ISSN 0258-6150

Wildlife in a changing climate

Cover images, clockwise from left:

The Lemuroid ringtail possum (*Hemibelideus lemuroides*), particularly the white form, may be at the verge of extinction (photo: Mike Trenerry); the population of the 'i'iwi (*Vestiaria coccinea*) is declining (photo: John Kormendy); and the golden toad (*Bufo periglenes*) is considered extinct (photo: Charles H. Smith). All have been affected by climate change.

Wildlife in a changing climate

FAO FORESTRY PAPER

edited by Edgar Kaeslin Ian Redmond Nigel Dudley

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2012

The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.

The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO.

ISBN 978-92-5-107089-5

All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to copyright@fao.org or to the Chief, Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy.

© FAO 2012

Contents

Contributors Foreword Acknowledgements			
1.	Summary		
2.	Intr	oduction	5
3.	Ma	jor climate-induced changes	9
	3.1	Disturbance and extreme weather events	11
	3.2	Ecosystem and landscape changes	15
		3.2.1 Coasts	15
		3.2.2 Mountains	18
		3.2.3 Forests3.2.4 Savannahs, grasslands and steppes	23 26
4.	Cor	sequences of climate change	31
	4.1	Altered ecosystems and landscapes	31
	4.2	Changes in species distribution, composition and interactions	37
	4.3	Conflicts at the human–wildlife–livestock interface	38
	4.4	Wildland fires	40
	4.5	Wildlife health and diseases	44
	4.6	Invasive species and pests	51
5.	Me	asures for adaptation to climate change	57
	5.1	Maintaining current ecosystems	57
	5.2	Adapting management to address climate change	58
	5.3	Restoring damaged or changing ecosystems	60
		5.3.1 Mangrove restoration	60
		5.3.2 Inland waters restoration	61
		5.3.3 Forest restoration	65
	- 4	5.3.4 Savannan and grassland restoration	67
	5.4	Adopting integrated and landscape approaches	69 71
		5.4.2 Management of invasive species and wildlife diseases	71
6	Cor		79
J.			
7.	. Keterences		

Case studies

Box 1	Cyclones threaten survival of the cassowary	13
Box 2	Elephants supplied with water during drought	14
Box 3	Climate change drives an increase in tiger attacks in the Sundarbans	17
Box 4	Climate change affects gelada baboons in mountain highlands	19
Box 5	Mountain gorillas in the Virunga mountains face new threats	
	as their habitat changes	21
Box 6	Ecosystems changing on the Himalayan plateau	22
Box 7	Amazon forests' carbon cycle out of balance due to drought and higher temperatures	25
Box 8	Mediterranean cork oak savannah and its rich biodiversity under	
	increasing stress	29
Box 9	Growing biofuel demand leads to mass forest conversion	32
Box 10	East African high mountains – not only losing their glacier caps	33
Box 11	European and North American birds show similar northward shifts	35
Box 12	Flooding aggravates conflict between farmers and crocodiles	39
Box 13	Disastrous fires in 2009 fuelled by climate change	42
Box 14	African lions decimated by climate-influenced pathogens	46
Box 15	Avian malaria and climate change in the Hawaiian Islands	47
Box 16	Climate change affecting migration routes and disease risk	48
Box 17	The pine processionary moth conquers Europe	53
Box 18	Invasive species and human health	54
Box 19	Mangrove restoration helps people and wildlife in Gazi Bay	61
Box 20	Wetland restoration brings power to the people	62
Box 21	Restoring wetland connectivity in Somerset	63
Box 22	Peatland restoration brings multiple benefits	64
Box 23	Restoration of dry tropical forests aided by birds and mammals	66
Box 24	Grassland and herbivore recovery after drought in Amboseli	68
Box 25	Protecting the winter habitat of reindeer through fire management	74
Box 26	Coypu invasion and eradication in Europe	77

Contributors

Nora Berrahmouni

Forestry Department Food and Agriculture Organization of the United Nations Rome, Italy

Adriana Cáceres Calleja

Forestry Department Food and Agriculture Organization of the United Nations Rome, Italy

Elisa Distefano

Forestry Department Food and Agriculture Organization of the United Nations Rome, Italy

Nigel Dudley

Equilibrium Research Bristol, United Kingdom

David J. Ganz

Lowering Emissions in Asia's Forests (LEAF) Winrock International Bangkok, Thailand

Piero Genovesi Italian National Institute for Environmental Protection and Research (ISPRA) Rome, Italy

Edgar Kaeslin

Forestry Department Food and Agriculture Organization of the United Nations Rome, Italy

Tracy McCracken

Agriculture and Consumer Protection Department Food and Agriculture Organization of the United Nations Rome, Italy

Scott H. Newman

Agriculture and Consumer Protection Department Food and Agriculture Organization of the United Nations Rome, Italy

Ian Redmond Independent Consultant Stroud, United Kingdom

Stéphane de la Rocque

Agriculture and Consumer Protection Department Food and Agriculture Organization of the United Nations Rome, Italy

Valeria Salvatori Independent Consultant Rome, Italy

Foreword

For the past twenty years climate change has been high on the international agenda. Together with desertification, soil degradation and biodiversity loss, it is widely recognized as the major environmental threat the world is facing. Evidence is increasing that warming and other climate-related changes are happening more quickly than anticipated, and prognoses are becoming worse.

This publication analyses and presents how climate change affects or will likely affect wild animals and their habitats. Although climate change has already been observed and monitored over several decades, there are not many long-term studies on how the phenomenon is affecting wildlife. There is growing evidence, however, that climate change significantly exacerbates other major human-induced pressures such as encroachment, deforestation, forest degradation, land-use change, pollution and overexploitation of wildlife resources. Case studies are presented in this book that describe some of the body of evidence, in some instances, and provide projections of likely scenarios, in others.

An emphasis of this paper is on tropical terrestrial ecosystems. Subtropical, temperate and boreal regions, as well as coastal areas and inland waters, are covered to a lesser degree. These climatic zones and ecosystems are interconnected in many ways, and in particular for animals, there are no strict boundaries between them.

The publication not only highlights climate-induced changes and their likely consequences, but it also provides useful and up-to-date information on how these could be addressed by skilful measures of adaptive management. The findings and suggested measures explore current knowledge and propose a way forward. As climate change is ongoing, there is a need for more concerted research to inform policy and improved monitoring of its implementation. The increased knowledge would allow to better address this urgent issue and further improve climate policy.

Eduardo Rojas-Briales Assistant Director-General, Forestry Department, FAO.

Acknowledgements

FAO wishes to express its gratitude to the experts who contributed invaluable inputs to the publication. Trevor Sandwith (IUCN) provided comments during the early phase, and the following FAO colleagues helped review and improve chapters and case studies in their areas of expertise: Gillian Allard, Tullia Baldassari, Susan Braatz, René Czudek, Pieter van Lierop and Douglas McGuire. Special thanks to Rebecca Obstler (FAO) for coordinating the publication's editorial production.

Wildlife in a changing climate

1. Summary

The world already faces a biodiversity extinction crisis, and it is likely to be made worse by climate change. This paper examines the likely ecosystem and landscape changes that will occur in forests, mountains, wetlands, coastal areas, savannahs, grasslands and steppes. Impacts include changes in physical conditions, weather patterns and ecosystem functioning. As a consequence, terrestrial, freshwater and marine wildlife will be severely affected unless we manage to cope with climate changes through decisive planning and action. The main focus is on tropical terrestrial wildlife and its habitats, but other fauna, ecosystems and geographical regions are covered as well.

The impacts of climate change will include permanent changes in physical conditions, such as snow cover, permafrost and sea level along with increases in both the irregularity and severity of extreme weather events like droughts, floods and storms, which will lead to changes in ecosystems and ecosystem functioning. Degraded ecosystems are expected to be less resistant to climate change than intact ones.

This paper explores several main consequences for wildlife, including:

- *Ecosystem changes*: These include geographical and altitudinal shifts, changes in seasonality and rates of disturbance, changes in species composition and a rapid increase in invasive species.
- Species interactions: Impacts on wildlife species include changes in species distribution, abundance and interactions, for example through shifting phenology and mistiming.
- *Human-wildlife conflicts*: These are likely to increase as humans and wild species compete for the same dwindling resources.
- *Wildland fires*: Increased drought, the drying out of previously wet forests as well as human interference and pressure are leading to more frequent and disastrous fires in ecosystems that are poorly adapted to such events.
- *Health and diseases*: Wildlife, humans and livestock will be affected by the emergence and increased spread of pathogens, geographically and across species boundaries, due to climate, landscape and ecosystem changes.

Also considered are a number of responses to climate change:

- *Maintaining current ecosystems*: This is crucial, particularly where ecosystems are reasonably intact and therefore likely to withstand climate change. A strong and effective network of protected areas is a critical element in this strategy.
- Adaptive management: Protection alone will not be enough, however, as ecosystems change around us. Wildlife biologists are now considering new approaches and more radical steps, including the relocation of protected

areas, perhaps on a temporary basis, to allow migration to suitable conditions; translocation of species that have lost optimal ecological conditions; artificial feeding of wildlife in times of emergency; and modification of habitats. All of these approaches are accompanied by risks and costs and will require that strong safeguards are in place to be successful.

- *Restoring ecosystems*: Restoration will also be needed, particularly in ecosystems that are important for climate change resilience but are already badly degraded. These include mangroves, inland waters, forests, savannahs and grasslands.
- Landscape approaches: Actions taken in isolation are likely to fail, making integrated approaches vital. Examples of fire, invasive species and disease and pest management are included in the paper to allow consideration of how such integration might be applied in practice.

Addressing wildlife management among the multiple other concerns resulting from climate change will be challenging. Developing and communicating information on the value of wild species and ecosystems to humanity will be an important strategy in building political momentum for conservation, alongside ethical considerations. Developing, managing and retaining an effective system of protected areas is critical for success. The concept of "mainstreaming" biodiversity conservation needs to be applied consistently and carefully. Finally, as we embark on a period of great uncertainty, further research and careful monitoring are needed to ensure that adaptive management and other new approaches can succeed in responding to existing and newly emerging climate pressures.