17 17

Risk characterization of microbiological hazards in food

GUIDELINES

For further information on the joint FAO/WHO activities on microbiological risk assessment, please contact:

Nutrition and Consumer Protection Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00153 Rome, Italy

Fax: +39 06 57054593 E-mail: jemra@fao.org

Web site: http://www.fao.org/ag/agn/agns

or

Department of Food Safety and Zoonoses World Health Organization 20 Avenue Appia CH-1211 Geneva 27 Switzerland

Fax: +41 22 7914807 E-mail: foodsafety@who.int

Web site: http://www.who.int/foodsafety

Cover design: Food and Agriculture Organization of the United Nations and the World Health Organization

Cover picture: © Dennis Kunkel Microscopy, Inc. MICROBIOLOGICAL RISK ASSESSMENT SERIES

Risk characterization of microbiological hazards in food

GUIDELINES

WORLD HEALTH ORGANIZATION FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS

2009

The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations or of the World Health Organization concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO or WHO in preference to others of a similar nature that are not mentioned. All reasonable precautions have been taken by the World Health Organization and the Food and Agriculture Organization of the United Nations to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization or the Food and Agriculture Organization of the United Nations be liable for damages arising from its use. This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of FAO or of WHO.

ISBN 978-92-4-154789-5 (WHO) (NLM classification: QW 85) ISBN 978-92-5-106412-2 (FAO) ISSN 1726-5274

Recommended citation

FAO/WHO [Food and Agriculture Organization of the United Nations/World Health Organization]. 2009. *Risk Characterization of Microbiological Hazards in Food: Guidelines*. Microbiological Risk Assessment Series No. 17. Rome. 116 pp.

All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to the Chief, Electronic Publishing Policy and Support Branch, Communication Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy.

© FAO and WHO 2009

Contents

Acknowledgements	vii
Contributors	ix
Foreword	xi
Abbreviations used in the text	xii
I. INTRODUCTION	1
1.1 FAO/WHO Series of Guidelines on Microbiological Risk Asses	sment 1
1.2 FAO/WHO Guidelines for Risk Characterization	2
1.2.1 Risk characterization defined	2
1.2.2 Scope	2
1.2.3 Purpose	2
1.2.4 The evolution of microbiological risk assessment	2
1.3 Risk characterization in context	3
1.4 Reading these guidelines	3
2. PURPOSE OF MICROBIOLOGICAL FOOD SAFETY RISK ASSESSMENT	5
2.1 Properties of risk assessments	7
2.1.1 The need for the four components of risk assessment	7
2.1.2 Differentiating risk assessment and risk characterization	8
2.2 Risk characterization measures	8
2.3 Purposes of specific risk assessments	9
2.3.1 Estimating 'unrestricted risk' and 'baseline risk'	10
2.3.2 Comparing risk management strategies	11
2.4 Choosing what type of rick accomment to perform	13
2.5 Variability randomness and uncertainty	14
2.5 Variability, randomness and uncertainty	10
2.5.2 Bandomness	10
2.5.3 Uncertainty	17
2.6 Data gaps	18
2.6.1 The use of expert opinion	19
2.7 The role of best- and worst-case scenarios	20
2.8 Assessing the reliability of the results the risk assessment	21
3. QUALITATIVE RISK CHARACTERIZATION IN RISK ASSESSMENT	23
3.1 Introduction	23
3.1.1 The value and uses of qualitative risk assessment	24
3.1.2 Qualitative risk assessment in food safety	25
3.2 Characteristics of a qualitative risk assessment	26

3.2.1 The complementary nature	of qualitative and quantitative risk assessments	26
3.2.2 Subjective nature of textual	conclusions in qualitative risk assessments	26
3.2.3 Limitations of qualitative ris	k characterization	27
3.3 Performing a qualitative ris	sk characterization	29
3.3.1 Describing the risk pathway	,	29
3.3.2 Data requirements		29
3.3.3 Dealing with uncertainty an	d variability	29
3.3.4 Transparency in reaching c	onclusions	30
3.4 Examples of qualitative ris	k assessment	32
3.4.1 WHO faecal pollution and w	vater quality	32
3.4.2 Australian Drinking Water G	auidelines	33
3.4.3 EFSA BSE/TSE risk assess	ment of goat milk and milk-derived products	33
3.4.4 Geographical BSE cattle ris	k assessment	34
4. SEMI-QUANTITATIVE RISK CHARA	CTERIZATION	37
4.1 Introduction		37
4.1.1 Uses of semi-quantitative ri	sk assessment	37
4.2 Characteristics of a semi-	quantitative risk assessment	38
4.3 Performing a semi-quantit	ative risk assessment	40
4.3.1 Risks with several impact d	imensions	41
4.3.2 Comparing risks and risk m	anagement strategies	42
4.3.3 Limitations of semi-quantita	tive risk assessment	43
4.3.4 Dealing with uncertainty an	d variability	45
4.3.5 Data requirements		45
4.3.6 Transparency in reaching c	onclusions	46
4.4 Examples of semi-quantita	ative risk assessment	46
4.4.1 New Zealand risk profile of	<i>Mycobacterium bovis</i> in milk	46
4.4.2 Seafood safety using RiskF	langer	48
4.4.3 Australia's animal and anim	al product import-risk assessment methodology	50
5. QUANTITATIVE RISK CHARACTER	RIZATION	53
5.1 Introduction		53
5.2 Quantitative measures		53
5.2.1 Measure of probability		54
5.2.2 Measure of impact		54
5.2.3 Measures of risk		54
5.2.4 Matching dose-response er	ndpoints to the risk measure	57
5.2.5 Accounting for subpopulation	ons	58
5.3 Desirable properties of qu	antitative risk assessments	58
5.4 Variability, randomness ar	nd uncertainty	59
5.4.1 Modelling variability as rand	domness	59
5.4.2 Separation of variability and	randomness from uncertainty	60

— iv —

5.5 Integration of hazard characterization and exposure assessment	61
5.5.1 Units of dose in exposure assessment	61
5.5.2 Units of dose and response in dose-response assessment	62
5.5.3 Combining Exposure and Dose-response assessments	63
5.5.4 Dose-response model assumptions	64
5.5.5 Exposure expressed as prevalence	65
5.5.6 Epidemiological-based dose-response relationships	66
5.5.7 Integration of variability and uncertainty	67
5.6 Examples of quantitative risk analysis	74
5.6.1 FSIS E. coli comparative risk assessment for intact (non-tenderized) and non- intact (tenderized) beef	74
5.6.2 FAO/WHO Listeria monocytogenes in ready-to-eat foods	74
5.6.3 Shiga-toxin-producing E. coli O157 in steak tartare patties	75
5.6.4 FAO/WHO risk assessment of Vibrio vulnificus in raw oysters.	76
6. QUALITY ASSURANCE	79
6.1 Data quality assurance	79
6.1.1 Data collection	79
6.1.2 Sorting and selecting data sources	82
6.2 Progression and weight of evidence	82
6.3 Sensitivity analysis	83
6.3.1 Sensitivity analysis in qualitative risk assessment	84
6.3.2 Sensitivity analysis in quantitative risk assessment	84
6.4 Uncertainty analysis	86
6.5 Model verification	88
6.6 Model anchoring	87
6.7 Model validation	87
6.8 Comparison with epidemiological data	88
6.9 Extrapolation and robustness	89
6.10 Credibility of the risk assessment	90
6.10.1 Risk assessment documentation	90
6.10.2 Peer review	91
7. LINKING RISK ASSESSMENT AND ECONOMIC ANALYSIS	93
7.1 Introduction	93
7.2 Economic valuation issues	94
7.2.1 Valuation of health outcomes	94
7.2.2 Valuation of non-health outcomes	96
7.3 Integrating economics into risk assessments to aid decision-	
making	97
7.3.1 Cost-benefit analysis	98
7.3.2 Cost effectiveness analysis	98

— v —

7.3.3 Risk-cost trade-off curves	99
7.3.4 Uncertainty in economic analysis	99
8. RISK COMMUNICATION ASPECTS OF RISK CHARACTERIZATION	101
8.1 Introduction	101
8.1.1 Information to share with stakeholders	102
8.1.2 Major scientific issues in risk communication	102
8.2 Interaction between risk managers and risk assessors	102
8.2.1 Planning and commissioning an MRA	103
8.2.2 During the MRA	103
8.3 After the completion of the MRA	104
8.4 Development of risk communication strategies	105
8.5 Public review	108
REFERENCES CITED IN THE TEXT	109
APPENDIX 1	115

Acknowledgements

The Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO) would like to express their appreciation to all those who contributed to the preparation of these guidelines through the provision of their time and expertise, and relevant information and experience. Special appreciation is extended to the participants at the workshops that were held in both Denmark and Switzerland and for the time and effort that they freely dedicated before, during and after these workshops to the elaboration of these guidelines. Many people provided their time and expertise by reviewing the guidelines and providing their comments and all of these are listed in the following pages. Special appreciation is also extended to Dr Tom Ross and Dr Don Schaffner for the additional assistance they provided in reviewing the comments received from the peer review process and revising the guidelines as required.

The development of the guidelines was by the Secretariat of the Joint FAO/WHO Expert Meetings on Microbiological Risk Assessment (JEMRA). This included Sarah Cahill, Maria de Lourdes Costarrica and Jean Louis Jouve (up to 2004) in FAO, and Peter Karim Ben Embarek, Hajime Toyofuku (up to 2004) and Jocelyne Rocourt (up to 2004) in WHO. Publication of the guidelines was coordinated by Sarah Cahill. Final editing for language, style and preparation for publication was by Thorgeir Lawrence.

The work was supported and funded by the FAO Nutrition and Consumer Protection Division and the WHO Department of Food Safety and Zoonoses.

Contributors

PARTICIPANTS AT THE DANISH WORKSHOP

John Bowers	Food and Drug Administration, United States of America
Aamir Fazil	Public Health Agency of Canada, Canada
Bjarke Bak Christensen	Danish Veterinary and Food Administration, Denmark
Christopher Frey	North Carolina State University, United States of America
Arie Havelaar	National Institute of Public Health and the Environment, the Netherlands
Louise Kelly	University of Strathclyde, United Kingdom
George Nasinyama	Makerere University, Uganda
Maarten Nauta	National Institute of Public Health and the Environment, the Netherlands
Niels Ladefoged Nielson	Danish Veterinary and Food Administration, Denmark
Birgit Norrung	Danish Veterinary and Food Administration, Denmark
Greg Paoli	Decisionalysis Risk Consultants Inc., Canada
Mark Powell	United States Department of Agriculture, United States of America
Tanya Roberts	United States Department of Agriculture, United States of America
Don Schaffner	Rutgers University, United States of America
Helle Sommer	Danish Veterinary and Food Administration, Denmark
David Vose	Vose Consulting, France
Danilo Lo Fo Wong	Danish Veterinary Institute, Denmark
Marion Wooldridge	Veterinary Laboratories Agency (Weybridge), United Kingdom
Charles Yoe	College of Notre Dame of Maryland, United States of America

PARTICIPANTS AT THE SWISS WORKSHOP

Food and Drug Administration, United States of America
National Institute of Public Health and the Environment, the Netherlands
Decisionalysis Risk Consultants Inc., Canada
Rutgers University, United States of America
Vose Consulting, France
Veterinary Laboratories Agency (Weybridge), United Kingdom

PEER REVIEWERS

Food Safety Authority of Ireland, Ireland
United States Department of Agriculture, United States of America
Food and Drug Administration, United States of America
North Carolina State University, United States of America
Drexel University, United States of America
Rutgers University, United States of America
University of California Davis, United States of America
North Carolina State University, United States of America
National Institute of Infectious Diseases, Japan
Environmental Science and Research, New Zealand
Public Health Agency of Canada, Canada
Institut Pasteur, Cameroon
United States Department of Agriculture, United States of America
National Veterinary School of Alfort, France
Food and Drug Administration, United States of America
Veterinary Laboratories Agency (Weybridge), United Kingdom

— x —

Foreword

Members of the Food and Agriculture Organization of the United Nations (FAO) and of the World Health Organization (WHO) have expressed concern regarding the level of safety of food at both national and international level. Increasing foodborne disease incidence over recent decades seems, in many countries, to be related to an increase in disease caused by microorganisms in food. This concern has been voiced in meetings of the Governing Bodies of both Organizations and in the Codex Alimentarius Commission. It is not easy to decide whether the suggested increase is real or an artefact of changes in other areas, such as improved disease surveillance or better detection methods for microorganisms in patients or foods. However, the important issue is whether new tools or revised and improved actions can contribute to our ability to lower the disease burden and provide safer food. Fortunately, new tools that can facilitate actions seem to be on their way.

Over the past decade, risk analysis—a process consisting of risk assessment, risk management and risk communication—has emerged as a structured model for improving our food control systems, with the objectives of producing safer food, reducing the number of foodborne illnesses and facilitating domestic and international trade in food. Furthermore, we are moving towards a more holistic approach to food safety, where the entire food chain needs to be considered in efforts to produce safer food.

As with any model, tools are needed for the implementation of the risk analysis paradigm. Risk assessment is the science-based component of risk analysis. Science today provides us with in-depth information on life in the world we live in. It has allowed us to accumulate a wealth of knowledge on microscopic organisms, their growth, survival and death, even their genetic make-up. It has given us an understanding of food production, processing and preservation, and of the link between the microscopic and the macroscopic world, and how we can benefit as well as suffer from these microorganisms. Risk assessment provides us with a framework for organizing these data and information and gaining a better understanding of the interaction between microorganisms, foods and human illness. It provides us with the ability to estimate the risk to human health from specific microorganisms in foods and gives us a tool with which we can compare and evaluate different scenarios, as well as identify the types of data necessary for estimating and optimizing mitigating interventions.

Microbiological risk assessment (MRA) can be considered as a tool that can be used in the management of the risks posed by foodborne pathogens, including the elaboration of standards for food in international trade. However, undertaking an MRA, particularly quantitative MRA, is recognized as a resource-intensive task requiring a multidisciplinary approach. Nevertheless, foodborne illness is one of the most widespread public health problems, creating social and economic burdens as well as human suffering., it is a concern that all countries need to address. As risk assessment can also be used to justify the introduction of more stringent standards for imported foods, a knowledge of MRA is important for trade purposes, and there is a need to provide countries with the tools for understanding and, if possible, undertaking MRA. This need, combined with that of the Codex Alimentarius for risk-based scientific advice, led FAO and WHO to undertake a programme of activities on MRA at international level.

The Nutrition and Consumer Protection Division (FAO) and the Department of Food Safety and Zoonoses (WHO) are the lead units responsible for this initiative. The two groups have worked together to develop MRA at international level for application at both national and international level. This work has been greatly facilitated by the contribution of people from around the world with expertise in microbiology, mathematical modelling, epidemiology and food technology, to name but a few.

This Microbiological Risk Assessment series provides a range of data and information to those who need to understand or undertake MRA. It comprises risk assessments of particular pathogen–commodity combinations, interpretative summaries of the risk assessments, guidelines for undertaking and using risk assessment, and reports addressing other pertinent aspects of MRA.

We hope that this series will provide a greater insight into MRA, how it is undertaken and how it can be used. We strongly believe that this is an area that should be developed in the international sphere, and the work to date clearly indicates that an international approach and early agreement in this area will strengthen the future potential for use of this tool in all parts of the world, as well as in international standard setting. We would welcome comments and feedback on any of the documents within this series so that we can endeavour to provide member countries, the Codex Alimentarius and other users of this material with the information they need to use risk-based tools, with the ultimate objective of ensuring that safe food is available for all consumers.

Ezzeddine Boutrif

Jørgen Schlundt Department of Food Safety and Zoonoses

Nutrition and Consumer Protection Division

WHO

FAO

Abbreviations used in the text

ALOP	Appropriate Level of Protection
ANOVA	Analysis of variance
BSE	Bovine Spongiform Encephalopathy
EC	European Commission
CAC	Codex Alimentarius Commission
CCFH	Codex Committee on Food Hygiene
CFU	Colony-forming units
COI	Cost-of-illness
DALY	Disability-adjusted life years
EFSA	European Food Safety Authority
FSIS	[USDA] Food Safety and Inspection Service
GBR	Geographical BSE-Risk
MRA	Microbiological Risk Assessment
NACMCF	[USDA/FSIS] National Advisory Committee on Microbiological Criteria for Foods
NHMRC	National Health and Medical Research Council [Australia]
P-I	probability-impact
QALY	Quality adjusted life years
SPS	[WTO Agreement on the Application of] Sanitary and Phytosanitary [Measures]
STEC	Shiga-toxin-producing Escherichia coli
TSE	Transmissible Spongiform Encephalopathy
USDA	United States Department of Agriculture
VOI	Value of information [analysis]
WTO	World Trade Organization
WTP	Willingness-to-pay

— xiii —