Previous Page Table of Contents


10. CONCLUSIONS

  1. A routine environmental monitoring system involving 31 quantifiable parameters has been developed with the necessary field instruments or tools which have been fabricated at FARTC. Six research workers have been trained to undertake environmental monitoring of undrainable fish ponds. Further, a survey programme on 32 rural fish ponds scattered in Cuttack and Puri districts has been completed with this monitoring system.

  2. In order to carry out relevant investigations pertaining to chemical biochemical and bacterial aspects of pond productivity, 17 microbiological and 14 biochemical methods and procedures were adopted and initiated at FARTC. However, investigations on nitrogen fixation, nitrification and denitrification would be initiated when proper equipment - accessories for gaschromatograph, liquid scintillation counter, etc. - are obtained and installed.

  3. As a result of the environmental monitoring survey on 32 fish ponds and the more detailed microbiological and biochemical investigations on the selected representative pond, it appears that although the water column of these undrainable rural ponds has a very high production potential, under the present given climatic condition it is infertile due to the overall nutrient deficiency with a very pronounced nitrogen limitation.

    At the same time, the sediments have a very large amount of organic and inorganic nutrients almost locked in and unutilized due to the anaerobic nature brought about by the very limited nutrient and oxygen transport within the water column and at the sediment water interface.

  4. This basic phenomenon in the fish ponds determines the small resources of the natural fish food organisms. The sediment contains practically no aminals as natural food for benthophagous fish species. The only organisms which can flourish under these circumstances are the blue-green algal species of Microcystis which are able to utilize the rich nutrients of the sediment.

  5. However, to confirm these findings a year-long investigation needs to be initiated and the data then analysed so as to develop a suitable fish culture technology for such undrainable ponds by improving the nutrient and oxygen transport between the water column and sediment by means of biological, manual or mechanical tools.

  6. Therefore, the following research projects need to be undertaken at FARTC:

    1. Studies on pond productivity along with microbiological and biochemical investigation of the nitrogen and oxygen cycles in old undrainable ponds.

    2. Studies to evolve suitable methods for the transport mechanism and recycling of the sediment-locked nutrients into fish growth.

    3. Studies on the production of non-drainable and drainable ponds under different management techniques.

Table 1
DATA EVALUATION SHEET FOR PERENNIAL POND

  1. Pond code

  2. Water area, ha

  3. Age, year

  4. Management

  5. Visual colour

  6. Transparency, cm

  7. Water depth, cm

  8. Soft sediment depth, cm

  9. Solid sediment depth, cm

  10. Sediment gases, dm3m-2

  11. Sediment organic -C, mg g-1

  12. Sediment detritus, g m-2

  13. pH

  14. Alkalinity, mg dm-3

  15. NH4-N, μg dm-3

  16. NO3-N, μg dm-3

  17. PO4-P, μg dm-3

  18. Dawn oxygen, mg dm-3

  19. Bacterioplankton, 106 cm-3

  20. Phytoplankton, cell dm-3

  21. Seston detritus, particles cm-3

  22. Seston 60 μm, wet weight

  23. Dominant species 60 μm

  24. Seston 150 μm, wet weight

  25. Dominant species 150 μm

  26. Macrozoobenthos 400 μm, m-2

  27. Dominant species 400 μm

  28. Macrotecton 400 μm, m-2

  29. Dominant species 400 μm

  30. Macrophyte cover, %

  31. Dominant species

Table 2
MAIN GROUPS OF BACTERIA TAKING PART IN THE MINERALIZATION PROCESS IN THE POND

Carbon Cycle

  1. Oligocarbophilic bacteria

  2. Aerobic cellulose decomposers

  3. Anaerobic cellulose decomposers

  4. Methane producers

  5. Hydrogen producers

  6. Methane oxidizers

  7. Hydrogen oxidizers

Nitrogen Cycle

  1. Ammonifyers

  2. Aerobic nitrogen fixers

  3. Anaerobic nitrogen fixers

  4. Nitrifyers

  5. Denitrifyers

  6. Urea decomposers

Phosphorous Cycle

  1. Organic phosphorous decomposers

  2. Inorganic precipitated phosphorous decomposers

Sulphur Cycle

  1. Hydrogen sulphide producers from protein

  2. Sulphate reducers

Table 3
MAIN CHARACTERISTICS OF THE SURVEYED RURAL PERENNIAL PONDS USED FOR FISH CULTURE

Pond NoAge
Year
Water surface
ha
Water depth
cm
Sediment depth
cm
Weed cover
%
Plankton bloomHuman population
ha-1
Animal livestock
ha-1
1
100
0.75
160
144
2
Microcystis
166
81
2
4
1.25
94
36
4
-
36
16
3
20
0.06
95
37
0
Oscillatoria
66
33
4
1  
0.08
48
16
0
-
125
62
5
10
0.02
65
80
0
-
750
350
6
50
0.13
225
106
52
-
56
30
7
30
0.10
130
144
1
Microcystis
2500
1300
8
20
0.10
114
92
100
-
50
10
9
2
1.79
142
27
0
-
5
2
10
3
0.30
218
57
1
-
16
70
11
40
0.16
128
72
0
-
156
62
12
4
0.10
130
20
8
-
200
120
13
8
0.08
75
35
96
-
64
39
14
50
0.16
126
75
8
-
1029
1125
15
70
0.34
97
81
7
-
12
3
16
5
0.16
110
31
2
Microcystis
1250
562
17
15
0.55
133
39
1
-
127
62
18
5
0.20
124
20
1
Euglena
500
325
19
6
0.02
100
75
0
Euglena
250
100
20
20
0.20
70
110
12
-
10
5
21
10
0.50
204
126
0
Microcystis
500
240
22
2
0.02
62
21
0
-
83
41
23
8
0.03
124
69
30
Microcystis
166
100
24
4
0.06
132
18
42
-
76
46
25
4
0.08
146
47
0
-
812
200
26
1
0.48
243
14
0
-
1145
179
27
1
0.20
166
18
0
-
125
75
28
1   
0.16
122
48
0
-
62
306
29
55 
0.60
202
78
22
-
25
23
30
100
1.60
210
130
67
-
275
13
31
100
0.40
157
77
0
Microcystis
0
0
32
12  
0.60
112
30
0
Microcystis
0
0

Table 4
CONSTRUCTION, BANK RECONSTRUCTION, SEDIMENT EXCAVATION AND MACROPHYTE REMOVAL IN SURVEYED FISH PONDS

Pond No.No. of years since constructionNo. of years since bank constructionNo. of years since sediment excavationNo. of years since Macrophyte removal
1---4
2-444
3----
41---
5  10---
6---2
7----
8----
92---
10--33
11---3
124---
138---
14---2
15---4
165---
17  15---
18-555
196---
20---1
21--  106
222---
238---
244---
254---
26--11
27--11
28--11
29-1--
30--- 
31----
32--1212

Table 5
PLANKTONIC FISH FOOD COMPARTMENTS

Pond NoPlanktonic detritus 10 μ
103 particles cm-3
Bacterio-plankton
106 cm-3
Seston>60 μ mg wet
weight dm-3
Seston > 150 μ mg wet
weight dm-3
1  9.8  3.0  38  30
2  3.1  2.3    6    4
318.6  6.9232115
4  3.4  2.5  24  21
5  9.1  6.2  23  19
6  8.2    1.68       1.5    0
712.8  4.9       2.4       2.1
8  3.4    0.34       1.0       0.6
9  6.1  1.7    2       0.8
10  4.6  1.5       0.4    0
11  9.1  2.3       4.6       3.3
12  7.8  3.2      2.4    0.4
13  4.2    0.51     1.8    0.1
1417.812.9     8.5    6.2
15  8.2  2.7  1    0.4
1614.5  8.0    15    5.3
17  6.3  3.9         8.8    5.6
18  8.1  8.1        1.5    1.0
19  7.2  2.5   13  9
20  6.1  3.2        5.2    4.8
2117.9  4.2       8.2    7.6
22  6.1  1.2       4.7    2.1
23  7.0  3.9      1.2    1.0
24  8.3  3.0   2    0.4
25  2.4  1.3      4.8    0.8
26  2.8  1.4      0.6    0.2
27  1.9  0.2      0.3 0
28  3.1  2.0   0 0
29  8.6  1.8   0 0
3016.1  1.5         6.2    0.1
3119.3  9.7    37    7.5
32  8.9  4.1        1.6    0.1

Table 6
DOMINANT GROUPS OF ORGANISMS IN PHYTOPLANKTON,
ZOOPLANKTON, ZOOBENTHOS AND ZOOTECTON COMMUNITIES

Pond NoPhytoplanktonZooplanktonZoobenthosZootecton
1Microcystis anabaenaCeriodaphnia--
2MicrocystisCeriodaphniaChironomus-
3OscillatoriaCeriodaphniaChironomus oligochaet-
4OscillatoriaKeratella, CeriodaphniaChironomus, Oligochaet-
5-DiaptomusChironomus-
6MicrocystisCyclopsChironomus, OligochaetGastropod, Trichopetra
7Microcystis, PediastrumCyclopsOligochaet, Chironomus-
8--Gastropod, ChironomusGastrioidm Odonata
9-DiaptomusChironomus-
10MicrocystisCyclopsChironomus, Nenatod-
11-Diaptomus, CeriodaphniaChironomus, Oligochaet-
12-PolyarthraOligochaet, GastropodOstracod, Colcoptera
13Oscillatoria, KaviculaCyclopsChironomus, OligochaetHomipetra, Soleoptera
14-Cyclops-Shrimp, Ostracoda
15-CyclopsChironomusHphemeroptera, Shrimp
16MicrocystisDiaptomusChironomusShrimp, Coleoptera
17-DiaptomusOligochaet-
18EuglonaHeratella, DiaptomusOligochaetEphemeroptera, Coleoptera
19Euglena, MicrocystisDiaptomusOligochaet-
20MicrocystisDiaptomus, BosminaOligochaetColeoptora, Hphemeroptera
21Microcystis, AnabaenaCyclopsChironomus-
22-Cyclops, BrachionusGastropod-
23MicrocystisKeratolla, CyclopsChironomusColeoptera, Gastropod
24-Ceriodaphnia, CyclopsChironomusColeoptera, Odonata
25-Cyclops, KoratellaOligochaet-
26Euglena-Oligochaet-
27Microcystis-Gastropod-
28--Oligochaet-
29--ChironomusShrimp, Odonata
30--OligochaetColeoptera, Ostracode
31MicrocystisKeratellaChironomus 
32MicrocystisKeratellaChironomus 

Table 7
SEDIMENT FISH FOOD COMPARTMENTS

Pond NoSediment organic-C
mg g-1
Sediment detritus
> 400 μ
g m-2
Benthic animals
> 400 μ
number m-2
Zoobiotecton
> 400 μ
number m-2
1
31.1
78
0
 
2
14.7
340
740
 
3
21.2
910
120
-      
4
8.9
100
200
 
5
12.2
400
240
 
6
13.8
300
620
1055
7
43.2
800
920
 
8
3.2
1000
220
1122
9
3.7
100
180
 
10
12.8
300
360
 
11
11.6
1000
220
 
12
11.0
800
920
1485
13
10.5
700
1500
231
14
36.7
1400
0
1320
15
17.3
200
320
132
16
28.9
80
40
396
17
7.9
500
300
 
18
11.6
140
80
2739
19
12.1
600
200
 
20
16.8
100
160
2838
21
17.3
300
80
 
22
19.4
240
440
 
23
11.6
100
60
2376
24
5.9
40
60
1105
25
7.4
140
2340
 
26
6.0
80
2120
 
27
3.6
40
280
 
28
23.4
200
1740
 
29
28.3
1000
360
1089
30
42.6
1300
400
1663
31
47.7
100
220
 
32
11.4
1400
2660
 

Table 8
DECOMPOSITION OF WATER HYACINTH AND CELLULOSE IN THE WATER AND SEDIMENT LAYERS OF POND 1

Depth cmDry weight loss of water hyacinth
%
Yellow Cytophaga cover on cellulose
%
Water  
110494
120684
130775
140816
15091  10
16074  15
17099  25
Sediment  
1074  25
2047  20
30535
40474
50584
60390
70440
80360

Table 9
BACTERIAL POPULATIONS REQUIRING VARIOUS CONCENTRATIONS OF ORGANIC MATTER IN THE WATER AND SEDIMENT OF POND 1 IN FEBRUARY 1983

MediaWater × 102 cm-3Sediment × 103 g-1 wet weight
Pond water agar30200
Interstitial water agar19152
Sodium caseinate agar47214
Actinomycetes on sodium caseinate agar  0   11
Nutrient glucose agar    8.7176

Table 10
BACTERIAL POPULATIONS INVOLVED IN THE CARBON CYCLE IN THE WATER AND SEDIMENT OF POND 1 IN FEBRUARY 1983

PopulationsWater × 102cm-3Sediment × 103g-1 wet weight
Aerobic cellulose decomposers    0.07    0.04
Actinomycetes on cellulose decomposing medium0    4.17
Methane producer033.0

Table 11
BACTERIAL POPULATIONS INVOLVED IN THE NITROGEN CYCLE
IN THE WATER AND SEDIMENT OF POND 1 IN FEBRUARY 1983

PopulationsWater × 102cm-3Sediment × 103 g-1 wet weight
Aerobic nitrogen fixers      1.95 19
Anaerobic nitrogen fixers      0.66333
Ammonifyers27409
Urea decomposers     5.3 29
Nitrifyers (NH3-NO2)     0.1   1
Nitrifyers (NO2-NO3)         0.001      0.1
Denitrifyers       0.66  100.0

Table 12
BACTERIAL POPULATIONS TAKING PART IN THE DISSOLUTION OF PRECIPITATED INORGANIC PHOSPHATE AND IN THE PROTEIN DECOMPOSITION WITH SULPHIDE PRODUCTION IN THE WATER AND SEDIMENT OF POND 1 IN FEBRUARY 1983

PopulationsWater × 102 cm-3Sediment × 103 g-1 wet weight
Phosphate solubilizers1.2738.67
Protein decomposing bacteria producing sulphide0.04 1.66

Table 13
VERTICAL DISTRIBUTION OF PROTEIN DECOMPOSERS PRODUCING SULPHIDE AND METHANE-PRODUCING BACTERIAL POPULATIONS IN THE SEDIMENT OF POND 1 IN FEBRUARY 1983, × 103 g-1 WET WEIGHT

Sediment layer, cmProtein decomposers producing sulphideMethane producers
 0–51.6633
  6–101.0867
11–151.2733
16–201.8667
21–250.8067

Table 14
CHEMICAL ENVIRONMENT AND INORGANIC PLANT NUTRIENTS IN THE WATER OF UNDRAINABLE PONDS DURING JANUARY 1983

Pond NopHAlkalinity
mg dm-3
NH4-N
μg dm-3
HO3-N
μg dm-3
PO4-P
μg dm-3
1
7.3
34  
10
10
13
27.2
76  
300
20
4
38.8
68  
10
5
52
47.9
88  
30
10
9
58.4
124  
10
5
4
67.6
92  
5
5
4
78.1
168  
10
5
26
87.2
244  
5
5
2
97.9
84  
20
5
1
107.8
108  
10
5
1
117.5
88  
100  
5
1  
127.5
100  
10
5
1  
137.0
92  
5
5
1
147.1
152  
10
5
34
157.5
96  
5
5
1
167.8
100  
70
10
4
177.9
160  
5
5
8
187.9
136
10
5
8
197.8
232  
10
5
13
207.8
80  
5
5
1
218.3
136  
20
15
4
228.4
100  
25
15
16
238.0
164  
10
10
8
247.9
120  
10
5
1
258.4
168
15
5
4
268.3
84  
5
5
8
277.9
60  
5
5
16
287.4
60  
5
5
26
297.4
52  
5
5
16
307.2
60  
5
5
16
317.9
56  
10
5
16
328.1
112  
70
5
26

Table 15
CHEMICAL ENVIRONMENT AND NUTRIENTS IN THE SEDIMENT LAYERS OF OLD UNDRAINABLE POND 1

Sediment layer, cmMoisture
%
pHOrganic carbon
mg g-1
Adsorbed NH4-N
ug g-1
Dissolved NH4-N
mg dm-3
Dissolved NO3-H
ug dm-3
Dissolved PO4-P
mg dm-3
  0–5577.01.9703.3   0.20.5
   5–10516.91.8682.2     0.071.0
10–15486.91.4702.8   0.30.5
15–20466.92.6703.3   0.32.0
20–25456.93.7802.8   0.26.0
25–30426.82.7722.802.0

Table 16
DIEL CHANGE OF INORGANIC NUTRIENTS IN THE WATER LAYERS OF POND 1 ON 10 MARCH 1983, μg dm-3

Water depth, cmDaytime 1216  20   24040812  
    
NH4-N
   
50
600
300
1000
600
550
600
600
100
1000
400
600
600
800
700
800
150
600
400
600
600
800
700
800
200
500
400
400
600
900
700
800
    
NO3-N
   
50
500
200
300
550
550
500
550
100
300
250
150
500
350
600
650
150
200
300
200
450
450
600
700
200
0
50
250
450
500
600
600
    
PO4-P
   
50
500
1000
1000
1500
1400
1600
1500
100
600
500
500
1750
1000
1500
2000
150
900
500
1000
2000
1000
1500
1500
200
900
500
200
1700
1500
1750
500

Table 17
DIEL CHANGE OF OXYGEN CONCENTRATION IN THE
WATER LAYERS OF POND 1, mg dm-3

Water depth cmDaytime : 12162024040812
 18 FEBRUARY 1983
  50
15.0
7.0
6.0
4.5
4.0
4.8
10.0
100
6.8
6.5
5.7
4.2
3.9
4.0
5.4
150
6.0
6.0
5.5
4.0
2.6
3.2
3.9
200
0.6
0.5
0.5
0.3
0.1
0.3
0.6
 26 FEBRUARY 1983
  50
15.0
17.0
12.8
9.2
6.8
5.5
8.8
100
12.0
16.0
12.0
8.4
6.4
4.5
8.1
150
8.0
7.0
6.2
6.5
6.2
4.5
5.2
200
0.6
0.3
0.3
0.3
0.3
0.4
0.6
 15 MARCH 1983
  50
8.2
9.8
8.3
7.2
6.8
4.5
7.5
100
7.8
9.6
8.0
6.8
6.5
4.1
5.8
150
7.0
8.7
7.5
6.8
5.8
4.0
4.2
200
6.2
8.0
7.0
6.2
5.8
3.9
4.0

Table 18
DIEL CHANGE OF TEMPERATURE IN THE WATER LAYERS OF POND 1, °C

 18 FEBRUARY 1983
 50 31.031.528.527.028.027.529.5
100 29.030.029.528.528.527.529.0
150 28.029.029.028.528.527.529.0
200 27.527.527.528.028.028.028.0
 26 FEBRUARY 1983
 50 30.029.028.027.028.027.230.5
100 28.028.028.528.027.827.528.0
150 27.028.028.728.027.527.227.5
200 27.527.528.027.827.527.027.0

Previous Page Top of Page