Previous Page Table of Contents Next Page


The high-trunk mulberry system in tropical climates

José Eduardo de Almeida
Estação Experimental de Zootecnia
Gália, São Paulo, Brasil
Tamara Canto Fonseca
Instituto de Zootecnia
Nova Odessa, São Paulo, Brasil

INTRODUCTION

Mulberry (Morus sp.) has made new advances worldwide as a forage plant because of its high protein content and high digestibility (Baffi, 1992; Basaglia, 1993; Hara, 1993; Sugohara et al., 1994a,b; Takahashi et al., 1994; FAO, 1999; Schmidek, 1999). However, its management is not yet defined, and there are various alternatives when is it destined to be used for domestic farm animals.

In Brazil, mulberry is known as feed for the silkworm (Bombyx mori) and it is cultivated at approximate spacing of 1 m2/plant, with cuts close to the ground at 91 days-intervals (13 weeks).

Management of mulberry as a shrub or tree has been encouraged by some experienced veterans, such as Giuseppe Briani, Marino Serpa and Mário Hashimoto, who are familiar with the practices utilized in Europe and Japan. These experts defend the advantages of the system: greater production and quality, better exploitation of soil, longevity and possibility of associated crops, in the limits of roads or property boundaries. Briani states that trees older than 200 years in Assisi (Italy) produce about 15 kg of leaves per tree/year.

This article is a contribution towards the knowledge of high-trunk mulberry.

MATERIALS AND METHODS

An experiment was carried out at the Livestock Experimental Station of the Instituto de Zootecnia (IZ) in Gália (western São Paulo state, latitude 22o17’S, longitude 49o33’W), in a sandy and acid low fertile soil. Stakes (length, 30 cm; diameter, 1.5 cm) were planted at 2 x 2 m in 1996. Each plot consisted of two lines (subplots) of five plants each. Production was measured in the 1997/98 and 1998/99 seasons.

TABLE 1

Characteristics and annual production of mulberry clones under the stump system

Clone

Sex

Origin

Annual Production (tonnes/ha)

IZ 1/16

Male

Fernão Dias x Catânia Paulista

-

IZ 3/2

Female

Contadini x Catânia Paulista

-

IZ 6/7

Female

Lopes Lins x Catânia Paulista

-

IZ 10/1

Male

Lopes Lins x Catânia Paulista

-

IZ 10/4

Male

Lopes Lins x Catânia Paulista

17.8

IZ 10/8

Male

Lopes Lins x Catânia Paulista

19.3

IZ 11/9

Female

Formosa x Kokuso 27

10.1

IZ 13/6

Male

Fernão Dias x Kokuso 27

26.2

IZ 56/4

Female

Formosa x Catânia Paulista

32.0

IZ 57/2

Female

Formosa x Kokuso 27

24.5

IZ 40

Female

Open pollination

25.7

Korin

Female

Mutation of Miura variety

-

Source: Fonseca et al., 1987c.
The experimental plot was a split-plot design, with 12 treatments, 11 IZ clones (Fonseca, Almeida and Okamoto, 1994) and a commercial clone as control (Table 1), two subplots (harvests at nine and 13 weeks) and four random blocks.

Annual production data were utilized for comparing management within harvest, among harvests, clone within management and within harvests and through non-parametric tests: sing test, Wilcoxon's sign-rank test and Friedman's cc2 test (Campos, 1983; Dagnelie, 1988; Hollander and Wolfe, 1973).

RESULTS AND DISCUSSION

Table 2 presents annual production of clones harvested every nine weeks (four cuts per year) or 13 weeks (three cuts per year). Production data are similar to the stump system (Table 1). The yield of IZ 11/9, the lowest, was 10.1 tonnes/ha/year in the stump system and 9.8 at nine-week harvesting and 13.5 tonnes/ha/year at 13-week harvesting with high trunks (Table 2).

These results demonstrate the adaptation of clones to the new system, despite their young age (two years old) and the interaction with harvest frequency. This indicates an inadequate selection procedure based on only a few harvests (Fonseca et al., 1981). The year effect was highlighted by the sign Test. With the average results of the two managements a B = 3 was obtained, accepting H0, with a level of significance of aa = 0.0193. The year effect with management was also significant, with reduction in production for four cuts per year (B = 2) and increases for three cuts per year (B = 1).

TABLE 2

Annual production, per plant and per hectare, of 12 clones (2 500 plants/ha) subjected to cuts every nine or 13 weeks

Clones

Cutting frequency

9 weeks (4 cuts)

13 weeks (3 cuts)

1997/98

1998/99

Annual mean

1997/98

1998/99

Annual mean

(kg/plant)

(kg/plant)

(tonne/ha)

(kg/plant)

(kg/plant)

(tonne/ha)

IZ 1/16

7.19

6.67

17.3

6.44

9.06

19.4

IZ 3/2

5.58

3.91

11.9

5.33

7.45

16.0

IZ 6/7

5.15

5.55

13.4

4.32

6.05

13.0

IZ 10/1

5.49

4.73

12.8

5.98

9.20

19.0

IZ 10/4

5.97

5.03

13.8

7.01

8.61

19.5

IZ 10/8

6.46

5.72

15.2

5.55

9.32

18.6

IZ 11/9

4.59

3.26

9.8

5.90

4.92

13.5

IZ 13/6

6.48

6.42

16.1

6.59

9.03

19.5

IZ 56/4

7.01

4.73

14.7

4.72

8.00

15.9

IZ 57/2

5.54

3.57

11.4

6.03

6.67

15.9

IZ 40

6.62

7.26

17.4

6.80

9.33

20.2

Korin

6.81

5.36

15.2

6.62

9.43

20.1


These results suggest that cuts every nine weeks are detrimental to the performance of the clones, whereas cuts every 13 weeks allow the plants to show gradual production increases. This is understandable since the clones were selected within a cutting system of every 13 weeks (Fonseca, Fonseca and Schammas, 1986; 1987a; Fonseca et al., 1987b; 1987c).

In order to confirm this assumption, the same test was applied for the two managements in the first year of production (1997/98) obtaining B = 6, therefore accepting H0. In the second year, B = 0 was obtained, rejecting H0. This indicates that during the first year, production per plant was the same for the two cutting frequencies. In the second year, the residual effect caused a reduction in yield in the nine-week frequency and an increase in the 13-week treatment (Table 2).

A similar result was obtained when Wilcoxon's sign-rank test was applied. For the first year W = 0.404 (accepting H0) and for the second year W = 3.002 (rejecting H0).

Since one of the objectives of this experiment was to indicate an appropriate clone for the proposed management system, the Kruskal-Wallis test [H = 12.7887 (ns) for nine weeks and H = 12.1449 (ns) for 13 weeks] and the Friedman's cc2 were applied to the performance data. It was shown that the clones performed similarly, without significant differences at aa=0.05 in both cutting frequencies.

CONCLUSION

The clones responded well to the high-trunk system with yields comparable to the stump method. It was not possible in two years to select a superior clone among the 12 clones studie, as had been the intention.

BIBLIOGRAPHY

Baffi, M. H. 1992. Utilização da amoreira (Morus alba L.), cultivar Yamada para caprinos: curva de crescimento e digestibilidade in vitro. Tesis UNESP, Campus de Jaboticabal, SP, Brazil. 35 pp.

Basaglia, R. 1993. Eficiência da utilização da proteína da amoreira (Morus alba L.), para caprinos. Tesis UNESP, Campus de Jaboticabal, SP, Brazil. 45 pp.

Campos, H. 1983. Estatística Experimental Não Paramétrica. 4ª ed., FEALQ, ESALQ/USP, Piracicaba, SP, Brasil.

Dagnelie, P. 1988. Théorie et Méthodes statistiques. Vol. 2. Les Presse Agronomiques of Belgium, Gembloux.

FAO. 1999. Mulberry: a high forage available almost worldwide. World Animal Review. 93(2): 36-46.

Fonseca, A.S., Fonseca, T.C. & Schammass, E.A. 1981. Estimação de parâmetros visando à seleção de híbridos artificiais de amoreira. Indústr. animal, Nova Odessa, SP, Brasil, 38(1): 85-108.

Fonseca, T. C., Almeida, J. E. & Okamoto, F. 1994. Le programme d'amélioration du mûrier dans l'état de São Paulo au Brasil. Sericologia, 34(4): 727-733.

Fonseca, A.S., Fonseca, T.C. & Schammas, E.A. 1986. Competiçao de híbridos artificiais de amoreira (1) B. Indústr.anim., 44(2): 315-322. Nova Odessa.

Fonseca, A.S., Fonseca, T.C. and Schammass, E.A. 1987a. Competição de híbridos naturais e artificiais de amoreira (2). B. Indústr. anim., 43(2): 367-373. Nova Odessa.

Fonseca, A.S., Fonseca, T.C. & Schammas, E.A. 1987b. Competição de híbridos naturais e artificiais de amoreira. (3) B. Indústr. anim., 44(2): 323-328. Nova Odessa.

Fonseca, A.S., Fonseca, T.C., Cunha, E.A. & Schammas, E.A. 1987c. Competição de híbridos naturais e artificiais de amoreira. (4) B. Indústr. anim., 44(2): 329-334. Nova Odessa.

Hara, C.H. 1993. Produçao e digestibilidade in vitro da matéria seca e proteína de cultivares de amoreira (Morus alba L.). Trabalho apresentado a Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP, Brazil. 40 pp.

Hollander, M. & Wolfe, D. A. 1973. Nonparametrical statistical methods. New York, John Wiley & Sons.

Schmidek, A. 1999. Composição bromatológica e degradabilidade em caprinos, de cultivares de amoreira (Morus alba L.). Tesis UNESP, Campus de Jaboticabal, SP, Brasil. 63p.

Silva, D.J. 1981. Análise de alimentos. Viçosa. Imprensa Universitária. 166 pp.

Sugoraha, A., Resende, K.T., Takahashi, R., Magiario, K., & Reis, R.A. 1994a. Composição bromatológica da amoreira (Morus alba L.), cultivar Yamada, em diferentes idades de crescimento. Anais da XXXI Reunião Anual da SBZ, Maringá, PR, Brasil.

Sugohara, A., Resende, K. T., Takahashi, R., Guideli, C., Reis, R.A., & Vasconcelos, V.R. 1994b. Composição bromatológica de cultivares de amoreira (Morus alba L.). 3 - Estação de verão. Anais da XXXI Reunião Anual da SBZ, Maringá, PR, Brasil.

Takahashi, R., Sugoraha, A., Resende, K.T., Reis, R.A., & Vasconcelos, V.R. 1994. Produção e digestibilidade de cultivares de amoreira (Morus alba L.). 1 - Estação da primavera. Anais da XXXI Reunião Anual da SBZ, Maringá, PR, Brasil.


Previous Page Top of Page Next Page