
6. Quality assurance 
 

Risk characterization not only synthesizes the results of the previous parts of the risk assessment 
but also summarizes the overall findings and presents the strengths and limitations of the 
analysis to risk managers. The validity of the risk assessment is based on the soundness of the 
model structure, its input, the underlying assumptions and the interpretation of results. 
Therefore, quality assurance is a crucial element of risk characterization. Quality assurance can 
be achieved through a variety of methods. Data quality assurance is discussed in Section 6.1. 
Assessing the weight of evidence is discussed in Section 6.2. The sensitivity analysis is 
described in Section 6.3, while uncertainty analysis is addressed in Section 6.4. Model 
verification, anchoring and validation are addressed in Sections 6.5, 6.6 and 6.7, respectively. A 
specific method for model validation, involving comparison to epidemiological data, is 
discussed in Section 6.8. Model robustness and issues pertaining to model extrapolation are 
addressed in Section 6.9. The criteria for risk assessment credibility discussed in Section 6.10 
include proper documentation of the analysis and peer review of the assessment. Public review 
is discussed in Section 8.5. 

6.1 Data quality assurance 

The results of sensitivity or uncertainty analysis are conditional on the data and other 
information used to develop the risk assessment model. Because it serves as the primary vehicle 
for communicating the risk assessment findings to risk managers, a risk characterization should 
briefly summarize the primary strengths and limitations of the data, methods, and analyses 
identified in the hazard identification, exposure assessment, and hazard characterization. 
Typically, these analyses require risk assessors to synthesize and draw inferences from disparate 
data sources not specifically or originally intended for use in risk assessment. In some cases, 
this requires the use of unconventional or non-routine methods that might be highlighted for 
particularly close scrutiny to ensure that they are reasonable and correctly applied. For relevant 
details, see the FAO/WHO hazard characterization and exposure assessment guidelines 
(FAO/WHO, 2003, 2008). 

6.1.1 Data collection 

Usually the suitable data for a microbiological risk assessment are sparse. In practice, assessors 
should initially collect all reasonably obtainable data consistent with the assessment objective, 
and subsequently investigate the quality of the different data sources. When collecting data for 
input distributions, several issues should be considered in order to evaluate data quality. The 
following considerations apply to empirical data and information elicited from experts. 

Ideally, risk assessors would have access to raw, un-summarized data. With raw data (if 
consisting of sufficient observations), statistical methods such as Goodness-of-Fit tests are 
available to define a suitable parametric distribution describing the data. Alternatively, 
empirical distributions or non-parametric simulation methods can be used to characterize input 
distributions. Raw data, however, are frequently inaccessible. Often results are reported as 
aggregated summary statistics, such as the estimated mean, standard deviation or standard error 
of the mean. In order to develop a distribution from data summary statistics, it is necessary to 
obtain information on the assumed distribution of the underlying data, together with the sample 
size.  
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It is useful to collect as much 
background information on the data 
sources as possible, such as the year of 
completion, country of origin, the type of 
sample, possible transformation of the 
data, methods of analysis, microbiological 
strain and population demographics. This 
information could be important with regard 
to treatment or use of the data or to support 
the decision on whether or not to include 
these data in the model. An example is 
given in Box 6.1. 

Data for the specific microorganism 
under study may not always be available or 
of suitable quantity and quality (e.g. due to 
rare occurrence or imprecise collection 
methods). In that case, data from a 
surrogate microorganism can be used, 
provided that the surrogate behaves 
similarly under the process of interest (e.g. 
generic E. coli to estimate cross-
contamination during slaughter 
procedures). In practice, data from 
different surrogate organisms could be 
used to model different steps in the same 
model, based on their availability and suitability. In some cases, sampled data with different 
units (e.g. absolute concentration or change in concentration) can be used in describing the same 
process, as the example below illustrates. Depending on how the data are used in the model (e.g. 
describing a change in concentration over a step or describing the concentration level, 
Figure 6.2), different parameters may be evaluated in a sensitivity analysis to ensure data 
quality objectives are satisfied.  

Sensitivity analysis is a useful data quality assurance tool. Specific data sources and model 
inputs identified to have an important influence on model outputs warrant careful assessment. 
The available data may understate the true range of variability in a model input. In the example 
described above, the available data only covers two countries, and the variability may be greater 
than the empirical data alone suggest. Hence, techniques such as nominal range sensitivity 
analysis can be employed to evaluate the sensitivity of the model output to varying the model 
input across its entire range of plausible values. In other cases, the available data may not be 
considered representative of the population of interest. In such cases, the data may be excluded 
from the analysis or incorporated with appropriate adjustment. The bases for decisions 
regarding the treatment of non-representative data are context specific and need to be clearly 
articulated. For example, data from a particular source may be considered non-representative for 
the purposes of providing an estimate of central tendency (e.g. the mean) but useful for the 
purposes of characterizing the spread of an input distribution (e.g. plus or minus an order of 
magnitude).

Box 6.1 Example of a Danish risk 
assessment of Campylobacter jejuni in 
chicken. 
For the risk assessment, quantitative data were 
needed to describe the relative change in pathogen 
concentration over a given step in a poultry 
slaughterhouse (e.g. over the washing and chilling 
step, Figure 6.1). Because Danish data were 
unavailable, data from foreign studies were applied 
to assess the efficacy of the wash and chiller 
process in reducing the pathogen levels on chicken 
carcasses. Data for the microorganism of interest 
were available, but the data were obtained from 
different sample units (neck skin samples, whole 
carcass wash, and swab samples). This mix of 
sample types all reflected surface contamination of 
chicken carcasses. In synthesizing the data, it was 
assumed that the relative reduction in pathogen 
concentration over the process was independent of 
the type of surface measure. In Figure 6.2, the 
slopes reflect differences in log-concentration over 
the process. Since all the slopes appear to be 
similar, all data sets were used in describing the 
reduction over the ‘wash + chiller’ process. 
(Christensen et al., 2001). 
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Figure 6.1 Illustration of a ‘black-box’ sub-model connecting two observed data sets (i.e. 
‘anchor points’) over a process. The relative reduction of the Campylobacter load on chicken 
carcasses was assumed to be independent of where on the carcass the sample was taken. 
When data are given as log CFU values, this means that the relative change in concentration 
over the process (wash + chiller) is obtained by subtracting the concentrations before and after 
the process.  
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Figure 6.2 The influence of a selected slaughterhouse process on the Campylobacter 
concentration on chicken carcasses. The change in pathogen concentrations before and after 
the process is represented by a line connecting data points originating from the same study.  
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6.1.2 Sorting and selecting data sources 

After collecting potentially suitable data sets, one should evaluate each of them critically and 
select the data that will provide the best possible model input for a specific purpose, such as 
describing the level of contamination, prevalence or changes over a process. Plotting the 
parameter of interest with the 95% confidence intervals provides a useful overview (see 
Figure 6.3).  
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Figure 6.3 Example of an overview of data from different studies, with their 95% confidence 
intervals. 

 

In selecting the suitable data sets for incorporation into the risk assessment, both subjective 
and analytical criteria may be applied. Subjective evaluation criteria may include the 
representativeness of the geographical and temporal properties of the candidate study. For 
example, if study no. 1 in Figure 6.3 is the only foreign study and it is significantly different 
from the rest (based on analytical criteria), this data set could be excluded. In contrast, if the 10 
studies all originate from the same country, same year, etc., but are reported by different 
laboratories, the differences may be due to variability among the laboratories and the assessor 
might decide to incorporate all of the studies in the model.  

6.2 Progression and weight of evidence 

Whether an assessment is quantitative or 
qualitative, the public health risk posed by a micro-
organism can be conceived at a basic level as the 
product of hazard, exposure and susceptible 
consumers (Figure 6.4). 

If any one of the three elements of the 
epidemiological triangle equals zero, then there is 
no risk. A preliminary quality assurance step, 
therefore, is to evaluate whether a risk assessment 
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Figure 6.4 Epidemiological Triangle. 
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reflects this logical progression of threshold questions, to which the risk assessor could respond 
yes or no (perhaps with a qualifying level of confidence). If the response to a threshold question 
is ‘no’, then the analysis proceeds no further. At each threshold, the weight of evidence should 
be evaluated according to clearly specified, scientific criteria. As more criteria are satisfied, the 
weight of evidence indicates a more credible risk. Although there is a prima facie public health 
risk posed by several pathogens commonly associated with acute foodborne illnesses, in the 
future, risk assessors are likely to confront more cryptic and increasingly complex risk 
management questions, such as the risk posed by antibiotic-resistant microorganisms, the 
burden of chronic sequelae, the effect of specific growth-inhibiting food product formulations, 
and the susceptibility of individuals with underlying health problems. Some preliminary quality 
assurance guidance is provided here, therefore, in the anticipation that weight-of-evidence 
determinations will become increasingly prominent in risk assessments of microbiological 
pathogens in food. 

6.3 Sensitivity analysis 

Complex risk assessments may have many input and output variables that are linked by a 
system of equations or other model structures. Sensitivity analysis is a broad set of tools that can 
provide insights to risk assessors and risk managers about the relative importance of the 
components of a risk assessment to the risk management question. The plausibility of important 
components is essential to the overall quality of the risk assessment. Changes in important 
components also can be expressed in terms of the influence that these inputs have on the 
answers to risk-management questions. 

A key criterion for sensitivity analysis is that it must be relevant to a decision. Sensitivity 
analysis evaluates the effect of changes in model input values and assumptions on the model 
output, and thus on decisions that would be based on the model output. It can be used during 
model development to evaluate and refine model performance and can play an important role in 
model verification and validation throughout the course of model development and refinement. 
Sensitivity analysis can also be used to provide insight into the robustness of model results 
when making decisions.  

Sensitivity analysis can also be used as an aid in identifying important uncertainties for 
purposes of prioritizing additional data collection or research. For these purposes, value of 
information (VOI) analysis can complement sensitivity analysis methods, because the return to 
risk management decision-making on research and data collection expenditures depends on a 
variety of additional considerations (e.g. cost and time). 

Microbiological risk assessment models typically have the following characteristics, which 
can pose substantial challenges to the application of sensitivity analysis methods: 

• non-linearities; 

• thresholds (e.g. below which there is no growth of a microbiological pathogen); 

• discrete inputs (e.g. integer numbers of animals or herds; yes or no indicators of 
contamination); 

• incorporation of measurement error; 

• variation in the scale (units and range) and shape of distributions of model inputs; and 

• temporal and spatial dimensions, including dynamics, seasonality or inter-annual variability. 
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Ideally, a sensitivity analysis method should provide not just a rank ordering of key inputs, 
but also some discriminatory quantitative measure of sensitivity, such that it is possible to 
clearly distinguish the relative importance of different inputs. For example, are there groups of 
inputs among which several inputs are of comparable importance, and is there clearly a 
difference in importance between such groups? Statistical-based methods such as regression 
analysis or analysis of variance (ANOVA) produce quantitative indicators of the relative 
importance of different inputs. Moreover, techniques such as regression analysis also provide an 
indication of the statistical significance of differences in sensitivity among inputs, based upon 
confidence intervals for regression coefficients. 

This section emphasizes sensitivity analysis in quantitative risk assessment models, although 
some of the techniques (e.g. exploratory methods) may apply to both quantitative and 
qualitative assessments.  

6.3.1 Sensitivity analysis in qualitative risk assessment 

In examining an association between an agent and a putative adverse health effect, widely 
accepted criteria (e.g. Hill’s Criteria) have been established for determining whether the 
evidence is weak, moderate or compelling (e.g. Tomatis, 1990). Narrative criteria may be 
inherently subjective, and therefore difficult to reproduce. To the extent that the criteria can be 
evaluated objectively, however, different assessors using the same information should be able to 
independently reproduce a determination of whether the criteria have been satisfied. For 
example, the weight of evidence for causality is stronger if detection of the association has been 
independently reported from multiple sources, if the strength of association is correlated with 
the level of exposure to the agent, or changes in the putative causative agent precede changes in 
the observed effect. Determining whether such criteria are satisfied is evidence-based. If the 
results of a qualitative assessment are invariant to an accumulation of evidence regarding an 
association or, alternatively, to contradictory evidence, then the assessment is insensitive to the 
established criteria for evaluating causality. In a qualitative hazard characterization, an 
assessment based solely on the criteria of acute health outcomes could be insensitive to 
information regarding known chronic sequelae. Alternatively, a qualitative hazard 
characterization may be highly sensitive to weak evidence regarding chronic sequelae 
associated with an opportunistic pathogen that rarely causes acute illness. If a qualitative 
assessment finds that a pathogen poses a negligible risk based on the assumption that the 
pathogen does not grow under certain environmental conditions, and new information indicates 
that the pathogen is capable of growing under these conditions, then the sensitivity of the 
findings of the risk assessment to this new information may depend on prespecified criteria, e.g. 
Have the results been independently reproduced? Have the methods been exposed to peer 
review? At a minimum, the scientific basis and criteria for characterization of a qualitative risk 
assessment needs to be sufficiently transparent to permit assessment of the impact of new 
information or plausible alternative assumptions on the findings.  

6.3.2 Sensitivity analysis in quantitative risk assessment 

There are several approaches to sensitivity analysis. Saltelli, Chan and Scott (2000) provide a 
thorough exploration of the topic, summarized below. 

Exploratory methods 

Exploratory methods for sensitivity analysis are typically applied in an ad hoc manner, but can 
be of central importance to the assessment of key sources of uncertainty in an analysis. Some 



Risk characterization of microbiological hazards in food 85 
 

key sources of uncertainty in an assessment include qualitative features, such as the conceptual 
representation of the system under study, structure of the model, level of detail of the model, 
validation, extrapolation, resolution, boundaries and scenarios. It is not uncommon, for 
example, for the uncertainty about the true model form to be of much greater importance than 
the uncertainty associated with any model input for a given statistical model. An assessment of 
sensitivity of an analysis to changes in assumptions would not be complete unless consideration 
was given as to whether the scenario underlying the analysis is well specified. Methods for 
dealing with uncertainty regarding qualitative features of the analysis typically involve 
comparison of results under different structural assumptions. For example, a method for 
assessing the importance of different exposure pathways is to estimate the exposure associated 
with each pathway and to determine whether total exposures are dominated by only a few 
critical pathways. Similarly, if there is uncertainty regarding model structure, a common 
approach is to compare predictions based upon different models, each of which may have a 
different theoretical and mathematical formulation.  

Statistical methods 

Examples of statistical sensitivity analysis methods (also referred to as variance-based methods) 
include regression analysis, ANOVA, response surface methods, Fourier amplitude sensitivity 
test (FAST), mutual information index (MII), and classification and regression trees (CART) 
(Frey and Patil, 2002). Most of these methods are applied in conjunction with or after a Monte 
Carlo analysis. Regression analysis, ANOVA, FAST and MII provide quantitative measures of 
the sensitivity for each input. Regression analysis requires the assumption of a model form.  

Graphical methods 

Graphical methods represent sensitivity typically in the form of graphs, such as scatter plots and 
spider plots. The results of other sensitivity analysis methods (e.g. rank order correlation) also 
may be summarized graphically (e.g. by tornado charts). These methods can be used as a 
screening method before further analysis of a model, or to represent complex dependencies 
between inputs and outputs (For example, see McCamly and Rudel, 1995). For example, 
complex dependencies could include thresholds or non-linearities that might not be 
appropriately captured by other techniques. 

Evaluation of sensitivity analysis methods 

Each sensitivity analysis method provides different information regarding sensitivities of the 
inputs such as the joint effect of inputs versus individual effects, small perturbations of inputs 
versus the effect of a range of variation, or apportionment of variance versus mutual 
information. Because agreement among multiple methods implies robust findings, two or more 
different types of sensitivity methods might be applied where practicable, in order to compare 
the results of each method and draw conclusions about the robustness of rank ordering of key 
inputs. Non-parametric methods (e.g. Spearman’s rank correlation) are applicable to monotonic, 
non-linear models. Vose (2000) recommends the use of spider plots to illustrate the effect of 
individual input variables on the uncertainty of the model output. 
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6.4 Uncertainty analysis 

Uncertainty analysis evaluates the range and likelihood of model predictions. In the context of 
quality assurance, uncertainty analysis is a useful tool for characterizing the precision of model 
predictions.  

In combination with sensitivity analysis, uncertainty analysis can also be used to evaluate the 
importance of model input uncertainties in terms of their relative contributions to uncertainty in 
the model outputs (Morgan and Henrion, 1990). There are a variety of methods for estimating 
uncertainty in a model output based upon uncertainty in model inputs. The choice of method 
depends on what information is of most interest, the functional form of the model, and, to some 
extent, the number of inputs for which uncertainty is characterized. 

Methods typically applied include Monte Carlo simulation for generating samples from 
distributions assigned to each input. Sensitivity analysis methods such as regression and 
ANOVA can be used in combination with Monte Carlo simulation to identify model inputs that 
contribute most to uncertainty in model predictions. Helton and Davis (2002) provide an 
extensive literature review of methods for sensitivity analysis used in combination with 
sampling methods.  

6.5 Model verification 

Model verification is achieved by auditing the model to ensure that it operates as intended by 
the developer(s). Model verification should precede model validation. This process includes 
validation of the software code used to implement the model. Verification requires thorough 
documentation and transparency in the data, methods, assumptions and tools used, so that the 
model is independently reproducible. A well organized model structure facilitates the 
verification audit. 

There are several major elements in model verification: 

• Assess the correctness of the model formulation. For example, are the analytical equations 
correctly derived and free of error? 

• Is the computerized version of the analytical model correctly implemented? 

• Are the inputs correctly specified? 

• Do the units of measurement propagate correctly through the model? 

• Is the model internally consistent? For example, if an assumption is made in one part of the 
model, is it consistently applied throughout the model? Is there consistency within the model 
between the intermediate outputs and inputs? 

It may be difficult in some cases to quantitatively verify computer code, especially for large 
models that are developed in a short time. However, the verification of computer code will be 
facilitated if good software engineering practices are followed, including clear specification of 
databases, development of a software structure design prior to coding, version control, clear 
specification of interfaces between components of a model, and good communication among 
project teams when different individuals are developing different components of a model. 
Model documentation and peer review are critical aspects of the verification process.  
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6.6 Model anchoring 

Anchoring is a technique in which the model is adjusted or calibrated to be more compatible 
with observed data. For example, model parameters may be adjusted to achieve agreement 
between model predictions and observed data. Anchoring is a generally accepted practice in 
health risk assessment and environmental modelling, and has been employed in one fashion or 
another in risk assessments in the United States of America on Salmonella Enteritidis in eggs, 
Listeria monocytogenes in ready-to-eat foods, Escherichia coli O157:H7 in ground beef, and for 
an international risk assessment on Vibrio vulnificus in oysters (FAO/WHO, 2005). Data from 
outbreaks could be considered as the ultimate ‘anchor’ for dose-response models and are also an 
important way to validate risk assessments. There is a trade-off, however, because anchoring 
compromises the ability to validate the model output through comparison with the observed data 
in situations without sufficient data to support both. In general, anchoring approaches that 
weight model inputs in proportion to their likelihood in light of the observed data are superior to 
using simple adjustment factors or censoring input values that are incompatible with the 
observed data (National Academy of Sciences, 2002). 

Whatever the anchoring approach, considerable care must be taken to ensure that the 
adjustment procedure is well reasoned and transparent. If the model is to be both anchored and 
validated (using a withheld portion of the independent data), then anchoring should precede 
model validation. 

6.7 Model validation 

A judgement needs to be made as to whether the risk assessment model response is reasonable. 
Stated less formally, model validation procedures are aimed at answering the following types of 
questions: (1) does the model make sense?; (2) does the model respond in an appropriate 
manner to changes in input assumptions; and (3) do predictions respond in an appropriate 
manner to changes in the structure of the analysis. This is also referred to by some as a ‘reality 
check’, ‘laugh test’ or ‘confidence building’. 

Model validation is highly dependent on the risk-management question, and the degree of 
validation required should be proportionate to the stakes of the decision. FAO/WHO (2003) 
defines model validation as demonstrating the accuracy of the model for a specified use and 
refers to different aspects of model validation. Conceptual validation concerns the question of 
whether the model accurately represents the system under study. Validation of algorithms 
concerns the translation of model concepts into mathematical formulae. Validation of software 
code concerns the implementation of mathematical formulae in computer language (see Section 
6.5 on model verification). Functional validation concerns checking the model with 
independently obtained observations. Even if independent data are unavailable, a portion of the 
data may be withheld during model development to permit assessment of the model using the 
withheld data. When few data are available, however, the loss of information for model 
development may outweigh the benefit of withholding data for model evaluation. 

Close agreement between an initial risk-modelling effort and independent validation data 
would be fortuitous. Agreement between the model output and validation data may be 
coincidental, however, and would not necessarily indicate that all of the intermediate models 
components are accurate. Typically, model development and refinement is an iterative process. 
Whether model validation or anchoring is considered, the credibility of the model may be 
strengthened by having multiple points at which the model can be compared to observed data. 
In general, the scientific credibility of a model is strengthened if consistent results are derived 
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from different relevant data sources (labs, regions) or types (observational or experimental), or a 
combination. The required degree of relevance and consistency is a context-specific judgement. 
The tolerance for inconsistent answers depends on what constitutes an ‘important’ difference 
with respect to changes in model results. In the risk assessment context, an important difference 
in model results is one that would significantly modify the risk management decision under the 
relevant decisional criteria.  

There are situations in which it may be difficult or practically impossible to completely 
validate a model. For example, because risk assessment models are often attempting to predict 
low probability events, it can be difficult to obtain an independent data set of sufficient sample 
size to make statistically significant comparisons of predictions versus observations. However, 
even in such situations, it may be possible to validate components of the model. For example, it 
may be possible to validate portions of the model that deal with a particular exposure pathway 
by making measurements of contaminant levels in specific foods.  

In many cases, there may be insufficient or no independent data with which to compare 
model predictions. In these situations, alternatives to validation include: 

• screening procedures to identify the most important model inputs and pathways; 

• sensitivity analysis to identify the most important inputs or groups of inputs; 

• uncertainty analysis to evaluate the effect of uncertainty in model inputs with respect to 
predictions; 

• comparison among predictions of different models; and 

• evaluation of sensitivity of results to different assumptions regarding scenarios, model 
boundaries, model resolution and level of detail. 

While none of these techniques provides a direct validation of the model, each of these 
techniques provides insight into the sensitivity of the model predictions to key assumptions 
regarding the analysis. The response of the predictions to these procedures can be evaluated 
with respect to prior expectations, comparison with analogous systems, and theoretical 
justifications.  

6.8 Comparison with epidemiological data 

In order to make a valid comparison with a foodborne pathogen risk estimate, at least three 
factors need to be considered in deriving an epidemiological estimate from human surveillance 
data (Powell, Ebel and Schlosser, 2001). 

• Cluster-weighted rate of illness 
If the risk assessment estimates the incidence of illness at the national level, the epidemiological 
estimate will need to extrapolate the rate of illness beyond the surveillance area to permit 
comparison at the national level. In this case, the raw reported rate in each surveillance area may 
be weighted by the population of the region represented by the area (e.g. state population size) to 
obtain a weighted average rate of illness (e.g. cases per 100 000 in the national population). If 
multiple years of surveillance data are available, then the data can be used to characterize year-to-
year variability in the rate of illness. 

• Adjust surveillance data to account for under-reporting 
Estimating the actual incidence of illness requires adjustment for recognized sources of under-
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reporting in human surveillance data. For example, some ill persons do not seek medical care, 
physicians do not obtain stool specimens from all patients, laboratories do not culture all stool 
samples for the pathogen of concern, and some proportion of the lab results are false negatives. If 
estimates are available on the proportion of cases at each step in the reporting process, the 
negative binomial distribution can be used in sequential fashion to estimate the number of cases 
missed at each step. In some cases, the proportions may be dependent on the nature or severity of 
symptoms. For example, a person with bloody diarrhoea may be more likely to seek medical care 
than one with non-bloody diarrhoea. In this case, the proportion of cases with different levels of 
symptoms must be estimated prior to accounting for the number of cases missed at each step, and 
the adjusted symptom-specific estimates are summed to estimate the total number of cases. In 
general, the degree of under-reporting tends to be substantial. The degree of under-reporting also 
varies among countries and between regions within countries. 

• Etiological fraction attributable to food product(s) 
The etiological fraction refers to the proportion of cases attributable to an exposure pathway or a 
specific food product. If the scope of the risk assessment is limited to a particular food product, 
then the proportion of cases due to other exposure pathways (e.g. other foods, drinking water) 
needs to be subtracted from the overall estimate of illness obtained from the human surveillance 
data. In general, empirical data on the etiological fraction are scarce. It may be possible, however, 
to specify a range of uncertainty on the basis of expert judgement. 

If observed epidemiological data are used to generate the dose-response model or to anchor the 
model, then these data are unavailable for independent model validation. If sufficient 
epidemiological data are available, however, a portion of the data may be withheld for the 
purposes of model validation. 

6.9 Extrapolation and robustness 

Model robustness refers to the performance of the model when its assumptions are violated. In 
this context, assumptions include model form and model inputs. Extrapolating model results to 
other settings may involve many forms of extrapolation: from the present to the future, from one 
geographical region to another, from one microorganism to another, from animals to humans, 
from human clinical trial subjects to the general population, from one human population to 
another, from the available data to values beyond the observed range of the data, from 
controlled experimental settings to operational environments, and so on. Some extrapolations 
can be made with relative confidence, while others require a leap of faith. Some degree of 
extrapolation is inevitable if risk assessment attempts to inform risk-management decisions, 
since the demands of risk management tend to outstrip the supply of relevant science. The 
importance of various forms of extrapolation made in risk assessment needs to be considered 
and, to the extent feasible and relevant to the decision at hand, characterized in a clear manner, 
either quantitatively or qualitatively. 

Extrapolation is explicit when the selected values of model inputs are outside the range of 
values used to calibrate or validate the model, or both. However, there can also be hidden 
extrapolation. A hidden extrapolation occurs for a combination of values of each model input 
such that these values are enclosed by ranges used for calibration and validation, but for which 
that specific combination was not included or approximated during calibration or validation. 
Thus, simple range checks on each input will not guarantee that a hidden extrapolation cannot 
occur. Hidden extrapolation would typically be more of a problem for a system in which there 
are highly sensitive interactions among inputs. 
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A model that is calibrated to a narrow range of values for each input may not be robust when 
applied to sensitivity or uncertainty analysis. The use of ranges or distributions rather than point 
estimates could lead to hidden or explicit extrapolations of the model. In addition, situations can 
arise in which a joint set of model inputs are sampled in a Monte Carlo analysis for singularity 
points of a model, leading to problems such as division by zero or unbounded results. Such 
problems can often be traced to simplifying assumptions in model development, mis-
specification of distributions for model inputs, or computer software limitations. Problems such 
as these can arise in practice, particularly when working with a model or computer code that 
someone else developed and for which documentation may be inadequate. 

A model is considered to be robust if it responds in a reasonable manner to variation in input 
values, while at the same time not being easily subject to singularity points or other structural 
issues that lead to substantial magnification of errors in input values, whether because of 
uncertainty or user error. Moreover, a model that is based on sound theory might be used with 
more confidence compared with a purely empirical model that is essentially a curve fit to a 
calibration database. There is a distinction between the robustness of a risk assessment model 
and the robustness of a risk management decision. From an analytical perspective, a risk 
management decision is robust if the decision is beneficial over a reasonably wide range of 
possible future outcomes regarding uncertainties associated with the many factors that influence 
the decision. One such source of uncertainty would typically include the risk assessment model 
itself. 

6.10 Credibility of the risk assessment 

Documentation, validation, and review are necessary criteria for the credibility of a risk 
assessment. None of these criteria is sufficient by itself, however, as credibility depends on all 
three criteria being satisfied in a manner that is proportionate to the stakes of the decision. 

6.10.1 Risk assessment documentation 

At a minimum, risk assessment documentation must enable the analysis to be independently 
reproduced. The principle of transparency also requires that the source or basis for model inputs 
and assumptions be clearly stated (e.g. by references to scientific literature, evaluation criteria 
or expert judgement). The expectation for risk assessment documentation should be reasonable, 
however, because in some cases, assumptions may be based on common knowledge or 
generally accepted practices in the field. For example, the lognormal distribution is commonly 
assumed for modelling variables that are the product of several other variables. Because risk 
assessments are difficult to fully validate, and because such assessment are used to inform 
public decision-making at various levels, including local, national, and international, pertaining 
to public health, it is critically important that the information used for the assessment, including 
the model, be accessible for review by experts and the lay public. Ideally, subject to resource 
constraints, the following information should be included in documentation of a risk 
assessment: 

• data or references to data sources; 

• scenario, including the temporal and spatial aspects of the exposure scenarios, the specific 
hazards addressed, the specified pathogens included, exposed populations and exposure 
pathways; 

• analytical model used for analysis, including the theoretical or empirical basis; 
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• discussion and comparison of alternative model formulations, and justification for choices 
made regarding model structure; 

• assumptions regarding values assigned to model inputs, including point-estimates, ranges and 
distributions; 

• model verification, including assessment of results from sensitivity and uncertainty analysis; 

• model anchoring (calibration); 

• model validation; and 

• computer implementation of the analytical model, including software design. 

6.10.2 Peer review 

FAO/WHO (2003) notes that the credibility of risk assessment results can be improved by the 
process used to develop the results. Peer and public review of risk assessment results are an 
essential part of the process, but each type of review generates distinct and sometimes 
conflicting demands that should be addressed on their own terms. There is also a distinction 
between the scientific credibility of a risk assessment and the credibility of risk management 
decisions. Public review is addressed in Section 8.5. 

Morgan and Henrion (1990) identify exposure to peer review as a basic tenet of good policy 
analysis. The focus of a scientific peer review is highly dependent on the risk management 
question that the risk assessment is intended to inform. Without reference to a well-defined and 
specific risk management question, peer review of a risk assessment may fail to focus on the 
particular uncertainties that are most likely to influence the risk management decision. For 
example, if the risk management question is “What is the likelihood that a specific pathogen 
occurs in a particular food production process?” then data gaps and other uncertainties regarding 
post-production processes are irrelevant to the decision. Peer review comments regarding the 
scope of the risk assessment, while potentially useful for future risk assessments, are not 
relevant to the adequacy of the risk assessment under review to inform the risk management 
decision for which it was intended. If a risk assessment has multiple objectives, peer review 
may help to identify which objectives an assessment satisfies, since an assessment that is 
adequate to inform one decision may be insufficient to support another. For a complex risk 
assessment, a thorough review can be difficult and time consuming, even if the documentation 
is adequate. In the case of large, complex risk assessments, a thorough review may require a 
multidisciplinary team and a significant budget. Therefore, the substantive and procedural 
benefits of peer review should be balanced by time and resource considerations. The level and 
extent of review should be proportionate to the stakes of the decision, taking into consideration 
the need for immediate action in the event of bona fide public health emergencies. 

 

 


