EGERTON UNIVERSITY

TEGEMEO INSTITUTE OF AGRICULTURAL POLICY AND DEVELOPMENT

SMALLHOLDER MAIZE PRODUCTION EFFICIENCY IN KENYA

John Olwande

Outline

- Introduction
- Efficiency in maize production
 - Trends in maize production and yield
 - Kenya and other countries' maize yield compared
 - ■Technical efficiency in Kenya's smallholder maize production
- •How to improve smallholder efficiency

Introduction

- Agriculture in Kenya undoubtedly important
 - Food source
 - ■Employment; >70% of rural & 18% of formal employment
 - Income; a large majority of rural households
- Performance of sector has a great bearing on both food security and overall economic growth
- ■Four main challenges in the sector:
 - Low productivity
 - Low value addition
 - •Under-developed and inefficient markets (inputs and output)
 - Inefficient land use

Introduction (cont)

- Sector development strategy:
 - Increasing productivity, commercialization and competitiveness
 - Developing and managing key factors of production

- Small-scale farming pre-dominates:
 - ■75% of total agricultural output
 - ■70% of marketed output

•Increasing efficiency of smallholder key to achieving sector's development goals

EFFICIENCY IN MAIZE PRODUCTION

Trends in Maize Production and Yield

- Maize is a staple food to a large proportion of people in Kenya
 - Nearly all agricultural households plant maize
- Small-scale production dominates
 - ■70% of total production
- There has, however, been evidence of stagnation in maize production and productivity
 - Increasing gap between production and consumption
 - Increasing frequency of supply shortages

Trends in Maize Production and Yield (cont)

•Widening gap between maize production and consumption in the last decade

Data source: Ministry of Agriculture: Economic Review of Agriculture – Various Issues

Trends in Maize Production and Yield (cont)

■Smallholder maize yield increased by 285kg/ha (17.3%) between 2000 and 2010

Data source: Tegemeo Institute Household Panel Survey, 2000-2010

Comparison of Kenya's Maize Yield (Kg/ha) to other countries'

Kenya	Comparison countries (FAOSTAT data 2009)
	South Africa - 4,964
Tegemeo Panel (2009/10) - 1,934 FAOSTAT (2009) - 1,294	Malawi – 2,227
	Zambia – 2,069
	Uganda – 1,434
	Tanzania – 1,123

- •A policy challenge in the maize subsector is how to improve efficiency through:
 - reduction of production and marketing costs
 - and appropriate use of appropriate inputs

- •The strategy should ensure:
 - acceptable profitability for the producers and lower food prices for the consumers; and
 - improvement in competitiveness in maize production
- One pathway toward improving productivity is to improve efficiency - technical and allocative

- ■Technical efficiency involves maximization of output from a given quantity of inputs
 - •the ratio of the observed output to the corresponding frontier output, conditioned on the level of inputs used
- •Allocative efficiency reflects the optimal choice of input levels and proportions
 - using an input at the level where its marginal physical product equals its input/output price ratio
- Technical and allocative efficiency can be combined into a measure of total economic efficiency, referred to as cost efficiency

- ■Smallholder technical efficiency ranges from 7.2% to 98.3%, with a mean of 49%
 - ■There is scope of increasing maize production by 51% through adopting technologies and techniques used by best maize farmers
- Over 36% of maize farmers operate below the mean technical efficiency level; only 30% are at least 60% technically efficient

Source: Kibaara (2005)

- ■Technical efficiency ranges wide across zones; efficiency lowest in low potential and highest in high potential zone
 - ■Efficiency of 59% of farmers in low potential zone is less than 40%
 - ■Efficiency of 62% of farmers in high potential zone is at least 60%

Dange of TC in Dancont	Agro-regional zone						
Range of TE in Percent	Low ^a	Medium ^b	High ^c	Overall			
		% of farmers					
<20	13.1	7.2	1.7	7.2			
20-39	45.9	32.3	9.3	29.3			
40-59	31.0	39.4	27.1	33.5			
60-79	10.0	20.1	39.3	23.0			
80-98.3	0.0	1.0	22.5	7.0			
Total	100.0	100.0	100.0	100.0			

^a Low potential =Coastal, Eastern and Western lowlands and Marginal rain shadow

Source: Kibaara (2005)

^b Medium potential =Central and Western highlands and Western Transitional

c High potential =High potential maize zone

- Wide differences in maize yield across technical efficiency ranges
- Yield lowest in low potential and highest in high potential zone

Dange of TE in Dercent	Agro-regional zone					
Range of TE in Percent	Low ^a	Mediumb	High ^c	Overall		
		maize yield (bags/acre)				
<20	1.3	1.8	1.7	1.5		
20-39	2.8	3.9	5.0	3.5		
40-59	5.4	7.8	9.0	7.5		
60-79	11.8	13.7	14.1	13.7		
80-98.3	-	16.4	21.6	21.3		
Total	4.3	7.4	13.3	8.3		

^a Low potential =Coastal, Eastern and Western lowlands and Marginal rain shadow

Source: Kibaara (2005)

^b Medium potential =Central and Western highlands and Western Transitional

c High potential =High potential maize zone

- Factors that increase efficiency in maize production (Kibaara, 2005)
 - Use of improved maize varieties
 - Use of fertilizer
 - ■Use of credit provides resources for acquisition of inputs
 - Being in high potential areas (high rainfall areas)
 - Increased level of education (management ability)
 - Being younger

HOW TO IMPROVE EFFICIENCY IN SMALLHOLDER MAIZE PRODUCTION

How to improve efficiency in maize production

Potential priority areas:

- More widespread and intensive use of modern farming technologies
 - Fertilizer
 - Seed
- 2. Improved extension effort
- 3. Well-functioning input and output markets
- 4. Irrigation

1. More widespread and intensive use of modern farming technologies

<u>Fertilizer</u>

A and vagional zone	1997	2000	2004	2007		
Agro-regional zone	% (of households	using fertilizer	fertilizer on maize		
Coastal Lowlands	0	3	4	14		
Eastern Lowlands	27	25	47	43		
Western Lowlands	1	5	5	13		
Western Transitional	41	70	71	81		
High-Pot. Maize Zone	84	90	87	91		
Western Highlands	75	91	91	95		
Central Highlands	90	90	91	93		
Marginal Rain Shadow	6	12	11	16		
Total Sample	58	64	66	70		

Source: Tegemeo Institute, Household Surveys (1997-2007)

Increased number of households using fertilizer overtime;
positive impact on maize productivity growth

1. More widespread and intensive use of modern farming technologies (cont)

<u>Fertilizer</u>

Agro-regional zone	1997	2000	2004	2007		
	Dose rate (kgs/acre) on fertilized maize fields					
Coastal Lowlands	11	5	3	7		
Eastern Lowlands	10	18	15	16		
Western Lowlands	24	14	10	12		
Western Transitional	54	48	62	71		
High-Pot. Maize Zone	65	67	74	75		
Western Highlands	31	36	46	47		
Central Highlands	68	64	64	58		
Marginal Rain Shadow	12	15	43	43		
National sample	56	55	60	59		

Source: Tegemeo Institute, Household Surveys (1997-2007)

•But application rate has stagnated overtime; affordability and knowledge on application rate are a concern

1. More widespread and intensive use of modern farming technologies (cont)

<u>Fertilizer</u>

	1997	2007	2010
Did not Use fertilizer (% of hh)	36.6	24.1	30.3
Reasons for not using (% of hh)			
Unaffordable	47.6	44.8	51.5
Unavailable	-	_	0.8
No need to use	10.6	21.0	32.8
Uses organic fertilizer	21.3	24.7	11.9
Others reasons	20.5	9.6	3.0
Total	100.0	100.0	100.0

Source: Tegemeo Institute, Household Surveys (1997-2010)

- •Affordability most important reason for not using fertilizer
- Lack of information may be a hindrance to use

1. More widespread and intensive use of modern farming technologies (cont)

Fertilizer

- ■Need for fertilizer cost reducing measures KV 2030
 - Infrastructure improvement reduce transportation cost
 - Rail transport
 - Rural feeder roads
 - Local manufacturing feasibility study on
- Government support to poor and vulnerable
 - Targeted subsidy (E.g NAAIAP)
 - Need for complementary extension advice
 - ■Emphasize farmer empowerment to sustain input use beyond subsidy regime

1. More widespread and intensive use of modern farming technologies (cont) Seed

	1997	2000	200 4	200 7
% of hhs planting high yielding maize varieties	70	69	69	74
% of hhs using fertilizer plus hybrid maize seed	51	55	57	61
Distance to seller of hybrid maize	N/A	5.6	3.9	3.4

Source: Tegemeo Institute, Household Surveys (1997-2007)

- Increased number of households planted improved maize varieties
- Proximity to certified maize seed sellers improved
- ■But the average age of maize hybrids grown in Kenya is old (about 18 years overall in 2010), although the numbers planted increased

2. Improved extension effort

- Extension key to absorption and proper use of modern technologies
- But public and private extension generally not adequate
- Public extension
 - Inadequate staffing
 - ■Demand-driven approach; access to information an issue among many farmers
- Private extension
 - generally skewed towards high potential regions
 - high-value crops
 - scope limited
- Government need to work more in serving disadvantaged regions
- Partnership option (as in the NASEP)

3. Well-functioning input and output markets

- Without well-functioning markets, productivity growth unlikely
 - ■Input markets timely availability and affordability of quality inputs
 - ■Output markets certainty in accessing market outlets and obtaining rewarding prices
- Greater support to NARIs for generating improved varieties and breeds, and crop management techniques
- Invest in rural feeder road infrastructure and rehabilitate railway system
- Support programs that work with farmers to improve their crop husbandry, access to information and marketing skills
- Invest in market physical infrastructure

4. Irrigation

- Increasing episodes of depressed rainfall affecting maize yield and production
- Investment in irrigation
 - More land under irrigation
 - Water harvesting and storage

Thank You

References

- Ariga, J., Jayne, T.S., Kibaara B. and Nyoro, J.K. (2008). Trends and Patterns in Fertilizer Use by Smallholder Farmers in Kenya, 1997-2007. Tegemeo Working Paper No.32: Tegemeo Institute, Egerton University. Nairobi
- Kibaara, B., Ariga, J., Olwande, J. and Jayne, T.S. (2008). Trends in Kenyan Agricultural Productivity: 1997-2007. Working Paper No.31, Egerton University, Tegemeo Institute, Nairobi
- Kibaara, W. B. (2005), Technical Efficiency in Kenyan's Maize Production: An Application of the Stochastic Frontier Approach, Department of Agricultural and Resource Economics, Colorado State University, USA. Unpublished Masters Thesis

References (cont)

- Melinda, S., and Olwande, J. (2011). Is Older Better? Maize Hybrid Change on Household Farms in Kenya. Working Paper No. 47/2011, Tegemeo Institute of Agricultural Policy and Development, Nairobi
- Muyanga, M. and Jayne, T.S. (2006). Agricultural Extension in Kenya: Practice and Policy Lessons. Tegemeo Institute Working Paper No. 026, 2006. Tegemeo Institute of Agricultural Policy and Development, Nairobi
- Olwande, J., and Mathenge, M. (2010). Market Participation among Poor Rural Households in Kenya. Forthcoming Working Paper No. 42/2011. Tegemeo Institute of Agricultural Policy and Development, Nairobi
- Government of Kenya (2010). Agricultural Sector Development Strategy. Government of Kenya