping systems (Lashof and Tirpak 
(1989). They suggest the following actions for reducing the 
expansion of agriculture into tropical forests: 

• Introduce crop mixes, planting and management 
systems and improved genetic strains of crops 
to increase productivity per unit area on existing 
agricultural lands . In some cases. investment in 
fertilizers, irrigation systems and capital (high 
input systems) will be needed to achieve 
adequate agricultural intensification and 
sustainability. 



Climate Change, Forests and Forest Management 87

Conduct research on use of low external input
cropping systems where high inputs are not
feasible.

Develop opportunities for raising of cash crops
as well as subsistence crops so that farmers
can acquire needed cash to invest in fertilizers,
irrigation equipment and other technologies.

Intensify management of existing pasture lands
to increase site productivity through the
introduction of optimized foraging strategies,
fertilization, mechanisation and improved
livestock management.

Focus agricultural development on sites with
adequate non-forest soils such as savannah,
pasture and under-utilised crop lands.

The opportunities for implementing these and other options
should be determined through the development of strategic
land and resource management plans at the national level.

47. WHAT CAN BE DONE TO REDUCE THE FREQUENCY
AND SCALE OF FORESTS AND SAVANNA
WOODLAND CONSUMED BY BIOMASS BURNING?

Most fires which occur in the savannas and woodlands of the
tropics are prescribed or intentional fires. These are set by
local residents who use fire to clear land, dispose of
agricultural residues, improve the quality of forage for
livestock or to drive game animals. These practices are based
on traditions which are often thousands of years old. Unless
there are massive changes in agricultural and range
management practices in these countries in the near future,
these practices and resultant carbon emissions will continue in
the future.
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Prescribed fires often escape and burn over areas which are
not intended to be burned. The number and area burned by
wildfires or unintentional fires can be reduced through
implementation of integrated fire management programmes.
While the primary benefit of these programmes is the
protection of forest and other wildland resources from wildfire,
they will also reduce carbon emissions.

The elements of an integrated wildfire management
programme include fire prevention, presuppression planning
(fire detection, fire danger rating based on local fire weather
and fuel conditions (Fig 8.1), training and equipping of fire
brigades) and suppression, the actual fighting of forest and
woodland fires.

Prevention should be directed toward specific groups of people
which cause wildfires. For example, in Indonesia, woodlands
in several national parks are under a high risk of wildfire
because of agricultural burning by neighbouring farmers. This
was one of the target groups identified as part of a project
funded through the FAO Technical Cooperation Programme
(TCP) in wildfire management. The subsequent fire prevention
programme specifically addressed this group. Another key
aspect of prevention is fuels management. This includes
establishment of fuel breaks in strategic locations and periodic
use of prescribed burning to reduce volumes of combustible
fuels. A relatively simple procedure such as teaching farmers
how to construct fire breaks around pastures or fields which
are to be burned can prevent prescribed fires from escaping
and burning surrounding forests and woodlands.

When designing wildfire management programmes, it is
necessary to have an understanding of the ecological role of
natural fires in the areas which are to be protected. In many
semi-arid ecosystems, fire plays a key role in plant succession.
Fire exclusion can result in the establishment of more
vegetative biomass than the site is capable of carrying. This
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Figure 8.1 - A forester in Mexico's Yucatan Peninsula assesses
forest fuels. Knowledge of fuel conditions is an important factor in
planning forest fire management programmes.

89Climate Chango, Forests and Forest ManagementClimate Change, Forests and Forest Management 89 

Figure 8.1 - A forester in Mexico's Yucatan Peninsula assesses 
forest fuels. Knowledge of fuel conditions is an important factor in 
planning forest fire management programmes. 



90 Climate Change, Forests and Forest Management

vegetation subsequently becomes susceptible to attack by
insects, disease and other damaging agents resulting in
excessively high accumulations of combustible fuels.
Consequently, when a wildfire does occur after a long period
of fire exclusion, it burns with greater intensity and can be
more damaging (Hessburg et al 1994, USDA 1994).

48. HOW CAN INCREASING THE EFFICIENCY OF BURNING
FUEL WOOD AND OTHER BIOFUELS REDUCE
EMISSIONS OF GHGS?

Fuelwood and other biofuels, including charcoal, crop residues,
animal dung and other forms of biomass are used in many
parts of the world for cooking, heating and processing of raw
materials at the household level (Fig 8.2). Biofuels are
presently the fourth most important source of energy in the
world with fuelwood and charcoal consumption alone
accounting for 10% of overall world energy consumption. In
developing countries, biomass is the dominant energy source.
For example, in Ethiopia, biofuels account for over 93% of the
national energy supply (Karekezi 1 994). Use of household
biofuels is estimated to contribute between 2 and 7% of the
annual emissions of GHGs from human sources. Fuelwood
and other biofuels are also used in many developing countries
to support many small and medium scale rural industries such
as charcoal kilns, bakery ovens, brick kilns, tobacco and coffee
processing plants.

In most cases, household biofuels are converted into energy
using methods which are inefficient and produce a low energy
output. They also produce a high GHG output per unit of
energy produced. The use of more efficient combustion
systems provides an opportunity to increase energy output and
reduce the per unit output of GHGs. They provide an added
benefit of reduced pressure on existing biofuel resources. This
is especially important in many semi-arid regions where rapidly
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Figure 8.2 - Fuelvvood is taken from a forest plantation to a village
in Indonesia. Rural people in developing countries rely heavily on
fuelwood for cooking and heating. More efficient use of biofuels
offers another opportunity to reduce GHG emissions.
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expanding populations are putting increased pressure on
biofuel resources, leading to deforestation and desertification.

The introduction of more efficient cooking stoves and
industrial processes could reduce fuelwood requirements by
25-70% at a low investment cost. This can also contribute to
reduced GHG emissions. In addition, the use of better quality
biomass in terms of size, moisture content and heating value,
if available, can contribute to heating efficiencies and reduced
GHG output. In order to achieve maximum benefits from more
energy efficient technologies, their introduction must be
accompanied by adequate training in their use such as
programmes which are offered by NGO's such as the
Foundation for Woodstove Dissemination.

49. HOW CAN USE OF WOOD AND OTHER "BIOFUELS"
IN PLACE OF FOSSIL FUELS HELP REDUCE LEVELS OF
GHGS IN THE ATMOSPHERE?

The substitution of biomass in place of fossil fuels as a
modern energy source has the potential to dramatically change
the global warming implications of rising energy consumption,
especially in tropical countries. Opportunities exist to use
large quantities of agricultural and forest residues that would
otherwise go to waste. There are also opportunities to
develop biomass crops primarily for energy production. If
produced efficiently, "biofuels" could supply a significant
proportion of commercial energy demand in coming decades.

The benefits of bioenergy utilization go beyond substitution of
fuel sources. Biofuels can not only help to close the CO2 cycle
and reduce GHG emissions, but biomass plantations,
established on presently fallow lands, would also expand
carbon reservoirs. In addition, the substitution of domestically
produced biomass could also contribute to improve the balance
of payments of energy poor countries. Other benefits include
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new job opportunities in rural areas and a decentralization of
energy resources.

The most obvious opportunities for use of biomass for energy
involve agricultural and industrial wastes. In Indonesia, for
example, large quantities of wood wastes from logging and
wood processing operations are piled and burned, used for
landfill or dumped into rivers and the ocean. These materials
are presently considered to be a waste disposal problem rather
than a source of energy. It is estimated that in Indonesia,
wood wastes from sawmills and plywood plants would be
sufficient to produce 1 000 megawatts of electricity. This is
equivalent to 20-30% of the energy presently derived from
fossil fuels. Sugar cane and rice wastes offer similar
opportunities. Some agricultural and industrial wastes can
also be incorporated into the soil to increase carbon storage.

The potential for biomass utilization goes beyond the use of
waste products. Tropical forestry plantations have recorded
yields equivalent to more than 15 tons of carbon per ha per
year. Even assuming modest growth rates, these plantations
could make a significant contribution to both energy supplies
and temporary carbon storage if established over large areas
(Trexler et al 1992).

50. HOW CAN MORE EFFICIENT TIMBER HARVESTING
REDUCE GHG EMISSIONS FROM FORESTS?

Uncontrolled timber harvesting operations result in excessive
soil disturbance, logging residues and damaged residual trees.
This causes increased emissions of CO2 and other GHGs and
decreases the capacity of the residual forest to sequester
carbon (Pinard 1994). Timber harvesting is a damaging
process, no matter how well planned and carefully
implemented. However there are certain planning and
operational practices which can be implemented to reduce the
disruption of forest processes.

Climate Change, Forests and Forest Management 93 

new job opportunities in rural areas and a decentralization of 
energy resources. 

The most obvious opportunities for use of biomass for energy 
involve agricultural and industrial wastes. In Indonesia, for 
example, large quantities of wood wastes from logging and 
wood processing operations are piled and burned, used for 
landfill or dumped into rivers and the ocean. These materials 
are presently considered to be a waste disposal problem rather 
than a source of energy. It is estimated that in Indonesia, 
wood wastes from sawmills and plywood plants would be 
sufficient to produce 1 000 megawatts of electricity. This is 
equivalent to 20-30% of the energy presently derived from 
fossil fuels. Sugar cane and rice wastes offer similar 
opportunities. Some agricultural and industrial wastes can 
also be incorporated into the soil to increase carbon storage . 

The potential for biomass utilization goes beyond the use of 
waste products. Tropical forestry plantations have recorded 
yields equivalent to more than 15 tons of carbon per ha per 
year. Even assuming modest growth rates, these plantations 
could make a significant contribution to both energy supplies 
and temporary carbon storage if established over large areas 
(Trexler et al 1992). 

50. HOW CAN MORE EFFICIENT TIMBER HARVESTING 
REDUCE GHG EMISSIONS FROM FORESTS? 

Uncontrolled timber harvesting operations result in excessive 
soil disturbance, logging residues and damaged residual trees. 
This causes increased emissions of CO2 and other GHGs and 
decreases the capacity of the residual forest to sequester 
carbon (Pinard 1994). Timber harvesting is a damaging 
process, no matter how well planned and carefully 
implemented. However there are certain planning and 
operational practices which can be implemented to reduce the 
disruption of forest processes. 



94 Climate Change, Forests and Forest Management

Good timber harvesting begins with the development of forest
management and harvest plans. The forest management plan
includes maps and descriptions of areas to be harvested, areas
to be protected, contractual information and other general
policies. Harvest plans describe in detail the harvesting
operation.

Many of the reductions in logging damage which are
characteristic of well managed forests are the results of
careful harvest planning (Dykstra and Heinrich 1992). These
environmental benefits are generally not expensive and may
actually increase the efficiency of the harvesting operation and
reduce costs.

Several procedures can significantly reduce logging damage.
Pre-felling of vines is often recommended where they bind
trees together to reduce felling damage. Directional felling is
recommended in areas which are to be selectively logged.
This will reduce damage to potential future crop trees and
facilitate skidding. Yarding also deserves a great deal of
consideration because it can cause damage to soils and
residual trees. Exposed soils are subject to erosion and
leaching of organic matter including carbon. Yarding damage
can be reduced by restricting bulldozers to designated skid
trails and maximizing log winching distances. Soil damage can
be further minimized by use of yarding systems which move
logs suspended in the air (eg skylines, helicopters and
balloons).

Increased utilization of felled trees will result in a reduction of
overall land area which needs to be logged. A study by FAO
(Dykstra 1994) revealed that in several tropical countries, less
than 50% of the wood in the main stems of tropical trees
felled for harvest is actually utilized. The remainder of the
main stem and the other parts of the tree are left in the forest
as logging residues. By comparison, the average fraction of
the main stems utilized in industrial countries is more than
78%.
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Post harvest practices such as removal of stream crossings
which impede water flow, proper slash disposal and
treatments to promote vegetation growth in denuded areas will
help promote recovery of harvested areas (Putz 1994).

An example of the benefits of improved timber harvesting
techniques comes from a study done in dipterocarp forests in
Sabah, Malaysia (Pinard 1994). Normally, trees over 60 cm in
diameter at breast height (dbh) are harvested and skidded to
landings by bulldozers. Approximately 8 to 15 trees per ha are
removed in this manner and up to 75% of the residual trees
suffer logging damage. Prior to logging, these forests can
store up to 330 tC/ha. The harvesting operation removes
about 80 tC/ha. Through the use of controlled harvesting
techniques, it has been demonstrated that if damage to the
residual stand can be reduced from 40% to 20%, the
additional amount of carbon remaining in the residual forest
after 10 years could be over 65 tons/ha (Fig 8.3).
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Figure 8.3 - A comparison of residual carbon storage between
conventional and reduced impact logging in Malaysia (Source: Pinard
1994)

Climate Change, Forests and Forest Management 95 

Post harvest practices such as removal of stream crossings 
which impede water flow, proper slash disposal and 
treatments to promote vegetation growth in denuded areas will 
help promote recovery of harvested areas (Putz 1994). 

An example of the benefits of improved timber harvesting 
techniques comes from a study done in dipterocarp forests in 
Sabah, Malaysia (Pinard 1994). Normally, trees over 60 cm in 
diameter at breast height (dbh) are harvested and skidded to 
landings by bulldozers. Approximately 8 to 15 trees per ha are 
removed in this manner and up to 75% of the residual trees 
suffer logging damage. Prior to logging, these forests can 
store up to 330 tC /ha. The harvesting operation removes 
about 80 tC/ha. Through the use of controlled harvesting 
techniques, it has been demonstrated that if damage to the 
residual stand can be reduced from 40% to 20%, the 
additional amount of carbon remaining in the residual forest 
after 10 years could be over 65 tons/ha (Fig 8.3). 

Residual 
forest 
(120 tonnes 
ca rbonJha) 

Conventional logging 

Damaged 
trees 

Residual 
forest 
{1 85 tonnes 
ca rbon/hal 

Reduced-impact logging 

Figure 8.3 - A comparison of residual carbon storage between 
conventional and reduced impact logging in Malaysia (Source: Pinard 
19941 



96 Climate Change, Forests and Forest Management

SB
MAINTAINING EXISTING SINKS

OF GREENHOUSE GASES

51. HOW CAN MANAGEMENT AND CONSERVATION OF
NATURAL FORESTS ENHANCE THEIR CAPA CITY TO
FIX AND STORE CARBON?

Improved management of natural forests can increase
productivity and carbon storage potential through accelerated
growth, maintenance of optimum levels of stocking and
protection from fire, pests and disease (See question 40).
There are many opportunities worldwide, to improve the
management of natural forests. In the tropics, for example, an
estimated 137 million ha of logged forests could benefit from
enrichment planting and regeneration because present
selective logging practices have reduced long term productivity
(Grainger 1989) (See question 50).

The development and expansion of non-wood forest products
would provide increased incentives to maintain and protect
forests. This could have the added desirable effect of
increased carbon storage. Examples of opportunities to
develop non-wood forest products include production of latex,
nuts, resin, mushrooms, wild meat and plants of medicinal
value (Fig 8.4).

Establishment of reserved or protected forests, which are
excluded from timber harvesting will also help maintain
existing natural forests as carbon sinks, provided that they are
protected from damaging effects of fire, pests and disease.
These forests still provide many opportunities for management
of non-timber forest resources. These include providing
habitat for wildlife, establishment of sites where rare or
endangered plant species can be protected, in situ
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Figure 8.4 - In Vietnam, a woman collects resin in a pine plantation.
Non-wood forest products can provide economic incentives to
manage and protect forests, thus maintaining their capacity to
absorb and store carbon.
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conservation of genetic resources, development of outdoor
recreation opportunities, protection of soil and water resources
and gathering of non-wood products such as wild fruits and
mushrooms. Such forests would probably provide a limited
carbon absorption potential however because they often
contain large areas of mature forests where carbon absorption
is roughly equal to carbon release.

52. WHAT USES OF FORESTS AND FOREST PRODUCTS
ARE MOST DESIRABLE FROM THE STANDPOINT OF
LONG TERM CARBOIV STORAGE?

From the perspective of CO2 storage, the most desirable uses
of forest and forest products are those which extend rotation
ages and production of goods which are durable and long
lasting. This will allow for the carbon to be stored in the
woody tissue for as long as possible. However local and
national needs for goods and services will prevail over global
concerns for carbon sequestration. Therefore, from the socio-
economic standpoint, forests should be put to whatever uses
are required to support national and local needs, provided that
these uses are sustainable. If forests provide for the needs of
people, then there are built in incentives to manage them on
a sustainable basis and their probability of long term survival
and benefit is increased.

Conversion of trees into durable products such as furniture or
wooden structures will extend their carbon sequestration.
Recycling of paper products will reduce the need for
harvesting trees for manufacture into new paper products.
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Sc
EXPANDING SINKS OF GREENHOUSE GASES

53. HOW MUCH CARBON CAN BE FIXED IN WOOD AND
SOIL ON A PER HECTARE BASIS IN FOREST
PLANTA TIONS IN BOREAL, TEMPERA TE AND
TROPICAL ZONES?

The rate of carbon fixing is a function of many variables.
These include tree species, growth rates, longevity, site,
annual precipitation, length of growing season, rotation length,
etc. Annual rate of carbon fixing is highest in young
plantations.

Fixation rates for several tropical forest plantation species over
a given rotation are summarized by Schroeder (1991) (Table
8.1).

TABLE 8.1

CARBON FIXATION RATES FOR SEVERAL
TROPICAL FOREST PLANTATION SPECIES

(Source: Schroeder 1991)

Species Rotation
(Yrs)

Mean Above
Ground Carbon

Storage
(Tonnes C/ha)

Pinus caribea
Leucaena sp.
Casuarina sp.
Pinus patula
Cupressus lusitanica
Acacia nilotica

15
7-8
10
20
20

10-15

59
21-42
21-55

72
57

1 2-17
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TABLE 8.1 

CARBON FIXATION RATES FOR SEVERAL 
TROPICAL FOREST PLANTATION SPECIES 

(Source: Schroeder 1991) 

Species Rotation Mean Above 
(Yrs) Ground Carbon 

Storage 
(Tonnes C/ha) 

Pinus caribea 15 59 
Leucaena sp. 7-8 21-42 
Casuarina sp. 10 21 -55 
Pinus patula 20 72 
Cupressus lusitanica 20 57 
Acacia ni/otica 10-15 12-17 
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An overriding factor in afforestation or reforestation is to
match the tree species, and provenance to the site on which
it is to be planted. In addition, species should be selected
which meet the objectives of the plantation and are acceptable
to the people of the locality. If these conditions are met, and
with proper management and protection, t'ne plantations
should be assured of high rates of survival, good growth and
will meet the objectives for which they are planted, including
sequestration of carbon (Fig 8.5).

54. HOW MUCH ADDITIONAL AREA OF FOREST
PLANTA TIONS WOULD BE REQUIRED TO FULLY
OFFSET PRESENT ANNUAL INCREASES IN
GREENHOUSE GAS LEVELS FROM ALL SOURCES?

A number of studies have been conducted to estimate forest
area required to offset various CO2emission goals. A study by
Sedjo and Solomon (1989) indicates that the current annual
increase in atmospheric carbon could be sequestered for about
30 years in approximately 465 million ha of plantation forests.
This would require an increase of more than 10% in the
current area of forests on the earth's surface. It would also
represent an increase of more than four times the present
plantation area in the world. This estimate is based on the
assumption of an average annual growth of 15 m3/ha/yr. An
annual growth rate of 5 m3/ha/yr is more realistic for
plantations in the boreal and temperate zones and for many
tropical areas. Therefore this estimate may be highly
conservative.

Calculations are presented by Grainger (1990) for several
afforestation scenarios. These suggest the following:

* Planting 60 million ha per year for 10 years
would establish sufficient forest area to absorb
2.9 GtC per year, the net increment of CO2
from all sources.
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Figure 8.5 - Plantations of fast growing trees, such as this plantation
of Anus radiata in Chile, can absorb atmospheric CO, while
providing a wide range of wood and non-wood products and
services.
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Figure 8.5 - Plantations of fast growing trees, such as this plantation 
of Pinus radiata in Chile , can absorb atmospheric CO2 while 
providing a wide range of wood and non-wood products and 
services. 
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Planting 20 million ha per year beginning in
1990 would achieve a carbon absorption equal
to the current net annual CO, contribution by
the year 2020.

Planting 2 million ha per year for 30 years
would establish a forest that could absorb 10%
of the net annual increment of CO,.

Continuing the present rate of forest planting for
the next 40 years will offset less than 10% of
the current net CO2 increase.

Afforestation of 2 to 5 million ha per year could
offset the CO, emissions from tropical forests
by the year 2020.

The current rate of forest planting in the tropics is about 1.8
million ha per year (FAO 1993).

55. TO WHAT EXTENT ARE SUITABLE LANDS AVAILABLE
FOR AFFORESTATION AND REFORESTATION?
WHERE ARE THEY?

In order to answer this question, the word "suitable" must first
be qualified. It refers not just to a technical definition in terms
of soils and climatic conditions. It also depends on social and
economic factors. It is possible, at a price, to establish trees
almost anywhere; the cost, however, will be not only in
money but in human terms, since much of the land that is
classified as "degraded" and available for plantations is in fact
used by landless people. The decision to commit land area to
forest plantations must be technically sound, economically
feasible and socially acceptable.

Several estimates of land available for afforestation in the
tropics have been made. Grainger (1990) estimates that there
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may be 621 million ha of land "technically" available. This
estimate does not take into account socio-econonnic
considerations. Of this, 418 million ha are in dry, montane
regions and 203 million ha are forest fallow in humid areas.
According to Houghton (1990), up to 865 million ha of land
are available in the tropics for afforestation. Of this total,
there may be about 500 million ha of abandoned lands that
previously supported forests in Latin America (100 million ha),
Asia (100 million ha) and Africa (300 million ha). The
additional area would be available only if increases in
agricultural productivity on other lands allowed these marginal
lands to be removed from production. Winjum et al (1992)
estimate that a combination of afforestation, agroforestry and
forest protection on 300-600 million ha of available land could
conserve and sequester 36-71 Pg C over 50 years.

In the nnid and northern latitudes, land uses have stabilized in
most areas over the past century, however there are still
ample opportunities for re/afforestation projects. In some
temperate zone countries, area of forest land has actually
increased as marginal agricultural lands which have been
abandoned have reverted to natural forests or have been
reforested. France was 14% forested in 1789 and today 27%
of its land area is forested. Within the past 15 years
approximately 600 000 ha per year have come out of
agricultural production in Europe, of which about 40% was
transferred to forest and other wooded land (FAO 1992).

In the United States, there are an estimated 46.8 million ha of
crop and pasture lands which are capable of growing trees and
are better suited to this purpose. There are also opportunities
for planting of fast growing trees for wood energy production
on 14-28 million ha and establishment of windbreak plantings
on 1.37 million ha. If planted, these areas could provide an
additional carbon storage capacity of from 66-210 million
tonnes/yr (Sampson and Hamilton 1992).
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One type of degraded land that may have potential for the
establishment of plantations is salt-affected land, provided it
is not used by people who have no other source of land.
Reliable and recent estimates of such land are not available but
in the tropics there may be over 50 million ha both in Africa
and in Asia and over 30 million ha in Latin America as well as
large areas in Australia and temperate and sub-tropical Asia
(Massoud 1977). There are several active research
programmes into the selection of salt-tolerant species and
provenances of plantation trees, particularly in Australia and
Asia, but it should be noted that there are also research
programmes into the development of salt-tolerant agricultural
crops. Nevertheless salt-affected soils are an important if
unquantified source of land for plantations.

Based on the above information, it would appear that there are
large areas of suitable land for afforestation and reforestation
(in terms of being without encumbrance and with reasonably
fast growth rates) in temperate North America, Europe,
Australia, Chile, Argentina, Brazil and Uruguay. In Africa there
are large areas of degraded savanna woodland, but this has
lower yield potential and may not be unencumbered. It is
important to keep in mind, however, that large areas of
plantation may not be the best use of such land, especially
from the standpoint of the needs of the people who presently
occupy or use it. Any large scale afforestation or reforestation
projects should be part of a land use plan, made with the full
involvement of the people who depend upon the land.

There is also considerable potential for tree planting in
homestead gardens, windbreaks and agroforestry systems
(See question 58).
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56. WHAT OTHER CONSTRAINTS ARE THERE TO LARGE
SCALE AFFORESTATION INITIATIVES?

There are several other constraints to large scale afforestation
initiatives in addition to the availability of land. These can be
classified into four general categories; infrastructure, social,
economic and ecological constraints.

INFRA STRUCTURE CONSTRAINTS - Limited institutional
capacity, lack of research on appropriate species to plant,
unrealistic government incentives, and soaring populations
rates resulting in increased pressure on available land can
constrain afforestation initiatives.

SOCIAL CONSTRAINTS - The interests and needs of local
people living in areas proposed for afforestation are of
paramount importance. When goals and objectives of forestry
projects do not coincide with those of the local people, the
results will be less than hoped for. Farmers can easily
perceive government sponsored afforestation or reforestation
efforts as an encroachment on customary land use rights and
as a challenge to their welfare. Reactions of this nature have
often led to active opposition and even sabotage through
setting of intentional fires (Trexler et al 1992).

ECONOMIC CONSTRAINTS - Costs of afforestation
programmes are highly variable, depending on the nature of
the terrain to be planted, labour costs, and tree species to be
planted. A rough global estimate indicates that tree planting
costs can range from a low of SUS 200 to a high of SUS 2
000 per ha. Projected socio-economic benefits derived from
plantations may not justify planting costs. (Bernthal 1990).
Therefore it would be difficult, if not impossible, for countries
receiving loans from development banks for afforestation
projects to repay the loans.

ECOLOGICAL CONSTRAINTS - Ecological drawbacks to large
afforestation projects include the potential for introducing low
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setting of intentional fires (Trexler et al 1992). 

ECONOMIC CONSTRAINTS Costs of afforestation 
programmes are highly variable; depending on the nature of 
the terrain to be planted, labour costs, and tree species to be 
planted. A rough global estimate indicates that tree planting 
costs can range from a low of $US 200 to a high of $US 2 
000 per ha. Projected socio-economic benefits derived from 
plantations may not justify planting costs. (Bernthal 1990). 
Therefore it would be difficult, if not impossible, for countries 
receiving loans from development banks for afforestation 
projects to repay the loans. 

ECOLOGICAL CONSTRAINTS - Ecological drawbacks to large 
afforestation projects include the potential for introducing low 
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levels of genetic variability which can characterize large areas
of single species plantations. This can reduce their resistance
to site or climate related stress and (or) attack by insects and
disease. Large scale forest plantings can also strain existing
water resources in areas which are already experiencing
overdrafts and escalating demands on ground water resources.

57. WHAT ASSISTANCE IS AVAILABLE TO SUPPORT
AFFORESTATION AND REFORESTA TION,
PARTICULARL YA T THE INTERNATIONAL LEVEL?

Potential sources of funds include:

National governments.

International and regional development banks.

Forest industry.

International donor agencies, e.g. UNDP.

Bilateral donors.

NG0s.

Private enterprise.

Public utility companies interested in offsetting
carbon emissions

A large number of donors from the developed world, including
international agencies, have extended financial support to
establishment of forest plantations in the developing countries.
The World Bank has financed forestry projects worth about
SUS 2.5 billion up to 1990. More than 50% of this amount
has been used for plantation forestry (Pandey 1992). In 1990,
development aid for the field of action "management of forests
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and plantations for industrial use" was SUS 347.6 million or
25% of the total. This represents an increase of 1.8 times
from the SUS 191.9 million made available in 1988 (Ball
1992). It is worth noting, however, that the World Bank and
many bilateral donors are making fewer concessionary loans
or grants for industrial roundwood plantations, on the grounds
that they should be profitable enough to seek support from
normal funding sources.

The Global Environmental Facility (GEF), which is implemented
by the World. Bank, UNDP and UNEP, is a funding source
which addresses four key environmental issues. These include
reduction of GHG emissions, protection of biodiversity,
protection of international waters and reduction in ozone layer
depletion.

Another important component of afforestation and
reforestation projects is technical assistance. This is also
available through a number of sources including national
governments, international technical assistance agencies such
as FAO and international donors. An innovative programme to
assist rural communities in developing countries to develop
more effective strategies, methods and tools for forestry
activities, including tree planting, is the Forests, Trees and
People Program (FTPP). FTPP operates on the basis of a
partnership between a community forestry team in FAO's
Forestry Department in Rome and several national and regional
institutions in Africa, Asia and Latin America.

58. HOW CAN AGROFORESTRY AND URBAN TREE
PLANTINGS CONTRIBUTE TO THE MITIGATION OF
CLIMA TE CHANGE?

The magnitude of carbon storage contribution from
agroforestry plantings will depend on the scale at which it is
done and the ultimate use that is made of the wood.
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Given suitable economic, social and environmental conditions,
farmers have been found to adopt agroforestry systems
readily. In countries where public forest lands are limited in
extent or government tree planting efforts are limited,
agroforestry plantings can represent a significant contribution
to tree planting and carbon sequestration. There is a potential
for increased forestry planting both in tropical and temperate
zones. Large scale agroforestry tree planting schemes such as
the "Four Around" schemes in China were reportedly carried
out over 6.5 million ha of agricultural lands during the decade
1981-1990. A project of this magnitude, if successful, would
sequester large amounts of carbon as well as providing other
environmental benefits such as protection of soil from wind
and water erosion.

Agroforestry systems are being considered in western Europe
as an alternative intensive production systems which are
currently in place that produce large surpluses of certain crops.
In the Unites States, there are large areas which would benefit
from increased windbreak and shelterbelt plantings (see
question 55) (Sampson and Hamilton 1992).

Urban tree plantings would provide a more limited carbon
storage benefit than rural plantings because by their nature,
they would not be very extensive. However they have the
potential to contribute other benefits in the climate change
context which are much more significant (Fig 8.6). The effect
of urban trees on local microclimates has undergone
investigation during the past two decades, largely in developed
countries. It is clear that urban trees have a significant and
quantifiable effect on the immediate local climate and there
have been various attempts to estimate what the effect of a
major urban and community tree planting programme might be
in the mitigation of carbon emissions. One estimate from the
USA equates the planting of 100 million trees around homes,
coupled with an effort to reduce heat absorption and radiation
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Figure 8.6 - Shade trees, such as these neems planted along the
streets of Niamey, the capital of Niger, lower temperatures and
provide a more pleasant environment.

through a program of converting dark coloured surfaces, such
as parking lots and buildings to light colours with a reduction
of about 17 million tons of carbon from entering the
atmosphere each year (Akbari et al 1988). Chinese urban
foresters report that the climate of some cities have been
markedly altered through widespread tree planting programmes
(see box 8.1).

Trees can also have a significant beneficial effect on the cost
of winter heating and summer cooling of buildings. Depending
on its location, the energy conservation efforts of a single
urban tree can prevent the release of 15 times more
atmospheric carbon than it is able to sequester. Trees break
up urban "heat islands" by providing shade. The shade
provided by strategically placed trees per house can reduce
home air conditioning needs by 30 to 50%. Trees planted as
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windbreaks around buildings in temperate and boreal regions
can reduce winter heating energy use by 4 to 22%. Therefore
urban trees offer a dual benefit of storing small amounts of
carbon and protecting buildings from extreme hot and cold
temperatures which results in lower consumption of fossil
fuels. Urban tree planting may be especially beneficial in
tropical regions where trees grow rapidly and the direct cooling
benefits of shading are significant (Sampson et al 1992).

The effect of planting trees around buildings for energy
conservation is sensitive to the type and shape of the tree
involved, as well as its location. Deciduous trees that shade
west-facing windows in the summer but allow solar radiation
to strike the same windows in winter are especially desirable.
In the northern hemisphere, trees on the south side of a house
should be tall and fairly close to the house, with the lower
boles pruned so that the winter sun can penetrate. For trees
to be energy efficient, it is important that species, location and
tree management be carefully and properly matched to the
individual situation (Sampson et al 1992).
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Box 8.1 Effects of tree planting on micro-
climate in Nanjing, China

The industrial city of Nanjing, with a
population of 1.5 million, is known as one
of the five "furnace cities" of the Yangtze
valley. Since 1949, some 3.4 million trees
have been planted in and around the city
with the specific objective of reducing
summer temperatures and generally
regulating the local climate, purifying the air
and beautifying the environment. It is
claimed that a drop in average summer
temperature from 32.2° C to 29.4°C over
the period 1949 to 1981 is directly
attributable to the cooling effect of tree
planting. Over 32 years, some 23 trees per
inhabitant were planted. Tree plantings
include block afforestation of degraded
hillsides, windbreaks, triple rows of trees
along railways and planting of street trees
(Carter 1994).
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59. IS THE PLANTING OF TREES SOLELY FOR CO2
ABSORPTIONA SOUND POLICYCONSIDERING OTHER
NEEDS FOR AVAILABLE LAND?

There are many uncertainties presently associated with the
global climate change issue. In addition, in many countries,
the amount of land available that is suitable for agriculture and
(or) forestry is limited. Therefore, any forest sector responses
to adapt to or mitigate the potential effects of climate change
should represent sound policy independent of predicted global
warming and produce net benefits separate from those which
may ultimately arise in the climate change context (e.g.
timber, fuel wood, watershed protection, non wood products
and non commodity values such as ecotourism and recreation).
The position of FAO with respect to afforestation for CO2
absorption is to encourage tree planting in areas where forest
cover is the appropriate vegetation. This should be defined by
land use plans and forest strategies as described in documents
prepared under the Tropical Forests Action Plan (TFAP) and
not by theoretical targets (FAO 1990) (see also question 45).

Instead of focusing narrowly on afforestation or reforestation,
FAO supports the adoption of an integrated approach which
includes:

Management and protection of existing areas of
natural forest to provide for long-term sustained
yield productivity of a wide range of commodity
and non-commodity resources including CO2
absorption.

Gradually increasing efforts in the afforestation
or reforestation of appropriate sites with follow-
up management and protection.

Appropriate utilization of the wood produced to
reduce the rate of carbon release.
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60. WHAT FOREST POLICIES SHOULD BE CONSIDERED
AT THE COUNTRY LEVEL TO ADDRESS THE THREAT
OF CLIMA TE CHANGE?

A policy aimed at reduction of current levels of deforestation
and forest degradation should be of high priority in those
countries where deforestation is a major activity. The
implementation of such a policy will require actions in both the
forestry and agricultural sector (see question 46). A policy of
afforestation/reforestation is also warranted provided that it is
economically, ecologically and socially sound, even in the
absence of climate change considerations. Afforestation/
reforestation initiatives should be accompanied by policies and
programmes designed to ensure the health of both plantations
and natural forests so that the objectives of investments made
in forest sector development will be met. A policy of partial
replacement of fossil energy sources by wood and other
biofuels is also worthy of consideration. Use of wood in place
of materials from other sources whose production requires
many times more energy contributes to energy savings,
reduction of GHG emissions and to the maintenance of
existing carbon reservoirs.

In developing forest sector policies to mitigate the effects of
predicted global climate change, it must be recognized that
these can only be done in concert with parallel measures to
reduce fossil fuel emissions and to promote sustainable
agriculture. Most of the present day contribution of
greenhouse gases is the result of the burning of fossil fuels.
Conservation of fossil fuels and the use of alternative energy
sources, including the use of renewable energy sources is
therefore, essential.
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