0421-B3

Wildfire impacts on soils in Slovenian black pine (Pinus nigra Arn.) forests

Mihej Urbančič 1


Abstract

Within five areas of one month to 5 years old fire places which are located in the western Slovenia ten pair-compared plots with size of 20 x 20 m were established, half in burnt forests and half in nearby preserved black pine stands. On plots soil conditions and morphological, physical and chemical soil properties were studied. On lime-stones and dolomites soil units Folic Histosol, Lithic and Rendzic Leptosol, Eutric and Chromic Cambiso, are developed. Because of wildfire effects organic horizons of burnt plots had smaller thicknesses and masses than of compared plots in preserved stands and in mineral parts of soils in spots differences in some chemical parameters (as increase of pH values and electrical conductivity, increased contents of carbonates, pant available K, P and Mg nutritions, exchangeable base cations, etc.) were discovered.


Inroduction

In Slovenia are black pine stands the most threatened by wildfires. The goal of this research was to research site conditions in different black pine forests, to analyse soil properties and classify them and to assess the influence of wildfires on these soils.

Four research areas were grounded in secondary black pine forests in the Low Kras. About 150 years ago the Low Kras (Karst) was a treeless, stony and rocky barren landscape. In 1875 forests covered only 18 % of this lowland, 24,3 % in 1957 while today over 50 % of the area is forested. An important role in this reforestation of abandoned pastures and other agricultural areas was the allochtonous species of the Austrian pine (Pinus nigra Arn.). Its more or less clear stands on limestone and dolomite cover about 11000 ha within the Low Karst region.

One research area is located in primary south-Alpine black pine forest. In Slovenia are its sites rather infrequent and cover in all 192 ha only.

Materials and methods

In Primorje, region in Slovenia with the maximal numbers of forest wildfires and by fires threatened stands, five areas with one month to five years old fire places for research of wildfire impacts on forests were established. Four research areas (Mlave, Podgovec, Vremščica, Kojnik) were grounded in secondary black pine forests (Seslerio autumnalis-Pinetum nigrae Zupančič 1997 (nom. prov.)) on limestones and dolomites of Low Karst and one (named Govci) in primary south-Alpine black pine forest (Fraxino orni-Pinetum nigrae Martin-Bosse 1967 var. geogr. Primula carniolica Dakskobler 1998) on steep dolomite slopes in the altitudinal belt between about 1050 and 1150 m a. s. l. in the northwestern part of the Trnovski gozd plateau. In chosen areas ten pair-compared plots with size of 20 x 20 m were established, half in burnt forests and half in nearby preserved black pine stands.

Table 1: Names of research locations, dates (month and year) of fire appearance and of field soil research, the type of wildfire (U = underground, G = ground, T = trunk, C = crown fire), and designations of research plots on objects in preserved (_U) and in burnet (_F) forests

Location

Date

Fire

Designations of plots

 

of fire appearance

of research

Type

Area

preserved

burned

Mlave

August 2000

September 2000

U+G+T+C

2.4 ha

ML_U

ML_F

Podgovec

August 1998

September 1999

U+G+T+C

7.53 ha

PO_U

PO_F

Kojnik

April 1998

Jule 2000

U+G+T+C

46 ha

KJ_U

KJ_F

Vremščica

August 1997

March 2001

G+C

281 ha

VR_U

VR_F

Govci

? 1995

October 2000

U+G+T+C

1,5 ha

GO_U

GO_F


Table 2: Symbols of soil layers and short descriptions of their characteristics

Simbol

Short description of soil layer characteristics

O

organic horizon (contains _ 35 % of organic matter)

Ol

layer of undecomposted litter

Ol,f

layer of partially (especially in the lower part) decomposed litter

Of

layer of partly decomposed (fermented) plant residua

Of,h

layer of raw humus

Oh

humified organic layer with predominant moder humus

OhAh

humified organic layer in tansit to mineral humus layer

Oz

organic layer of charred and burnt plant residua

OzAz

by fire damaged humified organic-mineral layer

M

mineral part of soil (contains _ 35 % organic matter)

M0-5

sample of mineral part of soil with known volume and taken from in advance defined depths (for examle 0-5 = 0 - 5 cm)

Ah

humus-accumulative mineral layer

Ax

composite sample of humus-accumulative mineral layer (x = number of subsamples)

Ah/C

moderate skeletal humus layer (skeleton of rock and mineral fragments _ 2mm occupies about 20 to 50 % of layer volume)

AhC

moderate skeletal humus layer in tansit to unconsolidated parent material

CAh

strongly skeletal humus layer in tansit to unconsolidated parent material

Ah(B)

humus layer in tansit to cambic horizon

Az

by fire damaged humus-accumulative layer

Az(B)

by fire damaged humus layer in tansit to cambic horizon

(B)rz

cambic horizon on limestones and dolomites

(B)rz/E

layer with porperties of cambic and elluvial horizon

(B)rz/BtC

moderate skeletal (20 - 50 %) layer with porperties of cambic and argic horizon

(B)/C

moderate skeletal (20 - 50 %) cambic layer

C(B)

strongly skeletal cambic layer in tansit to unconsolidated parent material

C

unconsolidated parent material

R

hard rock

On plots soil conditions were examined with a gauge soil sound and representative soil profiles were dug. After the description of profiles soil samples were taken and analysed in the pedological lab. On plots of research areas Podgovec, Kojnik and Govci one by one representative soil profile was digging out and from its genetic layers samples for analyses were taken off. On each of both compared plots of research areas Mlave and Vremščica on three to five places with aid of woody square frames (size of 25 cm x 25 cm) and tubiform sound (diameter of 5 cm) so-called "quantitative" samples of organic (O) subhorizons and "quantitative" samples of mineral parts of soil from layers with the fixed depths (0 - 5 cm, 5 - 10 cm, 10 - 20 cm) were taken off so that their volumes and masses are known. Samples were dried on air, blended and sieved through the 2 mm mesh sieve before analysis. For each soil sample the pH was determined photentiometricaly in the supernatant suspension with water and 0,01 mol/l CaCl2. The content of CaCO3 was determined after treatment of sample with 10 % HCl by using Scheibler calcimeter. The total carbon content was determined after dry combustion of sample at 1050_ C. Total nitrogen was analyzed according Kjeldahl method. Contents of exchangeable cations (K + , Ca 2+ , Mg 2+ , Al 3+ , Fe 3+ , Mn 2+ and H + ), cation exchange capacities, base saturation and texture classes were determined for samples from mineral parts of soils. For determination of exchangable cations samples were first extracted with a 0,1 mol/l BaCl2. Exchangable acidity was determined potentiometricaly, while cations were determined by FLAAS. The soil particle size fractions were determined by the pipette method and the textural classes by using the USDA soil textural triangle (Manual... 1994).

Results and discussion

South-Alpine black pine forest of the research area Govci overgrows shallow and less developed organic soils (Lithic Leptosols and Folic Histosols) on dolomites. Four research areas were grounded in secondary black pine forests (Seslerio autumnalis-Pinetum nigrae) on limestones and dolomites of Low Karst. On their plots are soil conditions rather variable. On them five soil units (Folic Histosol, Lithic Leptosol, Rendzic Leptosol, Eutric Cambisol, Chromic Cambisol) were found (table 3).

Table 3: Surface shares (%) of stoniness with rockiness (K+S) and soil units (according to FAO 1989, WRB 1998) on resarch plots (denoted with abbreviations)

Plot

K+S

LPq

HSl

LPk

CMe

CMx

ML_U

30 %

-

14 %

28 %

-

28 %

ML_F

43 %

6 %

-

23 %

-

28 %

PO_U

39 %

-

-

49 %

-

12 %

PO_F

9 %

-

-

27 %

-

64 %

KJ_U

25 %

-

-

75 %

-

-

KJ_F

52 %

5 %

-

43 %

-

-

VR_U

0 %

-

-

90 %

10 %

-

VR_F

6 %

-

-

85 %

9 %

-

GO_U

55 %

25 %

20 %

-

-

-

GO_F

80 %

15 %

5 %

-

-

-

Soil units : LPq = Lithic Leptosols, HSl = Folic Histosols, LPk = Rendzic Leptosols, Cme = Eutric Cambisols, CMx = Chromic Cambisols, CMc = Calcaric Cambisols

On all treated fire places in wildfires a great deal of soil organic horizon was burnt and that is why on all research areas burnt plots had smaller thickness of this layer in average than compared plots in undamaged stands. In the research area Govci thickness of burnt soils was, in comparison with undamaged soils, 5 years after the fire still thinner for about 5 to 10 cm. In some places soils were burnt down to the dolomite parent rock and for this reason on the scene of the fire areal shares of soils were very reduced and surface stoniness with rockiness proved to be increased from around 55 % to 80 %. On research area "Mlave" organic soil layer of one month old fire place had in average five times smaller thickness and six times smaller mass than organic horizon of compared undamaged soils. (Quantitative samples of organic horizon from fire place had in average mass of 4032 kg/ha and compared undamaged organic samples had in average mass of 24928 kg/ha). Because of partial regeneration of the horizon were these differences on other research areas with older fire places rather smaller (table 4).

In comparision with soils of preserved forests were soil layers of fire places at least in upper part of soil profile as a rule less acid, mostly had larger electrical conductivity, higher content of carbonates, total nitrogen and plant available nutritive substances, greater cation exchange capacity, sum of exchangeable base cations and exchangeable base saturation but smaller content of exchangeable acid cations. In all probability are at least some of these differences result of changes in chemical soil properties because of fire impacts. The greatest differences in chemical soil properties were found on research area "Mlave" with the youngest, only one month old fire place. Here are dominant with organic matter rich, shallow to moderate deep rendzic soils that were strongly affected by combined underground-ground- trunk-crown fire (table 5 - 7).

Table 4: Average thicknesses (in cm) of organic (O), humus-accumulative (A) and cambic ((B)) horizons of sounded soils on plots, their structure percentages, differences (U - F, in cm) and relations (U/F x 100 %) between thicknesses of compared horizons from preserved (U) and in burnet (F) forests

PLOT

Average thicknesses of sounding soil horizons

 

O

A

(B)

_

O

A

(B)

OU-OF

AU-AF

BU-BF

_U-_F

 

cm

cm

cm

cm

%

%

%

OU/OF

AU/AF

BU/BF

_U/_F

ML_U

6,2

9,9

13,8

29,9

20,7

33,1

46,2

5,0 cm

-5,6 cm

-2,2 cm

-2,8 cm

ML_F

1,2

15,5

16,0

32,7

3,7

47,4

48,9

517 %

64 %

86 %

91 %

PO_U

5,4

10,0

6,2

21,6

25,0

46,3

28,7

3,2 cm

5,1 cm

-9,0 cm

-0,7 cm

PO_F

2,2

4,9

15,2

22,3

9,9

22,0

68,2

245 %

204 %

41 %

97 %

KJ_U

6,0

23,7

1,1

30,8

19,5

76,9

3,6

2,1 cm

-0,1 cm

-0,4 cm

1,6 cm

KJ_F

3,9

23,8

1,5

29,2

13,4

81,5

5,1

154 %

100 %

73 %

105 %

VR_U

5,7

16,0

5,2

26,9

21,2

59,5

19,3

0,9 cm

-6,9 cm

-2,5 cm

-8,5 cm

VR_F

4,8

22,9

7,7

35,4

13,6

64,7

21,8

119 %

70 %

68 %

76 %

GO_U

15

0

0

15

100

0

0

5 cm

0

0

5 cm

GO_F

10

0

0

10

100

0

0

150 %

0

0

150 %

Table 5: Active (pH(H2O) and potential (pH(CaCl2)) acidity of soil, electrical conductivity of soil (EC), contents of organic matter (Org. s), total carbon (Ctot), carbonates (CaCO3) and total nitrogen (Ntot), ratio between organic carbon and total nitrogen (Corg/ Ntot), amounts of total sulphur (Stot) in soil samples of soil profiles from the preserved (U) and burnt (F) forests

 

Layer

Depth (cm)

pH (H2O)

pH (CaCl2)

EC (_S/cm)

Org. s. (%)

Ctot (%)

CaCO3(%)

Ntot (%)

Corg/ Ntot

Stot

(%)

ML_U_x: averages of 5 samples

 
 

Ol

6/2-1

4,91

4,71

240,9

71,4

41,4

0,00

1,004

42,1

0,103

Of

1-0

5,52

5,16

124,6

50,5

29,3

0,00

1,015

28,9

0,095

M0-5

0-5

5,70

5,31

202,0

14,0

8,1

0,25

0,462

17,7

0,062

M5-10

5-10

6,10

5,77

119,1

8,7

5,1

0,36

0,346

14,8

0,048

M10-20

10-20

6,33

6,01

98,9

7,3

4,2

0,34

0,301

14,3

0,041

Ah(B)rzC

20+40

6,36

6,15

90,2

5,7

3,3

0,32

0,237

14,4

0,036

ML_F_x: averages of 5 samples

 
 

Ol

5/0-0

4,95

4,68

284,2

79,1

45,9

0,00

1,096

42,6

0,077

Oz

3/0-0

6,18

5,79

101,2

81,9

47,6

0,19

0,546

127,3

0,038

M0-5

0-5

6,67

6,28

164,3

13,4

7,8

0,26

0,533

14,6

0,061

M5-10

5-10

7,08

6,73

186,0

10,3

6,0

0,55

0,443

13,5

0,050

M10-20

10-20

7,33

6,95

187,6

8,9

5,6

4,15

0,389

13,3

0,040

Ah(B)rzC

20+40

7,47

7,10

185,8

7,9

5,0

3,02

0,393

11,7

0,032

PO_U_r: representatve soil profile samples

 
 

Ol.f

6/4-1/2

5,31

4,52

177,60

80,86

46,90

 

1,325

35,40

0,126

Of,h

1/2-0

4,96

4,50

86,20

46,20

26,80

 

1,075

24,93

0,114

Oh Ah

0-1/2

4,98

4,56

38,00

20,34

11,80

 

0,503

23,46

0,059

Ah

1/2-4

5,64

5,23

122,10

8,96

5,20

0,38

0,315

16,36

0,030

Ah (B)rz

4-10

6,05

5,51

48,60

6,72

3,90

0,22

0,237

16,34

0,025

C(B)rz

10-17/20

6,97

6,43

144,00

4,48

2,60

0,21

0,202

12,75

0,020

PO_F_r: representatve soil profile samples

 
 

Ol

2-1/0

5,18

4,79

206,60

78,27

45,40

 

0,958

47,39

0,075

OfAz

0-1/0

6,46

6,09

86,80

32,07

18,60

0,42

0,810

22,90

0,064

Az

1/0-2/3

6,52

6,20

106,80

17,93

10,40

0,28

0,554

18,71

0,057

Ah

2/3-5

5,64

5,02

46,70

7,41

4,30

2,65

0,270

14,75

0,031

Ah(B)rzC

5-20/23

6,59

6,26

79,20

6,38

3,70

0,45

0,259

14,08

0,027

KJ_U_r: representatve soil profile samples

 
 

Ol.f

4-1,5

6,03

5,57

163,30

76,20

44,20

6,27

1,090

39,86

0,094

Of,h

1,2-0

5,70

5,17

92,70

46,03

26,70

0,48

1,240

21,49

0,116

Oh Ah

0-2,5

6,72

6,38

306,40

25,69

14,90

0,29

1,075

13,83

0,101

Ah /C

2,5-15

7,05

6,78

292,20

19,65

11,40

0,47

0,996

11,39

0,098

CAh

15+32

7,26

6,96

263,90

19,14

11,10

1,96

0,977

11,12

0,077

KJ_F_r: representatve soil profile samples

 
 

Ol,f

3/0-0

6,08

5,72

96,80

71,20

41,30

0,56

1,355

30,43

0,119

OhAz

0-1,4

6,43

5,91

166,40

42,76

24,80

0,19

1,305

18,99

0,117

Ah /C

1,4-15

7,11

6,83

271,20

25,34

14,70

0,57

1,145

12,78

0,120

CAh

15+33

7,18

6,91

249,30

21,89

12,70

0,77

1,100

11,46

0,113

VR_U_x: averages of 3 samples

 
 

Ol,f

4/1-0

4,48

4,19

198,6

76,9

44,6

0

0,947

47,4

0,099

M0-5

0-5

5,88

5,32

71,2

22,8

13,3

0,13

0,698

18,8

0,087

M5-10

5-10

6,37

5,79

63,9

11,8

6,9

0,25

0,468

14,6

0,063

M10-15

10-15

6,63

6,05

69,9

10,6

6,2

0,32

0,446

13,8

0,056

M15-20

15-20

6,83

6,26

68,6

9,8

5,8

0,71

0,421

13,6

0,049

Ah/C

20-30

6,93

6,49

95,9

9,6

5,6

0,55

0,439

12,8

0,052

CAh

30+40

6,75

6,23

58,0

8,6

5,0

0,20

0,394

12,6

0,063

VR_F_x: averages of 3 samples

 
 

Ol,f

3-0

5,30

4,90

269,3

70,4

40,9

0,98

1,071

38,4

0,117

M0-5

0-5

6,91

6,58

217,0

33,6

21,1

13,27

1,088

17,7

0,103

M5-10

5-10

7,47

7,11

205,8

19,1

14,3

26,72

0,737

14,8

0,059

M10-15

10-15

7,83

7,37

143,2

10,9

10,9

38,08

0,515

12,4

0,034

M15-20

15-20

7,89

7,42

121,4

8,2

10,2

45,20

0,428

11,1

0,025

Ah/C

20-30

7,77

7,36

122,3

8,2

9,9

42,68

0,393

12,8

0,021

CAh

30+40

7,79

7,35

120,5

9,1

9,6

35,85

0,448

12,0

0,027

GO_U_r: representatve soil profile samples

 
 

Ol

15/12-12

5,60

5,44

250,80

80,49

46,80

0,94

0,834

56,0

0,090

Of,h

12-8

7,50

7,23

183,90

47,94

30,70

24,12

1,560

17,8

0,127

OhC

8-0

7,15

7,02

262,40

30,17

22,30

40,02

1,195

14,6

0,067

GO_F_r: representatve soil profile samples

 
 

Ol,z

10/12-10

5,84

5,56

114,10

85,91

49,90

0,57

0,391

127,5

0,034

Oh,zC

10-0

7,56

7,16

182,90

33,07

21,80

21,83

1,375

14,0

0,040

Table 6: Contents of plant availible potassium (CAL-K), phosphorus (CAL-P) and magnesium (Sch-Mg) in soil samples of soil profiles from the preserved (U) and burnt (F) forests and texture of soil samples (G=clay, M=silt, I=loam, MG=silty clay, GI=clay loam, MGI= silty clay loam)

Plot

Layer

CAL-K mg/kg

CAL-P mg/kg

Sch-Mg mg/kg

Sand %

Coarse silt %

Fine silt %

Clay %

Texture class

ML_U_x:

Ol

555,9

136,5

370,7

-

-

-

-

-

 

Of

264,4

68,1

252,5

-

-

-

-

-

 

M0-5

89,3

3,5

144,9

-

-

-

-

-

 

M5-10

38,2

2,4

95,4

11,1

9,2

32,1

49,5

MG

 

M10-20

31,0

0,3

61,9

12,8

10,0

31,2

46,2

MG

 

Ah(B)rzC

     

9,2

10,6

29,2

51,0

G

ML_F_x:

Ol

969,3

253,7

537,2

-

-

-

-

-

 

Oz

365,3

44,4

139,2

-

-

-

-

-

 

M0-5

138,6

10,4

125,8

-

-

-

-

-

 

M5-10

72,0

12,7

68,9

43,7

10,7

23,4

22,2

I

 

M10-20

49,2

4,7

41,1

39,7

11,0

23,9

25,4

I

 

Ah(B)rzC

     

26,8

19,0

24,1

30,1

GI

PO_U_r:

Ol.f

801,7

190,0

320,9

-

-

-

-

-

 

Of,h

269,6

82,5

208,5

-

-

-

-

-

 

Oh Ah

117,1

8,1

151,0

-

-

-

-

-

 

Ah

34,8

0,1

113,9

15,69

9,80

23,00

51,50

G

 

Ah (B)rz

20,3

0,0

111,3

21,09

4,97

27,57

46,37

G

 

C(B)rz

43,6

3,5

80,5

11,21

8,00

26,10

54,70

G

PO_F_r:

Ol

1693,0

140,9

400,5

-

-

-

-

-

 

OfAz

333,0

18,6

221,2

-

-

-

-

-

 

Az

178,1

11,0

173,7

-

-

-

-

-

 

Ah

80,8

2,4

127,6

17,39

2,00

29,90

50,70

G

 

Ah(B)rzC

51,4

0,3

138,8

16,18

2,17

30,67

50,97

G

KJ_U_r:

Ol.f

495,17

144,01

311,56

-

-

-

-

-

 

Of,h

277,03

37,58

239,66

-

-

-

-

-

 

Oh Ah

136,11

7,00

126,50

-

-

-

-

-

 

Ah /C

56,12

0,00

69,02

-

-

-

-

-

 

CAh

42,34

0,39

51,84

-

-

-

-

-

KJ_F_r:

Ol,f

333,61

81,87

229,28

-

-

-

-

-

 

OhAz

157,07

20,81

185,63

-

-

-

-

-

 

Ah /C

87,26

5,67

108,13

-

-

-

-

-

 

CAh

46,59

52,28

64,19

-

-

-

-

-

VR_U_x:

Ol,f

459,3

137,7

394,1

-

-

-

-

-

 

M0-5

62,2

13,9

152,2

-

-

-

-

-

 

M5-10

17,9

3,2

87,8

32,9

7,2

30,0

30,1

GI

 

M10-15

12,7

2,4

52,8

33,2

9,8

28,0

29,0

GI

 

M15-20

10,2

2,0

34,5

29,7

9,3

30,5

30,7

GI

 

Ah/C

     

27,2

10,1

30,5

32,2

GI

 

CAh

     

26,0

7,3

36,5

30,2

GI

VR_F_x:

Ol,f

593,7

152,8

319,3

         
 

M0-5

128,3

28,6

157,9

         
 

M5-10

68,0

12,9

94,0

         
 

M10-15

38,9

6,3

55,6

         
 

M15-20

25,0

5,7

42,6

         

GO_U_r:

Ol

427,1

100,1

50,1

-

-

-

-

-

 

Of,h

231,0

47,7

927,4

-

-

-

-

-

 

OhC

167,2

21,5

11,2

-

-

-

-

-

GO_F_r:

Ol,z

128,8

38,5

673,5

-

-

-

-

-

 

Oh,zC

111,8

93,0

20,9

-

-

-

-

-

Table 7: Contents of exchangeable (Ca 2+ , Mg 2+ , K + , Al 3+ , Fe 3+ , Mn 2+ , H + ) cations, cation exchange capacity (KIK), sums of exchangeable base cations (S_B), sums of exchangeable acid cations (S_A) and exchangeable base saturations (V) in soil samples of soil profiles from the preserved (U) and burnt (F) forests

 

PLOT

K +

Ca 2+

Mg 2+

Al 3+

Fe 3+

Mn 2+

H +

KIK

S_B

S_A

V

Layer

cmol(+)/kg

%

 
 

ML_U_x: averages of 5 samples

 

M0-5

0,34

34,10

1,99

0,07

0,01

0,64

0,13

37,28

36,43

0,85

97,4

 

M5-10

0,19

29,89

1,35

0,04

0,01

0,36

0,03

31,79

31,44

0,44

98,7

 

M10-20

0,18

33,28

0,88

0,15

0,02

0,34

0,07

34,59

34,34

0,58

98,9

 

Ah(B)rzC

0,15

33,55

0,54

0,15

0,01

0,20

0,03

34,41

34,24

0,38

99,2

 

ML_F_x: averages of 5 samples

 

M0-5

0,46

40,59

1,95

0,01

0,00

0,53

0,00

43,11

43,00

0,55

99,7

 

M5-10

0,27

45,08

1,14

0,00

0,00

0,00

0,00

46,49

46,49

0,00

100,0

 

M10-20

0,20

45,43

0,80

0,00

0,00

0,00

0,00

46,43

46,43

0,00

100,0

 

Ah(B)rzC

0,15

43,47

0,60

0,00

0,00

0,00

0,00

44,22

44,22

0,00

100,0

 

PO_U_r: representatve soil profile samples

 

Ah

0,21

24,41

1,57

0,06

0,01

1,89

0,00

28,13

26,18

1,95

93,1

 

Ah (B)rz

0,16

23,44

1,54

0,05

0,00

0,99

0,00

26,17

25,13

1,04

96,0

 

C(B)rz

0,19

26,28

1,23

0,00

0,01

1,02

0,00

28,72

27,70

1,03

96,4

 

PO_F_r: representatve soil profile samples

 

Az

0,56

45,70

2,70

0,07

0,01

0,81

0,00

49,83

48,95

0,88

98,2

 

Ah

0,36

22,32

1,76

0,17

0,01

0,96

0,00

25,57

24,43

1,14

95,6

 

Ah(B)rzC

0,28

29,97

2,16

0,00

0,01

0,45

0,00

32,86

32,40

0,46

98,6

 

KJ_U_r: representatve soil profile samples

 

Ah /C

0,21

70,21

1,26

0,05

0,01

0,03

0,00

71,76

71,67

0,09

99,9

 

CAh

0,17

71,24

0,97

0,08

0,01

0,02

0,00

72,47

72,37

0,10

99,9

 

KJ_F_r: representatve soil profile samples

 

Ah /C

0,29

78,75

2,14

0,08

0,01

0,03

0,00

81,30

81,18

0,12

99,9

 

CAh

0,19

78,27

1,27

0,03

0,01

0,02

0,00

79,78

79,73

0,06

99,9

 

VR_U_x: averages of 3 samples

 

M0-5

0,22

36,83

2,00

0,10

0,00

0,17

0,07

39,39

39,05

0,33

99,0

 

M5-10

0,11

37,12

1,09

0,14

0,00

0,07

0,18

38,58

38,32

0,38

99,0

 

M10-15

0,10

39,25

0,71

0,06

0,00

0,03

0,14

40,21

40,06

0,22

99,5

 

M15-20

0,09

39,45

0,47

0,00

0,00

0,01

0,00

40,01

40,01

0,01

100,0

 

Ah/C

0,11

46,27

0,39

0,00

0,00

0,10

0,00

46,80

46,76

0,10

99,9

 

CAh

0,08

40,06

0,23

0,03

0,00

0,05

0,00

40,41

40,37

0,08

99,9

 

VR_F_x: averages of 3 samples

 

M0-5

0,29

79,85

2,67

0,00

0,00

0,36

0,00

82,93

82,81

0,36

99,8

 

M5-10

0,18

67,75

1,47

0,00

0,00

0,00

0,00

69,39

69,39

0,00

100,0

 

M10-15

0,12

50,93

0,79

0,00

0,00

0,00

0,00

51,83

51,83

0,00

100,0

 

M15-20

0,09

42,84

0,57

0,00

0,00

0,00

0,00

43,51

43,51

0,00

100,0

 

Ah/C

0,08

43,10

0,50

0,00

0,00

0,00

0,00

43,68

43,68

0,00

100,0

 

CAh

0,09

45,45

0,50

0,00

0,00

0,00

0,00

46,04

46,04

0,00

100,0

Conclusions

On the plots in black pine stands are soil conditions rather variable which is characteristically for limestone and dolomite parent rocks. With sounding on them five (FAO1989, WRB 1998) soil units (Folic Histosol, Lithic Leptosol, Rendzic Leptosol, Eutric Cambisol, Chromic Cambisol) were found.

On all treated fire places a great deal of in organic matter rich layers of horizon O and partly of horizon A were burnt down and charred in wildfires and that is why on all five research areas burnt plots had smaller thickesses of this layers in average than compared plots in undamaged stands. In some places soils were burnt down to the parent rock and for this reason on the scene of the fire areal shares of soils were reduced and surface stoniness with rockiness proved to be increased.

Because of wildfire effects had mineral parts of soils on burnt plots in spots increased pH values, electrical conductivities, contents of carbonates, plant available K, P and Mg nutritions and exchangeable base cations but smaller content of exchangeable acid cations.

Literature

FAO, 1990. Guidelines for soil profil description. - 3 rd edition (Revised). - FAO, ISRIC, Roma, 70 p.

FAO, 1989. Soil map of the world. - Revised legend. FAO, Unesco, ISRIC, Roma, Wageningen, 138 p.

Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. 1994.- UN ECE-ICP Programme Coordinating Centers, Hamburg, Praga, 177 p.

WRB, 1998. World reference base (WRB) for soil resources. FAO, ISRIC, ISSS. Rome, (http://www.fao.org/docrep/w8594e/ w8594e00.htm).


1 Slovenian Forestry Institute, Večna pot 2, SVN-1000 Ljubljana.
E-mail: [email protected]