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Rangeland types are aggregations of ecoregions within a type as delineated by the National
Geographic Society as detailed at: www.nationalgeographic.com/wildworld/terrestrial.html 
The forests and woodlands type encompasses a multitude of interspersed areas of diverse forest 
and woodland species.

FIGURE 1: Rangeland types in the contiguous Western United States (Chapter IV)
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FIGURE 2: Comparison of two core approaches for protocol design (Chapter IV)
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FIGURE 3: Comparison of options for rewarding changes in C stocks (Chapter IV)
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FIGURE 4: Locating the area of optimum benefit (Chapter IV)
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FIGURE 5: Breakthrough opportunities for protocol design. A theoretical 
representation of the economic decision-making landscape for 
quantification methodologies or performance standards (Chapter IV)
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FIGURE 6: Direct methods of quantifying changes in soil C stocks (Chapter IV)

Source: Post et al., 2001; McCarty et al., 2002; Izaurralde, 2005; Izaurralde et al., 1998.
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FIGURE 7: Comparison of ecosystem models (Chapter IV)

Source: Li et al., 2003; Conant et al., 2005; Paustian et al., 2009; Parton et al., 2005; Adler, Del Grosso & Parton, 2007.
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FIGURE 8: Conceptual system overview of the CBP tool (Chapter V)
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Carbon fluxes (g C/m2/year) in a managed grassland. FCO2 is the net CO2 ecosystem exchange. Ffire
is the total C loss by fire, FCH4, FVOC are non-CO2 trace gas C losses from the ecosystem, as methane 
and volatile organic carbon, respectively. Fmanure, Fharvest and Fanimal-products are lateral organic C fluxes 
which are either imported (manure application) or exported (harvests and animal products) from 
the system. Fleach and Ferosion are organic (and/or inorganic) C losses through leaching and erosion, 
respectively. Net carbon storage (NCS, see Eq. 1) is calculated as the balance of carbon fluxes.

FIGURE 9 (Chapter VI)
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Carbon fluxes (g C/m2/year) in managed European grassland systems studied by Soussana et al.
(2007). Net carbon storage in the grassland (NCS, see Eq. 2) in grazed only (A), cut and grazed 
(B) and cut only (C) grasslands is calculated as the balance of carbon fluxes. For abbreviations, 
see Figure 9. Data are means of 2, 4 and 3 European sites for grazed only (A, meat production 
systems), cut and grazed (B, meat and dairy production systems) and cut only (C, dairy production 
systems) grasslands. A standard Fleach value (10 g C/m2/year) was assumed for all sites. C exports in 
animal products were assumed to reach 2 and 20 % of C intake for meat and milk production, 
respectively (see text). Grazed sites: Hungary, France, Italy (see Allard et al., 2007; Soussana et al.,
2007; Table 9). Cut and grazed sites: Scotland, Ireland and the Netherlands (see Soussana et al.,
2007; Table 9). Cut sites: Switzerland (see Ammann et al., 2007; Table 9). A positive value of NCS
and Att-NCS denotes a sink activity of the grassland ecosystem.

FIGURE 10 (Chapter VI)
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Carbon fluxes (g C/m2/year) in managed European grassland systems studied by Soussana et al.
(2007). Net carbon storage in the barn (NCS@barn) in cut and grazed (A) and cut only (B) grasslands 
are calculated as the balance of carbon fluxes. FCO2@barn, Fanimal-products@barn,  Flabile-C- losses are, respectively, 
CO2 emissions, C exports in animal products from ruminants, CO2 losses from microbial degradation 
of farm effluents during storage and after spreading. FCH4@barn and FCH4-manure are the CH4 emissions 
at barn from enteric fermentation and farm effluents, respectively. For other abbreviations, see 
Figure 9. Carbon fluxes at barn were estimated assuming the same type of production (meat or 
milk) in the barn and in the grassland and solid manure (see Eq. 4). C exports in animal products at 
barn were assumed to be 2 and 20 % of C intake for meat and milk production, respectively (see 
chapter VI Mitigating the greenhouse gas balance of ruminant production systems through carbon 
sequestration in grasslands).

FIGURE 11 (Chapter VI)
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FIGURE 12: Delineation of major climatic zones in the United States based on mean 
annual temperature and precipitation (Chapter VIII)

Source: produced by H.J. Causarano using the Spatial Climate Analysis Service (www.ocs.ors.orst.edu/prism/).
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FIGURE 13: Simplified C cycle showing the major fluxes of C via photosynthesis 
and respiration with the net balance affecting SOC. When C inputs to 
soil exceed C outputs, then soil can be considered a sink for CO2 (soil 
C sequestration). When C inputs are lower than C outputs, then soil 
becomes a net source of CO2 to the atmosphere (Chapter VIII)
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FIGURE 14: SOC concentration (and calculation of sequestration rate) as a function 
of depth and land use across 29 farm locations in the southeastern 
United States (Chapter VIII)

Source: data from Causarano et al. (2008).
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FIGURE 15: SOC as a function of years of management under grazed bermudagrass 
in Texas (upper left panel) and hayed bermudagrass and grazed tall 
fescue in Georgia (lower left panel). Upper right panel is the distillation 
of data into a maximum accumulation curve. Lower right box reports 
SOC sequestration for each site at 10, 25 and 50 years (Chapter VIII)

Source: data from Wright, Hans and Rouquette (2004) in Texas and from Franzluebbers et al. (2000) in Georgia.
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FIGURE 16: SOC as a function of years of management and source of nutrients on a 
Typic Kanhapludult in Georgia (Chapter VIII)

Source: data from Franzluebbers, Stuedemann and Wilkinson (2001).
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FIGURE 17: SOC at the end of five years of different cattle stocking rates on a Typic 
Kanhapludult in Georgia. Filled symbol at right represents hayed forage 
removal (i.e. high utilization pressure, but not grazed) (Chapter VIII)

Source: data from Franzluebbers, Stuedemann and Wilkinson (2001).
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FIGURE 18: SOC depth distribution and C stock as affected by grazed and hayed 
management on Typic Kanhapludults in Georgia (Chapter VIII)

Source: data from Franzluebbers et al. (2000).

Soil
Depth
(cm)

Soil Organic Carbon (g/kg)

Carbon Stock (Mg/ha)

a

b

Grazed bermudagrass

Surface residueSoil (0–20 cm)

Hayed bermudagrass

0

–5

–10

–15

–20

0

0 10 20 30 40

10 20 30 40

FIGURE 19: SOC distribution vertically (by depth) and horizontally (by distance from 
shade) within coastal bermudagrass pastures on Typic Kanhapludults in 
Georgia (Chapter VIII)
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FIGURE 20: SOC depth distribution as affected by endophyte infection frequency of 
tall fescue on a Typic Kanhapludult in Georgia (Chapter VIII)

Source: data from Franzluebbers et al. (1999).
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FIGURE 21: Estimated emissions (CO2 eq) per kg of milk produced in conventional 
and silvopastoral farms in Esparza, Costa Rica (Chapter X)

Source: data from GEF silvopastoral project, 2007.
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FIGURE 22: Estimated emissions (CO2 eq) per kg of beef produced in conventional 
and silvopastoral farms in Esparza, Costa Rica (Chapter X)

Source: data from GEF silvopastoral project, 2007.

FIGURE 23: Emissions (red) and sequestered carbon (blue) in conventional and 
silvopastoral farms (Chapter X)
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IP-T = improved pasture without trees; NP-T = natural pasture without trees; IP+LTD = improved 
pasture with low tree density; IP+HTD = improved pasture with high tree density; FP = forest 
plantation; SF = secondary forest

FIGURE 24: Relationship between carbon stocks and index for biodiversity (IBIO) 
with different pasture, silvopastoral and other land uses, Esparza, 
Costa Rica (Chapter X)

FIGURE 25: Developing an efficient mitigation budget from a MACC (Chapter XI)



Integrated Crop Management336

GRASSLAND CARBON SEQUESTRATION: MANAGEMENT, POLICY AND ECONOMICS

O
FA

D
 =

 o
n

-f
ar

m
 a

n
ae

ro
b

ic
 d

ig
es

ti
o

n
; C

A
D

 =
 c

en
tr

al
 a

n
ae

ro
b

ic
 d

ig
es

ti
o

n
.

FI
G

U
RE

 2
6:

 U
n

it
ed

 K
in

g
d

o
m

 M
A

C
C

 f
ea

si
b

le
 (

m
it

ig
at

io
n

) 
p

o
te

n
ti

al
, 2

02
2

(C
h

ap
te

r 
X

I)



337Vol. 11–2010

MAPS, TABLES AND FIGURES

LC
 =

 lo
w

 c
ar

b
o

n
 p

ri
ce

; H
C

 =
 h

ig
h

 c
ar

b
o

n
 p

ri
ce

; S
P 

=
 s

lo
w

 p
yr

o
ly

si
s;

 F
P 

=
 f

as
t 

p
yr

o
ly

si
s.

FI
G

U
RE

 2
7:

 M
ar

g
in

al
 a

b
at

em
en

t 
co

st
 c

u
rv

e 
o

f 
b

io
ch

ar
 p

ro
je

ct
s 

in
 d

ev
el

o
p

ed
 

an
d

 d
ev

el
o

p
in

g
 r

eg
io

n
s 

fo
r 

20
30

 (
C

h
ap

te
r 

X
I)



Integrated Crop Management338

GRASSLAND CARBON SEQUESTRATION: MANAGEMENT, POLICY AND ECONOMICS

FIGURE 28: Marginal abatement cost curve of a range of carbon abatement 
technologies and strategies for the world by 2030 (Chapter XI)

Source: modified from McKinsey & Company, 2009.
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FIGURE 29: Potential vehicles for carbon finance under future international 
agreements (Chapter XII)
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