Contents

Preface	
Acknowledgements	
Abbreviations used in the text	

CHAPTER 1

An outlook on world biofuel production and its implications for the animal feed industry

Geoff Cooper and J. Alan Weber

Introduction: the case for expanding biofuel production – Common biofuels, feedstocks and co-products – Generally accepted uses of feed co-products in animal diets – Historical volumes of feed from biofuel co-products – Biofuels and co-product outlook to 2020 – Knowledge gaps and future research needs – Conclusions – Acknowledgements – Bibliography

CHAPTER 2

An outlook on EU biofuel production and its implications for the animal feed industry

Warwick Lywood and John Pinkney

Introduction – The need for biofuels to tackle climate change – EU biofuel production – Biofuel processes – Biofuel crops – EU animal feed supply – Biorefining of crops for biofuel and animal feed – Sustainability of biofuels and animal feed – Biofuel and animal feed scenarios for 2020 – Knowledge gaps and future research needs – Conclusions – Bibliography

CHAPTER 3

Impact of United States biofuels co-products on the feed industry

G.C. Shurson, H. Tilstra and B.J. Kerr

Introduction – Evolution of DG production and use in the United States feed industry – Future impact of United States ethanol production on the feed industry – Nutrient composition, digestibility and feeding value of new maize co-products for livestock and poultry – Other emerging or potential processing and maize co-product production technologies – Feed and food safety questions – Expanded uses of co-products – Knowledge gaps and future research needs – Conclusions – Bibliography

CHAPTER 4

Utilization of wet distillers grains in high-energy beef cattle diets based on processed grain

M.L. Galyean, N.A. Cole, M.S. Brown, J.C. MacDonald, C.H. Ponce and J.S. Schutz

Introduction – Concentration and source of distillers grains – Effects of specific nutrients and feed ingredients – Potential interactions with grain processing and feed additives – Environmental effects of feeding wet distillers grains in high-energy, processed grain diets – Knowledge gaps and future research needs – Conclusions – Bibliography

ix x xi

1

13

CHAPTER 5

Utilization of feed co-products from wet or dry milling for beef cattle

G.E. Erickson, T.J. Klopfenstein and A.K. Watson

Introduction – Beef finishing – Protein supplementation – Energy replacement – High inclusions – Roughages – Grain processing – Sulphur – Forage-fed cattle – Energy supplementation – Protein supplementation – Replacement heifers – Environmental issues – Greenhouse gas and life-cycle analysis – New developments – Future research areas – Conclusions – Bibliography

CHAPTER 6

Hydrogen sulphide: synthesis, physiological roles and pathology associated with feeding cattle maize co-products of the ethanol industry

Jon P. Schoonmaker and Donald C. Beitz

Introduction – Dietary sources of sulphur – Mechanism of action of excess dietary sulphur– Sources of hydrogen sulphide – Knowledge gaps and future research needs – Conclusions – Bibliography

CHAPTER 7

Feeding biofuel co-products to dairy cattle

Kenneth F. Kalscheur, Alvaro D. Garcia, David J. Schingoethe, Fernando Diaz Royón and Arnold R. Hippen

Introduction – Nutrient composition of biofuel co-products – Degradability of distillers grain from different cereal grains – Feeding DGS to dairy calves – Feeding DGS to dairy heifers – Feeding DGS to dry cows – Feeding DGS to lactating dairy cows – Wet versus dried distillers grain with solubles – Feeding different cereal types of distillers grain with solubles – Feeding other ethanol co-products to dairy cattle – Feeding glycerol to dairy cattle – Storage of biofuel co-products – Future biofuel co-products (next generation) – Knowledge gaps and future research needs – Conclusions – Acknowledgements – Bibliography

CHAPTER 8

Utilization of crude glycerin in beef cattle

J.S. Drouillard

Introduction – Fermentation by ruminal microbes – Impact of glycerin on *in vivo* digestion – Performance of cattle supplemented crude glycerin – Conclusions – Bibliography

CHAPTER 9

Nutritional value and utilization of wheat dried distillers grain with solubles in pigs and poultry

J. Noblet, P. Cozannet and F. Skiba

Introduction – Composition and chemical characteristics of wheat DDGS – Energy value of wheat DDGS – Protein value of wheat DDGS – Minerals and phosphorus value of wheat DDGS – Performance in poultry and pigs fed wheat DDGS – Feed additives potential for wheat DDGS – Knowledge gaps and future research needs – Conclusions – Acknowledgements – Bibliography

CHAPTER 10

Feeding biofuels co-products to pigs

G.C. Shurson, R.T. Zijlstra, B.J. Kerr and H.H. Stein

Introduction – Biofuels co-products used in swine diets – Wet-milling co-products – Nutrient and energy composition and digestibility in distillers grain co-products – Improving nutrient digestibility of DDGS – *In vitro* energy digestibility in DDGS – Energy prediction equations for DDGS – Nutrient and energy composition and digestibility in maize co-products from wet-milling – Crude glycerin – Special considerations for co-products from the ethanol industry – Special considerations for crude glycerin – Feeding distillers 115

101

155

163

co-products to swine – Feeding crude glycerin to swine – Effects of DDGS on pig health – Effects of DDGS on nutrient concentration and gas and odour emissions of swine manure – Knowledge gaps and future research needs – Conclusions – Acknowledgements – Bibliography

CHAPTER 11

Co-products from biofuel production for farm animals – an EU perspective

Friederike Hippenstiel, Karl-Heinz Südekum, Ulrich Meyer and Gerhard Flachowsky

Introduction – Co-products from bio-ethanol production – Co-products from biodiesel production – Energy utilization efficiency and sustainability of co-products from biofuel production in animal nutrition – Knowledge gaps and future research needs – Conclusions – Bibliography

CHAPTER 12

Utilizing co-products of the sweet sorghum-based biofuel industry as livestock feed in decentralized systems

P. Srinivasa Rao, Belum V.S. Reddy, Ch. Ravinder Reddy, M. Blümmel, A. Ashok Kumar, P. Parthasarathy Rao and G. Basavaraj

Introduction to the sweet sorghum value chain – Sweet sorghum as bio-ethanol feedstock – Co-products – Grain utilization – Animal studies with sweet sorghum bagasse – Utilization of foam, vinasse and steam – Economic importance of bagasse for the sweet sorghum value chain in the decentralized system – Knowledge gaps and future research needs – Conclusions – Acknowledgements – Bibliography

CHAPTER 13

Utilization of oil palm co-products as feeds for livestock in Malaysia

M. Wan Zahari, A.R. Alimon and H.K. Wong

Introduction – Co-products from oil palm plantations (field residues) – Co-products from oil palm milling – Maximizing livestock production in an oil palm environment – Conclusions – Bibiliography

CHAPTER 14

Use of palm kernel cakes (Elaeis guineensis and Orbignya phalerata),

co-products of the biofuel industry, in collared peccary (Pecari tajacu) feeds263Natália Inagaki de Albuquerque, Diva Anélie de Araujo Guimarães,263

Hilma Lúcia Tavares Dias,

Paulo César Teixeira and José Aparecido Moreira

Introduction – Use of babassu (*Orbignya phalerata*) in the feed of collared peccaries raised in captivity – Palm kernel cake (*Elaeis guineensis*) use in the feed of collared peccaries raised in captivity – Knowledge gaps and future research needs – Conclusions – Acknowledgements – Bibliography

CHAPTER 15

Sustainable and competitive use as livestock feed of some co-products, by-products and effluents generated in the bio-ethanol industry

Harold Patino, Bernardo Ospina Patiño, Jorge Luis Gil and Sonia Gallego Castillo

Introduction – Bio-ethanol production trials with the RUSBI approach – Transformation of co-products, by-products and effluents into nutritional supplements for animal feeding – Bio-economic animal feeding trials with the nutritional supplements – Economic viability of the use of nutritional supplements in animal feeding – Knowledge gaps and future research needs – Conclusions – Bibliography

CHAPTER 16

Scope for utilizing sugar cane bagasse as livestock feed – an Asian perspective 291 S. Anandan and K.T. Sampath

Introduction – Sugar cane production and co-products – Knowledge gaps and future research needs – Conclusions – Bibliography

209

229

vi

CHAPTER 17

Camelina sativa in poultry diets: opportunities and challenges Gita Cherian Introduction – Camelina sativa meal: chemical composition and nutritional value –

Introduction – *Camelina sativa* meal: chemical composition and nutritional value – Feeding camelina meal to poultry – Developing *Camelina sativa* as a functional feed: challenges – Conclusions – Acknowledgments – Bibliography

CHAPTER 18

Utilization of lipid co-products of the biofuel industry in livestock feed

Z. Wiesman, O. Segman and L. Yarmolinsky

Introduction to biofuels – Soapstock – Composition – Phytonutrients – Effect on ruminants – Potential risks from fractions containing such phytochemicals – Conclusions – Bibliography

CHAPTER 19

Potential and constraints in utilizing co-products of the non-edible oils-based biodiesel industry – an overview

Souheila Abbeddou and Harinder P.S. Makkar

Introduction – Promising non-edible oil plant species – Chemical composition of co-products of the non-edible oil-based biodiesel industry – Toxicity of non-edible cakes and meals – Possibility of feeding some untreated non-edible cakes and meals from seeds that give non-edible oils – Possibility of feeding some treated non-edible cakes and meals from seeds that give edible oils – Detoxification methods – Effects of feeding treated non-edible cakes or meals on animal response and performance – Knowledge gaps and future research needs – Conclusions – Bibliography

CHAPTER 20

Status of biofuels in India and scope of utilizing castor (*Ricinus communis*) cake – a biofuel co-product – as livestock feed

339

S. Anandan, N.K.S. Gowda and K.T. Sampath

Introduction – Status of biofuels in India – Biofuels feedstock and co-products – Castor cake production and utilization – Toxic principles – Detoxification and de-allergenation of castor cake – Feeding studies using castor cake – Knowledge gaps and future research needs – Conclusions – Bibliography

CHAPTER 21

Use of detoxified jatropha kernel meal and protein isolate in diets of farm animals

Harinder P.S. Makkar, Vikas Kumar and Klaus Becker

Introduction - Jatropha - Detoxified Jatropha curcas kernel meal as a protein source in aqua feed – Use of detoxified jatropha kernel meal as a protein source in white leg shrimp feed – Use of Jatropha curcas kernel meal of a non-toxic jatropha genotype in aqua feed – Use of Jatropha platyphylla kernel meal as a protein source in aqua feed - Use of detoxified Jatropha curcas protein isolate in common carp feed - Conclusions regarding use of detoxified kernel meal and detoxified protein isolate from Jatropha curcas as aqua feed - Use of detoxified Jatropha curcas kernel meal in poultry feed - Use of detoxified Jatropha curcas kernel meal in pig feed - Challenges and opportunities in using as livestock feed by-products obtained during the production of biodiesel from jatropha oil – Guidelines for using detoxified kernel meal and detoxified protein isolate from Jatropha curcas as a protein source in animal feed - Potential challenges in using detoxified kernel meal and detoxified protein isolate from Jatropha curcas in feeds - Environmental considerations - Future studies -Final comments – Bibliography

....

351

303

311

CHAPTER 22

Use of *Pongamia glabra* (karanj) and *Azadirachta indica* (neem) seed cakes for feeding livestock

Narayan Dutta, A.K. Panda and D.N. Kamra

Introduction – Karanj (*Pongamia glabra*) cake – Neem seed cake – Recommendations – Knowledge gaps and future research needs – Bibliography

CHAPTER 23

Co-products of the United States biofuels industry as alternative feed ingredients for aquaculture

Kamal Mjoun and Kurt Rosentrater

Introduction – Properties of distillers grain – Distillers grain: issues, challenges, knowledge gaps and research needs – Properties of crude glycerine – Crude glycerine issues, challenges, knowledge gaps and research needs – Conclusions – Bibliography

CHAPTER 24

Cultivation of micro-algae for lipids and hydrocarbons, and utilization of spent biomass for livestock feed and for bio-active constituents

G.A. Ravishankar, R. Sarada, S. Vidyashankar, K.S. VenuGopal and A. Kumudha

Introduction – Algal biodiversity for the production of lipids and hydrocarbons – Green algal lipids and hydrocarbons – Diatoms as sources of lipids – Large-scale cultivation of micro-algae – Downstream processing and conversion to biofuels – Conversion of algal lipids and biomass to bio-energy – Ethanol from algal feedstock – Use of micro-algae for food, feed and bio-actives – Micro-algae as sources of feed – Micro-algae as sources of bio-active molecules – Techno-economic analysis of micro-algal biomass production for biofuels, and co-products – Biorefinery approach in micro-algal utilization – Knowledge gaps and future research needs – Conclusions – Acknowledgements – Bibliography

CHAPTER 25

Land use in Australia for biofuels and bio-energy: opportunities and challenges for livestock industries

Andrew L. Braid

Introduction – Current biofuel production in Australia – New production systems for biofuels and bio-energy in Australia – Lignocellulosic-based biofuels – Expanding land use for bio-energy and biofuel: the effect on livestock industries – Knowledge gaps and future research needs – Conclusions – Acknowledgements – Bibliography

CHAPTER 26

An assessment of the potential demand for DDGS in Western Canada: institutional and market considerations

Colleen Christensen, Stuart Smyth, Albert Boaitey and William Brown

Introduction – Changes and trends in Western Canadian agriculture – DDGS use in rations – Opportunities for development of the DDGS market in Western Canada – Challenges of creating new markets – Emerging DDGS market – Knowledge gaps and future research needs – Conclusions – Bibliography

CHAPTER 27

Biofuels: their co-products and water impacts in the context of life-cycle analysis 483 *Michael Wang and Jennifer Dunn*

Introduction – Biofuel production technologies – Market potential of biofuel co-products – Animal feed by-products of maize starch ethanol manufacturing – LCA of biofuels – Co-products – Biofuel LCA results – Co-product allocation methodologies and impacts on LCA results – Water consumption allocation between ethanol and co-products – Knowledge gaps and future research needs – Conclusions – Acknowledgements – Bibliography 379

403

423

447

CHAPTER 28

Utilization of co-products of the biofuel industry as livestock feeds – a synthesis 501 Tim Smith and Harinder Makkar

Introduction – Background – Ethanol – Biodiesel – Micro-algae – Economics – Knowledge gaps and future research needs – Acknowledgements

Contributing authors

Preface

Humans are faced with major environmental challenges as a result of climate change and a predicted shortage of fossil fuels for transport. The underlying causes of climate change are not fully understood, but it is accepted that greenhouse gas (GHG) emissions, especially methane, are a contributory factor over which we can exert some control. The shortage of fossil fuels can be mitigated by blending them with biofuels, either ethanol with petrol, or biodiesel with diesel, both of which also result in a reduction in carbon emissions and for which minimum inclusion rates have been agreed. However, biofuel production is currently from agricultural crops, usually starch-containing cereals for ethanol and oilseeds for biodiesel. To be successful this approach must be economically sustainable and must not generate conflict with the traditional use of agricultural land in producing food and feed for humans and livestock. Both criteria can only be met if the residues of biofuel production, referred to as co-products, are fully utilized.

One of the objectives of producing this publication was to collate, discuss and summarize stateof-the-art knowledge on current and future availability of co-products from the feedstocks most used for the production of biofuels, and use of the co-products as livestock feed. The original feedstocks tended to be major agricultural crops, cereals, especially maize and wheat, and sugar cane for ethanol production, and soybean meal and rapeseed meal for biodiesel. An underlying feature has been the spread worldwide of an industry originally based in North America and Europe.

With an increasing need for biofuels and expanding markets for co-products, another objective was to summarize information on alternative feedstocks, with an emphasis on cellulosic materials and nonconventional sources. Many of these are grown on sub-prime land and have minimum requirements for irrigation and other inputs. Detoxification of some seed meals and cakes is necessary before they can be considered as feeds. With other crops, such as oil palm, promoting use of the residues and co-products available both from the field and processing is required. The potential contribution from micro-algae presents a new concept in that their production is not land-based and processing can be achieved through the use of coastal waters. Other developments include broadening of the use of co-products from ruminant, especially cattle, and pigs, to poultry and fish (aquaculture), enhancement of the availability of existing co-products, and the introduction of new ones.

The third objective of this publication was to identify gaps in knowledge and define research topics to fill them. Subjects predominating include standardization of product quality, needed to aid ration formulation; testing of new products; development of detoxification procedures; research on microalgae; and life cycle analysis linked to traditional nutritional appraisal.

This publication covers a wide array of co-products and is a timely contribution as people's aspirations are rising, evident from an increasing demand for livestock products and an ever greater reliance on transport, whether by air, road or sea, coupled with the challenge of maintaining agricultural production when faced with global warming. We hope that this publication will be useful to policymakers, researchers, the feed industry, science managers and NGOs, and will contribute to making information-based decisions on issues related to food-feed-fuel competition and emerging challenges of global warming, in addition to making the efficient use of a wide range of co-products from the biofuel industry as livestock feed.

Berhe G. Tekola Director Animal Production and Health Division

Acknowledgements

х

We would like to thank all those who contributed so diligently and excellently to the content of this document. In particular, thanks go to the many reviewers, who spent many hours in critically reviewing the contributions. We also thank Samuel Jutzi, Simon Mack and Philippe Ankers for their support for this work. The contributions of Thorgeir Lawrence, Claudia Ciarlantini, Chrissi Smith Redfern, Simona Capocaccia, Suzanne Lapstun and Myrto Arvaniti towards editing and layout setting processes are gratefully acknowledged.

Abbreviations used in the text

A:P	Acetate-to-propionate ratio
AA	Amino acid
AAFCO	American Association of Feed Control Officials
ABARE	Australian Bureau of Agricultural and Resource Economics
ACC	Australian Commercial Cross
ADF	Acid-detergent fibre
ADFI	Average daily feed intake
ADG	Average daily gain
ADICP	Acid-detergent-insoluble crude protein
ADIN	Acid-detergent insoluble N
ADL	Acid-detergent lignin
AFEX	Ammonia fibre expansion
AFIA	American Feed Industry Association
AI	Artificial insemination
ALA	Alpha-linolenic acid
Ala	Alanine
ALP	Alkaline phosphatase
AME	Apparent metabolizable energy
AMEn	Apparent metabolizable energy corrected for zero nitrogen deposition
AMTS	Agriculture Modeling and Training Systems
APHIS	Animal and Plant Health Inspection Service [USDA]
Arg	Arginine
Asp	Asparagine
AST	Aspartate transaminase
ATNSKC	Alkali-treated NSC
АТР	Adenosine tri-phosphate
ATTD	Apparent total tract digestibility
AUD	Australian dollars
BLR	Bagasse leaf residue
BN	Binder treated
BOD	Biological oxygen demand
BP	Beet pulp
BRSL	Bagasse residue and stripped leaves
BRSLB	Bagasse plus stripped leaves-based feed block
BUN	Blood urea nitrogen
BW	Bodyweight
C/N	Carbon:Nitrogen ratio
Са	Calcium
Ca(OH)₂	Calcium hydroxide
CABI	Commonwealth Agricultural Bureaux International
CB-1A	Castor bean 1 allergen

СВМ	Castor bean meal
CBS	Cystathionine β-synthase
CCDS	Maize [corn] condensed distillers solubles
CCK	Cholecystokinin
CDO	Cysteine dioxygenase
CDS	Condensed distillers solubles
CF	Crude fibre
CFB	Commercial feed block
CFR	Code of Federal Regulations
CGE	Computable General Equilibrium
CIAT	International Center for Tropical Agriculture
CLA	Conjugated linoleic acid
	Latin American and Caribbean Consortium to Support Research and
CLAIOCA	Development of Cassava
со	Carbon monoxide
CO ₂	Carbon dioxide
СР	Crude protein
СРО	Crude palm oil
CSE	Cystathionine γ-ligase
CSIRO	Commonwealth Scientific and Industrial Research Organisation
CSM	Cotton seed meal
Cu	Copper
Cys	Cysteine
DCGF	Dry maize [corn] gluten feed
DCP	Digestible crude protein
DCU	Decentralized crushing unit
DDG	Dried distillers grain
DDGS	Dried distillers grain with solubles
DE	Digestible energy
DG	Distillers grain
DGNC	De-oiled groundnut cake
DGS	Distillers grain with solubles
DHA	Docosahexaenoic acid
DIM	Days in milk
DIP	Degradable intake protein
DJKM	Detoxified jatropha kernel meal
DJPI	Detoxified jatropha protein isolates
DJSM	Detoxified jatropha seed meal
DKC	De-oiled karanj cake
DM	Dry matter
DMD	Dry matter digestibility
DMI	Dry matter intake
DNSC	De-oiled neem seed cake
DNSM	De-oiled neem seed meal
DRC	Dry-rolled corn
EAA	Essential amino acid

EC	European Commission
ED	Effective protein degradability
EE	Ether extract
EFB	Empty fruit bunches
EIA	United States Energy Information Administration
EJ	Exajoule [10 ¹⁸ joules]
EKC	Expeller-pressed karanj cake
Embrapa	Empresa Brasileira de Pesquisa Agropecuária
EMS	Ear-maize silage
EPA	United States Environmental Protection Agency
EPA	Eicosapentaenoic acid
ePURE	European Renewable Ethanol Association
ERD	Effective ruminal degradability
ERS	Economic Research Service
ESR	Erythrocyte sedimentation rate
ETOH	Ethanol
EU	European Union
FAO	Food and Agriculture Organization of the United Nations
FAPRI	Food and Agricultural Policy Research Institute
FASOM	Forest and Agricultural Sector Optimization Model
FCE	Feed conversion efficiency
FCM	Fat-corrected milk
FCR	Feed conversion ratio
FDA	Food and Drug Administration [USA]
FEDNA	Federación Española para el Desarrollo de la Nutrición Animal
FELCRA	Federal Land Consolidated Authority
FELDA	Federal Land Development Authority
FOBI	Feed Opportunities from the Biofuels Industries
FQD	Fuel Quality Directive [of the EU]
G:F	Grain-to-feed ratio [feed efficiency]
GCAU	Grain consuming animal unit
GE	Gross energy
GHG	Greenhouse gas
GHMC	Ground high-moisture maize
GLA	Gamma linolenic acid
Glu	Glutamate
Gly	Glycine
GNC	Groundnut cake
GREET	Greenhouse gases, regulated emissions, and energy use in transportation
GS	Grass silage
GTAP	Global Trade Analysis Project
H⁺	Hydrogen ion
H₂S	Hydrogen sulphide
$H_2S_2O_7$	Thiosulphuric acid
H₂SO₃	Sulphurous acid
HC	Hemicellulose

НСНО	Formaldehyde
HCI	Hydrochloric acid
HCN	Hydrogen cyanide
His	Histidine
Н-ЈРКМ	Heated Jatropha platyphylla kernel meal
НМС	High moisture maize
HPDDG	High-protein dried distillers grain
HPDDGS	High-protein dried distillers grain with solubles
HRS	Hard Red Spring [wheat]
HRW	Hard Red Winter [wheat]
HS⁻	Hydrosulphide ion
HS-SH	Hydrogen persulphide
HUFA	Highly unsaturated fatty acids
ICA	Instituto Colombiano Agropecuario
ICAR	Indian Council of Agricultural Research
ΙርΟΑ	International Castor Oil Association
ICRISAT	International Crops Research Institute for the Semi-Arid Tropics
lle	Isoleucine
ILUC	Indirect land use change
IMOD	Inclusive market-oriented development
In vitro D	In vitro digestibility
INRA	Institut National de la Recherche Agronomique
IRR	Internal Rate of Return
IU	International Unit
IVOMD	In vitro organic matter digestibility
JCM	Jatropha curcas kernel meal
JPI	Jatropha protein isolate
ЈРКМ	Jatropha platyphylla kernel meal
K⁺	Potassium ion
КК	Kedah-Kelantan
KLPD	Kilolitres per day
L	Lightness or luminance
LANUR	Laboratório de Nutrição de Ruminantes
LC ₅₀	Lethal concentration 50 percent
LCA	Life-cycle Analysis
LD ₅₀	Lethal Dose 50 [dose lethal to 50% of recipients]
LDH	Lactic dehydrogenase
LED	Light-emitting diode
Leu	Leucine
LM	Lime treated
LPC	Lupin protein concentrate
LSD	Least Significance Difference
LSF	Liquefaction, saccharification and conventional fermentation
LUC	Land use change
LW	Live weight
LWG	Liveweight gain

Lys	Lysine
MARDI	Malaysian Agricultural Research and Development Institute
masl	Metres above [mean] sea level
MDA	Malondialdehyde
MDGS	Modified distillers grain with solubles
ME	Metabolizable energy
Met	Methionine
MJ	Megajoule
MP	Metabolizable protein
MPS	Milk protein score
MS	Maize silage
MST	Mercaptopyruvate sulphurtransferase
MUFA	Mono-unsaturated fatty acids
MUN	Milk urea nitrogen
MWDGS	Modified wet distillers grain with solubles
Ν	Nitrogen
N ₂ O	Nitrous oxide
Na⁺	Sodium ion
NADPH	Nicotinamide adenine dinucleotide phosphate (reduced)
NAIP	National Agricultural Innovation Project
NaOH	Sodium hydroxide
NBB	National Biodiesel Board
NDF	Neutral-detergent fibre
NDS	Neutral-detergent solubles
NE	Net energy
NEg	Net energy for gain
NEL	Net energy for lactation
NG	Natural gas
NL	Narrow-leaf
NNP	Non-protein nitrogen
NO	Nitrous oxide
NPV	Net Present Value
NRC	National Research Council [USA]
NRCS	National Research Centre on Sorghum [India]
NREAP	National Renewable Energy Action Plan
NSC	Neem seed cake
NSKC	Neem seed kernel cake
NSP	Non-starch polysaccharide
NV	Nutritive value
O ₂	Oxygen
OG	Orchardgrass
ОМ	Organic matter
OMD	Organic matter digestibility
OPF	Oil palm fronds
OPS	Oil palm slurry
OPT	Oil palm trunks

Р	Phosphorus
Pb	Plumbum [lead]
PCV	Packed cell volume
PD	Purine derivatives
PEM	Polioencephalomalacia
PFAD	Palm fatty acid distillates
Phe	Phenylalanine
PJ	Petajoule [10 ¹⁵ joules]
РКС	Palm kernel cake
PKE	Palm kernel expeller
РКМ	Palm kernel meal
РКО	Palm kernel oil
POME	Palm oil mill effluent
POS	Palm oil sludge
PPC	Potato protein concentrate
PPF	Palm press fibre
Pro	Proline
PUFA	Polyunsaturated fatty acids
PV	Peroxide value
RBC	Red blood cell
RBD	Refined Bleached De-odourized
RDP	Rumen-degradable protein
RED	Renewable Energy Directive [of the EU]
RFA	Renewable Fuels Association
RFDGS	Reduced-fat DDGS
RFS	Renewable Fuel Standard
RHMC	Rolled high-moisture maize
RIPs	Ribosome-inactivating proteins
RISDA	Rubber Industry Smallholders Development Authority
RSC	Rapeseed cake
RSM	Rapeseed meal
RUP	Ruminally undegraded crude protein
RUSBI	Rural Social Bio-refineries
S	Sulphur
S=	Sulphide ion
SBE	Spent bleaching earth
SBM	Soybean meal
SD	Standard deviation
SDO	Sulphur dioxygenase
SE	Solvent-extracted
SEDC	State Economic Development Corporation
Ser	Serine
SFA	Short-chain fatty acids
SFC	Steam-flaked maize
SG	Switchgrass
SGOT	Serum glutamate-oxaloacetate transaminase

CORT	
SGPT	Serum glutamate-pyruvate transaminase
SH	Soybean hulls
SHF	Simultaneous hydrolysis and fermentation
SID	Standardized ileal digestibility
SKC	Solvent-extracted karanj cake
SNF	Solids not fat
SO₂	Sulphur dioxide
SOC	Soil organic carbon
SPC	Soybean protein concentrate;
SPI	Soy protein isolate
SQR	Sulphide:quinone oxidoreductase
SQR-SSH	SQR persulphide
SRC	Short-rotation coppicing
SSB	Sweet sorghum bagasse
SSF	Solid state fermentation
T1 T2	Treatment 1
T2 TAD	Treatment 2
TAB	Treated alkali bagasse
TBARS	Thiobarbituric acid reactive substances
TDF	Total dietary fibre
TDN Tha	Total digestible nutrients
Thr	Threonine
TJ	Terajoule [10 ¹² joules]
TME	True metabolizable energy
ТМР	Total milk protein
TMR	Totally mixed ration
toe	Tonne oil equivalent
Trp TS	Tryptophane Total solids
TSS	Total suspended solids
TVFA	
	Total volatile fatty acids Tyrosine
Tyr uCP	Utilizable crude protein at the duodenum
UFPA	Universidade Federal do Pará
UFRGS	Universidade Federal do Rio Grande do Sul
UIP	Undegradable intake protein
UMK	Universiti Malaysia Kelantan
UMMB	Urea molasses mineral blocks
UNDESA	United Nations Department of Economic and Social Affairs
UNIDO	United Nations Industrial Development Organization
UNSKC	Urea-ammoniated neem seed kernel cake
UPM	Universiti Putra Malaysia
USDA	United States Department of Agriculture
Val	Valine
VCA	Value Chain Analysis
VEA	Volatile fatty acid
	volutile futty uclu

WBP	Wet beet pulp
WCGF	Wet maize gluten feed
WDG	Wet distillers grain
WDGS	Wet distillers grain with solubles
WDGSH	Wet distillers grain+soy hulls blend
WPC	Whole-plant maize
WTW	Well-to-wheels
WWNSKC	Water-washed NSKC