

SYNOPSIS OF BIOLOGICAL DATA ON THE LARGEMOUTH BASS

Micopterus salmoides (Lacepède) 1802

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS

SYNOPSIS OF BIOLOGICAL DATA ON THE LARGEMOUTE BASS

Micropterus salmoides (Lacepède) 1802

Prepared by
Roy C. Heidinger
Fisheries Research Laboratory
and Department of Zoology
Southern Illinois University Carbondale, Illinois

The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

```
    M-42
ISEN 92-5-100211-8
```

The copyright in this book is vested in the Food and Agriculture Organization of the United Nations. The book may not be reproduced, in whole or in part, by any method or process, without written permission from the copyright holder. Applications for such permission, with a statement of the purpose and extent of the reproduction desired, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Via delle Terme di Caracalla, 00100 Rome, Italy.

The present document was prepared as a follow-up to a recommendation by The European Inland Fisheries Advisory Commission (EIFAC).

This work was supported by the Graduate School, Southern Illinois University at Carbondale. The literature search was supported by a grant from the Bass Research Foundation, Starkville, Mississippi. The author is especially indebted to the staff of Morris Library, Southern Illinois University and especially to Mr. Lyman C. Dennis for his help and cooperation in obtaining literature and to Dr. William M. Lewis for his review of the manuscript.

This work is dedicated to all the fishery scientists who have contributed the thousands of man years of research upon which this manuscript is "based.

Distribution:

FAO Department of Fisheries
FAO Regional Fisheries Officers
Regional Fisheries Councils and Commissions
Selector SI
Author

Bibliographic entry:

Heidinger, R.C. (1976)
FAO Fish.Synop. (115): 85 p .
Synopsis of biological data on the large-
mouth bass Micropterus salmoides
(Lacepede) 1802
Synopsis. Biological data. Freshwater
fish. Taxonomy. Identification keys.
Vernacular names. Morphology (organisms).
Geographical distribution. Hybridization.
Sexual reproduction. Life cycle.
Development (biological). Autecology.
Population characteristics. Inland
fisheries. Fishing gear. Fishing grounds.
Fishery regulations. Habitat improvement.
Stocking (oxganisms). Fish culture.
Freshwater aquaculture. Micropterus
salmoides.

FAO Fish.Synop. (115):85 p.
Synopsis of biological data on the largemouth bass Micropterus salmoides (Lacepède) $\overline{1802}$

Synopsis. Biological data. Freshwater fish. Taxonomy. Identification keys. Vernacular names. Morphology (organisms). Geographical distribution. Hybridization. Sexual reproduction. Life cycle. Development (biological). Autecology. Population characteristics. Inland fisheries. Fishing gear. Fishing grounds. Fishery regulations. Habitat improvement. Stocking (oxganisms). Fish culture. Freshwater aquaculture. Micropterus salmoides.

CONTHNTS

Page
1 IDENTITY1
1.1 Nomenclature 1
1.11 Valid name 1
1.12 Objective synonymy 1
1.13 Etymology 1
1.2 Taxonomy 1
1.21 Affinities 1
1.22 Taxonomic status 3
1.23 Subspecies 3
1.24 Standard common names, vernacular names 3
1.3 Morphology 4
1.31 External morphology 4
1.32 Cytomorphology 4
1.33 Protein specificity 4
1.34 Ageing
6
1.35 Osteology 6
6
2 DISTRIBUTION 6
2.1 Total area 6
2.2 Differential distribution 7
2.21 Spawn, larvae and juveniles 7
2.22 Adults $` 7$
2.3 Determinants of distribution changes 7
2.4 Hybridization 7
2.41 Hybrids 7
2.42 Influence of natural hybridization in ecology and morphology 7
3 BIONOMICS AND LIFE HISTORY 7
3.1 Reproduction 7
3.11 Sexuality 7
3.12 Naturity 10
3.13 Nating 10
3.14 Fertilization 10
3.15 Gonads 10
3.16 Spawning 11
3.17 Spawn 13
3.2 Pre-adult phase 13
3.21 Embryonic phase 13
3.22 Larvae phase 13 13
3.23 Adolescent phase 14
Page
3.3 Adult phase 14
3.31 Longevity 14
3.32 Hardiness 14
3.33 Competitors 14
3.34 Predators 14
3.35 Parasites, diseases, injuries and abnormalities 14
3.4 Nutrition and growth 18
3.41 Feeding 18
3.42 Food 19
3.43 Growth rate 19
3.44 Metabolism 21
3.5 Behaviour 25
3.51 Migration and local movement 25
3.52 Schooling 25
3.53 Kesponses to stimu: 25
3.54 Learning 26
4 POPULATION 26
4.1 Structure 26
4.11 Sex ratio 26
4.12 Age composition 26
4.13 Size composition 29
4.2 Abundance and density (of populations) 29
4.21 Average abundance 29
4. 22 Changes in abundance 29
4.23 Average density 30
4.24 Changes in density 30
4.3 Natality and recruitment 30
4.31 Reproduction rates 30
4.32 Factors affecting reproduction 31
4.33 Recruitment 31
4.4 Mortality and morbidity 31
4.41 Mortality rates 31
4.42 Factors causing or affecting mortality 31
4.43 Factors affecting morbidity 32
4.44 Relation of morbidity to mortality rates 32
4.5 Dynamics of population (as a whole) 32
4.6 The population in the community and the ecosystem 35
5 EXPLOITATION 35
5.1 Fishing equipment 35
5.11 Gear 35
5.12 Boats 37
Page
5.2 Fishing_areas 39
5.21 General geographic distribution 39
5.22 Geographic ranges 39
5.23 Depth ranges 39
5.24 Conditions of the grounds 39
5.3 Fishing seasons 39
5.31 General pattern of season(s) 39
5.32 Dates of beginning, peak and end of season(s) 39
5.33 Variation in date or duration of season 40
5.4 Fishing operations and results 40
5.41 Effort and intensity 40
5.42 Selectivity 40
5.43 Catches 40
5.44 Sampling and marking 40
6 PROTECTION AND MANAGEMENT 44
6.1 Regulatory (legislative) measures 44
6.11 Limitation or reduction of total catch 44
6.12 Protection of portions of population 44
6.2 Control or alteration of physical features of the environment 45
6.21 Regulation of flow 45
6.22 Control of water levels 45
6.23 Control of erosion and silting 45
6.24 Fishways at artificial and natural obstructions 45
6.25 Fish screens 45
6.26 Improvement of spawning grounds 45
6.27 Habitat improvement 45
6.3 Control or alteration of chemical features of the environment 45
6.31 Water pollution control 45
6.32 Salinity control 47
6.33 Artificial fertilization of waters 47
6.4 Control or alteration of the biological features of the environment 47
6.41 Control of aquatic vegetation 47
6.42 Introduction of fish foods 47
6.43 Control of parasites and diseases 47
6.44 Control of predation and competition 47
6.45 Population manipulation 19
6.5 Artificial stocking 19
6.51 Maintenance stocking 49
6.52 Transplantation; introduction 50
6.53 Stocking combinations (ponds) 50
7 POND FISH CULTURE 55
7.1 Use of cultured fish 55
Page
7.2 Procurement and maintenance of stock 55
7.3 Genetic selection of stock 55
7.4 Induced spawning 55
7.5 Culture methods 56
7.51 Extensive 56
7.52 Intensive 56
7.6 Disease and parasite control 61
7.7 Harvest 61
7.8 Transport 61

1 IDENTITY

1.1 Nomenclature

1.11 Valid name

Current name: Micropterus salmoides (Lacepède) Original combination: Labrus salmoides (Lacepède): Lacepède, 1802 , Histoire naturelle des poissons. Vol. 4. Plassan, Paris, 716-8, Pl. 5, Fig. 2.
1.12 Objective synonymy

There are no junior objective synonyms of the name.

1.13 Etymology

Micropterus $=$ small or short fin, a mutilated secon dorsal fin led Lacepede to believe there was a small fin between it and the caudal fin; salmoides $=$ trout-like。
1.2 Taxonomy
1.21 Affinities (after Berg, 1947)

- Suprageneric

Phylum Vertebrata
Subphylum Craniata
Superclass Gnathostomata Series Pisces Class Teleostomi
Subclass Actinopterygii Order Perciformes Suborder Percoidei Family Centrarchidae

- Generic

Micropterus Lacepède, 1802, Histoire naturelle des poissons. Vol. 4. Plassan, Paris. Type M. dolomieui.

- Subjective generic synonyms

Micropterus Lacepede, 1802 (Ma dolomieui. Lacepede)
Calliurus.Rafinesque, 1820 (C_{a} punctulatus Rafinesque)
Aplites Rafinesque, 1820 (Lepomis pallidus Rafinesque)
Nemocampsis Rafinesque, 1820 (Lepomis flexuolaris Rafinesque)
Dioplites Rafinesque, 1820 (Lepomis salmonea Rafinesque)
Aplesion Rafinesque, 1820 (Etheostoma calliura Rafinesque)
Huro Cuvier and Valenciennes, 1828
(H. nigricans Cuvier and Valenciennes)

Grystes Cuvier and Valenciennes, 1829
(Labrus salmoides Rafinesque)

The generic concept adopted here is that of Hubbs and Bailey, 1940, a revision of the black basses (Micropterus and Huro), with descriptions of four new forms. Misc. Publ., Univ. Mich., Mus. Zool. 48: 7-51.

Common characteristics include the following: spinous and softrrayed portions of the dorsal fin united into one; villiform teeth on palatines and ectopterygoids, but none on entopterygoids, present or absent on glossohyal; rigid bifid opercle with lower lobe much longer than upper, especially in adult; large mouth, maxillary extending at least to below centre of pupil; well developed supram maxillary; entire preopercle; 31-33 vertebrae: 14-15 precaudal vertebrae (rarely 13-16); 55-81 scales along lateral line; 9-20 scale rows on cheek; 9-11 dorsal spines; 3 anal spines (very rarely 2 or 4); 6 branchiostegals (very rarely 7); anal base less than half dorsal base; moderately compressed, elongated body; branched pyloric caeca.

- Specific

Labrus salmoides (Lacepede, 1802). (Type locality: rivers near Charleston, South Carolina, U.S.A.).

Lacepede described it solely on the basis of the manuscript communication and drawings furnished to him by M. Bosc.

Probably the oldest preserved specimen of the largemouth bass is in the Museum d'Histoire Naturelle in Paris. This specimen from the state of Florida was described by LeSueur in 1822 and named Cichla floridana.

Diagnosis characters modified from Pfleiger (1968) and Hubbs and Bailey (1940) are as follows: mouth large, upper jaw extending far behind back of eye in fish more than 15 cm in length; midside with a dark horizontal strip; tail fin of young two-coloufed rather than three-coloured; hind part of fin darker than base; pyloric caeca mostly befid near base; spinous dorsal nearly separate; outline of spinous doisal strongly convex, length of shortest dorsal spine near notch less than half length of longest spine (Fig. 1).

- Some subjective synonymy

Labrus salmoides Lacepede, 1802; placed in synonymy by Jordan, 1880, and Hubbs and Bailey, 1940. Reasons discussed.

Cichla floridana LeSueur, 1822; Huro nigricans Cuvier, in Cuvier and Valenciennes, 1828; Grystes nobilis Agassiz, 1854; Gruystes nuecensis Baird and Girard, 1854; Grystes megostoma Garlick, 1857; placed in synonymy in Hubbs and Bailey, 1940. Reasons discussed.

Aplites salmoides ?; placed in synonymy by Hubbs, 1926. Reasons discussed.

Fig. 1 a) Micropterus salmoides

b) A 5 kg largemouth bass caught in a shallow Florida lake (photograph courtesy of Steve Wunderly)

Huro salmoides Lacepède, 1802; placed in synonymy by Hubbs and Lagler, 1941. Reasons discussed.

Pikea sericea Fowler, 1938; placed in synonymy by Robins and Böhlke, 1960. Reasons discussed.

Artificial key to the species of Micropterus (after Robbins and McCrimmon, 1974)

1a. Dorsal fin deeply notched, shortest posterior spine less than half length of longest spine; anal and soft-dorsal fins scaleless; scales on cheeks large, in 9-12 rows Largemouth bass - Micropterus salmoides (Lacepède)

1b. Dorsal fin slightly notched, shortest posterior spine more than half the length of longest spine; anal and soft-dorsal fins wi.th small scales between rays near fin-bases; scales on cheeks minute, in more than 12 rows 2

2a. Dorsal soft-rays usually 13-15 Smallmouth bass - Micropterus dolomieui (Lacepède)

2b. Dorsal soft-rays usually 12 3
3a. In young; well developed vertical bars on either side of body with a poorly developed lateral band; adults more boldly striped longitudinally, from the ventrolateral region up over the sides; found only in the rivers and reservoirs of central Texas . . . Guadalupe bass - Micropterus treculi (Vaillant and Bocourt)

3b. Young with poorly developed or faded vertical dark bars, and modified into light-centred rhombs on the caudal penduncle; adults, with little distinct colour pattern on sides; lateral band missing or faint in both adults and young; in the streams and rivers of the southeastern Appalachians Micropterus coosae Hubbs and Bailey

3c. Sides with a series of dark blotches, often fused to form a dark lateral band and with a basicaudal spot and patches of lighter blotches above the lateral line 4

4a. Basicaudal spot small and not prominent, ventrolateral region light in colour with no blotching Spotted bass - Micropterus punctulatus (Rafinesque)

4b. Basicaudal spot large and prominent; ventrolateral region, cheeks and breast turquoise blue in life with some blotching on the cheeks, on the sides and below the lateral
line; found only in the region in and near the Suwannee River in northern Florida . . 。 Suwanee bass - Micropterus notius Bailey and Hubbs.

1.22 Taxonomic status

This is a well defined species by morphological and breeding data. The species is polytypic.

1.23 Subspecies

First described by Hubbs and Bailey (1949).
Mo So floridanus (LeSueur). Originally found in fresh waters of peninsular Florida.
$\underline{M}_{0} S_{0}$ salmoides (Lacepède). Originally found in fresh waters of the lower Great Lakes drainage, middle Mississippi River system south to Gulf Coast, Florida, and north to the coastal watersheds in Georgia, South Carolina, North Carolina and Virginia。

Various methods have been used to separate these two subspecies (Table I). In areas of integradation hybrids have intermediate characteristics. In intensively fished warm waters, such as in California where both subspecies have been stocked, the trend in meristic characteristics after a number of generations is toward the southern subspecies (Bottroff, 1967) (see 2.42).
1.24 Standard common names, vernacular names

It is impossible to list common and vernam cular names in use in all countries.

Country

Australia
Austria
Canada

Czechoslovakia
France
Germany
Hungary
Italy
Mexico

Netherlands
Poland
Portugal

Names

Black bass, freshwater perch, gippoland perch
Forellembarsch, perche truitée
Largemouth bass, many of those names that are used in the U.S.A., achigan à grande bouche
Okounek pstrukovf́, ostračka
Black-bass à grande bouche, perche-truite
Forellembarsch, grossmauliger forellenbarsch
Fekete sügér, pisztrangsưgêr
Persico trota, boccalone
Tucha de patzcuaro, robalo fino, corvina negra, black bass, huro y otros
F'lorellenbaars
Weilkogebowy, bas weilkogebowy
Black-bass, perca americana, perca-trucha, boca grande, robalo-negro, achigã

TABLE I

Methods used in separating the southern subspecies ($M_{0} S_{0}$ floridanus)
from the northerm subspecies (Mo s. salmoides)a7

	floridanus	salmoides	Reference
Scale countsb/	$137.9(129-145)$	/	$125.0(116-132)$
(as above)	$136.8(135-141)$	$125.9(124-130)$	Bailey and Hubbs (1949)
Number of pyloric canan (1968)			
(as above)	$36.8(26-53)$	$24.0(20-33)$	Applegate (1966)
(as above)	$39.0(30-47)$	$23.2(13-35)$	Buchanan (1968)
(as above)	F1 progeny $28.0(17-41)$	Addison and Spencer (1972)	(as above)
Number of abdominal	14	15	Bryan (1969)
vertebrae			

For isozyme methods see 1.33
$\frac{a}{b} /$ Average of the sum of the 5 meristic scale counts given in Table II
(/) Range in parentheses

Country

United States
Names
Largemouth bass, black bass,
green bass, Oswego bass,
slough bass, lake bass, big-
mouth, bucket mouth, southern
largemouth, northern large-
mouth, Florida bass, large-
mouth black bass, straw bass,
bayou bass, moss bass, grass
bass, marsh bass, trout,
green trout, welchman, chub
(primarily from Jordan and
Evermann, 1969 ed.)
1.3 Morphology
1.31 External morphology
(for description of spawn, larvae and adolescents, see $3.17,3.22$, 3.23; also see sexuality, 3.11)

In addition to those morphological characteristios listed in Table I and 1.23, others are listed in Tables II and III. The southern subspecies tends to have more scales than the northern subspecies.

Unlike salmoides and floridanus in the rest of its range, largemouth bass in the southwestern extremity of its range in North America have a high incidence of glossohyal teeth (Bailey and Hubbs, 1949).

Ratios for total length to standard length decline from 1.236 at $50-69 \mathrm{~mm}$ to 1.174 at over 450 mm (Stroud, 1948). In general, length-weight regression slopes are above 3.0 but there are many exceptions in the literature. The relationship between mouth width and total length are given by Lawrence (1958) as follows:
$\begin{aligned} & \text { Less than } 100 \mathrm{~mm} \mathrm{M}=1.88+0.0775 \mathrm{~L}, \\ & 100-199 \mathrm{~mm}=-1.88+0.1113 \mathrm{~L}, \mathrm{~s}=1.99 \\ & 200-299 \mathrm{~mm} \mathrm{M}=-5.16+0.1289 \mathrm{~L}, \mathrm{~s}=2.92 \\ & 300-399 \mathrm{~mm} \mathrm{M}=-7.96+0.1371 \mathrm{~L}, \mathrm{~s}=4.37 \\ & 400-499 \mathrm{~mm} \mathrm{M}=-29.41+0.1961 \mathrm{~L}, \mathrm{~s}=4.32 \\ & 500-599 \mathrm{~mm} \mathrm{M}=-56.36+0.2477 \mathrm{~L}, \mathrm{~s}=5.95\end{aligned}$
Where M is mouth width in $m m$, L is total length in mm , and s is the standard deviation from regression.

1.32 Cytomorphology

Robert (1964) found 46 diploid chromosomes in testis cell culture, but Baker (1956) reported 48 from non-cultured testicular material.

1.33 Protein specificity

Fish with greater amounts of low mobility blood protein are thought to be in general more pollution-tolerant. The serum of 9 largemouth bass averaged 7.8 g of mobil protein per 100 g of sample protein (Bouck and Ball, 1967). In experimental fish subjected to diumal oxygen pulses, there occurred an increase in low mobility proteins in the blood (Bouck and Ball, 1965).

A combination of hybridization, immunochemical, and electrophoretic analyses revealed that the largemouth bass possess three homopolymeric lactate dehydrogenase ($L \mathrm{LDH}$) isozymes, $\mathrm{A}_{4}, \mathrm{~B}_{4}$ and E_{4}. The E_{4} retinal-specific homotetramer isozyme is the product of a distant nuclear gene (E locus) on an autosomal chromosome. This E gene appears to segregate independently of the gene for supernatant malate dehydrogenase (MDH) (Whitt et alo, 1971). The interspecific F_{1} hybrid between the largemouth and smallmouth bass (Mo dolomieui) exhibits 5 eyespecific isozymes formed by the random association of two parental types of E subunits (Whitt, Miller and Shaklee, 1973).

TABLE II
Range of scale counts in North American populations of largemouth bass

Subspecies	Location	Bodies of water sampled	LLS	ALLS	BLLS	CPS	CSa/	Reference
salmoides	Arkansas	8	58-68	7-9	13-18	24-32	8-13	Buchanan (1967)b/
	California	21	56-70	6-9	13-19	23-30		Bottroff (1968)
	Ill., Mich.	2	59-69	7-9	14-17	24-30	9-13	Bailey and Hubbs (1949)
	Alabama	2	60-68	7-9	14-17	24-28	9-12	(as above)
	Florida	2	58-68	7-8	14-16	25-27	9-11	(as above)
	S. Carolina	1	59-69	7-9	14-17	24-29	9-12	(as above)
	Indiana	2	61-71	7-9	13-16	26-28	9-12	Frey (1951)
	Ohio	1	57-68	7-10	21-17			Hart (1952)
	Tennessee	1	58-64					(as above)
floridanus	California	8	62-79	6-10	14-20	24-32		
	Florida	4	65-77	7-11	14-23	24-34	10-14	Buchanan (1967)b/
	Florida		65-75	7-10	16-18	27-32	10-14	Bailey and Hubbs (1949)
	Florida normal fish	1		8-11				Hart (1952)
	stunted fish	1	$64-70$	7-10	$14-16$			(as above)
Intergrades	California	6	58-78	6-10	13-19	24-31		Bottroff (1967)
	Florida	1	57-68	6-8	12-16	25-30	9-12	Buchanan (1967) b/

TABLE III

Range of vertebrae, spine and ray counts in North American populations of largemouth bass

Subspecies	Location	V	DS	DR	AS	AR	PR a/	Reference
salmoides	Ohio	30-32	-	12-14				Hart (1952)
	Ohio River	30-33						Bryan (1969)
	-	-	-	11-14	3	10-12	13-17	Hubbs and Bailey (1940)
	Indiana	-	8-10	12-14	$2-3$	11-12	14-15	Frey (1951)
floridanus	Florida	-	9-11	12-14	3	10-12	14-16	Bailey and Hubbs (1949)
	Ohio	30-32						Hart (1952)
	Florida, Calif.	32						Bryan (1969)

a/ $V=$ vertebrae; $D S=$ dorsal spines; $D R=$ dorsal rays; $A S=$ anal spines; $A R=$ anal rays; $P R=$ pectoral rays

Supernatant MDH isozymes (as visualized by starch gel electrophoresis) consist of two homodimers $A A$ and $B B$, and a heterodimer $A B$, which are encoded by two distinct gene loci. When an interspecific F_{1} hybrid is formed between the largemouth and smallmouth bass a unique MDH heterodimer isozyme composed of one subunit of each parental type is generated. The inheritance of alleles at the MDH-B locus is consistent with a single Mendelian autosomal locus (Wheat et alor 1971).

Isocitrate dehydrogenase (IDH) activity is highest in the liver. It is encoded at a single locus and is not sexed linked. The IDH phenotype is exhibited as a single band on electrot phoretic analysis. The F_{1} hybrid tissues possess three dimeric isozyme bands, the fast smallmouth bass isozyme, the slow largemouth bass isozyme, and the intermediate hybrid band, presumably a heteropolymer composed of parental subunits. When male F_{1} largemouth bass x smallmouth bass are back crossed with a female $L M B$, there appears to be rapid elimination of their heterozygous progeny in pond populations. When these offspring are placed in plastic pools, where cannibalism is the main source of mortality, the heterozygotes are no longer subject to adverse selection. The progeny of this cross exhibited a strong correlation between increased heterozygosity and increased rate of growth. In the reciprocal backeross there were no significant differences between heterozygous and homozygous individuals as far as survival or growth rates are concerned in either the pond or plastic pool environment. These differences between the reciprocal crosses may be related to maternal cytoplasmic effects on development (Wheat, Ghilders and Whitt, 1974).

The Florida subspecies, northern subspecies and their integrades can be differentiated by MDH and tetrazolium oxidase isozymic differences. The northern subspecies is polymorphic for the malate dehydrogenase-B isozyme. Individuals are classified phenotypically as $S / S, S / F$, or F / F with S representing the more slowly migrating a.llelic isozyme and F representing the more rapidly migrating band. All individuals of the Florida subspecies analysed have been monomorphic for the fast MDH-B band. The Florida subspecies is polymorphic for tetrozolium oxidase and can be classified phenotypically as $F / F, F / S$, or S / S. All northern largemouth analysed have been monomorphic for fast tetrazolium oxidase isozyme. F_{1} hybrids exhibited gene frequencies for both enzyme loci which were intermediate between those of their parental subspecies populations (Childers and Whitt, 1974).

Agglutination of erythrocytes from the

northern and southern subspecies to rabbit antiserum indicated immunological differences between the fish examined, but few were characteristic of one or the other subspecies (Miller, 1965).

Scale homografts were rejected within 30 days at 15-18 ${ }^{\circ} \mathrm{C}$ (Reid and Triplett; 1968).

1.34 Ageing

Ageing of bass by counting the number of annuli on the scales is an approximation at best (Thompson, 1965; LaFaunce, 1965; Eschmeyer and Jones, 1941). The scale method proved 80% accurate in ageing 0-2 year old Alabama bass (Prather, 1967), and 94\% accurate in 0-4 year old Texas bass (Prentice and Whiteside, 1974) \& To obtain this degree of accuracy required multiple readings. However, in an Iowa study the second reading by the same individual agreed on only 64\% of 239 bass (Thompson, 1965). In the U.S.A. annulus formation has been reported from April up to and including August (Benson, 1959; Zweiacker, 1972; Cross, 1951; Manning, 1951; Morgan, 1958; Stroud, 1948). In general it occurs later in the northern portion of the bass's range, in larger fish, and in slower-growing fish.

1.35 Osteology

Largemouth bass have acellular bone. Osteocytes are completely absent from the matrix and apparently are not present during any ontological stage. Except for the long bones of the branchial arch system which show epiphyseal growth, bass bones grow only by apposition. Four basic types of bone formation are recognized. Achondral ossification is characteristic of most cranium bones, parachondra ossification is primarily found in the neurocranium, perichondral ossification is characteristic in most of the cartilage bone, and endochondral ossification is found in the vertebrae (Al-Saadi, 1962).
1.36 Blood

Some of the known parameters for largemouth bass blood other than those listed in Table IV are as follows: oxygen capacity $42-86 \mathrm{cc} / 1$, lactic acid $28-270 \mathrm{mg} \%$ (Denyes and Joseph, 1956) ; Na^{+} 128-198 meg $/ \mathrm{l}_{2} \mathrm{~K}^{+} \quad 0.6-8.2 \mathrm{meg} / \mathrm{l}$; C1- $95-127 \mathrm{meg} / \mathrm{l}_{\text {, }}$ total plasma cholesterol $90-680 \mathrm{mg} / 100 \mathrm{ml}$ (Hunn and Ropinson, 1966); length x width of red blood cell $10.0-6.8 \mu_{9}$ length x width of red blood cell nucleus 5.8-3.1 μ (Coburn, 1970; Smith et al.s 1952).

Chew (1969) found that the range of serum calcium in male and female bass was $10-24$ (120 male fish) versus 11-32 (88 female fish) $\mathrm{mg} / 100 \mathrm{ml}$ 。 In both males and females the calcium value increased during the spawning season, but the increase was much greater in the females.

2 DISTRIBUTION

2.1 Total area

See 1.23 for original distribution. Due to introductions by man the largemouth bass occurs in

TABLE IV
Hematological characteristics of largemouth bass

$\begin{aligned} & \text { Red blood cells } \\ & \left(\text { no. } \times 10^{6} / \mathrm{ml}\right) \end{aligned}$	$\begin{aligned} & \text { Hemoglobin } \\ & (\mathrm{g} / 100 \mathrm{ml}) \end{aligned}$	Hematocrit (\%)	Serum protein$(\mathrm{mg} / \mathrm{ml})$		Reference
			male	female	
1.47-1.74	5.3-7.0	21-33 both sexes	-	-	Coburn (1970)
1.72-1.48	5.5-12.3	-	-	-	Denyes and Joseph (1956)
-	9.8-13.2	-	-	-	Hiestand (1951)
-	5.8-8.5	-	-	-	Hunn and Robinson (1966)
-	-	35-62 26-49	-	-	Steucke and Atherton (1965)
-	-	24-27 sex ?			Schoettger and Julin (1966)
-	-	44.4 41.4 4	$7.8 a /$ 8.6	$4.2 a /$ 9.4	MeCraren (1974) (as above)
-	-	$\begin{array}{cc}41.4 & 42 \\ 31\end{array}$	8.6	9.4	Smitherman (1965)

a/ Bass fed Oregon Moist Pellets (see 7.52)
b/ Bass fed natural food
fresh waters of many countries and provinces (Fig. 2). The following distribution, date of initial stocking and original source is primarily from Robbins and MoCrimmon (1974) (Table V).

The largemouth bass has been introduced (date in parentheses) unsuccessfully or has disappeared from the following countries: Canal Zone (1917); Nicaragua (1959-60); Venezuela (1935?); Malawi (1937); Mozambique (1947); Tunisia (1966); Zaire (1945); Zambia (1944?);
Mauritius (1949); Cyprus (1971); Denmark (1901); Finland (1893); The Netherlands (1884); Norway (1887); Sweden (1885-90); Yugoslavia (1914); Poland (1883): Guam (1963).

2.2 Differential distribution

2.21 Spawn, larvae and juveniles
(see 2.22, 3.16, 3.22)
2.22 Adults

The adult male largemouth bass guards the nest and fry. In general the juveniles tend to stay along the shoreline in shallower, more protected areas than do the adults.

2. 3 Determinants of distribution changes (see 3.32 (Table VII) for $\mathrm{O}_{2}, \mathrm{pH}_{3}$ temperature, salinity and turbidity tolerances)

Successful introductions into constant temperature areas such as Central America and Africa plus reproduction in constant temperature springs (see 3.16) in Florida have refuted the idea that a clear annual cycle of temperature is required for spawning. Failure of introductions can be attributed to cold temperature (but not to hot), fast current or predation by native species.

2.4 Hybridization

2.41 Hybrids; frequency of hybridi-
zation; species with which hybri-
dization occurs; methods of
hybridization

Hybridization readily occurs between the two subspecies. In their native range no unequivocal natural interspecific hybrid has been found. Childers (1975) reports that 30-50 largemouth bass x bluegill hybrids were caught in the PuuKaele reservoir on the island of Kauai, Hawaii。 Hybrids have not been produced by isolation methods. However, by striping and in some cases hormone injections both interspecific and intergeneric hybrids have been produced (Table VI).

> 2.42 Influence of natural hybridization in ecology and morphology

After ten years of natural hybridization between the two subspecies in the heavily fished warm waters of some Californian lakes, the meristic characteristics of the bass populations have shifted. toward those of the southern subspecies (Bottroff, 1967).

Meristic characteristics of interspecific F_{1} hybrids were found to be intermediate in 11 out of 17 characters (West and Hester, 1966).

3 BIONOMICS AND LIFE HISTORY

3.1 Reproduction

3.11 Sexuality

Largemouth bass are heterosexual. Functional sex reversal. or functional hermaphroditism does not

TABLE V
Present day distribution of the largemouth bass (primarily after Robbins and McCrimmon, 1974)

Country	Year of first introduction	Original source	Regular stocking programme in at least some waters	Status		Regulations
				$\begin{aligned} & \text { sport } \\ & \text { fish } \end{aligned}$	commercial or food fish	
U.S.A.	Native	-	Yes	Yes	No	See 6.11
Canada	Native introduced	U.S.A.	Yes	Yes	No	Length, season and numerical limit
Mexico	$\begin{gathered} \text { Native } \\ \text { introduced (1898) } \end{gathered}$	U.S.A.	Yes	Yes	Yes	in certain waters 20 cm minimum, no season, limit 5 per day
Brazil	1926	-	Yes	Yes	-	-per day
Columbia	1956	U.S.A.	No	-	-	-
Costa Rica	-	U.S.A.?	No	Yes	No.	None
Cuba	1915	TJ.S.A.	Yes	Yes	Yes	-
Ecuador	1960	U.S.A.	-	-	-	None
Guatemala	-	U.S.A.	No	Yes	Yes	-
Honduras	1955	U.S.A.	No	Yes	-	_
Panama	1935	U.S.A.	No	-	-	-
Puerto Rico	1915	U.S.A.	Yes	Yes	Yes	None
Botswana	1938	Swaziland	-	-	-	-
Cameroun	1956	France	No	-	-	_
Kenya	1929	Europe	Yes	Yes	Yes	-
Lesotho	1937	Swaziland	No	-	-	-
Madagascar	1951	France	Yes	Yes	Yes	None
Morocco	1934	France	Yes	Yes	-	-
Rhodesia	1932	Cape Province	Yes	Yes	Yes	-
South Africa	1928	The Netherlands	Yes	Yes	Yes	-
Swaziland	1933	Cape Province	No	Yes	-	Permit required
Tanzarıia	1956?	Kenya	No	Yes	Yes	Pernit requred
Tunisia	1966	Morocco	Yes	-	-	-
Uganda	1960	Kenya	No	Yes	Yes	None
Azores	1898	U.S.A.	No	Yes	No	,
Austria	1885	Germany	No	Yes	No	-
Belgium	1885-90	Germany	No	-	-	-
British Isles	1879	U.S.A.	No	Yes	No	-
Czechoslovakia	1885-90	Germany	No		-	-
France	1877	U.S.A.	No	Yes	-	-
Germany -						
Fed. Rep.	1885	Ger. Dem. Rep.	No	No	Culture only	None
Hungary	1885-90	Germany	No	Rare	Rare	-
Italy	1886-90	Germany.	Yes.	-.	Yes	-
Spain	1955-56	France	Yes	Yes	No	-
Switzerland	1885-90	Germany	No	Yes	No	-
U.S.S.R.	1885-90	Germany	-	-	Yes	-
Japan	1925	U.S.A.?	No	Yes	No	Angling only
Philippines	1907	U.S.A.	No	-	-	

TABLE VI

Success of various laboratory induced interspecific and intergeneric crosses

Hybrid cross		Hatch as a \% of controls	$\mathrm{F}_{1} \mathrm{fry}$ produced (5 cm)	$\begin{gathered} F_{1 s} \\ \text { fertile } \end{gathered}$
Female	Male			
Lepomis macrochirus	Micropterus salmoides	9	No	No
L_{0} gulosus	M_{0} salmoides	71	Yes	--
Pomoxis nigromaculatus	$\overline{M_{0}}$ salmoides	1	No	No
Ambloplites rupestris	\bar{M}_{0} salmoides	0	No	No
M_{0} salmoides	$\overline{P_{0}}$ nigromaculatus	1	No	No
M ${ }_{0}$ salmoides	Le macrochirus	66	Yes	-
$\overline{M_{0}}$ salmoides	L ${ }_{\text {¢ }}$ gulosus	104	Yes	No
M_{0} Salmoides	A A_{0} rupestris	1	Yes	-
Mo salmoides	A ${ }_{\text {o }}$ rupestris	High	No	-
$\overline{M_{0}}$ salmoides	\bar{M}_{0} dolomieui	90	Yes	Yes
$\overline{\mathrm{M}_{0}}$ salmoides	Le cyanellus	High	Yes	-
M_{0} salmoides	Le microlophus	High	No	-
Mo dolomieui	M ${ }_{0}$ salmoides	High	Yes	-

a) Table was compiled from the following papers: West and Hester, 1966; Hester, 1970; West, 1970; Whitt et alo, 1971; Tyus, 1969; Childers, 1968; and from personal communication with E . Hester and $\mathrm{B}_{\text {. Childers }}$
occur. However, James (1946a) reported the abnormal occurrence of both testicular and ovarian tissue in the gonads of several largemouth bass.

Externally bass greater than 35 cm in total length can be sexed correctly 92 percent of the time by looking at the scaleless area surrounding and immediately adjacent to the urogenital opening (Parker, 1971). In the male this area is nearly circular in shape while in the female it is elliptical or pear-shaped.

Internally largemouth bass may be sexed with an otoscope (Driscoll, 1969). Male bass tend to have a higher hematocrit value than female bass, but the values overlap. Steucke and Atherton (1965) found that 1 in every 7 male bass possessed a hematocrit value below the established average of 42.7, while 1 in every 6 females had a value above this average value.

3.12 Maturity

Sexual maturity is more related to size than to age. Female bass reach maturity when approximately 25 cm in total length (200 g), while males may be mature at $22 \mathrm{~cm}(160 \mathrm{~g})$ (James, 1942; Bennett, 1948; Moorman, 1957; Holvik, 1970). Fastgrowing bass in tropical or subtropical regions may reach maturity in 8 months to 1 year, whereas slow-growing bass or those found in the northern portion of their range may require 3 to 5 years to sexually mature (Regier, 1963; Moorman, 1957; Stocek and McCrimmon, 1965; Erdman, 1972; Fehlmann, 1930).

3.13 Mating

Promiscuous, see 3.16 .

3.14 Fertilization

External.

$$
3.15 \text { Gonads }
$$

Johnston (1951) found that germ cells segregate and differentiate in the early blastopore stage. Migration by amoeboid movement of the germ cells to the gonadal primordia begins 37 hours after fertilization and requires 16-18 hours. Sex appears to be determined by the chromosomal makeup of the fertilized egg. Between 2 and 3 cm of length undifferentiated gonadal sex exist. Sex is microscopically distinguished in females from 3 to 4 cm in length. Females larger then 4 cm can be sexed by gross dissection. In males sex is microscopically distinguishable at 4 cm and by gross dissection at $5-6 \mathrm{~cm}$ 。

The ovaries of largemouth bass are paired bilobed, elongated nearly circular in cross section, and have been reported to make up as much as $7-10$ percent of the body weight (James, 1942; Chew, 1974). The lumen of the ovary is continuous with the oviduct (Stevens, 1970).

James (1946b) divided the process of oogensis into the following five stages. Egg diameters are from Kelley (1962) who used bass from Maine. Based on diameters of fertilized eggs (see 3.17) these values may be too small for larger or more rapidly growing bass.

Stage 1：Youngest oocytes－Numerous small irregular oocytes，containing a round or slightly oval nucleus filling most of the cell，＂lamp－ brush＂chromosomes are present in the largest oocytes of this stage，follicular membrane com－ posed of a layer of flat cells．

Stage 2：Vacuolization of the cytoplasm－ Docytes characterized by small vacuoles in the peripheral cytoplasm and the absence of yolk material，most abundant in mature but redeve－ loping ovaries，diameters of the largest from $0.34-0.48 \mathrm{~mm}$ ，follicular membrane composed of two layers of flattened cells，nucleus oval with numerous nucleoli close to its membrane．

Stage 3：Beginning of yolk deposition－Yolk present but．still transparent，diameter of largest $0.45-0.75 \mathrm{~mm}$ ，most abundant in ovaries in advanced stages of redevelopment，follicular membrane composed of small round cells with a distinct nucleus outside and a clearly defined homogeneous zona radiata on the inside．

Stage 4：Mature ova－Diameters of $0.75-1.56 \mathrm{~mm}$ with abundant yolk which almost fills the oocytes and renders them opaque，the fully ripened oocyte containsa distinct yellow oil globule $0.34-0.54 \mathrm{~mm}$ in diameter，vitelline membrane present，zona radiata with radial stations，nucleus located at one pole．Mature ova constitute the bulk of the ovary．

Stage 5：Resorption－Oocytes characterized by being enlarged and distorted．Disintegration is rapid．Stevens（1970）reports both follicular and extra－follicular resorption．

The process of maturation is described by Stevens（1970），as follows：＂During final matu－ ration of bass oocytes just prior to ovulation， multiple oil globules appear and gradually coalesce to form one large globule．This globule then changes in shape from oval to round and seems to rise from the interior of the egg to the surface．During this process the egg increases in volume and changes from opaque to translucent＂。

Oocytes of an individual occur in more than one stage of maturity．Stevens（1970）reported what he considered to be multiple or＂mini－ ovulations＂．However，Wilbur and Langford（1974） pointed out the possibility that the second ovu－ lations reported by Stevens could be carryovers of the initial ovulation．

In 11 separate studies cited by K ．Carlander （in manuscript material from＂Handbook of fresh－ water fisheries＂，Vol。 2）and Bishop（1968）from various places in the United States the ovaries of female bass contained $2000-145000$ eggs （ $2000-176000 / \mathrm{kg}$ ）．Some of this variation may be due to the methods used in counting the eggs．

The average number of eggs remaining in the＂spent＂ ovaries of 1.3 kg females was 103680 per fish （Bishop，1968）．

James（1942，1946b）describes the testes and their developmental stages．गhe testes are elon－ gated organs in the posterior－dorsal part of the body cavity，lying against the ventral wall of the swim bladder．They are fused posteriorly and a duct leads to the urogenital opening．Anteriorly they are connected to the swimbladder with two mesorchia．Each testis is covered with connective tissue that extends into the testes on the ventral side。

Stage 1：Immature testis－Lobules containing many spermatogonial cells．Each spherical sperma－ togonium contains a small round central nucleus．

Stage 2：Poorly developed testis－Prominent strands of comnective tissue around the lobules． Each lobule has spermatogonial cells near the periphery and a large lumen surrounded by sperma－ togonial cysts undergoing the early stages of spermatogenesis．

Stage 3：Enlarged testis－Cysts of spermatogonial cells near periphery of lobule，primary and secon－ dary spermatocytes，and spermatids near interior．

Stage 4：Spawning condition testis－Very few spermatogonial cellso Testis appears swollen with the ducts and the lobules filled with sperma－ tozoa resembling small oval lobes．

Stage 5：Partly spent testis－As milt is extruded the ducts and lobules decrease in size．Some sperm remains．

Stage 6：Completely spent testis－Testis contains few spermatozoa，but denudation of the lobes is rare．Lobes are mostly filled with spermatogonial cells．

$$
\begin{aligned}
& 3.16 \text { Spawning } \\
& \text { (for effect of age on spawning } \\
& \text { see } 3.31 \text { and } 7.2 \text {) }
\end{aligned}
$$

Male largemouth bass build a nest in the spring when the water temperature reaches $15-24^{\circ} \mathrm{C}$ （Kramer and Smith，1962；Swingle，1956）．However， in a constant temperature spring（ $22{ }^{\circ} \mathrm{C}$ ）in Florida bass spawning still appears to be chiefly limited to spring and summer（Caldwell et alo，1957）． Thus other factors，such as length of day，must control the spawing cycle．Swingle（1956） reports occasional autumn spawning in Alabama， when the water temperature drops to $20-24^{\circ} \mathrm{C}$ 。 These may have been young fish just reaching sexual maturity．Females tend to spawn once a year．However，the spawning act may be prolonged and they may lay their eggs in more than one nest （Lamkin，1901）．

In the southern portion of its range the spawning season of the bass tends to be more prolonged than in the northern portion．In southern Florida spawing starts when the water ＂cools＂to about $16^{\circ} \mathrm{C}$ in mid－December to mid－ January，peaks in February，and stops in April or May（ 27° C）．In marshes with cooler water， spawning may continue into July（Clugston，1966）． In Illinois bass spawn after the water＂warms＂ in the spring from May to end－．．June（Bennett，1954） and in Ontario from late May to early June Stocek and MoCrimmon，1965）。

In a 1120 ha reservoir receiving thermal effluent averaging $10^{\circ} \mathrm{C}$ above ambient Bennett and Gibbons（1975）found earlier attainment of maximum gonadal size and the presence of sigm nificantly larger juvenile bass in the heated area．Data were inconclusive as to whether or not spawning was advanced by at least some bass in the heated area．The reproductive period started in March and continued through April in both heated and non－heated areas．

In Califormia，the Florida subspecies reached the peak of spawning two weeks before the northern subspecies in the same lake，but there was considerable overlap in spawning （Hunsaker and Crawford，1964）．

Preparatory to spawning the male bass selects a nest site，usually in water from 0.33 to 1.33 m in depth．The author has observed male bass guarding nests from 15 cm to 5.5 m in depth．Nests may be constructed almost anywhere in a lake，but it is not unusual for them to be grouped on certain shorelines or in specific coves（Miller and Kramer，1971）that are warmest and provide protection from excess wind action which can destroy nests．The nests are often constructed to take advantage of the protection offered by rocks，stumps or slopes（Miller and Kramer，1971）。 Bass nests are spaced 2 m or more apart（Carr，1942）unless some obstruction prevents the guarding males from seeing each other（Breder，1936）．

The male bass places his head in the centre of the nest and sweeps debris out in front of himo He then returns and with his head in the middle of the nest pivots around in a circle （Carr，1942）．Thus the radius of the nest tends to be approximately the length of the bass．The male may remove large material with its mouth （Eddy and Surber，1947）．Almost any substrate may be used as a nest site from rock to organic debris．Nests built on hard substrate are shallower than those built on soft substrate． Bass nests in Lake Mead consisted of 2.5 percent rubble， 31 percent coarse gravel， 41 percent fine gravel， 16 percent sand， 7 percent silt and 0.2 percent organic debris（Allan and Romero， 1975）．

With regard to mating，Chew（1974），Reighard （1906），Breder（1936）and Carr（1942）all agree on the following points：

11．The male leaves repeatedly after nest con－ struction in search of a ripe female． 2．Males can attract only ripe females to the nests by their aggressive courting behaviour， which includes rapid and vivid colour pattern changes．
3．Male and female return to the nest and circle slowly．
4．The male then stimulates the female by physical contact such as nipping，butting or pushing．At this time，the colour pattern of both becomes more definite and vivid．
5．Spawning begins with both fish over the nest， side by side，and each tilted laterally so their vents are close．
6．Egg and sperm emission are accompanied by violent jerks or shudders of the body．Each time the shudders occur，eggs are omitted，fertilized， and sink slowly into the nest．
7．Spawning takes place over a prolonged period． Carr（1942）counted six spawning spasms within a period of 30 minutes for one pair．
8．Spawning ceases when the female，instead of floating and resting，moves slowly away from the nest．
9．The male will usually follow her for a short distance and then return to the nest to assume guardianship．＂

A male bass may entice more than one female bass to lay her eggs in his nest．Also，a single female bass may not lay all of her eggs in the same nest（Lamkin，1901）．Successful bass nests have been reported to contain $5000-43000$ eggs （Snow，1971；Kramer and Smith，1962）．

Some bass lay their eggs during midday，but most spawning occurs at night near dusk or dawn （Carr，1942；Kelley，1962；Reighard，1906）。 After the eggs are fertilized，they settle to the bottom of the nest and adhere to the substrate．The male bass fans the eggs and guards the nest against predators such as the bluegill sunfish Lepomis macrochirus．Slow moving organisms such as snails， dragonfly larvae and aquatic beetles are often ignored by the guarding bass（Shealy，1971）．This is true even in the case of the snail Viviparus georgianus，which eats the eggs（Eckblad and Shealy，1972）．Certain species of fishes，such as the golden shiner（Notemigonus crysoleucas） and the lake chubsucker（Erimyzon sucetta），are allowed to lay their eggs in bass nests（Kramer and Smith，1960a；Carr，1942）．The male bass fans and protects these eggs along with his own．

Male bass do not eat when they are guarding the nest or fry．They will＂mouth＂a fish，cray－ fish，or artificial bait and move it out of the nest．The male bass continues to guard the young fish for several weeks after they hatch．

Since interspecific and intergeneric crosses are physiologically possible（see 2．4），yet do not occur in the bass normal range，behavioural and temporal isolation between species is essen－ tially complete．Hybridization between the two subspecies is common．

3.17 Spawn

Fertilized eggs axe yellow to orange， spherical（ $1.4-1.8 \mathrm{~mm}$ in diameter），semiopaque， contain one large oil globule（ $0.5-0.7 \mathrm{~mm}$ in diameter），adhesive and demersal（Meyer，1970； Carr，1942；Chew，1974）．The diameter of the egg increases with the size of female（Merriner， 1971）．The eggs lie with the oil globule up， and water－harden within 15 min ．Eggs are covered with a thin（ 0.025 mm ），flexible membrane，over the zona radiata（vitelline membrane）．The peri－ vitelline space is about 0.05 mm and filled with a colourless fluid。

Bass sperm have an ovoid head approximately 2 microns long，with a tail 20 microns long （Carr，1942）．The spermatozoa are viable for only a minute or so after they are shed．

3．2 Premadult phase

3．21 Embryonic phase
At 10,18 and $28^{\circ} \mathrm{C}$ the eggs hatch in 317， 55 and 49 h respectively（Badenhuizen，1969； Merriner，1971）。 Chew（1974）describes embryonic development at $22.2^{\circ} \mathrm{C}$ 3．s follows：

```
    1.25 h - 2 to 4 cell stage
    2.25 h - 16 cell stage
    3.25 h - blastula
    5.25 h - blastoderm beginning to spread over
        yolk
    7.25 h - blastoderm spreading rapidly over
        yolk
14.00 h - gastrulation, blastopore open
15.00 h - gastrula, blastopore open
21.50 h - early embryo, blastopore closed
31.50 h - embryo, myomeres forming, head
        developing
37.00 h -- late embryo
45.50 h - first hatching
60.00 h - yolk sac larvae
77.00 h - yolk sac larvae
82.50 h - yolk sac larvae, head no longer
                deflected over yolk, mouth opening
167.00 h - yolk sac larvae, beginning free
                swimming, yolk reabsorbing, pigm
                mentation of head region, mouth
                fully formed.
```

Considering the variation in experimental temperam tures；the stages agree closely with those of Badenhuizen（1969），Merriner（1971），Johnston （1951），Laurence（1969）and the more detailed description given by Carr（1942）．

3．22 Larvae phase

At hatching the pre－larvae are $3-5.5 \mathrm{~mm}$ in total length（Carr，1942；Johnston，1953；Meyer， 1970）．If there are sticks or gravel in the nest the almost colourless fry settle among them for several days．According to Reighard．（1906）at first the larvae move by rocking from side to side on the yolk sac．After several days they are able to rest on the ventral surface of their yolk sac where a sticky cap is present．Reighard（1906） comments that the function of this cap is to keep the larvae from sinking into the bottom ooze．The larvae can＂right＂themselves and rise from the nest only after the swimbladder begins to inflate （Johnston，1953）．Even though a pneumatic duct exists in $3-8 \mathrm{~mm}$ larvae they do not have to gulp air to fill their swimbladder．The initial gas which fills the swimbladder appears to be derived from vacuolated columnar cells found in the ventral epithelium of the swimbladder（Johnston，1953）．

Growth rate of pre－larvae is correlated （ $r=0.885$ ， 1 percent level）with water temperature （Kramer and Smith，1960b）．Laurence（1969）reported that at $20^{\circ} \mathrm{C}$ the mouth forms in 192 h after ferti－． lization，the larva is freemswimming after 240 h ， and the yolk sac is absorbed in 312 h ．This agrees with the observations of Chew（1974），Carr（1942）， Lamkin（1901），and Kramer and Smith（1962）．

Fry must eat within 6 days after becoming free－swimming or they will die（Laurence，1971a）． At normal developmental temperatures the larvae have enough energy in the yolk to provide for all metabolic processes for a short period following the initiation of feeding．However，only 74 per－ cent of the larvae Laurence（1969）looked at obtained food within the critical period．The cause of non－feeding was not determined．Fed fry， 1－7 days after becoming free－swimming；axe more active than non－fed fryo Fed larvae can attain a sustained swimming velocity of $4.0 \mathrm{~cm} / \mathrm{sec}$ while starved larvae attain a velocity of only $1.5 \mathrm{~cm} / \mathrm{sec}$ （Laurence，1972）．

During daylight hours at $20^{\circ} \mathrm{C}$ small fry pass food through their stomach in approximately 3 h ． The number of minutes required during daylight hours for $10-16$ day old，actively feeding fry to evacuate their stomach contents is expressed by the linear regression equation：$y=354.63$ ．．．10．41x， where $x=$ water temperature from 17 to $23^{\circ} \mathrm{C}$ 。 The time for non－actively feeding fry is given by the formula：$y=638.459+18.097 x$（Laurence，1971a）． Fry 2－8 days after becoming free－swimming do not appear to feed at night．They conserve energy by settling to the bottom and reducing their digestive and metabolic rates（Laurence，1971b）．The author is unable to deternine when the transfer to night feeding takes place。

Larvae bass less than 10 mm in total length eat primarily copepods，cladocerans and rotifers
（Rogers，1968；Mullan and Applegate，1970； DeRyke，1923；Emig，1966；Turner and Kraatz， 1920；Kramer and Smith，1960b）．Bass investigate a forage organism for a second or so before con－ suming it。

Kramer and Smith（1960b）gave the length－ weight relationship of $3.0-6.0 \mathrm{~mm}$ larvae as $\log W=-3.79828+1.34337 \mathrm{Log} \mathrm{L}$ ，and $6.4-11.9 \mathrm{~mm}$ larvae as $\log W=-=5.80130+3.89555 \log ^{L}$.

3．23 Adolescent phase

Both male and female bass reach the adoles－ cent phase by 40 mm of total length．Kramer and Smith（1960b）gave the length－weight relationship of fish from 12 to 80 mm in total length as $\log W=-4.79809+2.96211$ Log L．They did not find differential growth between males and females．Growth did not correlate with the amount of food in the stomach but growth was positively correlated with the ratio of large to small organisms found in the stomach．In their study Kramer and Smith（1960b）found the differences in relative condition factor（ Kn ） between geographic areas in a single year were directly related to weight of stomach contents， while differences in condition anong years within an area were inversely related to abundance of bass fingerlings．

Different investigators have reported bass to switch from a microcrustacean diet to an insect diet at various lengths as follows： $25-35 \mathrm{~mm}$（Rogers，1967）， $22-75 \mathrm{~mm}$（Marcy，1953）， $30-50 \mathrm{~mm}$（Tumer and Kraatz，1920）， 40 mm （Mullan and Applegate，1970；DeRyke，1923；Miller and Kramer，1971）， 50 mm （Kramer and Smith，1962； Applegate et ale，1967）or 70 mm （MacCammon et alo，1964）－Bass over 50 mm tend to eat fish （Miller and Kramer，1971；Kramer and Smith， 1962）．Kramer and Smith（1960b）concluded that bass remain in broods for $26-31$ days（approxi－ mately 32 mm ）before dispersing．

Ramsey and Smitherman（1971）gave a key for separating juvenile largemouth bass from other Micropterus．Young largemouth bass（ $16-30 \mathrm{~mm}$ ） have more than 20 pyloric caeca compared to 13 or less in spotted bass（ M_{0} punctatus）（Applegate， 1966）．

3.3 Adult phase

3．31 Longevity

It is not possible to cite a single value for the average life expectency of bass after they reach maturity．However，most populations contain 6 and 7 year old fish．There is an unproven but general feeling among biologists that fast－－growing bass do not live as long as slow－ogrowing bass．

The largemouth bass tends to live longer in the northern portion than the southern portion of its range（ K ．Carlander in manuscript material from＂Handbook of freshwater fisheries＂，Vol．2）． They have been reported to live for 15 years in Wisconsin and 11 years in Louisiana（Bennett， 1937）．Evidently male bass do not live as long as female bass（Padfield，1951）．Thus as a year class becomes older，the percentage of males decreases．There is some indication that in California waters the southern subspecies lives longer than the northern subspecies（Smith，1971）。

3．32 Hardiness

In general，largemouth bass＇s tolerance to handling and physical－chemical conditions are intermediate between salmon－shad and cyprinids－ ictaluridis（Table VII）．Using normal precautions they can be kept in covered aquaria．

3．33 Competitors

In its native range the largemouth bass dominates the spawning grounds and competition for spawning area is minimal．It spawns before any of the other centrarchids except for the crappie（Pomxis spp．）and smallmouth bass．Some cyprinids are not temporally or spatially isolated （see 3．16），but they do not seem to interfere with bass spawning。

Most piscivorous fishes such as the crappie， walleye（Stizostedion vitreum），northern pike （Esox lucius）s channel catfish（Ictalurus punctatus）？white bass（Morone crysops），and striped bass（ M_{0} saxatilis），characids，and some chichids eat the same species of forage organisms that the bass does．However，criteria to measure the degree of competition have not been satis－ factorily established．

> 3.34 Predators
> (for predators on eggs and young see $3.16,4.31$)

Except for man there are no significant predators of adult largemouth bass in its native range．In North America few fishes are capable of eating adult＇largemouth bass．Northern pike， muskellunge（Esox masquinongy），striped bass，or very large largemouth bass are some of the excep－ tions．Change or control of density or size composition of adult largemouth bass caused by predation has not been documented．

3．35 Parasites，diseases，injuries and abnormalities
 （see 4.42 and 7．6）

－Parasites and diseases
The following list of parasites found in the largemouth bass is from Hoffman（1967）unless otherwise noted。

```
Protozoa
    Chilodonella cyprini (Moroff)
    Henneguya mictospora (Kudo)
    Ichthyophthirius multifilis (first described
        from France, 1876, but its origin is unknown)
    Myxobolus inornatus Fish, 1939
    Myxobolus sp. Butschli
    Myxosoma cartilaginis Hoffman, Putz, and
        Drubar, 1965
    Scyphidia micropteri Surber, 1940
    So tholiformis Surber, }194
    Trichodina domerguei (Wallengren)
    To fultoni Davis, 1947
    To myakkae (Nueller, 1937)
    \mp@subsup{T}{0}{\prime}
    \mp@subsup{T}{0}{\prime}
Trematoda
    Acolpenteron ureteroecetes Fischthal and
        Allison, 1940
    Actinocleidus fusiformis (Mueller, 1934);
        Mueller, 1937
    A. micropteri (?)
    Azygia angusticauda (Stafford, 1904); Manter,
        1926
    A。 loossii Marshall and Gilbert, 1905
    A+ micropteri (MacCallum, 1921)
    Ao tereticolle Leidy, 1851
    Bucephaloides pusillus (Syn. (Stafford, 1904)
        Bucephaloides pusillus)
    Bunodera cornuta (Osborn, 1903)
    Caecincola parvulus Marshall and Gilbert, 1905
    Co wakullata sp. ne, See Premvati (1967)
    Clavunculus bursatus (Mueller, 1936);
        Mizelle et ale, 1956 (Syn. Actinocleidus bo)
    C. unguis (Mizelle and Cronin, 1943);
        Mizelle et alo, 1956
*Clinostomum marginatum (Rudo, 1819)
*Crassiphiala ambloplitis (?)
    Crepidostomum cooperi Hopkins, }193
    Co cronutum (Osborn, 1903); Stafford, }190
    Co ictaluri (Surber, 1928)
    Crepidostomum sp. Braum, 1900
    Cryptogonimus chyli Osborn, 1910
*Diplostomulum scheuringi Hughes, 1929
*Diplostomulum sp. Hughes, }192
    Gyrodactylus macrochiri Hoffman and Putz, 1964
    Leuceruthrus micropteri Marshali and Gilbert,
        1905
    Microphallus opacus (Ward, 1894); Ward, }190
    Multigonotylus micropteri gen et sp. nos
        See Premvati (1967)
*Neascus sp. Hughes, }192
    Neochasmus umbellus Van Cleave and Muellerg
        1932
    Phyllodistomum lohrenzi (Loewen, 1935)
    Po pearsii Holl, 1929
    Pisciamphostoma stunkardi (Holl, 1929);
        Yamaguti (1953)
*Posthodiplostomum minimum (MacCallum, 1921)
    Proterometra macrostoma Horsefall, 1933
    Rhipidocotyle papillosum(Woodhead, 1929)
    \mp@subsup{R}{0}{\prime}}\mathrm{ septpapillata Krull, }193
    Sanguinicola huronis Fischthal, 1949
*Tetracotyle sp. Faust (1918); Hughes (1928)
```

Urocleidus dispar（Mueller，1936）；Mizelle and Hughes， 1938 （Syn．Onchoclidus d_{0} ， Haplocleidus d_{0} ）
U．furcatus（Muelier，1937）；Mizelle and Hughes， 1938 （Syn。Haplocleidus f_{0} ）
U。 principalis（Mizelle，1936）；Mizelle and Hughes， 1938 （Syn．Onchocleidus po， 0_{0} contortus）
＊Uvulifer ambloplitis（Hughes，1927）；Drbois， 1938
Cestoda
Abothrium crassum（？）
Bothriocephalus claviceps（Goeze，1782）； Rud．， 1810
＊＊Bo cuspidatus Cooper， 1917
Hymenolepis sp。Bangham（1951）
Ophiovalipora minuta See Norman（1971）
Philometra nodulosa Thomas， 1929
＊Proteocephalus ambloplitis（Leidy，1887）； Benedict， 1900
Po fluviatilis Bangham， 1925
Po pearsei LaRue， 1914
Proteocephalus sp．Weinland， 1858
＊Triaenophomus nodulosus Pallas， 1760
Nematoda
Camallanus oxycephalus Ward and Magath， 1917
＊＊Camallanus sp．Railliet and Henry， 1915
Capillaria catenata Van Cleave and Mueller， 1932
Contracaecum brachyyrum（Ward and Magath，1917）
＊C． Col $_{0}$ spiculigurum（Rudo，1819）
＊Contracaecum sp．Railliet and Henry， 1912
Dacnistoides ctylophora Ward and Magath， 1916
Dioctophyma sp．Cyllet－Maygret， 1802
Goegia See Gaines，Ware and Rogers（1973）．
Philometra cylindracea Ward and Magath， 1916
Philometra nodulosa Thomas， 1929 （Syn． Icthyonema）
Rhabdochona decaturensis Gustafon，1949； See Spall（1968）
Spinitectus carolini Holl， 1928
So gracilis Ward and Magath， 1916
Sprioxys sp．Schneider， 1866
Acanthocephala
Echinorhynchus salmonis Miiller， 1784
＊Leptorhynchoides thecatus（Linton：1891）； Kostylew， 1924
Neoechinorhynchus cylindratua（Van Cleave， 1913）；Van Cleave， 1919
Pomphorhynchus bullocolli（Linkins，1919）； Van Cleave， 1919

Hirudinea
Illinobdella moorei（Meyer，1940）；Meyer， 1946 （Syn．Myzobdella m_{e} ）
Illinobdella sp．Meyer， 1940
Piscicola punctate（Verrill，1871）
Placobdella montifera Moore， 1912
Mollusca
Glochidia
Lampsilis radiata（Gmelin）；See Tedla and Fernando（1969）

TABLE VII
Effects of various physical-chemical paremeters on largemouth bass

Parameter	Comments	Reference
Antimycin A	```24 h EC O}=0.2 ppb, EC 100 = 1.3 ppb for 1.8-2.9 g fish 5 ppb will kill all bass in most pond treatments```	Walker: Lennon and Berger (1964) Berger, Lennon and Hoggan (1969)
Aqualin	$\begin{aligned} & 24 \mathrm{~h} \operatorname{TLm} 0.183 \mathrm{mg} / 1 \text { at } 22^{\circ} \mathrm{C} \\ & 96 \mathrm{~h} \operatorname{TLm} 0.160 \mathrm{mg} / 1 \end{aligned}$	Louder and McCoy (1963)
Bay 73WP71	In 48 h o\% mortality at $0.1 \mathrm{mg} / \mathrm{I} ; 100 \%$ at $0.25 \mathrm{mg} / 1$	
Bayer 73	$95 \% \mathrm{LC}_{50}$ confidence interval at 24 h $=0.099 \ldots 0.124 ; 48 \mathrm{~h}=0.087-0.109 ;$ $96 \mathrm{~h}=0.076$ at 17 C for 4 cm bass	Marking and Hogan (1967)
Delrad (dehydroabietylamine acetate)	Minimum lethal dose $0.65 \mathrm{mg} / 1$	Lawrence (1958)
Denuron-mCA	$\begin{gathered} 24 \mathrm{~h} \cdot E C_{10}=4.2 \mathrm{mg} / 1 ; 24 \mathrm{~h} E C_{50} \\ =7.4 \mathrm{mg} / 1 \text { for } 10 \mathrm{~cm} \text { bass } \end{gathered}$	Walker (1964)
3-2 Dibrommalathion	$\begin{aligned} & 48 \mathrm{~h} . \operatorname{TLm}=0.10 \mathrm{mg} / 1 \text { at } 22^{\circ} \mathrm{C} \text { with. } \\ & 5 \mathrm{~m} 10 \mathrm{~cm} \text { fish } \end{aligned}$	Hoff and Westman (1965)
Di-NT, n, dimethylococamine salt of 3,6 mendohexahydrophthalic acid	$96 \mathrm{~h} \mathrm{LD} \mathrm{S}_{50}=0.14 \mathrm{mg} / 1$	Walker (1962)
Diquist	$\begin{aligned} & 24 \mathrm{~h} \mathrm{TLm}=24 \mathrm{mg} / 1 ; 48 \mathrm{~h} \mathrm{TLm}=11 \mathrm{mg} / 1 ; \\ & 96 \mathrm{~h} \mathrm{TLm}=7.8 \mathrm{mg} / 1 \end{aligned}$	Surber and Pickering (1962)
Diquist dibromide	96 h TLm $=60 \mathrm{mg} / \mathrm{l}$	Shealy and Shiflet (1969)
Di Godium Endothel	$96 \mathrm{~h} \mathrm{~L} \mathrm{D}_{50}=120 \mathrm{mg} / 1$	Waiker (1962)
Endosulfin EC 2	$0.05 \mathrm{mg} / \mathrm{l} 100 \%$ moxtality in 24 h	Mulla, St. Amant and Anderson (1967)
Endothal	24 h TLm greater than $560 \mathrm{mg} / 1 ; 48 \mathrm{~h}$ $\operatorname{TIm}=320 \mathrm{mg} / 1 ; 96 \mathrm{~h}$ TLm $=200 \mathrm{mg} / 1$	Surber and Pickering (1962)
Isobornyl thiocyanoacetate	100% mortality with $0.7 \mathrm{mg} / 1$ at $25^{\circ} \mathrm{C}$; 100% mortality with $0.8 \mathrm{mg} / 1$ at $10^{\circ} \mathrm{C}$	Lewis (1968)
Monurone m CA	24. $\mathrm{hEC} \mathrm{E}_{50}=2.7 \mathrm{mg} / 1$ for 10 cm bass	Walker (1964)
Oxysen	Bass are not adapted for survival in oxygen-depleted waters	Lewis (1970)
	No mortality at 250% saturation	Wiebe and McGavock (1932)
	No mortality when moved from 7.3 to $41 \mathrm{mg} / \mathrm{l}$ or from 40 to $5.6 \mathrm{mg} / 1$ Avoids $1.5 \mathrm{mg} / \mathrm{l}$ or less	Wiebe (1931) Whitmore, Warren and Doudoroff (1960)
	Critical level when acclimated 0.82 , $0.83,1.20 \mathrm{mg} / 1$ at 25,30 and $35^{\circ} \mathrm{C}$ respectively. When not acclimated. the critical level of oxygen occurs at $0.92,1.19$ and $1.14 \mathrm{mg} / 1$	Moss and Scott (1961)
	Growth only $60-75 \%$ as rapid at $4 \mathrm{mg} / 1$ as at $8 \mathrm{mg} / \mathrm{l}_{\text {。 }}$. Diel fluctuations also also impaired growth	Stewart, Schumway and Doudoroff (1967)

TABLE VII continued


```
Crustacea
    Achtheres micropteri Wright, 1882
    Argulus appendiculosus Wilson, }190
    Ao flavescens Wilson, }191
    A- mississippiensis Wilson (1914); See
        Norman (1971)
    Ergasilus caeruleus Wilson, 1911
    E. centrarchidarum Wright, }188
    Eg nigritis (nigratus) Wilson, 1916
    E, lizae Kroyer 1863; See Kelly and Allison
        (1963)
    Ergasilis sp. Nordmann, }183
    Lernaea anomala Wilson, 1917
    Lo cruciata (LeSueur, 1824)
    I~ cyprinacea Linnaeus, 1761
Fungi
    Saprolegnia spp.
    Branchiomyces sanguinis See Meyer and
        Robinson, 1973
Virus
    Lymphocystis See Weissenberg (1945)
Bacteria
    Aeromonas liquifaciens See Brauhn and Ray (1970)
Flexibaoter columnaris (Syn Cryptophaga c. Chondrococcus \(c_{0}\) ) See Isom (1960)
Staphylococcus spidermis See Brauhn and Ray (1970)
Pseudomonas spp.
Arthropoda.
Sebekia oxycephala (Diesing) Savabon, 1922; See Dukes, Shealy and Rogers (1971)
* Larval form
** Immature
Ordinarily parasitic infections of bass are relatively light and do not cause mortality. Only a few parasites such as Ichthyopthirius multifilis, Chondrococcus columnaris and Lampsilis radiata have been reported to cause epizootics of subadult and adult bass in natural populations (Allison and Kelley, 1963; Isom; 1960; Telda and Fernando, 1969). Saprolegnia spp. has been reported to kill eggs (see 3.21 ). See 7.6 for parasite control in culture situa tions.
```

The metacercaria of clinostomum marginatum (yellow grub) is not harmful if eaten by humans but the fish flesh is aesthetically unpleasing when heavily infected (Taber, 1972). The plerocercoid of the bass tapeworm Proteocephalus ambloplitis may reduce fertility of largemouth bass (Mraz and Cooper, 1957). When bass are introduced into trout waters the plerocercoid may infect the trout (Becker and Brunson, 1968).

The modes of transmittal may be direct as in the case of bacteria and many protozoan parasites, or indirect as in the case of trematodes and cestodes. The copepod: Cyclops, and the amphipod, Hyalella knickerbocker, are the source of infection of P_{e} ambloplitis (Bangham, 1927).

- Injuries and abnormalities

No regularly occurring abnormalities heve been reported in the largemouth bass. However, Reid (1951) reported a fibroma type, Mawdesley-Thomas (1975) a melanoma type, and Mawdesley-Thomas (1972) a lipoma type neoplasm on the side of a bass. James (1946a) has reported ovatestes. A doublemouth adult bass was cited by Herman, Holtman and O'Donnell (1947) and Allen and Neil (1953) noted a zanthic bass.

Artificially induced hybrids are frequently abnormal and die (Table VI). Under experimental conditions vertebrae injury has been caused by electric shock (Spencer, 1967). Dudley (1969) and Dudley and Eipper (1975) reported that embryos held under low oxygen were frequently abnormal. White blindness frequently occurs in bass that are fed on horse liver (Allison, 1951).

3.4 Nutrition and growth

3.41 Feeding

Like many predatory fishes, the bass has a large mouth and a large, well developed, elastic stomach. It does not bite off chunks of food, but rather swallows a whole organism. According to Lawrence (1958) a bass can swallow a fish whose maximum depth is equal to the mouth width of the bass (see 1.31).

If available, the size of forage that bass eat increases with bass size (Rogers, 1968; Lewis et ale, 1974; Snow, 1971; Schneider, 1971; Tumer and Kraatz, 1920). There is some evidence that when feeding on small forage items food intake is calorically controlled. When bass were fed bullfrog tadpoles (Rana catesbeiana) or green sunfish (Lepomis cyanellus) ad libitum they consumed on a. daily basis 7.9% of their body weight in tadpoles and 4.3% of their body weight in green sunfish. This corresponded to $0.023 \mathrm{kcal} / \mathrm{g}$ body weight/day of tadpoles and $0.025 \mathrm{kcal} / \mathrm{g}$ body weight/day of green sunfish (Kirk, 1967). As temperature decreases the size of forage orgenisms consumed by bass decreases (Wright, 1970).

Lewis et al. (1961) and Lewis and Helms (1964) found that bass in small tanks preferred golden shiners to other forage. However, in small ponds bullfrog tadpoles; crayfish, young black bullheads (Ictalurus melas) and green sunfish were preferred
in that order. They suggested that the difference in food preference was due to the increased mobility of shiners and other fishes, which made them less vulnerable in the pond situation. Thus selectivity of food may be influenced by the vulnerability of the prey species present. To date all properties which constitute "vulnerability" have not been defined. However, Lagler and DeRoth (1952) concluded that bass are a more effective predator on prey with a terete body shape than those with a strongly compressed form. Goodyear (1972) reported that if a prey species behaves unnaturally, predation by bass with increase.

The bass exhibits at least two types of feeding behaviour (Vanderhorst, 1967). In the "hunger" motyivated type the bass goes through a fairly lengthy series of preparatory movements which involves a rocking motion of the body, and flaring the gill covers. When bass exhibit this behaviour, forage fish show a marked escape response. A second type of feeding beheviour is reflex--like strike response (Lewis et alo, 1961). Characteristically orientation and positioning occurs before the attack. Nyberg (1971) found that the distance from the prey at which the final attack was initiated was greatest when the bass was travelling toward the prey at a high velocity. Attacks initiated at a distance greater than one fourth the length of the bass's head usually failed. Once the jaws begin to open the sequential movement is stereotype. Bass either "over swim" their prey, suck them in or both. Crayfish were swallowed tail first in 97 percent of the cases and gizzard shad (Dorosoma cepedianum) headfirst in 66 percent (Zweiacker, 1972) 。

The bass is not a continuous feeder. When stomachs are collected from the wild by electrom fishing it is common for approximately 50 percent of them to be empty (Zweiacker and Summerfelt, 1974; Dubets, 1954; Lewis et alo. 1974) a Bass feed both at night and during the day. Our experiments show they are capable of feeding on bluegill sunfish and growing in complete darkness at clay turbidities of at least 140 JTU . A midmorning and afternoon period of increased feeding activity has been indicated by Zweiacker and Summerfelt (1974), but this phenomenon needs further investigation.

Lewis et $\frac{a l_{0} \text {. (1974) reported that once a }}{}$ gizzard shad is ingested, the bass characteristically does not. eat again for approximately 40 h . This apparently does not hold true when small forage fishes or crayfishes are being utilized (Snow 1971; Lewis et alo, 1974).

Bass do not feed when they are spawning (see 3.16), or at water temperatures above $37^{\circ} \mathrm{C}$ or below $5^{\circ} \mathrm{C}$ (Markus, 1932). Even though small
bass tend to feed more at lower temperatures than large bass (Markus, 1932), all sizes of bass tend to feed very little during the winter at northern latitudes (Keast, 1968)。 They consume approximately three times as much food at $20^{\circ} \mathrm{C}$ as at $10^{\circ} \mathrm{C}$ (Hathaway, 1927).

Bass stop feeding when dissolved oxygen approaches $1 \mathrm{mg} / \mathrm{l}$ (Snow, 1961). See 3.22 for nonfeeding of larval bass and 3.32 for effect of salinity on feeding.

3.42 Food

The enzyme complement of the bass limits the type of food it can utilize. The pyloric caeca are sources of trypsin and lipase. Protein is absorbed primarily in the stomach and fat in the intestine (Beamish, 1972). The enzymes associated with carm bohydrate break-down, such as amylase, maltase, lactase and invertase, are not found in bass (Sarbahi, 1951).

Emig (1966) and K. Carlander (in manuscript material from "Handbook of freshwater fisheries": Vol. 2) have summarized many of the numerous reports on the food organisms eaten by largemouth bass. See 3.22 and 3.23 for feeding of larvae and subadult bass. In generals adult bass eat fishes and crayfishes. However, just about every macro-organism which is found in fresh water has been found in the stomach of bass.

Lewis et al. (1974) reported food intake values as high as 25 percent of body weight for 90 g bass, but the average for $90-450 \mathrm{~g}, 450-900 \mathrm{~g}$ $900+$ g bass was $9.2,7.6$ and 3.0 percent respecem tively.

There is a positive curvalinear relationship between temperature and digestion rate (Table VIII). These values are similar to those reported by Seaburg and Moyle (1964), Hunt (1960): Markus (1932), and Beamish (1972).

Markus (1932) found no difference in the digestive rate of 45 g versus 175 g bass and Beamish (1972) found no difference in the digestive rate of digestive efficiency of 7 g versus 91 g bass. Larger meals within the range of $2-8$ percent of body rate require longer to digest, but the absorption efficiencies of protein $-N$, lipid, or energy do not differ significantly (Beamish, 1972).

3.43 Growth rate

The growth rate of largemouth bass is variable. Usually they grow faster in a new lake than in an old lake (Figs. 3 and 4). In established populations their growth rate is usually faster in large bodies of water than small ones (Fig. 4). At the end of 1 year a largemouth bass may be $5-35 \mathrm{~cm}$ in length. This variation appears to be better correlated with

Fig. 3 Growth of largemouth bass in Oklahoma lakes above growth in streams (growth in streams = base) (after Jenkins and Hall, 1953)

Fig. 4 History of annual growth of largemouth bass following impoundment of bodies of water in Oklahoma (after Jenkins and Hall, 1953)

TABLE VIII
Effect of water temperature on the digestive rate of $25-27 \mathrm{~cm}$ bass (after Molnár and Tolg, 1962)

Temperature (${ }^{\circ} \mathrm{C}$)	5	10	15	20	25
Time to empty stomach (hours)	110	50	37	24	19
Standard deviation (hours)	12.9	6.9	8.3	4.2	2.2

density and food supply than with digestive function or temperature. When bass have been fed fish flesh, conversion rates of 2.5-5.6 have been reported (Snow, 1962; Thompson, 1941; Prather, 1951).

If a forage population is made up of only large organisms, small bass may be underfed. However, Lewis et al。 (1974) reported another situation in which large bass were less well nourished than small bass. They found that when bass feed on large organisms they characteristically eat only one. Under such conditions, if the forage is fairly uniform in size and both large and small bass utilize it, the daily food intake of the small bass as a percentage of its body weight can be high, while that for the large bass is low.

Reviewing data from K. Carlander (manuscript material from "Handbook of freshwater fisheries", Vol. 2), one finds that in general the northerm subspecies tends to grow larger in the southern than in the northern portion of its range.

Even though several researchers have investigated the relative growth rates of the northern and southern subspecies of the largemouth bass (Clugston, 1964; Smith, 1971; Addison and Spencer, 1972), the evidence indicating differences in rate of growth is inconclusive. In Califormian waters there is some indication that larger specimens of the southern subspecies occur because it is harder to catch and lives longer than the northern subspecies (Smith, 1971). In cold climates the southern subspecies does not appear to survive as well as the northern subspecies (Stevenson, 1972).

The literature on the relative growth of male and female bass is contradictory. Pardue and Hester (1967) reported that up to 0.3 kg the males are heavier than females. Padfield (1951) found that females up to 6 years old are slightly longer than males of the same age. Other investigators have reported no difference in growth rate between the sexes (Kramer and Smith, 1960a; Hill, 1939; Roseberry, 1952; Thompson and Bennett, 1949; Eschmeyer, 1940; Stroud, 1948; Beckman, 1949).

In most studies the body-scale relationship was shown to be a straight line through the zexo intercept (K. Carlander, manuscript material from "Handbook of freshwater fisheries", Vol. 2). However, a Frazer type correction has been used in many studies, for example, Cross (1951), Zweiacker (1972), Thompson (1964), LaFaunce, Kinsey and Chadwick (1964), Manning (1951), Elder and Lewis (1955), and Carter (1967).

Scale formation is at $18-26 \mathrm{~mm}$ (Stroud, 1948; Klavano, 1958). Scales from above the lateral line gave lower calculated lengths than scales from below the lateral line (Klavano, 1958).

The approximate relationship between total length (TL), standard length (SL) and fork length (FL) is TL $=1.22$ SL up to a TL of 200 mm , $\mathrm{TL}=1.215 \mathrm{SL}$ up to 380 mm , and $\mathrm{TL}=1.21 \mathrm{SL}$ over 380 mm , and that $T L=1.08$ fork length (K. Carlander, manuscript material from "Handbook of freshwater fisheries", Vol. 2). Bennett (1971) states that bass between 12.6 and 37.9 cm in total length, and coefficient of condition K (based on total length in cm, and weight in grams) of 0.97-1.25 denotes fish in poor flesh, 1.27-1.52 fish of average plumpness, and 1.55-1.80 a very fat fish. However, Buck and Thoits (1970) have demonstrated that the fastest growth rates of bass were not always accompanied by the highest condition factor.

3.44 Metabolism

- Metabolic rates

Primarily due to differences in the thermal, handling and feeding history of experimental fish as well as differences in experimental design, there is considerable variation in the reported oxygen uptake of largemouth bass (Table IX). Beamish (1970) determined the effect of swimming speed, weight and temperature on oxygen consumption (Table X). The logarithm of oxygen consumption for a given swimming speed and temperature increased linearly with the logarithm of weight. Regression slopes were considerably less than 1. For a given swimming speed oxygen consumption increased linearly with temperature from $10^{\circ} \mathrm{C}$ to $34^{\circ} \mathrm{C}$.

TABLE IX

Oxygen consumption of largemouth bass

$\begin{gathered} \text { Size } \\ (\mathrm{g}) \end{gathered}$	Temperature (C)	$\begin{gathered} \text { Standard } \\ \left(\mathrm{mgO}_{2} / \mathrm{kg} / \mathrm{h}\right) \end{gathered}$	$\begin{gathered} \text { Active } \\ \left(\mathrm{mgO}_{2} / \mathrm{kg} / \mathrm{h}\right) \end{gathered}$	Reference
38-50	17.8 - 19.3	$65 \pm 2.3 \mathrm{SE}^{\text {a/ }}$	-	Clausen (1936)
4.7-23.9	25	89-156 SE 0.002-0.005	-	Moss and Scott (1961)
12.2-22.6	30	101-129 SE 0.002-0.005	-	(as above)
62.7-97.6	35	112-150 SE 0.002-0.003	-	(as above)
6 m 10	5	38	48	Johnson and Charlton (1960)
6-10	12	130	198	(as above)
$6-10$	17	134	250	(as above)
6-10	22	185	303	(as above)
6 m 0	29	320	450	(as above)
150	10	80	187	Beamish (1970)
150	15	97	257	(as above)
150	20	120	345	(as above)
150	25	127	375	(as above)
150	30	170	540	(as above)
150	34	178	533	(as above)
1.6	20	-	456-750	MacLeod (1967)
11.8	22-24	-	720 individually	Parker (1973)
11.8	22-24	-	710 grouped	(as above)

a. $S E=$ standard error

Active oxygen consumption increased linearly with weight for each temperature when expressed on a logarithmic grid. Equations for the regm ressions are from Beamish (1970) except where noted.

Oxygen consumption of largemouth bass was not altered when the concentration of oxygen was increased to 150 percent saturation.

Energy available for swimming, termed metabolic scope of activity, is calculated by subtraction of standerd from active oxygen conm sumption. According to Beamish (1970) the scope of activity increased with temperature from 10 to $30^{\circ} \mathrm{C}$ and decreased from 30 to $34^{\circ} \mathrm{C}$.

Laurence (1969) has determined the oxygen sonsumption of individual eggs and larva bass (Teble XI).

In general small bass have a higher per gram oxygen requirement than do large bass (O'Hara, 1966). However, Moss and Scott (1961) found that bass between 15 g and 50 g showed no
change in standard metabolic rate with increased size, but below 15 g metabolic rate veried inversely with weight. ${ }^{\text {PHara }}$ (1966) reported that tissue respiration does not change with size of fish when they are larger than $50 \mathrm{~g}(2.8 \mathrm{pl} / \mathrm{mg}$ dry $/ \mathrm{h})$. Bass less than 10 g had a lower respiration ratio ($2.0 \mathrm{\mu l} / \mathrm{mg} d r y / \mathrm{h}$). Moss and Scott a.lso noted no daily endogenous rhythmus in standard oxygen con sumption of non-fed fish. However, Clausen (1933, 1936) stated that daily standard oxygen consumption peaked at 06.00 and 21.00 h .

Active metabolism for individual and grouped, 11.8 g bass was found to be the same (Parker, 1973: Table VII)。

The routine oxygen consumption of largemouth bass decreased from $8.53 \pm 1.5595 \% \mathrm{CI}$ to 2.70 ± 0.36 $95 \% \mathrm{CI} \mathrm{mg} \mathrm{O}_{2} / \mathrm{h}$ after 144 h of food deprivation. The mathematical relationship between routine oxygen consumption and time of food deprivation is $Y_{i}=a+b e_{i}^{C X}$ where X_{i} is the time of deprivation in hours, $a=2.97, b=5.73$ and $C=-0.0367$ $\left(E R^{2}=1.04\right)($ Glass, 1968)

Denyes and Joseph (1956) found no relationship between oxygen content of branchial blood and water temperatore or oxygen concentration in the water. Oxygen concentration in the blood ranged from 5.70 to $28.75 \mathrm{cc} / 1$.

Fuhrman et al. (1944) found that when $\log \mathrm{OO}_{2}$ of excised bass brain is plotted as a function of temperature, the curve is a straight line with a positive slope over the range $10-35^{\circ} \mathrm{C}$. There is
TABLE X
The relationship between weight (X in g) and oxygen consumption (Y in mg / h)
at different swimming speeds and temperatures (after Beamish, 1970)

Acclimation temperature (${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & \text { Swimming } \\ & \text { speed } \\ & (\mathrm{cm} / \mathrm{s})^{a} \end{aligned}$	$\frac{\text { Total length }(\mathrm{cm})}{\operatorname{mean} \frac{\mathrm{SDb} /}{}}$	$\frac{\text { Weight }(g)}{\text { mean } \frac{S D}{}}$	Regression	Correlation coefificient	95% confidence interval of slope
10	30	22.13 .5	164.173 .5	$\log Y=-0.1137+0.6557 \log X$	0.694	0.0418
15	30	22.54 .0	164.681 .2	$\log Y=0.0926+0.6056 \log X$	0.908	0.0120
15	40	$23.3 \begin{array}{ll}3.5\end{array}$	180.673 .4	$\log Y=0.1894+0.6014 \log X$	0.822	0.0854
15	50	24.82 .7	208.962 .3	$\log Y=0.1936+0.6264 \log X$	0.865	0.0224
20	30	19.73 .7	130.975 .5	$\log Y=0.0867+0.6471 \log X$	0.910	0.0214
20	40	19.73 .7	130.975 .5	$\log Y=0.2695+0.6007 \log X$	0.854	0.0281
25	30	$20.0 \quad 5.1$	118.182 .6	$\log \mathrm{Y}=-0.0594+0.7475 \log \mathrm{X}$	0.941	0.0288
25	40	$20.0 \quad 5.1$	118.182 .6	$\log Y=0.0785+0.6908 \log X$	0.938	0.1091
30	30	$22.4 \quad 3.1$	152.564 .5	$\log Y=0.2000+0.6593 \log X$	0.790	0.0270
30	40	22.43 .1	152.564 .5	$\log Y=0.4798+0.5580 \log X$	0.740	0.0289
30	50	22.43 .1	152.564 .5	$\log Y=0.4263+0.6217 \log X$	0.759	0.0290
34	30	21.23 .0	125.060 .3	$\log \mathrm{Y}=0.1338+0.7062 \log X$	0.548	0.0430
34	40	21.43 .0	128.862 .3	$\log Y=0.2920+0.6484 \log X$	0.700	0.0390

[^0]
TABLE XI

Average oxygen consumption per 24 hours of a single largemouth bass egg and larva at $19 \pm 0.5^{\circ} \mathrm{C}$ (after Laurence, 1969)

Time interval after fertilization (h)		Oxygen consumed $(\mu \mathrm{l})$
$0-24$		0.057
$24-48$		0.519
$48-72$		0.725
$72-96$		1.915
$96-120$		1.478
$120-144$		1.256
$144-168$		1.314
$168-192$		2.059
$192-216$		1.822
$216-240$		2.683
$240-264$		1.911
$264-288$		3.071
$288-312$		2.970

a sharp decline at $40^{\circ} \mathrm{C}$. Brain`acetylcholinesw terase in inhibited in vivo by organic phosphorus insecticides (Weiss, 1961)。

- Maintenance

Niimi and Beamish (1974) investigated changes in growth and proximate body composition of largemouth bass of $8-150 \mathrm{~g}$, between $18^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$. They found that:
"... for most weight, growth of fish was highest at $25^{\circ} \mathrm{C}$, and lowest in fish at $18^{\circ} \mathrm{C}$. This was attributed in part to a higher satiation feeding level at 25^{C}. For a fixed level of feeding, growth rate was highest for fish held at $18^{\circ} \mathrm{C}$.

Lipid content increased with feeding level and was highest at $18^{\circ} \mathrm{C}$. Moisture content varied inversely with lipid content. Protein and ash content did not vary appreciably with temperature, body weight, or feeding level.

Maintenance requirement of bass, expressed as grams per day, was about twice that lost during food deprivation, but only slightly different when expressed as dilocalories per day.

Standard metabolism accounted for 50\% of intake energy near maintenance, but only 10% at the satiation feeding level. Growth requirements increased from zero at maintenance to 40% of intake energy at satiation feeding".

Beamish (1974) found that apparent specific dynamic action (SDA) rose curvilinearly with ration size. For a fixed feeding rate as a per cent of body weight per day, apparent SDA increased curvilinearly with the weight of bass. Apparent SDA expressed did not differ significantly with weight of fish or meal size (SDA \pm SD was $14.9 \pm 4.10 \%$ of the energy ingested). With swimming speeds from 1.4 to $2.5 \mathrm{BL} / \mathrm{s}$, their was no difference in apparent SDA of similar size bass fed a ration of 4 percent body weight/day.

In bass fed on emerald shiners (Notropis atherinoides) Beamish (1972) estimated faecal energy loss to be 10.4 percent of the ingested energy. Non-faecal loss was calculated at 7.9 percent of ingested energy (Niimi and Beamish, 1974). Thus metabolizable energy in bass represents 81.7 per cent of that consumed and apparent SDA accounts for 14.2 percent of the metabolizable energy (Beamish, 1974).

- Carbohydrate and steroid

In exercised bass liver glycogen decreased by 35 percent at $20^{\circ} \mathrm{C}$ and 83 percent at $5^{\circ} \mathrm{C}$. Muscle glycogen also decreased with exercise. Blood glucose in exercised fish increased more at $20^{\circ} \mathrm{C}$ than at 5 C . Muscle glycogen of unexercised fish decreased with temperature. Blood glucose ${ }_{\circ}$ in unexercised fish was lower at $20^{\circ} \mathrm{C}$ than at $5^{\circ} \mathrm{C}$. With exercise, blood lactic acid increased more at $5{ }^{\circ} \mathrm{C}$ than $20^{\circ} \mathrm{C}$ (Dean and Goodnight, 1964).

Blondin et al. (1966) demonstrated that sterol biosynthesis in bass follows the same metabolic pathway as has been demonstrated for mammals. Thus
in vivo $2-C^{14}$ mevalonic acid served as a prem cursor to lipid materials in the liver. Addition of cofactors are not necessary with liver homom genates but additional ATP and NADPH did increase incorporation. Squalene, lanosterol and cholesterol were identified as metabolites of mevalonic acid and 7-dehydrocholesterol was converted to cholesterol.

- Endocrine systems and hormones
(for osmotic tolerances see Table VII)
Ovulation in largemouth bass was induced by injection of bass pituitary gland, HCG, LH, FSH, growth hormone and prolactin (Stevens, 1970). The possibility exists that LH occurred as a contaminate in all of the preparations.

Due to the deep-seated position of the pituitary gland in the largemouth bass, hypophysectomized individuals died. Female bass treated with Methallibure (I.C.I. 33828). did not ovulate (Stevens, 1970).

Bass produced more milt after injection of $4000-8000$ IU of $H C G / \mathrm{kg}$ than did non-injected bass (Wilbur and Langford, 1974).

For induced spawning of largemouth bass with hormones see 7.4.

3.5 Behaviour

(for feeding behaviour see 3.41 , for reproduction behaviour see 3.13, 3.21)

When both a large and small bass are placed in an aquarium the large fish usually becomes dominate.

3.51 Migration and local movement

Recapture of previously marked fish in large lakes has yielded some information on movement of basis. Rawstron (1967) found that the majority of bass moved 1.1 km . In a study by Hancock (1956) bass averaged 1.6 km of movement between captures. Averages of 6.4 km were found by Eschmeyer (1942) and Dequine and Hall (1950). Schumacher and Eschmeyer (1942) found that 90 percent of the recovered bass had moved 25.6 km in 1 year.

Some authors working on lakes less than 20 ha have reported home ranges of approximately 100 m (Lewis and Flickinger, 1967; Warden and Lorio, 1975). Lewis and.Flickinger (1967) calculated that 1.2 percent of the bass population was on the shoreline at any one time (except when spawning), therefore 150 m of shoreline was available per bass. If the entire population had been on the shoreline only 1.25 m would have been available for each bass. The considerable variations in the reported distances that bass move would be explained if, as proposed by Fetterolf (1952),
there are two populations of bass, one that "wanders" and one that stays in a given area. A shifting type of "home range" as found by Warden (1973) would also explain many of the above results.

In the spring, when bass are moving into the shallow water to spawn and the entire adult population is on the shoreline, large numbers move out of lakes over weirs and spillways (Lewis, Heidinger and Konikoff, 1968; Clark, 1942; Louder, 1958; Elser, 1961). Most of the escapement takes place during the crepuscular period (Lewis, Heidinger and Konikoff, 1968).

During the winter bass tend to move into the warm water discharge of electrical power generating plants. In many cases this can result in excellent sport fishing (Gibbons et alo, 1972). Warden (1973) found at temperatures above $27^{\circ} \mathrm{C}$ that diumal movem ment decreased and nogtumal movement increased, at temperatures below $10^{\circ} \mathrm{C}$ all movement decreased.

3.52 Schooling
 (for schooling of fry see 3.23)

Observing the escape of fish over spillways, Lewis, Heidinger and Konikoff (1968) reported that the fish aggregated in the current at the lip of the spillway before escapement. They also may school and move long distances when chasing such forage fish as the threadfin shad (Dorosoma petenense).

At the present time separate stocks of bass are not recognized in the reservoir habitat.

In the classical sense of the term bass aggregate in the warm water behind electrical power generating plants (see 3.51), and in coves where they spawn (sge 3.16). When water temperatures drop below $10^{\circ} \mathrm{C}$ in large main stream reservoirs in North America, bass tend to move into the open water of the reservoir. They aggregate over $30-60 \mathrm{~m}$ water at depths of at least 10 m . Usually they are associated with brush; for example, tree tops. However, some bass can be found in shallow waters all year (Cady, 1945). It is becoming evident that bass should be considered an aggregating fish rather than a strictly solitary fish.

Artificial reefs or shelters have been success fully used to attract bass (Rodenheffer, 1940, 1941, 1945) for a number of years. Crumpton and Wilbur (1974) found a sigmificant ($P=0.05, t=3.051$) increase (1.7 times) in catch rate when experienced anglers fished artificial structures versus natural structures.

$$
\begin{aligned}
& 3.53 \begin{array}{l}
\text { Responses to stimuli } \\
\text { (see Table VII, } 3.44,3.51,3.52, \\
5.42 \text {) }
\end{array}, \quad \text {, }
\end{aligned}
$$

- Environmental stimuli

Largemouth bass have been captured át depths of 23 m (Cady, 1945).

Thermel preferences in the field have been reported as $26-28^{\circ} \mathrm{C}$ by Dendy (1946) while laboratory thermal preferences of $30-32^{\circ} \mathrm{C}$ are reported by Ferguson (1958) citing Fry (MS. 1950).

The largemouth bass can distinguish dif. ferent wave lengths of light (Brow, 1937) but the exact wave lengths that they can detect at various intensities has not been determined. Both rods and cones are present. The cones are in patterns of single and double. No new elements are added with age (Shafer, 1900).

Cummings (1968) postulates that the specific patterm of diurnal variation in swimming activity in bass under natural conditions contains three components: (a) direct response to illumination; (b) a deep-seated, phasemon-labile, 24 hour fluctuation, apparently due to a response to subtle geophysical variations; (c) a phase-labile component which has the tendency to repeat on suc.cessive days the pattern imposed during the previous 2 or 3 days.

Nothing is known about the bass' ability to detect sound, but since they do not possess a Weberian apparatus one would suspect they could detect frequencies from 500 to 3000 Hz with their iriner ear.

The acoustico-lateralis system of the largemouth bass has been described by Branson and Moore (1962). There are 11 infraorbital canaliculi and 12 preoperculomandibular pores. The lachrynal neuromasts are of moderate size but shallower than in other Micropterus. The number of supporting cells in relation to sensory elements is 57:23.

The anatomy of the largemouth bass olfactory organs has been described by Eaton (1956). Seven epithelial folds radiate, propeller-like, from a region approximately under the anterior naris. At the posterior end of the nasal sac are found apertures of two accessory pouches, one extends mediad, the other ventro-laterad. The olfactory nerve passes back within the wall that separates the two apertures. Alarm substance(s) have not been demonstrated in the largemouth bass.

- Artificial stimuli

Schools of larval largemouth bass can be displaced by a moving 60-150 W incandescent light source. A point source of light is most effective. Young bass tend to prefer a higher illumination than adult bass, but adult bass also display positive phototaxis. Angling under a light is not as effective in turbid water as it is in clear water. Bass appear to be most active under a light from twilight until 2 hours after nightfall and during the last hour of darkness before dawn (Fore, 1969).

- Electrical
 (see 3.54)

Capture by electrofishing with a 2500 W 60 Hz alternating current does not sterilize the bass (Elder, 1954). Bass held between electrodes spaced 4.7 cm apart were not killed with a 5 min exposure to 3 phase, $180 \mathrm{~Hz}, 3.1 \mathrm{amp} 230 \mathrm{~V}$ alternating current (Spencer, 1967).

For a given power output alternating current covers a larger effective area than direct current (Novotny and Preigel, 1974). As the pulse rate of direct current is increased, the power requirement to stun the fish decreases (Novotny and Preigel, 1974; Edwards and Higgins; 1973). Large bass are easier to stun than small bass. Evidently the voltage drop across the fish is very important. With alternating current a drop of $1-2 \mathrm{~V} / 2.53 \mathrm{~cm}$ is required.

3.54 Learning

Bass do not learm to do a task as quickly as bluegill sunfish (Lepomis maorochirus). In a single hooking avoidance test, isolated bass made more errors than bluegill (Witt, 1949). Radabaugh (1970) tested the relative learning ability of bass and bluegill for three simple tasks. The performance of the bluegill was far superior to that of the bass. Neither Farabee (1970) nor Radabaugh (1970) found any difference between the learning ability of the male versus the female bass. Individual bass do not have equal learning abilities. A high percentage of the bass used by Radabaugh never mastered any of the three learning tasks. Also, some bass never learn to utilize artificial feed (Snow, 1964; Lewis, Heidinger and Konikoff, 1969).

4 POPULATION

4.1 Structure
4.11 Sex ratio

The sex ratio of fish less than 5 years old has been reported to be approximately 1:1 (Cross, 1951). However, Bryant and Houser (1971) reported the female to male ratio up to 6 years of age to be $1: 4,1: 2,1: 5,2: 3,2: 7$ and $6: 0$ respectively. Very old specimens are usually females (see 3.31). At any given time there are usually more males than females on the spawning grounds (see 3.16).

4.12 Age composition

(see maturity 3.12; longevity 3.31)
The majority of bass both by number and weight in a population which has completed at least one generation cycle is less than 5 years old (Table XII).

TABLE XII
Structure of mature bass populations

Reservoir ($\mathrm{U}_{0} \mathrm{~S} . \mathrm{A}_{0}$)	\% by number in each year class								Reference
Wappapella, MO	33	27	14	6	5	10	5		Anderson (1974)
Clearwater, MO	44	41	15	,	-	-	-		(as above)
Lake Carl Blackwell, OK	39	22	16	11	8	3	1		Summerfelt (1975)
Third Sister, MI	49	4	21	18	4	3	1		Brown and Ball (1943)
$\frac{\% \text { by weight in each year class }}{1} \frac{1}{2} \frac{4}{5} \frac{\text { Total }}{6}$									
Beaver: AR	10	51	26	5	3	3	1	10.5	Calculated from Bryant and Houser (1971)
Bull Shoals, AR	8	29	16	18	14	10	3	14.4	(as above)
Third Sister, MI	2	2	21	39	15	13	8	14.2	Brown and Ball (1943)

Fig. 5 Average length-weight relationship for laxgemouth bass. Vertical lines represent the central 50 percent range (after Anderson, 1975)
TABLE XIII
Age and growth of largemouth bass

Locality	Total length in mm at each annulus										Reference
	1	2	3	4	5				9	10	
U.S.A.											
AR (Ft. Smith Lake)	94	190	269	325	391	498					Trenary (1958)
CA (Folsom Lake)	152	284	351	399	434	465					Tharratt (1966)
CA (Sutherland Lake)	178	312	391	447	495						LaFaunce, Kinsey and Chadwick (1964)
IA (18 ponds)	132	231	310	355	363						Moorman (1957)
IL (average)	160	229	295	343	401	442	480	503	516	526	Lopinot (1967)
KY (farm ponds)	147.	254	356	399	442	480	526	556			Smith, Kirkwood and Hall (1955)
KY (lakes)	150	292	368	396	483						Tompkins and Carter (1951)
LA (Idlewild Lake)	218	267	287	351	388	498					Muncy (1966)
MO (state-wide)	109	218	292	335	353						Purkett (1958)
MN (average)	99	157	292	350	389	414	429				Mraz, Kimiotek and Frankenberger (1961)
MT (farm ponds)	53	160	260	270							Brown and Thoreson (1952)
NC	203	274	323	381	429	483	526	561	584	610	Raver and Comell (1951)
OH (average)	89	178	257	318	368	409	450	480	503		Evans (1948)
OK (average)	140	246	318	378	434	472	505	531	574		Jenkins and Hall (1953)
OR (farm ponds)	66	141	214	250	260						Klavano (1958)
RI (average)	76	162	236	300	366	396	424	460			Saila and Horton (1957)
va (Back Bay)	130	274	358	404	452	503	541	554			Roseberry (1951)
WI (average)	84	188	267	318	356	384	414				Mraz, Kimiotek and Frankenberger (1961)
N. America (unweighted mean)	119	216	288	345	392	432	467	495	510	528	Carlander ${ }^{\text {a/ }}$
Ontario, Canada (average)	170	221	287	320	348	391	426	450	457	490	Scott and Crossman (1973)
S. Africa	262	356	386	421							Thompson (1939)
France near Paradet	40 mm	200g	400g	750g	1125						Wurtz-Arlet (1952)

a/ K. Carlander in manuscript material from "Handbook of freshwater fisheries", Vol. 2

In North America the largemouth bass is considered a sport fish. Thus in most waters it is legally caught only on hook and line, primarily on artificial baits or live minnows. Little published information exists on the landings of largemouth bass in those countries where commercial fishing takes place.

The largemouth bass first appears in the creel at approximately 18 cm ($2-4$ years). However, in many areas both length and numerical limits are applied (see 6.11).

$$
\begin{aligned}
& \text { 4.13 Size composition } \\
& \text { (for maturity see } 3.12 \text {; longevity } \\
& 3.31 ; \text { length and weight relation- } \\
& \text { ships for larva } 3.22 \text {; for adoles- } \\
& \text { cent phase } 3.23 \text {; size at first } \\
& \text { capture } 4.12 \text {) }
\end{aligned}
$$

By comparing the age composition of various populations (Table XII) with the total length of bass at various ages (Table XIII), one finds that the majority of bass in a population are less than 35 cm in total length. Hayne, Hall and Nichols (1967) poisoned a 50 ha arm of a large reservoir and found 44 percent of bass to be between 2 and $10 \mathrm{~cm}, 42$ percent between 12 and 23 cm and 14 percent larger than 23 cm .
K. Carlander in manuscript from "Handbook of freshwater fisheries", Vol. 2, has compiled extensive data on the lengthweight relationship of bass. Anderson (1975) summarized and plotted these data (Fig. 5).

The average length-weight relationships for bass in Alabama are given in Table XIV.

4.2 Abundance and density (of populations)

4.21 Average abundance

Population densities of 120-240 adult fish/ha represent "strong" bass populations. As the density increases above 240/ha the possibility of a stunted population of $20-25 \mathrm{~cm}$ fish increases. "Weak" populations typically consist of relatively few large individuals (Heidinger, 1975).

4.22 Changes in abundance

For a short time after the spawning seas on larval bass occur at densities of several hundred or more per ha, but in the presence of an estam blished fish population the number is drastically reduced within a month. However, because of their small size little change in biomass occurs.

TABLE XIV
Lengthweight relationships of largemouth bass from Alabama (after Swingle, 1965)

Total length (cm)	Number of fish	Range in weight (g)	Average empirical weight (g)	Calculated weights ${ }^{\text {a }}$		Coefficient of condition (K)
				Standard (g)	$\begin{gathered} \text { Polynomial }(\mathrm{g}) \end{gathered}$	
5.1	190	1-7	2	2	3	1.55
7.6	1083	2-14	6	6	6	1.39
10.2	1554	3-29	12	14	14.	1.19
12.7	1283	14-6	25	26	27	1.23
15.2	839	16-91	45	45	45	1.28
17.8	391	23-141	77	73	77	1.39
20.3	234	86-181	109	104	113	1.32
22.9	202	91-227	150	150	159	1.26
25.4	208	136-340	209	204	213	1.29
27.9	119	227-635	308	290	327	1.63
30.5	121	113-572	395	386	372	1.50
33.0	70	363-626	490	494	467	1.37
35.6	66	408-907	612	626	608	1.37
38.1	33	544-1 021	758	776	789	1:38
40.6	27	794-1 134	934	953	993	1.39
43.2	25	907-1 402	1193	1157	1225	1.49
45.7	13	907-1724	1452	1384	1470	1.51
48.3	7	$1361-2041$	1678	1642	1724	1.50
50.8	4	$1729-2676$	2159	1932	1978	1.65
53.3	3	2 268-2 914	2522	2259	2223	1.66

a/ The standard calculated weights are from equations of the form $W=a^{b}$ and polynomial calculated. weights are from equations of the form $W=b_{0}+b_{1} L+b_{2} L^{2}+b_{3} L^{3}$

TABLE XV
Standing crop of largemouth bass in selected bodies of water

Locality	Sampling method	number/ha	$\mathrm{kg} / \mathrm{ha}$	Reference
166 ponds from Florida to Canada	various	395(208-830) ${ }^{\text {a/ }}$	62.9(0.3-173.7)	Carlander (1955)
Ridge Lake, IL	average of 9 drainings over a. 21 year period		$44.8(30.3-56.0)$	Bennett (1971)
Avg. 170 reservoirs U.S.A.	various		$10.0(0.1-59.4)$	Jenkins (1975)
Cuban lakes	cove sampling	$1505(267-2744)$	92.0(56-129)	Holvik (1970)
30 Oklahoma ponds	various		49.0(2-359)	Jenkins (1957)
12 Ohio ponds	various	472(250-1 668)	69.0(35-119)	Morgan (1958)
9 balanced KY ponds	various		49.0	Turner (1960)
9 unbalanced KY ponds	various		41.0	(as above)
14 midwestern U.S.A. ponds	various	602(3-3 203)	39.0(3-107)	Hackney (1975)

a/ Range

4.23 Average density

Some average densities are shown in Table XV. Additional data are given by K. Carlander in manuscript material for "Handbook of freshwater fisheries", Vol. 2. It will be noted that standing crops are relatively low. This is not surprising in view of the fact that the adult largemouth bass occupies a high trophic level.

Jerikins (1975) examined the correlations between the standing crop of largemouth bass and the standing crops of other fishes in U.S.A。 reservoirs. He found a negative correlation ($P=0.20$) for longnose gar (Lepisosteus osseus) and smallmouth bass a positive correlation (P>0.05) for black crappie, spotted gar (L. productus): spotted bass (Micropterus punctulatus). white crappie (Pomoxis annularis), white bass, gizzard shad, topminnows (Fundulus spp.), bluegill, warmouth, longear sunfish (Lepomis megalotis), channel catfish (Ictalurus punctatus), bullheads (Ictalurus spp.): carp (Cyprinus carpio), blue catfish (Io furcatus), bigmouth buffalo (Ictiobus cyprinella). Green sunfish were positively correlated at the $\mathrm{P}>0.20$.

In comparison to standing crop, the literam ture contains very few values of production or surplus production. High standing crops do not necessarily correlate with high production or surplus pxoduction in either fished or unfished populations (Cooper, Hidu and Anderson, 1963; Cooper, Wagner and Krantz, 1971; Houser and Rainwater, 1975; Zweiacker and Brown, 1971; Schneider, 1971).

In a new 1.1 ha pond in Pennsylvania, Cooper: Hidu and Anderson (1963) calculated an annual surplus production of $57 \mathrm{~kg} / \mathrm{ha}$ in 1959 and $85 \mathrm{~kg} / \mathrm{ha}$ in 1961. In a 4.0 ha Pennsylvania. lake annual surplus production over a 6 year period averaged $6.3 \mathrm{~kg} / \mathrm{ha}(-16.0$ to 29.4) (Cooper, Wagner and Krantz, 1971).

Annual production of age I and older bass in Gunnel Fork Cove of Bull Shoals Lake, Arkansas from 1969 to 1973 ranged from 1.8 to $14.4 \mathrm{~kg} / \mathrm{ha}$. In Slate Gap Cove of Beaver Lake, Arkansas from 1968 to 1973 annual production of age I and older bass ranged from 2.9 to $35.5 \mathrm{~kg} / \mathrm{ha}$ (Houser and Rainwater, 1975).

> 4.24 Changes in density (see 4.22 ; for catch per unit effort see 5.41)

When a new lake in the United States is opened up to fishing it is not uncommon for fishermen to remove 70 percent of the bass within 6 months (Graham, 1974). In Missouri's public fishing lakes ($8-83 \mathrm{ha}$) with $22-94$ trips/ha an average of 40 percent (27-69 percent) of the bass were harvested within the first 4 days.

A widely recognized phenomenon in reservoir bass populations is a very strong population for the first $3-10$ years and then a drastic reduction in growth rate (Figs. 3 and 4), standing crop and yield. Various causes have been postulated including increased parasitism, lack of reprom duction, overfishing, predation and depletion of nutrients. Lewis (1967) believes that the change in abundance of vulnerable food organisms leads to the decrease in bass populations. The cause(s) of this change has not been completely delineated.

4.3 Natality and recruitment

4.31 Reproduction rates

Bass tend to have a spawning season limited to less than 2 months a year (see 3.16). In culture ponds Bishop (1968) showed that 1.3 kg females produced an averaged 40500 fry/female. Relative fecundity appears to be directly related to condition and size of fish. Changes in viability of eggs with increasing age of females has not been documented (see.7.2).

4.32 Factors affecting reproduction

Swingle (1956) reported a spawning repressive factor that he believed prevented eggs from being laid. A sudden drop in water temperature does not in itself kill bass eggs. It does cause the male to desert the nest and in most cases the eggs are eaten or will be destroyed by Saprolegnia. Evidently the fanning action of the male is necessary for egg survival (Kelley, 1968; Miller, 1970; Jurgens and Brown, 1954). Removal of the male bass from the nest by angling or other means usually results in mortality of the eggs or newly hatched fry. Ordinarily an uninjured released male bass will return to his nest (Kramer and Smith, 1962)。

The hatch of bass eggs in a suitable habitat may exceed 80 percent (Miller and Kramer, 1971; Snow, 1971). The success of the male bass in guarding the nest depends upon the physical placement of the nest, his ferocity and the number of predators, especially other centrarchids in North America (also see 4.33).

4.33 Recruitment

As is the case with many other species of fishes, year class strength of largemouth bass is determined within the first month (Kramer and Smith, 1962). Willer and Kramer (1971) found that the mean number of bass per seine haul after brood dispersal could be used as an index to year class strength. All factors that affect reproduction (see 4.32) affect recruitment.

The introduction of largemouth bass has failed in a number of countries (see 2.1). In South Africa Clarias gariepinus and Barbus anoplus appear to be detrimental (Robbins and McCrimmon, 1974). In Costa Rica the introduction of largemouth bass has failed in rivers containing Cichlasoma dovii (Robbins and McCrimmon, 1974). Bass have been stocked in large reservoirs in Rhodesia. Downstream movement of these fish appears to be limited by the large number of tiger fish Hydrocynus vittatus that are found below the dams (Jubb, 1967).

No correlation has been found between size of spawning stock and recruitment (Summerfelt, 1975; von Geldern, 1971; Kramer and Smith, 1962; Mraz and Cooper, 1957; Mraz, Kimiotek and Frankenberger, 1961; Saila and Horton, 1957; Schneider, 1971). However, because of intram specific predation there is little recruitment of adolescent fish in small lakes which are overcrowded with $15-25 \mathrm{~cm}$ bass.

High recruitment has been correlated with high water levels especially when there is a flooding of new vegetation for several months after spawning occurs (Aggus and Elliot, 1975 $r=0.91$; Bross, 1967; Jackson, 1957; Keith, 1975; von Gelderm, 1971; Wegener and Williams, 1974). Negative correlations have been found
when the high water levels occurred because of cold run off water produced by snow melting in mountain areas. High, especially cold, water may cause a delay in bass spawning, thus allowing the threadfin shad to spawn before the bass, resulting in direct competition for zooplankton between shad and young bass (von Geldern and Mitchell, 1975).

4.4 Mortality and morbidity

4.41 Mortality rates

Swingle (1951) and Brown (1951) stocked a total of 89 new or renovated ponds with bass fry and usually fry of other species. Survival averaged. 70 percent ($19-100$ percent) to age I. Ball and Tait (1952) reported 60 percent survival to age II of stocked fingerlings and Johnson and McCrimmon (1967) reported 42 percent.

Regier (1963) determined the mean survival rates for approximately 1 cm bass stocked in bassgolden shiner ponds to be 83 percent/year for the first 2.3 years and 94 percent/year for the next 2.7 years. Corresponding estimates for bass in bass-bluegill ponds were about 80 percent/year for the first 5 years.

As can be seen from Table XVI the amual mortality rates of bass populations are quite variable. Except where noted mortality rates are for age I and older. Under increasing fishing pressure fishing mortality tends to increase and natural mortality decrease (Table XVII).

Zweiacker and Brown (1971) found higher mortalities of age I, VI and VII bass than age II, III and IV bass. Houser and Rainwater (1975) calculated higher mortalities of age II and III bass than older fish. Bennett (1971) calculated natural mortality of $1-3,3-5,5-6,7-8$ and $8+$ year old bass to be 33, 13, 15, 39 and 73 percent respectively.
4.42 Factors causing or affecting moxtality
(see 4.31 for mortality of eggs and 3.2 for mortality of pre-adults)

Mortality of largemouth bass has been attributed to pollutants (see Table VII), diseases (see 3.35), oxygen depletion due to ice cover (Johnson, 1965), and predators including man. A unique source of mortality is electrical power generating plants. Subadult bass are intrained and impinged by the water required for cooling these units. At present the degree of harm incurred. by the bass population due to these units has not been clearly defined.

Holbrook (1975) summarizes the results of initial and delayed mortalities of bass caught in 25 toumaments (see 5.41). Initial mortality in all 25 of these towmements averaged 21 percent (2-61 percent). Delayed mortality was determined after 8 tournaments and averaged 12 percent ($2-36$ percent). High mortalities were associated

TABLE XVI
Annual mortality of largemouth bass in various bodies of water

Locality	Year	Mortality (\%)			Reference
		Fishing	Natural	Total	
Clear Lake, CA	-	20	36	56	Kimsey (1957)
Sutherland Reservoir, CA	1956	20	48	68	LaFaunce, Kinsey and Chadwick (1964)
(as above)	1957	40	38	78	(as above)
(as above)	1958	47	26	73	(as above)
(as above)	1959	35	20	55	(as above)
(as above)	1960	48	35	83	(as above)
Sugarloaf Lake, MI	-	26	44	70	Cooper and Latta (1954)
Gladstone Lake, $\mathbb{N N}$	1957-1958	14	47	61	Maloney, Schupp and Scidmore (1962.)
Whitmore Lake, MI	-	22	20	42	Cooper and Schafer (1954)
Brown's Lake, WI	-	24	12	12	Mraz and Threinen (1957)
Ridge Lake, IL	1941-1963	35-40	25-30	5-11	Bennett (1971)
New York ponds (no fishing)	-	-	20	20	Regier (1963)
Cuba	-	-	-	76-89	Holvik (1970)
Folsom Lake, CA	-	40	49	89	Rawstron (1967)

TABLE XVII
Harvest, mortality and catch statistics for largemouth bass in Merle Collins Reservoir (407 ha) (after Rawstron and Hashagen, 1972)

Year	No. anglers	Angler hours	Annual catch (no。)	No. bass per hour	Mean weight (g)	Fishing	Natural Total	
1965	3410	13007	3447	0.27	127	36	56	92
1966	5118	17376	5407	0.31	91	45	26	71
1967	8194	27801	7682	0.28	172	62	24	86
1968	10118	39930	3582	0.10	245	65	11	76
1969	11756	48222	2300	0.05	380	65	21	86
1970	11170	52860	1937	0.04	458	-	-	-

with high water temperature. Plumb, Gaines and Jennings (1974) concluded that injections of oxytetracycline did not reduce delayed mortality. May (1973)-found that 67 percent of the bass that had swallowed the hook died versus 7 percent that were hooked in the mouth.

$$
\begin{array}{ll}
4.43 & \begin{array}{l}
\text { Factors affecting morbidity } \\
\text { (for wild populations see } 3.35 ; \\
\text { for cultured see } 7.6 \text {) }
\end{array} \\
4.44 \begin{array}{l}
\text { Relation of morbidity to mortam } \\
\text { lity rates }
\end{array}
\end{array}
$$

Due to the young state of fishery science, parasitic infection has not been correlated with mortality unless an obvious epizootic has occurred. We do not know, for example, if a heavy bass tapeworm infection increases the mortality rate of the largemouth bass.

4.5 Dynamics of population (as a whole)

Very few mathematical models dealing with largemouth bass populations have been published and even fewer have been tested. Mathematically either the dynamic pool model approach of Beverton and Holt (1957) or the logistic model (Schaefer, 1954) could be used to describe bass populations. Of the two, the logistic is much simpler in that it only requires catch and effort data. However, Jensen (1974) has shown that numbers and biomass do not act concordantly in Kostitzin (1939), Lotka (1956) or Volterra (1928) oompetition equations unless average individual biomass is constant. In bass populations it is not constant, thus the logistic approach can be criticized on this point.

Lackey, Powers and Zuboy (1975) have tested a simulation model (STOCKS) on a multispecies lake
fishery. This is a stochatic model which emphar sizes dynamic interrelationships among bluegill, black crappie and largemouth bass. In this model, analogous processes are not defined; rather, distributions are generated about some expected value for the vital statistics. The output is in terms of yield (catch). With the current sophistication the model at best predicts trends (Fig. 6).

Gasaway (1971) has proposed a model to estimate the costs of sustained stocking of largemouth bass fingerlings or yearlings in reservoirs. The necessary parameters are cost of fingerlings or yearlings, growth rate, annual mortality until the year class comes into the fishery, and exploitation rate after entry into the fishery. The effects of stocking on the existing bass population is not considered.

In order to appreciate some of the more important factors that affect standing crop (stock) Hackney (1974) has stated a simplistic model based on biomass of food available, annual mortality, assimilation of food and average metam bolism. His model is as follows: B (biomass of bass possible) = biomass of food x percent assimilated * requirements for metabolism as a percentage of the ichthyomass/day throughout the year + percent annual mortality.

Anderson (1975) considers annual mortality to be extremely important in terms of optimum yield. By using average age-weight data, assuming no natural mortality, no change in growth rate or recruitment, a standing crop of $56 \mathrm{~kg} / \mathrm{ha}$ and 50 or 80 percent total mortality, he generates the data
shown in Table XVIII. The quality points column shown in the Table is based on a mathematical relationship in which a 4.5 kg bass has twice the value of ten 0.45 kg bass. The use of quality points reflects the status of the largemouth bass as a sport fish in the U.S.A. and is an attempt to deal with optimum yield rather than maximum sustained yield.

Lattia (1975) used Paulik and Bayliff's (1967) computer programme, which is based on Ricker's model of equilibrium yield per unit of recruitment, to predict the greatest potential yield (Table XIX with various size limits and exploitation rates. The yield was positively correlated with exploitam tion rate and maximum at 70 percent exploitation with a 30 cm minimum size limit. Latta (1975) obtained good agreement with this model on 3 out of 4 lakes in Michigan. Apparently the change in growth or mortality due to increase in numbers of bass in these three cases was minimal.

Swingle (1950) from empirical observations in ponds described biomass ratios of predators (bass) to prey in balanced and unbalanced populations (Tàble XX). According to Swingle's definition of balance,

> "the interrelationships in fish populations axe satisfactory if the populations yield, year after year, crops of harvestable fish that are. satisfactory in amount when the basic fertilities of the bodies of water containing these populations are considered".

Based on the results of his 1950 study, Swingle (1956) devised a method of analysis which

Fig. 6 Predicted yield of multispecies simulation model STOCKS as opposed to actual yield (after Lackey, Powers and Zuboy, 1975).

TABLE XVIII

Harvest and quality of bass fishing at 50 and 80 percent total annual mortality (after Anderson, 1975)

Average/fish		50 percent mortality						$\frac{80 \text { percent mortality }}{\text { Harvest/ha }}$		
		Harvest/ha			Catch and release/ha					
$\underset{(\mathrm{kg})}{\substack{\text { Weight }}}$	points	No.	$\begin{gathered} \text { Weight } \\ (\mathrm{kg}) \end{gathered}$	$\begin{aligned} & \text { Quality } \\ & \text { points } \end{aligned}$	No.	$\begin{gathered} \text { Weight } \\ (\mathrm{kg}) \end{gathered}$	$\begin{aligned} & \text { Quality } \\ & \text { points } \end{aligned}$	No.	$\begin{gathered} \text { Weight } \\ (\mathrm{kg}) \end{gathered}$	$\begin{aligned} & \text { Quality } \\ & \text { points } \end{aligned}$
0.34	1.0	29.6	10.08	29.65	17.8	6.00	8.90	47.4	16.08	47.06
0.59	2.8	14.8	8.72	41.51	8.9	5.21	10.29	9.4	5.55	25.98
0.87	4.1	7.4	6.46	30.39	4.4	3.85	9.07	2.5	2.15	10.05
1.19	6.0	3.7	4.42	22.24	2.2	2.60	6.62	-	-	-
1.53	8.2	2.0	3.06	16.31	1.0	1.47	3.92	-	-	-
1.69	9.5	1.7	2.94	16.31	-	-	-	-	-	-
	total	59.2	35.68	156.41	34.3	19.13	38.80	59.3	23.78	83.09

a/ Quality points are based on a mathematical relationship in which a 4.5 kg bass has twice the value of ten 0.45 kg bass

TABLE XIX
Yield in kg (per 453 kg of young bass recruited) of largemouth bass at four rates of exploitation and various minimum size limits (after Latta, 1975)

Minimum size	Approximate annual rate of exploitation			
limit (cm)	$\begin{aligned} & 0.20 \\ & \left.\left(\frac{3}{2} \mathbb{2}-\right)^{a}\right) \end{aligned}$	$\begin{aligned} & 0.35 \\ & (1 F) \end{aligned}$	$\begin{aligned} & 0.55 \\ & (2 F) \end{aligned}$	$\begin{aligned} & 0.70 \\ & (3 F) \end{aligned}$
20	1112	1276	1282	1317
25	1119	1425	1632	1812
30	994	1359	1670	1912
35	565	879	1266	1117
40	332	540	825	1065
45	75	130	213	282

a/ Instantaneous fishing mortality $F=0.581$
TABLE XX
Biomass ratio of bluegill and largemouth bass (after Swingle, 1950)

Ratiog	Range	Range of balance	Most desirable range
A_{t}	$0-90.0$	$33.00-90.0$	$60-85$
Y / C	$0.02-16.0$	$0.02-5.0$	$1-3$
$\mathrm{~F} / \mathrm{C}$	$0.06-65.0$	$1.40-10.0$	3.6
Fb	$3.10-41.6$	$9.10-41.6$	$14-25$
$\mathrm{~A}_{\mathrm{F}}$	$1.20-99.6$	$18.20-99.6$	$60-80$
I_{F}	$0.00-100.0$	$0.00-41.4$	-
SF	$0.40-95.5$	$0.40-80.0$	$15-40$

a/ $A_{t}=$ biomass of catchable fish/total biomass
$\mathrm{Y} / \mathrm{C}=$ biomass of forage fish small enough to be eaten by average size predator/biomass of predators
$F / C=$ biomass of forage fish/biomass of predators
$\mathrm{E}=$ biomass of bass/total biomass
$A_{F}=$ biomass of large size forage/total biomass of forage
$I_{F}=$ biomass of intermediate size forage/total biomass of forage
$S_{F}=$ biomass of small size forage/total biomass of forage
b/ For two species only
does not require a representative biomass sample of the total fish populations. His method can be used in ponds during the second summer after they have been stocked with bluegills and largemouth bass or in older ponds that contain these species. The procedure involves making several shoreline hauls with a 16 m minnow seine. Swingle's interpretation is as follows:
I. No young bass present:
A. Many newly-hatched bluegills, no (or very few) intermediate bluegills. (Bass overcrowded, temporary unbalance.)
B. No recent hatch of bluegills, many intermediates. (Unbalanced, bluegills overcrowded, insufficient bass.)
C. Same as above, plus many tadpoles and/ or minnows. (Unbalance, no bass or extremely few bass.)
D. No recent hatch of bluegills, few intermediates. (Unbalanced, due to crowding by other species, e.g., catfish, shad.)
E. No recent hatch of bluegills, no intermediates. (Water too cold for spawning (less than $18{ }^{\circ} \mathrm{C}$); too saline; or too heavily laden with silt.)
II. Young bass present:
A. Many newly-hatched bluegills and some intermediates present. (Pond in balance and producing fish in proportion to its fertility.)
B. Many newly-hatched bluegills and no intermediates. (Temporary balance, but bass overcrowded.)
C. No recent hatch of bluegills.

1. Few intermediate bluegills. (Pond overcrowded after bassspawning period. Usually due to pond's being fertilized last year, unfertilized in current year. Sometimes due to overcrowding by other species which reached a competitive size in late spring or summer, e.g.: gizzard shad.)
2. No intermediate bluegills. (Bluegills absent from pond or unable to reproduce. Water tgo cold for spawning (less than $26^{\circ} \mathrm{C}$) or too saline (salinity 0.5% or higher).)
3. No intermediate bluegills, many newly-hatched green sunfish. (Pond probably stocked with green sunfish instead of bluegill.)
4. Many intermediate bluegills. (Unbalance, same as I-B but less badly overcrowded by bluegills.)

4.6 The population in the community and the ecosystem

Much of this subject is dealt with in other sections of this synopsis. When $8-15 \mathrm{~cm}$ Atlantic salmon (Salmo salar) were stocked in the presence of bass, a sample of the bass demonstrated that 25 percent of them had salmon in their stomachs (Warner, 1972). Similarly, when rainbow trout (Salmo gairdneri) were stocked to maintain a "two-storey" fish population, 49, 82 and 91 percent of the 40,42 and 45 cm bass contained trout. They averaged 5 trout per bass. It was concluded that a trout of at least 25 cm in length is required to avoid heavy loss due to predation (Keith and Barkley, 1971). Predation by bass on stocked rainbow trout has also been reported in Ontario by Stocek and McCrimmon (1965) and in Oregon by Bond (1948).

5 EXPLOITATION

5.1 Fishing equipment

5.11 Gear

In North America bass are taken for sport, primarily by angling. Early anglers used a cane pole with a large live minnow as bait. One of the first artificial lures was a bug-like object made of deer hair. The Seminole Indians of Florida used lures like these as early as 1700. Other North American Indians used floating lures carved from cedar (Logendyke, 1953). Most of the small floating lures were later used as fly rod lures. This type of fishing is now referred to as "bug fishing". The development of a reel holding $50-75 \mathrm{~m}$ of line attached to a relatively short, steel or bamboo rod, together with the development of larger and heavier lures was the basis for the present bait casting method of fishing. Although originally developed for catching largemouth bass, this method is now used in fishing for almost every sport fish (Lincoln, 1953). Over the years, bait casting equipment (rod, reel, line and lure) has been continually improved. Today, bait casting reels are light-weight, freespooling and equipped with automatic drags, anti-backlash devices, and level-wind pickup. While the early lines were braided silk, and later nylon, they are now clear or fluorescent monofilament nylon, with a breaking strength of $3-14 \mathrm{~kg}$. Rods have evolved from solid wood, split bamboo and steel, to glassfibre and finally to high density graphite rods with ceramic or Tefl on (R) line guides.
TABLE XXI

Capture	Location	Year	Number/h	Yield kg/ha/year	Reference
$\begin{aligned} & \text { Flag gillnet } \\ & \text { (see Table XXII) } \end{aligned}$					
Yo-Yo	32 lakes in LA	-	0.001	-	Davidson: Posey and Hoenke (1968)
Spearfishing	Lake Mead, NV	1969-1970	0.72	-	Lockard (1971)
(as above)	Nebish Lake, WI	1967	0.28	-	Kempinger (1968)
Trawl (midwater)	Douglas Reservoir, IN	-	$\begin{aligned} & 0.66 \text { per haul } \\ & \text { (10 min? } \end{aligned}$		Hayne, Hall and Nichols (1967)
Hook and Line	46 national bass tournaments	1967-1974	$\begin{aligned} & \text { average } 0.33 \\ & (0.05-1.00)^{3} \end{aligned}$		Hollbrook (1975)
(as above)	National average of 85 U.S.A. reservoirs	-	0.17	6.1	Jenkins and Morais (1971) and personal communication with Jenkins
(as above)	3 fertilized ponds, IL	1947-1952	$\begin{aligned} & \text { average } 0.26 \\ & (0.06-1.21) \end{aligned}$	13.6 (1.12-33.6)	Hansen et al. (1960)
(as above)	3 unfertilized ponds, IL	1947-1952	$\begin{aligned} & \text { average } 0.29 \\ & (0.09-0.56) \end{aligned}$	12.8 (3.4-37.0)	(as above)
(as above)	11 lakes, AL	-	-	32.8 (10.1-67.2)	Byrd and Moss (1957)
(as above)	Gladstone, $\mathbb{M N}$	1952-1958	-	$3.2(2.1-4.7)^{\text {c/ }}$	Maloney, Schupp and Scidmore (1962)
(as above)	Mozoe Dam, Rhodesia	-	-	(1 100 kg total)	Toots (1970)
(as above)	Cleveland Dam, Rhodesia	-	-	($65-140 \mathrm{~kg}$ total)	(as above)
Electrofishing	6.2 ha lake, IL	1% of po	ation per trip	and the lake	Lewis and Flickinger (1967)
a/ Primarily largemouth bass b/ Range					
b/ Range					

Concurrent with the development of baitcasting equipment, spinning equipment has been improved and become popular. In general, it permits the use of lightweight lures and is relatively trouble-free as regards the line becoming tangled on the reel. The evolvement of lures has in part been based on a better understanding of the behaviour of the largemouth bass.

One of the earliest commercially available artificial baits was a cigar-shaped design made by Jim Heddon in Michigan. This and similar designs were surface fishing lures. Subsequently lures were developed that can be used at various depths below the surface. In recent years one of the most successful lures has been the plastic worm. It is not easily snagged on underwater obstructions and can be fished at any depth. Furthermore, it is probable that the plastic worm, being soft, avoids the possibility of the lure being as readily rejected by the fish. Various accessory devices have also come into use. Thus in the last ten years the availability of relatively inexpensive sonar sounding devices which detect bottom contours, and even fish, have led to the highly productive method of fishing known as "structure" fishing. Devices for detection of temperature and oxygen values at various depths are also being used.

Probably more bass are caught with minnows, spinner baits and artificial plastic than with all other baits combined. Snow (1971) found that 75 percent of the bass were caught on artificial lures, despite the fact that 50 percent of the fishing was with natural bait.

Even though hook and line methods are most popular, many other methods have been used to capture bass. Spearfishing with SCUBA has been
legalized in a few lakes in the U.S.A. (Kempinger, 1968; Lockard, Wood and Allan, 1971). Relatively few bass are caught on trot lines. Yo-Yo fishing also takes relatively few bass (Table XXI). Yo-Yos are automatic spring-loaded devices equipped with a line and a hook that when triggered by the pull of a fish automatically set the hook and play the fish. These are legal in many states in the U.S.A.

Entanglement gear such as trammelf nets and gillnets and maze gear such as hoop nets, or wing nets will also capture bass (see 5.41 and Table XXI), but in general their efficiencies are rather low (Starrett and Barnickol, 1955; Vasey, 1972; Buck and Cross, 1952; Grinstead and Gomez; 1972; Eennett and Brown, 1969) (TablesXXII, XXIII, XXIV). Trawls are also inefficient in the capture of bass (Hayne, Hall and Nichols, 1967; Bonn, 1967). In fish management it is often desirable to harvest commercially species such as carp, buffalo (Ictiobus spp.), and other non-game fish without capturing bass.

In fishery research work electrical fishing equipment, seines and fish toxicants are commonly used to sample largemouth bass populations (see 5.44). Electrofishing equipment used in the U.S.A. usually consists of a gasoline powered, 60 or 180 Hz , single or three-phase, alternating current generator of $2500-3500 \mathrm{~W}$ output, while in Europe direct current units of similar wattage are more popular.

5.12 Boats

Many bass were and still are caught from shore, but boat fishing is very popular and has undergone tremendous change in the last 15 years. Wooden row boats were initially used, while alumi.nium and fibreglass boats are now the most populer. In the mid-sixties the average boat was $3-4.5 \mathrm{~m}$ long, powered by an outboard motor of 18 hp or less.

TABLE XXII

Efficiency of experimental flag gillnets in capturing largemouth bass. Each net consisted of seven 25 m panels 2.6 m deep (after Lambou, 1962)

Bar size (mm)	Total Mean (mm)	length bass Range (mm)	Total caught (number)	Number per net-day
25	295	$190-470$	3	0.05
38	325	$241-508$	15	0.23
51	381	$343-559$	14	0.21
64	455	$406-533$	7	0.12
76	472	$432-521$	3	0.05
88	0	-	0	0.0
114	0	-	0	0.0

a/ Total of 70 net-days
b/ Net-day $=1$ experimental net set for 24 hours
TABLE XXIII
Selectivity of gill and trammel nets for largemouth bass

	Bar mesh (mm)										
	13	19	24	32	38	44	51	63	76	89	$101+129$
	Johnson, Rinne and Mincbley, 1970										
Number $/ 30.4 \mathrm{~m} / 24 \mathrm{~h}$ Roosevelt Lake, AR							0.8 (0.3)	0			
Roosevelt Lake, ${ }^{\text {ar }}$ AR Appace Lake, AR	0.3 0.1	1.2 0.7	1.3 0.9	1.6 1.6	-	2.1 1.5	0.8(0.3)	0	0.1	-	0.1 0.0
Bennett and Brown, 1969											
Number $/ 30.4 \mathrm{~m} / 24 \mathrm{~h}$					0.17	-	0.06	0.02	0.02	0.07	0.02
Weight (g)/30.4 m/24 h					150	-	86	37	24	181	58
	Buck and Cross, 1952										
Number $/ 30.4 \mathrm{~m} / 24 \mathrm{~h}$			4.7	-	0.27	-	0.36	0			
Length range (cm)			16-22	-	26-29	-	33-35	0			

a/ Catch in parentheses for a 30.4 m trammel net fished 24 hours. Outer mesh 254 mm , inner mesh 51 mm

| Net description | Number bass
 caught
 24 h set | Size range
 (cm) | Reference |
| :---: | :---: | :---: | :---: | :---: |
| 1.1 m diameter, 3 m length, 3 m wings, 18 m lead-nylon | 2.5 | $15-42$ | Buck and Cross (1952) |
| 1.1 m diameter, 3 m length, 3 m wings, 18 m lead-wire | 1.4 | $17-44$ | (as above) |

Fig. 7 Well equipped high-speed bass boat complete with echosounder, anchors, padded seats, electric trolling motor and aerated live well (photo courtesy of Steve Wunderly)

Today many bass boats are $5-6 \mathrm{~m}$ long; powered by $80-150 \mathrm{hp}$ motors. They are capable of attaining speeds of $70 \mathrm{~km} / \mathrm{h}$. Two factors have contributed to the increase in size and weight of bass boats: the increased number of large reservoirs have made the larger, heavier bass boats more desirable, while the electric trolling motor has made their use in bass fishing practical. A well equipped bass boat (Fig. 7) has an echosounder, winchoperated anchors, padded pedistal seats, 12-24 V electric trolling motor (used for positioning the boat), an aerated live well, oxygen meter, light meter and thermister.

5.2 Fishing areas

5.21 General geographic distribution
(for geographic distribution see 2.1)

The largemouth bass is fished in all waters where it occurs.

> 5.22 Geographic ranges
> (see 2.1)

5.23 Depth ranges

Largemouth bass have been caught at depths of at least 25 m (Cady, 1945). In the many eutrophic lakes inhabited by bass the absence of oxygen in deep water limits their vertical distribution.

5.24 Conditions of the grounds

Two factors have increased the area which the largemouth bass now occupies. One has been the introduction of bass into other countries from North America, and the other has been the construction throughout the world of new reservoirs.

A number of events have decreased bass habitat. Stream and river channelization, which results in silting of backwater areas, has destroyed bass habitat. Municipal and industrial pollution has degraded water quality in many parts of the world. In the U.S.A. from 1960 to 1972 over 144 million fish were reported killed in 4200 incidents (Mackenthum, 1972). The number of bass was not given.

5.3 Fishing seasons

5.31 General pattern of season(s) (see 5.41)

Except where prohibited by law (6.12), bass are caught all year round. However, peak effort and catches characteristically occur in the spring (Lagler and DeRoth, 1952; Snow, 1971).

```
5.32 Dates of beginning, peak and end of season(s)
(see 6.12)
```


5.33 Variations in date or duration of season
 (see $5.41,6.11,6.12$)

5.4 Fishing operations and results

5.41 Effort and intensity

Heidinger (1975) cites 295 references that contain information on catch per unit effort by hook and line and 169 references that contain information on catch/unit effort by othermethods than hook and line. Selected values are given in Tables XXI, XXII, XXIII, and XXIV。

Catches of between 1 and 2 fish/h.over at least a 12 month period have been documented only a few times (Hansen et alo, 1960; Trautman, 1941). It has been estimated that 126 legalsize bass/ha would be needed to provide an average oatch of 1 bass/h (Lagler and DeRoth, 1952)。

In the past few years there has been an dpsurge of interest in bass fishing stimulated by bass clubs and groups such as the Bass Anglers Sportsman Society (BASS). An outgrowth of these organizations has been the proliferation If bass fishing tournaments (Lorenzen and feidinger, 1973). An even more recent outgrowth of this interest in the largemouth bass was the establishment in 1974 of the Bass Research Foundatiòn (BRF).

The growing number and commercialization of bass fishing tournaments has generated some concern among anglers and fishery managers about the effect of these toumaments on bass populations. In most toumaments efforts are made to release the bass alive after weighing. At the present time it appears that the large national tournaments do not overfish bass populations (Folbrook, 1975). In most reservoirs, large national fishing tournaments have accounted for less than 4 percent of the total yearly harvest of bass by all fishermen. National toumament fishermen catch bass at a slightly faster rate than do nontournament anglers (Table XXI), but like ordinary fj.shermen the "pros" seldom catch a legal limit. Tournament caught bass are typioally small (average 0.84 kg) females (61 peroent) (Holbrook, 1975). Because of the large number of bass caught (approximately 1000) in a relatively short period (usually 3 days), bass toumaments offer the opportunity to investigate population sige, movement, etc.

5.42 Selectivity

Colour, mesh size and construction affect the selectivity of entanglement and maze devices. Of 9 colours of gillnets used (red, orange, yellow, green, blue, violet, brown; black, clear monofilament), yellow caught the most large bass
and red the fewest (Jester, 1973). Flag gillnets of larger than 76 mm bar mesh capture very few bass (Table XXII). Both gillnets and trap nets capture relatively few bass and are size selective (Tables XXIII, XXIV).

5.43 Catches

(see 5.41 and Table XXI)
Jenkins (1967), using multiple regression analysis to investigate the influence of environmental factors on standing crop and harvest of fishes in U.S.A. reservoirs, determined the following:

1. An increase in total dissolved solids correlates with an increase in standing crop and sport fish yield;
2. An increase in reservoir age correlates with an increase in clupeid crop and commercial harvest, a decrease in sport fish harvest and little change in standing crop;
3. An increase in storage ratio correlates with a decrease in standing crop and commercial harvest and an increase in sport harvest;
4. An increase in reservoir area correlates with a decrease in sport harvest (due to decrease in effort/unit area);
5. An increase in mean depth correlates with a decrease in total standing crop, sport harvest, and commercial harvest;
6. An increase in shoreline development correlates with an increase in standing crop and sport fish harvest, but a decrease in commercial harvest.

For yield/ha/year by hook and line see Table XXI.

5.44 Sampling and marking

Reported information on bass populations exhibits considerable variation. A portion of this variation is due to sampling error rather than biological variation. Validity of various methods used to estimate some parameters are summarized in Table XXV. One of the most comprehensive studies on the bias associated with rotenonemsampling of coves was reported by Hayne, Hall and Nichols (1967) (Table XXVI). Cove samples tended to overestimate Swingle's F/C ratio. Barry (1967) found rotenone sampling provided a better estimate of standing crop, but electrofishing gave a better estimate of the relative abundance of various species.
TABLE XXV
Validity of various types of population estimates

Lake area (ha)	Sampling method	Mark and recovery formula estimate				Rotenone		Population obtained by draining		Reference
		Schnable		Krumholz (1944)	$\frac{\text { Petersen }}{\text { Number }}$					
		Number	Weight (kg)	Number		Number	Weight (kg)	Number	$\begin{gathered} \text { Weight } \\ (\mathrm{kg}) \end{gathered}$	
3.5	Electrofishing	304			469			604		$\frac{\text { Swingle }}{(1966)} \text { et al. }$
2.5	Seine ($40^{\circ} \times 5 \mathrm{~m}$)			180				221		Hundley (1954)
16.0	Seine	64	28					17	17	Elkin (1955)
0.3	Seine				57			59		Carlander and Moorman (1956)
396.0	$\begin{aligned} & \text { Seine }(650 \times 5 \mathrm{~m}) \\ & (13 \text { hauls) } \end{aligned}$	$\begin{gathered} 16 \\ (10-26)^{2} / \end{gathered}$	$\begin{gathered} 9 \\ (4-18) \end{gathered}$					29	30	Threinen (1956)
36.0						171	30	71	24	Barry (1967)
200.0	(as above)					62	12	11	10	(as above)
10.0	Fyke net			51				159		Krumholz (1944)

a/ Range
TABLE XXVI
Validity of cove rotenone samples as an estimate of numbers and weight of young ($2.5-10.2 \mathrm{~cm}$), intermediate ($12.7-20.3 \mathrm{~cm}$),

Buck and Thoits (1965) used a seine that covered 90 percent of the water to obtain a series of Petersen mark and recovery estimates on three 0.4 ha ponds. The ponds were then drained. For all groups of bass, the average percentage of error was 28.1. When restricted to fish older than age 0 , the average percentage of error was 19.8. The principal source of error was the recapture of too many marked fish. Underestimations exceeded overestimations by rates of 46 to 16.

Ordinarily not all bass are recovered by draining or poisoning. Swingle et al。 (1965) recovered 71 percent of the marked fish in a small pond. Henley (1967) used SCUBA to determine the sampling error for 11 cove rotenone samplings ($0.4-0.6 \mathrm{ha}$). After 3 days an average of 84 percent of the bass floated to the surface and were recovered.

Under most conditions mark and recovery estimates tend to underestimate both weight and number of bass. In the presence of extremely low population densities the method appears to overestimate the population (Lewis, Summerfelt and Bender, 1962). Total estimates are always lower than the sum of size-class estimates. Cove samples tend to overestimate the numbers of subadult bass (Table XXVI).

Because of their selectivity, creel data, entanglement devices and maze devices do not give reliable information on population structure (TablesXXVII, XXVIII). The validity of creel census data depends upon reporting of marked fish by fishermen. Exploitation rates based on such data may vary considerably for a given population due to the non-reporting of tags. In two studies in California waters failure to report was approximately 40 percent (Rawstron, 1971, 1972); in a similar study in Massachusetts, failure to report was 25 percent (Stroud and Bitzer, 1955).

Numerous marks and tags have been used on largemouth bass. Fin clipping was one of the first methods used for marking largemouth bass; as is the case of all marking or tagging, the question arises as to the effect of the procedure on the fish. Ricker (1949) concluded that young-of-the-year bass 4.8 cm long with one fin removed suffered twice the natural mortality of unmarked fish, but bass larger than 13 cm in total length were not subject to differential mortality. Meehean (1940) found that after 5 weeks, pelvic, dorsal or pectoral fin clips on fingerling bass were not discernable. However, Eipper and Forney (1965) reported that when the distal half of the pectoral fin of $15-18 \mathrm{~cm}$ bass was removed, even though the fin regenerated, a permanent thickening or bending of the rays was evident. This was not

TABLE XXVII

Comparison of population structure based on fyke net and poisoning on a 4 ha lake (after Krumholz, 1944)

Total length of bass (mm)	$\frac{\text { Fyke net }}{\text { Number }}$	$\%$	$\frac{\text { Poison }}{\text { Number }}$	$\%$
$51-100$	3	12	21	12
$101-150$	5	20	26	14
$151-200$	4	52	38	21
$201-250$	-	-	82	45
$251-300$	-	-	4	2
$301-350$			4	6

TABLE XXVIII
Comparison of largemouth bass population structure by weight and number using various sampling methods

Lake area (ha)	Gillnet		Cove rotenone		Hook and line		Draining		Reference
	Number \%	$\begin{gathered} \text { Weight } \\ \% \end{gathered}$	Number \%	$\begin{gathered} \text { Weight } \\ \% \end{gathered}$	Number \%	$\begin{gathered} \text { Weight } \\ \% \end{gathered}$	Number \%	$\begin{gathered} \text { Weight } \\ \% \end{gathered}$	
36	27	45	$1.7(3){ }^{\text {a }}$	18(3)	5.5	17.4	1.6	12.4	Sandow (1971)
15			$3.0(1)$	$22(1)$	32.3	45.5	1.2	16.0	Barry (1967)
81			1.4(1)	4(1)	3.7	22.9	0.5	3.3	(as above)

a/ Number of coves sampled in parentheses
TABLE XXIX

Tag type	Tag location	Duration of study (months)	Retention (\%)	Reference
Spaghetti ${ }^{\text {a/ }}$	Below and behind dorsal	24	17	White and Beamish (1972)
Frazer ${ }^{\text {a/ }}$	(as above)	24	17	(as above)
Atkins	Below posterior base of soft dorsal	7	10	Latapie (1968)
Petersen disc	Midway between spiny dorsal and lateral line below middle	7	0	(as above)
Spaghetti	Same as Atkins	7	5	(as above)
Strap	Opercle upper edge	7	0	(as above)
- Dart	Midway between spiny dorsal and lateral line below middle	7	5	(as above)
	Premaxillary or maxillary	1	30	
$\begin{aligned} & \text { Disc dangler } \\ & \quad \text { (modified Atkins) } \end{aligned}$	2 wires below posterior base of soft dorsal	24	100	Kimsey (1956)
Petersen disc	2.5 cm below dorsal	1.3	53	Kirkland (1963)
Petersen disc	3 scales anterior to origin of caudal rayc	1.3	85	(as above)

[^1]
TABLE XXX

Percentage retention time of various Floy ${ }^{(R)}$ dart tags on adult bass (affter Wilbur and Duchrow, 1973 except where noted)

Tag type	Time (months)	Colour		
	orange	green	brown	
FD-67	3	58	62	63
FDD67 (standard)	3	78		
FD-67	3	47		
FD-67 C	3	75		
FD-68 Da/	3	88		
FD-68 B-	1	51		

a/ after Moody (1974)
true when the anal fin was clipped. Fin clipping does not appear to affect growth (Ricker, 1949). Follis (1972) used air injected (120-140 psi) fluorescent particles ($50-350$ microns) to mass mark $6-13 \mathrm{~cm}$ bass. These fish were 100 percent identifiable after 12 months and 80 percent after 30 months. Carlson and Shealy (1972) used 85 Sr to mark bass eggs and fry. Fry $1-7$ days after hatching took up more Sr than did eggs. Marked fry could be detected for several months. Pritchard (1972) cold branded ($-80^{\circ} \mathrm{C}$) 100 mm bass. The brands were 100 percent identifiable after 10 months, but mortality was 67 percent versus 43 percent for controls.

Many types of tags have been used on largemouth bass with varying results (Table XXIX). Huish and Copeland (1963) found no difference in the percentage return of strap tags versus Petersen tags. White and Beamish (1972) found no difference in return ($p>0.05$) of spaghetti tags versus Frazer tags. However, strap tags attached to the mouth area interfered with growth (Tebo, 1957; Wegener, 1966). Fish marked with anchor tags had a 30 percent loss and 61 percent mortality after 10 months.

The use of different Floy ${ }^{(R)}$ dart tags has resulted in differences in length of time the tags are retained (Table XXX). In many cases the anchor was not pulled out of the fish, but the plastic tubing was pulled off the anchor attachment. Ten cm bass will rapidly shed Floy (R) tag FTF-69 (R. Amick, personal communication).

6 PROTECTION AND MANAGEMENT

6.1 Regulatory (legislative) measures
 6.11 Limitation or reduction of total catch

The Black Bass Act was passed by the United States legislature in 1926. This law prevented the interstate transport of black bass for sale.

Since that time all states have legislated against the sale of black bass which are caught in the wild, thus assuring their status as a sport fish.

In the U.S.A. in 1974, three states had a $23-\mathrm{cm}$, seven a 25 cm , and four a 30 cm minimum size limit. In addition, fourteen states have a minimum size limit, from 25 to 45 cm , on certain waters. Creel limits average 9 (5-25) bass per day. Thirty-four states have a continuous season, while eight states have a special season; most of these regulations protect the bass from angling during spawning (Fox, 1975). Regulations in a number of other countries are given in Table I.

Quota limits are used on relatively few lakes. The State of Alabama attempts to limit the annual yield of largemouth bass in its State-owned public fishing lakes (13) to 35 percent of the standing crop. Only trophy size bass of at least 2.3 kg are allowed to be creeled after the quota has been reached (Powell, 1975).

$$
\begin{aligned}
& \text { 6.12 } \text { Protection of portions of popu- } \\
& \text { lation } \\
& \text { (see for season limits and for } \\
& \text { length limits) }
\end{aligned}
$$

Minimum length limits of $253-306 \mathrm{~mm}$ are being applied in a number of areas (see 6.11). In studies of length limits by Choate (1970), Martin et al. (1964) and Prosser (1973) no beneficial effects were demonstrated for the bass population nor was there evidence of improvement in size composition of the bluegill population. Ming and McDonald (1975) attributed these results to a lack of a strong year class of bass in the population before the length limit was established. However, Schneider (1971) found no change in the largemouth bass population in a 55 ha Michigan lake which was closed to fishing for 5 years. In a Missouri lake (97 ha) which had been heavily fished, a 306 mm length limit on largemouth bass increased the catch rate (Ming and McDonald, 1975). Gulish (1970) and Sheridan (1962) found an increased harvest of larger bluegill, but no appreciable change in harvest in bass after a size limit was applied.

Length limits of $354-404 \mathrm{~mm}$ are currently under investigation in the U.S.A.

Several methods besides length limits, creel limits, closed season and quotas have been investigated in an attempt to reduce the initial large harvest of bass (see 4.24) after opening ($2-3$ years after stocking) of a new lake. An initial 16 day catch and release period ($286 \mathrm{~h} / \mathrm{ha}$) did not reduce the opening week catch, in that 40 percent of the adult population was removed in the first 4 days with $93 \mathrm{~h} / \mathrm{ha}$ of effort (Redmond, 1974). Allowing the lake to be fished immediately after stocking led to an overabundance of bluegill within 3 years. A midwinter opening was also unsuccessful (Redmond, 1974). By not allowing approximately $40-90$ per-cent of the area of a new lake to be fished, the initial 40-70 percent harvest of bass is spread out over several months instead of 1 or 2 weeks (Redmond, 1974; Hill and Shell, 1975).

6.2 Control or alteration of physical features of the environment

6.21 Regulation of flow

The maximum current velocity acceptable at the intake of electrical power generating plants is currently under investigation. At the present time no flow regulations are enforced.

> 6.22 Control of water levels (for benefits in recruitment see 4.33 ; for aquatic weed control see 6.41)

Control of water levels is an important management tool, but desirable water levels for bass may conflict with flood control projects, hydroelectric generating requirements, or waterfowl management needs.

6.23 Control of erosion and silting

In most cases control of erosion and silting involves planting the watershed with suitable vegetation, riprapping the shoreline, and fencing cattle from the water. Colloidal clay can be settled by adding gypsum or organic material such as chopped hay (Bennett, 1971). Even though bass can feed in turbid water (see 3.41), high turbidity limits primary and secondary production thus reducing standing crops and growth rate of bass (Buck, 1956) and adversely affects spawning.
6.24 Fishways at artificial and natural obstructions

Schafer and Greagan (1958) reported 540 bass going up the Lake Chicot, Louisiana, fishway in 1955, and 270 in 1956.

6.25 Fish screens

Because of the escape of bass and other fishes over spillways (see 3.51), screening is
recommended (Lewis, Heidinger and Konikoff, 1968). At the present time a practical screen for large reservoirs has not been developed and tested. The escape of fish from lakes and reservoirs is one of the most serious problems in inland fish management at this time.

6.26 Improvement of spawning grounds (for improvement in culture situations see 7.3)

Natural spawning grounds have seldom been successfully improved except by controlling water levels (see 4.33). Vogele and Rainwater (1975) found that largemouth bass preferentially ($P>0.20$) nested near brush shelters especially early in the spawning season. James (1936) used 500 floating bass nests $(0.8 \mathrm{~cm} \times 10 \mathrm{~cm}$ wooden frame filled with rocks) in a reservoir subject to violent water level fluctuations. He noted heavy utilization, but the contribution to the year class was not determined.

6.27 Habitat improvement

Various types of habitat improvements have been made. In farm ponds it is desirable to fence cattle from the pond to prevent erosion and excess turbidity. Protection of the watershed by plants is also desirable. Some acid stripmine waters have been neutralized with lime or by running water through them from a well buffered source.

Numerous attempts have been made to destratify lakes (Toetz, Wilhm and Summerfelt, 1972), but changes in bass populations have not been documented.

The effect on catch rate of leaving standing timber in new lakes has been investigated in several studies (Table XXXI). In general there is a greater harvest per ha in the timbered areas because of increased fishing effort.

It is extremely difficult to maintain population balance (see 4.5 for definition) in small ponds. Hooper (1970) determined balance in 33 Alabama ponds ranging in size from 0.07 to 0.10 ha, He found only 7 in balance after 2 years. Hooper (1970), citing Kelley, reported 68 percent of the ponds larger than 0.10 ha were in balance after 2 years. However, Hooper and Reeves (1975) found only 5 of 40 ($0.20-0.40 \mathrm{ha}$) to be in balance after 2 years. These ponds had been stocked with the recommended 2470 bream (bluegill and redear) and 247. bass/ha.

6.3 Control or alteration of chemical features of the environment

6.31 Water pollution control

In the U.S.A. with the establishment of gtate and federal environment protection agencies, minimum water quality standards have been set and are being enforced by fines. One problem has been to establish a monetary value for largemouth bass.
IKXX
Harvest of largemouth bass from cleared and non-cleared areas of a lake

Lake	Standing timber			Cleared area			Reference
	Catch rate		Angling: effort (\%)	Catch rate		Angling effort (\%)	
	No./h	kg/h		No./h	kg / h		
Lake CA $(2884 \mathrm{ha})^{\text {a }}$	$\begin{gathered} 0.17^{\mathrm{b}} / \\ (0.15-0.18)^{\frac{d}{2}} \end{gathered}$		75	$\begin{gathered} 0.25 \\ (0.16-0.33) \end{gathered}$		25	Bartholomew (1972)
$\begin{aligned} & \text { Bussy Lake } \\ & \text { LA (891 ha) } \end{aligned}$	$\begin{gathered} 0.71 \\ (0.45-0.97) \end{gathered}$	$\begin{gathered} 0.39 \\ (0.33-0.48) \end{gathered}$	50-90	$\begin{gathered} 0.73 \\ (0.47-1.00) \end{gathered}$	$\begin{gathered} 0.41 \\ (0.28-0.51) \end{gathered}$	50-100	Davis and Hughes (1971)

[^2]The Southern Division of the American Fisheries Society recommended the following values be used for recovery of danages from pollution-caused bass kills in the southeast (Sherry, 1971):

Length	Value	Length (cm)	Value U.S. $\$$
2.53	0.20	17.71	1.00
5.06	0.25	20.24	1.25
7.59	0.35	22.77	1.50
10.12	0.50	25.30	1.75
12.65	0.65	27.83	2.00
15.18	0.75	30.36	2.25

Bass larger than 454 g (approximately 30 cm) were valued at U.S. $\$ 5.00 / \mathrm{kg}$. Similar values were placed on bass by the State of Illinois Department of Conservation (Lopinot, 1971). However, based on angler expenditures, Bennett and Durham (1951) estimated bass to be worth U.S. \$ $19.12 / \mathrm{kg}$.

6.32 Salinity control.

No information available.

6.33 Artificial fertilization of waters

Hooper (1975) briefly reviewed the use of inorganic fertilizers to increase bass production. Based primarily on the work of Swingle at Auburn University, Auburn, Alabama, Hooper concluded that commercial fertilizer mixtures of 8-8-2 ($112 \mathrm{~kg} / \mathrm{ha} /$ year) can be used to increase production of fish in new ponds. The catch of largemouth bass from relatively infertile ponds stocked with a combination of bass and bluegill more than doubled as a result of fertilization. Ponds which have been fertilized 3-5 years with $8-8-2$ can then be maintained with phosphate only ($16.8 \mathrm{~kg} / \mathrm{ha} /$ year tripple superphosphate), thus reducing the cost by approximately 70 percent.

6.4 Control or alteration of biological features of the environment

6.41 Control of aquatic vegetation

The largemouth bass often occupies waters which support a luxurious growth of aquatic vegetation. It is likely that in many cases this vegetation serves as a substrate for larval insects or other food organisms utilized by the bass. Also, the vegetation may serve as a refuge area and ensure survival of the young bass. Aquatic weed control is practised, however, in an attempt to improve bass fishing. Weed control serves to eliminate the refuge area for small fishes and makes them more susceptible to capture by the bass, and to improve accessibility to fishing grounds. Methods of control of aquatic vegetation include the use of herbicides, fertilization, mechanical removal, water level manipulation, and attempts at biological control.

6.42 Introduction of fish foods (plant, invertebrate, forage fishes)

With a few exceptions, invertebrates or plants have not been introduced to increase the yield of largemouth bass. The bluegill sunfish is the species most commonly stocked in combination with the largemouth and as forage for it. This practice is used particularly in small ponds and lakes. In recert years the threadfin shad has been widely used in large reservoirs as forage for largemouth bass.

Range (1971) found no increase in growth rate of 1,2 and 3 year old bass within 2 years after threadfin shad were introduced into Dale Hollow (12540 ha), Tennessee. Numerical change or population structure changes were not investigated. The threadfin shad was introduced into Lake Havasu., California in 1954. All age groups of bass showed improved growth (Kimsey, Hagy and McCammon, 1957). Similar trends were found after threadfin were introduced into Lake Nacimiento, California (von Geldrin and Mitchell, 1975). However, Miller (1971) concluded that threadfin in Pine Flat Lake, California decreased the growth of 1 year old bass. A mail survey of state agencies (von Geldrin and Mitchell, 1975) concluded that the threadif shad is a desirable forage fish for bass (also see 4.33).

Atherina mochon was introduced as forage in Sardinia (Cottiglia; 1968). In Kenya, Tilapia nigra was added for forage (Harrison, 1936). MoCaig and Mullan (1960) found no change in the bass population in a 10117 ha Mississippi lake after the introduction of smelt (Osmerus mordax).

In the late sixties Tilapia aurea were inadvertently introduced into Lake Trinidad, a power plant cooling reservoir in Texas. Recruitment of the northern largemouth bass ceased and annual stocking of the Florida subspecies since 1972 has failed to result in successful spaws. In spite of high survival and rapid growth of the stocked bass, tilapia densities of $2240 \mathrm{~kg} / \mathrm{ha}$ were reported (Noble, Germany and Hall, 1975).

6.43 Control of parasites and diseases

Because of the expense, very little perasite or disease control has been attempted except under culture situations (see 7.6).

6.44 Control of predation and competition

Fish toxicants, traps, seines and electrom fishing have all been used in an attempt to change population composition. Dense populations of bluegill exhibit slow growth, subcatchable size, and may prevent bass recruitment. Many attempts have been made to either reduce or eliminate these populations especially in ponds and small lakes. Complete renovation with rotem none has in general been the most successful.
TABLE XXXII
Effects of complete or partial removal of fish on the remaining fish population

Lake and location	Removal method	Fish removed	Cormments	Reference
14 lakes, MI	Seine	$109 \mathrm{~kg} / \mathrm{ha}$ for 25 years, primarily carp and brown bullheads	No effect on rough fish population or on total pounds of game fish	Moyle, Kuehan and Burrows (1949)
$\begin{gathered} \text { Bass lake, IN } \\ (648 \mathrm{ha}) \end{gathered}$	Seine	$99 \mathrm{~kg} / \mathrm{ha}$ of carp, suckers and buffalo	Water cleared; average catch of bass/seine haul increased from 0.1 to 0.6	Ricker and Gottschalk (1941)
Lake Chautauqua, IL (1 442 ha)	Traps	Avg. $93 \mathrm{~kg} /$ ha for 5 years, primarily buffalo, carp and shad	Removal of approximately 20% of total standing crop of rough fish did not change standing crop of bass population	Starrett and Fritz (1965)
Flora Lake, WI (16.6 ha)	Traps	Rough fish for 5 years	No change in growth rate of bass but standing crop increased from 4.3 to $6.8 \mathrm{~kg} / \mathrm{ha}$ and yield increased from 15.4 kg in 1952 to 66 kg in 1955	Parker (1958)
Oklahoma Lake (6.9 ha)		2-19\% of total standing crop for 4 years, primarily bluegill and black bullheads	No change in bass	Houser and Grinstead (1962)
Lake Hollingsworth, FL (144 ha)	Seine	$270 \mathrm{~kg} / \mathrm{ha}$ in 2 years (gizzard shad and brown bullheads 96\%) prestanding crop $168-336 \mathrm{~kg} / \mathrm{ha}$	Number of bass increased from 2.7/ha to 114/ha; growth rate also increased	Ware (1971)
225 IL ponds (average 0.5 ha)	Rotenone average 2.3 ppm	Incomplete removal in 31% of ponds	Ponds tended to be overpopulated with small or undesirable fishin 5 years	Lopinot (1970)
Lake Blackshear, OK (3 300 ha)	Rotenone 0.1 ppm	Gizzard shad reduced from 60% to 15% of total standing crop	Shad and bass population reached pretreatment levels within 5 years	Zeller and Wyatt (1967)
Clear Lake, LA (46 ha)	Seine	$257 \mathrm{~kg} / \mathrm{ha} 90 \%$ gizzard shad over 2 year period	Harvest of bass increased during the following 5 years	Lambou and Stern (1959)
Mediana Lake, TX	Drawdown and rotenone	Primarily giztard shad	Increase in condition, numbers and growth during following 2-3 years	Dietz and Jurgens (1963)
$\begin{aligned} & 3 \text { lakes, MI } \\ & (52-90 \mathrm{ha}) \end{aligned}$	$\begin{gathered} \text { Antimycin } \\ (1.0-1.25 \mu \mathrm{~g} / \mathrm{l}) \end{gathered}$	10-90\% of the bluegill	Did not affect bass	Lincoln and Smith (1974)

However, these ponds often become unbalanced (for definition of balance see 4.5) again within 5 years.

Removal of a portion of a fish population has met with varying success (Table XXXII). Hackney (1974) has shown that assuming that food supply remains constant, 70 percent of the bluegill (by numbers) would have to be removed to increase the average length of bluegill from 10 cm to 15 cm . Thus it does not seem feasible to remove sufficient bluegill by electrofishing (Spencer, 1967), by trapping or by destroying their nest. Balance in ponds was obtained with several shoreline applications of rotenone by Hooper and Crance (1960), Swingle (1954), and Smith, White and Hooper (1975).

The use of rotenone for the selective reduction of overcrowded fish populations in bodies of water from 0.4 to 12141 ha spread rapidly during the fifties. Pond treatments were intended primarily to reduce overcrowded sunfish populations, but in large bodies of water the target species also included gizzard shad, carp, drum (Aplodinotus grunniens), and catostomids, as well as other species. Marked improvement in bass reproduction occurred in many waters (Burress, 1975). However, the benefits lasted only 2-5 years and did not justify the cost (Burress, 1975; Stroud and Martin, 1968). By 1965 this management technique had become restricted to small bodies of water (Jenkins, 1970; Burress, 1975). Bennett (1971) recommends thinning before bass spawning season or immediately after bluegill spawning season. Swingle, Prather and Lawrence (1953) recommend supplemental stocking of bass fingerlings following poisoning.

Antimycin was introduced in the late sixties and has partly replaced rotenone. It is less toxic to bass then to other centrarchids and is effective in cool water, but is ineffective at high pH.

For a recent review of reclamation of ponds lakes and streams with rotenone and antimycin see Lennon et al. (1970) and Schnick (1974a and 1974b).

6.45 Population manipulation

"Super predators" such as the muskellunge (Gammon and Hasler, 1965) have been added to existing bass populations containing excessive numbers of slow-growing forage fishes. In most oases no change in bass or forage fish populations have been documented. At present in the U.S.A. striped bass are being stocked in many of the large reservoirs in an attempt to utilize the large gizzard shad populations. Changes in the bass populations due to the introduction of striped bass have not been clearly demonstrated.

Lake drawdown has been demonstrated to increase the vulnerability of forage fishes and increase feeding activity of bass (Heman, Campbell and Redmond, 1969; Bennett, 1962). Heman, Campbell and Redmond (1969) found an increase in bass growth rate after a drewdown. However, when weak bess populations are present at the time of a lake drawdown, mathematical computation demonstrates that little change in the weight of the forage fish population can be expected as a result of bass predation: Pierce, Frey and Yawn (1964) made similar findings for 15 Alabama lakes. Probably of more importance is the possibility of develop ment of a strong yẹar class of bass when the lake refills, as was found by Hulsey (1957) and Bennett, Adkins and Childers (1969). Wegener and Williams (1974) reported the effects of a drawdown on Lake Tohopekaliga, Florida, where 50 percent of the lake bottom was exposed for nearly 6 months (Table XXXIII).

6.5 Artificial stocking

6.51 Maintenance stocking

Unless preceded by at least partial renovation, maintenance stocking of fry or fingerling largemouth

TABLE XXXIII
Largemouth bass standing crop in Lake Tohopekaliga, Florida (9186 ha), before and after a 6 month drawdown of 50% of surface area (after Wegner and Williams, 1974)

	Before drawdown		After drawdowna/				
	$\begin{gathered} \text { Spring } \\ 1970 \end{gathered}$	$\begin{gathered} \text { Autumn } \\ 1970 \end{gathered}$	$\begin{gathered} \text { Autumn } \\ 1971 \end{gathered}$	$\begin{aligned} & \text { Spring } \\ & 1972 \end{aligned}$	$\begin{gathered} \text { Autumn } \\ 1972 \end{gathered}$	$\begin{gathered} \text { Spring } \\ 1973 \end{gathered}$	$\begin{gathered} \text { Autumn } \\ 1973 \end{gathered}$
Number/ha							
Littoral	215	168	264	1268	724	111	277
Limnetic	79	17	12	72	44	25	25
			Kg/ha				
Limnetic	53 8	38 9	39 4	56 3	72 3	28 3	54

a/ Spring 1971
bass has been ineffective in reducing overcrowded forage fish populations (Clark, 1964; Kempinger, 1969; Lagler and DeRoth, 1952; Viosca, 1945; MoKay, 1960; Jackson, 1958; Swingle, 1945; Carlander and Moorman, 1957).

Fieldhouse (1971) stocked 13503 cm bass in a 62 ha lake. Over the following 3 years they constituted 42 percent, 36 percent and 18 percent of that year class respectively.

Fast (1966) stocked bass ranging in size from fingerling to fish 0.7 kg in weight in El Capităn Reservoir, California。 Few of the small fish survived, but 56 percent of the large bass were caught by the end of the second year.

Stroud and Bitzer (1955) estimated 65 percent survival for adult bass salvaged from closed water supplies and restocked in public waters. They estimated that 11 percent of these fish were ultimately caught.

In general, because of culture limitations, large numbers of bass greater than 3 cm in length have not been available for use in research or management.

> 6.52 Transplantation: introduction (for world wide introduction and distribution see 2.1 and Table V)
> 6.53 Stocking combinations (ponds) (for introduction of forage fishes into large reservoirs see 6.42)

The use of various stocking combinations has usually been limited to small lakes. Dillard and Novinger (1975) and Wenger (1972) have recently reviewed the U.S.A. literature concerning largemouth bass stocking techniques.

In the U.S.A. during the early 1900 s it was believed that poor fishing was caused by a lack of fish and could be corrected by stocking fry. H.S. Swingle was one of the first investigators to demonstrate that in small ponds at least, poor fishing was strongly correlated with an overabundance of small and intermediate size forage fish (especially bluegill) or largemouth bass. Much research has been undertaken to develop stocking combinations which maintain a balanced (see 4.5) population.

The stocking combinations for small lakes currently recommended by 17 state agencies in the U.S.A. are given in Table XXXIV. The bassbluegill combination has been most frequently used. However, many experimental stocking combinations have been tried and some of these are listed in Table XXXV. Note that most of these studies are limited to the 1 or 2 year period following stocking.

Monospecific stockings of bass in Illinois ponds resulted in standing crops as high as or higher than bass stocked in combination with other species. Growth rate, however, was slower (Buck and Thoits, 1970). Monospecific stockings of bass in Alabama ponds also resulted in reduced growth (Swingle and Smith, 1943). Monospecific stockings of bass in 4 Oregon ponds resulted in growth rates superior to those in 9 comparable ponds stocked. with bass-bluegill (Bond et al., 1958). In Canadian ponds Johnson an $\overline{\text { M McCrimmon (1967) found }}$ a smaller weight gain in bass-bluegill ponds (adult bluegill stocked) than bass alone (362 g after 3 years). Of the various combinations they investigated, bass-golden shiner combinations exhibited the poorest growth. Swingle (1949) and Ball. (1952) found a faster growth rate when golden shiners were stocked with bass than when bass were stocked with bluegill, but they used fingerling bluegill rather than adults. Ball and Tait (1952) reported that when bass were stocked with fingerling bluegill, at age $2+$ they had attained a length of 21 cm ; when stocked with adult bluegill, at age 2+ they had reached 27 cm .

Some forage species such as the fathead minnow (Pimephales promelas) (Elrod, 1971; Ball and Ford, 1953) and Gambusia (Swingle, 1949) are eliminated after a few years when bass are present. Some species are reduced but not eliminated after the introduction of bass. In general, Swingle (1960) found that after 1 year when $93-896$ bass fry were stocked with Tilapia mossambica or T. nilotica (subsequently identified as T_{0} aurea), the number of tilapia per ha was reduced by 50-75 percent and the A_{T} value increased.

Regier (1966) stocked 1000 golden shiners and 247 fingerling bass/ha in 0.06 m 0.21 ha New York ponds with the results shown in Table XXXVI. Five years after stocking, most of the shiner populations were eliminated or reduced to a standing crop of less than $17 \mathrm{~kg} / \mathrm{ha}$ 。

Bass and channel catfish are often stocked together in small ponds. Little difference in bass yield was noted between fed and unfed fish populam tions (Table XXXVII). With 0.9 kg bass present in a pond approximately 19 cm channel catfish must be stocked to avoid elimination of the catfish by the bass (Krummrich and Heidinger, 1973).

F1 hybrid sunfish, predominately male, have been used to prevent excess reproduction and overcrowding in ponds. In a 0.4 ha pond, Childers and Bennett (1967) stocked 417 fingerling bass, 8 male redear and 3 female green sunfish. During a 6 year period, mean fishing effort was 519 ($82-771$) h/ha/ year and the average bass yield was 75 (4-118) $\mathrm{kg} / \mathrm{ha} / \mathrm{ye}$. . Harvest of hybrids averaged 136 $(12-323) \mathrm{kg} / \mathrm{ha} /$ year. At the end of 6 years the standing crop of bass was $117 \mathrm{~kg} / \mathrm{ha}$ plus $20 \mathrm{~kg} / \mathrm{ha}$ of hybrids.
TABLE XXXIV
Species combinations and numbers per ha currently recommended by several states for stocking ponds

State (U.S.A.)	Stocking recommendation $\frac{\mathrm{a}}{} / \mathrm{b} / \mathrm{c} /$
Alabama Arkansas Georgia Illinois Indiana Iowa Kansais Kentucky Michigan Missouri Nebraska New York Ohio Oklahoma Tennessee Texas Wisconsin	247 LMB spring after $2471 \mathrm{BG}(85 \%)$ and $\mathrm{RE}(15 \%)$ preceding autumn and winter; unfertilized $\frac{1}{2}$ density $247 \mathrm{LMB}, 500$ to 1236 to 2471 BG and RE , all same autum; flexible by fertility and availability of fish 247 LNB spring after $2471 \mathrm{BG}(80 \%)$ and $\mathrm{RE}(20 \%)$ preceding autumn and winter; unfertilized $\frac{1}{2}$ density 124 to 247 LMB with 500 to 1236 to $2471 \mathrm{BG}, \mathrm{RE}$ or $\mathrm{BG}(70 \%)$ and $\mathrm{RE}(30 \%)$; all same autumn or LMB spring after sunfish preceding autumn; rate adjusted according to fertility 494 LMB with 2471 BG , or $\mathrm{BG}(70 \%)$ and $\mathrm{RE}(30 \%)$; all same autumn 247 LVB spring after 2471 BG preceding autumn 247 LMB spring after 247 BG preceding autumn 296 LMB spring after 988 BG preceding autumn 247 LMB with 1236 BG all late summer; or 494 LMB with 2471 to 4942 GSH or FHM stocked when available 242 LMB spring after 1236 BG preceding autumn 247 LMB with 1236 BG all same autumn 247 LMB late summer after 988 GSH early summer, or 247 LMB with 2471 BG all same autum, or 371 LMB alone 247 LMB June with 1236 BG late summer same year; or 247 LMB alone 247 LMB with 247 BG all together May to September when available, or LMB spring after BG preceding autumn 247 LMB spring after 1853 BG , or $\mathrm{BG}(75 \%)$ and $\mathrm{RE}(25 \%)$ preceding autumn; unfertilized 185 LMB and 1236 sunfish 247 LMB spring alone, or after 247 hybrid RE x GS or WM preceding autumn 247 LMB summer alone, or with 988 GSE or FHM

a/ $\mathrm{LMB}=$ Largemouth bass, $B G=$ Bluegill, $\mathrm{RE}=$ Redear sunfish, $G S=$ Green sunfish, $G S H=$ Golden shiner, FHM = Fathead minnow,
b/ Channel catfish may be included except. in Alabama and New York
c/ All states recomnend fry or fingerlings except golden, shiners and fathead minnows which are stocked as adults
TABLE XXXV

Combination (number/ha in parentheses)	Pond area (ha)	Duration of study (year)	Standing crop of bass $\mathrm{kg} / \mathrm{ha}$	$\begin{aligned} & \text { U.S.A. } \\ & \text { location } \end{aligned}$	Reference
Bass only	0.28	1.5 ?	70 a/	OR	Isaac and Bond (1963)
Bass only (618 fry)	1.02	1.5	106	TX	Brown (1951)
Bass only (988 fry)	1.02	1.1	86	TX	(as above)
Bass only (495 fry)	1.02	1.1	56	TX	(as above)
Bass only (247 fry) b	-	4	37	AL	Swingle (1952)
Bass only (247 fry)	-	1	30	AL	Swingle (1951)
Bass only (247 fry) c/		1	45	${ }_{\text {AL }}$	(as above)
Bass only (59 adults +247 . fingerlings) ${ }^{\text {c/ }}$	7.28	2		IL	
Bass $\left(\begin{array}{l}4 \\ \text { Bass } \\ 4 \\ \text { adults }\end{array}\right)$ d ${ }^{\text {a }}$ /	$3\left(\begin{array}{l}4 \\ 3 \\ (4) \\ 4\end{array}\right)$	$1-3$ $1-3$	$80(24-142)$ $57(24-94)$	IL	Buck and Thoits (1970)
Bass (494 fry) + goldfish (494 adults)g/	0.10	-	58	AL	Swingle (1949)
Bass (494 fry) + golden shiners (494 adults) ${ }^{\text {g }}$)	0.10	1	83	AL	(as above)
Bass (494 fry) + gizzard shad (68 adults) $g /$	0.10	1	119	AL	(as above)
Bass (494 fingerlings) + goldfish	0.10	1	190	AL	(as above)
Bass (494 fingerlings) + golden shiners (494 adults)g/ Bass (247 fry) + Gambusia (692 adults) $g /$	0.10 0.10	1	132 $170 \frac{h}{6} /$	AL AL	(as above) (as above)
$\begin{aligned} & \text { Bass (} 371 \text { fingerlings) + golden shiners } \\ & (4942 \text { adults })+\text { fathead minnows } \\ & (2471 \text { adults }) \end{aligned}$	Avg. of a number of ponds	1.5	398	MI	Ball and Ford (1953)

[^3]TABLE XXXVI

Pond number	Year							
	1	2		3		4		5
	Standing crop	$\begin{aligned} & \text { Standing } \\ & \text { crop } \end{aligned}$	Harvest	Standing crop crop	Harvest	Standing crop	Harvest	$\overline{\text { Standing }}$ crop
1	129	169	11	144	45	138	6	132
2	25	65	28	77	17	96	45	113
3	35	49	17	130	45	150	0	166
4	16	70	0	85	11	99	0	185
5	52	86	0	104	0	150	39	126
6	43	68	39	104	22	140	50	112

\footnotetext{
TABLE XXXVII
Average yield in $\mathrm{kg} / \mathrm{ha}$ of bass and channel catfish in fed and non-fed Alabama farm ponds (after Crance and McBay, 1966)

	Number of ponds	Total area of pond (ha)	Angling per ha (h)	First year harvest		Second year harvest	
					chamnel catfish		channel catfish
1236	11	13.6	174	8.7	62	-	-
1236	8	8.7	104	-	-	5.0	37
$4942 \mathrm{~b} /$	5	3.0	2165	12.2	753		
$4942 \mathrm{~b} /$	2	1.2	682	-	5	5.2	463
$7413 \mathrm{~b} /$	6	7.1	2649	4.4	597		
7413 /	5	3.9	1384	-	-	3.1	587

TABLE XXXVIII

Potential stocking combinations using hybrid sunfish and largemouth bass ENVIRONMENTAL SITUATION NO. 1

Pond 0.3 ha or more in size, contains no fish (new or reclaimed by poisoning), and wild fishes have no access. Overflow or spillway screened from 1 March to 1 July.

Stocking Recommendation No. 1

Species	$\begin{aligned} & \text { Size } \\ & \text { (mm) } \end{aligned}$	Fish/ha	
		fed	not fed
Largemouth bass	50-76	185	124
Bluegill x green sunfish F_{1} hybrid	50-102	3706	741
Redear x green sunfish \mathbb{F}_{1} hybrid	50-102	1236	494
Channel catfish	76-102	1236	247
Fathead minnow	adult	2471	2471

Fishing can be started during the second summer after stocking. In the autumn following stocking and each autumn or spring thereafter, add the following:

Bluegill x green sunfish F_{1} hybrid	102 and	1236	494
Redear x green sunfish F_{1} hybrid	above	102	371
Chanel catfish	$152-203$	494	247

Stocking Recommendation No. 2

Species	Size	(mm)
Male redear	adult	not fed
Female green sunfish	adult	12
Largemouth bass	$50-76$	12

In the third or fourth year repeat sunfish'stocking. These fish will not readily utilize artificial feed.

FINTRONMENTAL SITUATION NO。 2
Pond less than 0.3 ha in size, contains no fish (new or reclaimed by poisoning), and wild ishes have no access. Overflow or spillway screened from 1 March to 1 July.

Stocking Reconmendation No. 1

Species	Size (mm)	Fish/ha
Redean x green sunfish H_{1} hybrid	50 mot fed	
Lergemouth bass	$50-76$	1979

Stocking Recommendation No. 2

Species	$\begin{aligned} & \text { Size } \\ & (\mathrm{mm}) \end{aligned}$	$\frac{\text { Fish/ha }}{\text { fed }}$
Bluegill $\mathrm{x}^{\text {green sunfish } \mathrm{F}_{1} \text { hybrid }}$ Lergemouth bass	$\begin{aligned} & 50-76 \\ & 50-76 \end{aligned}$	$\begin{array}{r} 7413 \\ 185 \end{array}$

Based on preliminary work, Lewis and Heidinger (1973) have recommended further evaluation of the stocking combinations shown in Table XXXVIII.

7 POND FISH CULTURE

7.1 Use of cultured fish

At the present time most of the cultured largemouth bass are used for stocking. More than 42 million largemouth bass fingerlings were produced in U.S.A. federal and state fish hatcheries during 1967 (Snow, 1969). Usually when they are raised as a food fish, bass are used in polyculture schemes to prevent overpopulation by large forage organisms. As a frozen food product, bass can be kept for long periods because of the low fat content (Mraz, Kimiotek and Frankenberger, 1961). However, Snow and Lovell (1974) found that bass fed on OMP (see 7.2) had good texture and appearance, but were inferior in flavour to bass fed on forage fish. Chatfield (1940) reported the chemical composition of bass to be $980 \mathrm{cal} / \mathrm{kg}$ with 26.6 percent protein, 1.8 percent fat, 1.2 percent ash and 76.7 percent water. The dressed weight of largemouth bass is 44 percent of its whole body weight (Mraz, Kimiotek and Frankenberger, 1961). Goodyear and Boyd (1972) found that the elemental composition of bass did not vary with size and listed the various values as follows:

Element

Approximate $g / 100 g$
dry weight
Nitrogen Phosphorus
Sulphur
11.5
3.8

Calcium
6.5

Potassium
Sodium
Magnesium
mg dry weight

Iron	34
Manganese	5
Zinc	48
Copper	6

7.2 Procurement and maintenance of stock

Largemouth bass have been propagated since the late 1800s (Arnold and Iseac, 1882). Mature bass are either captured from the wild prior to spring spawning; or they are held in hatchery ponds. Initially they were maintained on fresh beef heart, liver or live forage fish such as goldfish (Carassius auratus) (Wiebe, 1935). Snow (1971a) found no difference in fecundity of age $I_{\text {, }}$ II and III largemouth bass raised on Oregon Moist Pellets (OMP) (Hublou, 1963) as
compared to those raised on a natural diet. Bass fed OMP averaged 84400 ($43400-125$ 800) ova/kg. Hatching success for these eggs ranged from 2.3 to 92 percent as opposed to 35 to 97 percent for bass fed on natural food. Five year old bass appear to be equal or superior to $1-4$ year old bass in egg: production. The number of eggs produced on a number/kg basis is less for age I bass then for older fish (Snow, 1973).

Snow (1970) estimated annual loss of brood fish to be $10-30$ percent. Brood bass larger than 2 kg are difficult to handle, thus he reoommends replacing 25-33 percent of the brood fish annually. Malformed individuals should be oulled.

The brood bass must be fed well in the late summer and autum before spring spawning. In order to ensure the development of a large egg mass, the brood fish should gain $50-100$ percent of their body weight amually (Snow, 1970).

7.3 Genetic selection of stock

The present author knows of no coefficients of hereditability for any desirable culture traits in largemouth bass. Bass that have been held under hatchery conditions for several generations appear. to learn to accept artificial feed better. In fish from the wild, Snow (1971b) concluded $60-65$ percent acceptance of OMP to be normal, whereas $90-95$ percent of bass from his hatchery strain accepted the feed. Similarly, Flickinger and Langlois (1975) found they could train 91 percent of the fry prom. duced by their hatchery brood fish, but only 58 percent of those produced from Lake St. Cleir brood fish could be trained.

Prather (1951) selectively bred bass for better food conversion on natural forage Thitial food conversion averaged $7.3 \mathrm{SD} \pm 1.12$; after 5 generations of selection the average was $3.4 \mathrm{SD} \pm 0.26$.

7.4 Induced spawning

(see endocrine systems and homones 3.44)
During the spawning season, Wilbur and Langford (1974) injected 50 male bass and 106 female bass with 4000 IU of human chorionic gonadotropir (HCG)/kg. Milt production was increased or main tained in 80 percent of the males and 63 percent of the females orulated. Ninety percent of the females which ovulated required only one injection. Most females orulated withim 48 h after injection. Ovulated eggs, if not stripped and fertilized. became nonviable within 12 to 16 h aftew ovulation. HCG concentrations greater than 4000 IU did not increase ovulation. The author confirmed Stevens? (1966) sindings.

By holding brood fish in indoor tanks at $17^{\circ} \mathrm{O}$. spawning was delayed several months (Brauhn, Holz and Anderson, 1972). Carlson (1973) raised bass

TABLE XXXIX

Production of 15-20 mm largemouth bass fry in fertilized spawning ponds

Hatchery	Pond area (ha)	No. of ponds	$\begin{gathered} \text { Brood fish/ } \\ \text { ha } \end{gathered}$	Brood fish size (kg)	Production/ha	Reference
Jasper, TX	-	1	- ${ }^{-1}$	-	336000	Wiebe (1935)
(as above)	0.12	1	$370 \frac{a}{} /$	2.3	867000	(as above)
(as above)	0.12	1	$370 \frac{a}{}$	1.8	470000	(as above)
(as above)	0.08	1	$556{ }^{\text {a// }}$	1.0	478000	(as above)
(as above)	0.12			0.8	314000	(as above)
Tishomingo, OK	0.30-0.68	4	235-1 100	-	average $179000 \mathrm{~d} /$ $(146000-240000)$	Topel (1949)
San Marcos, TX	0.50	1	$919 /$	-	(146000	Bishop (1968)
(as above)	0.40	1	99/	-	636000	(as above)
Gatliff, KY	0.60	1	203	0.3-1.2	950000	Clark (1950)

[^4]at $10^{\circ} \mathrm{C}$ in tanks. When subjectea to increasing length of day or a continuous 12 h day, the fish spawned on nylon mats when the water temperature was raised to $20^{\circ} \mathrm{C}$. At this temperature spawning took place within 39 days, in December, January, February, March, June and July. Hormones were not used:

7.5 Culture methods

7.5\% Extensive

Brood fish are placed in reaently filled ponds which are free of wild fish. Production of $15-20 \mathrm{~mm}$ fry commonly exceeds 500 000/ha (Table XXXIX). Fry are either left in the spawning ponds or they are moved to rearing ponds. The rearing ponds are usually fertilized to produce a zooplankton bloom. Ordinarily if a pond is used for spawning, it is not fertilized. Rogers (1968) found that in culture ponds bass less than 15 mm in length ate primarily oopepods and cladocerans while larger fish ate mostly midge larvae. There is considerable variation in the number of fingerlings produced; however, standing crops of $100 \mathrm{~kg} / \mathrm{ha}$ are conmon (Table XL). Much of the variation in these results is due to cannibalism. Because of cannibalism, it is biom logically and economically difficult to produce bass larger than 8 cm at practical population densities by the extensive method of culture. Marzolf (1954) stocked 9 clean ponds with $2470-8650$ fry/hao After 2 years the standing orop averaged $80(49-171) \mathrm{kg} / \mathrm{ha}$ of 17 cm fish. Survival averaged 32 (9-75) percent. Our laboratory has used nursery ponds to produce 25 cm bass. Production records for this work axe shown in Table XLI. Yields averaged. 368 fish/ha. Species of forage fish which appear to be well suited for propagation as bass food include goldfish, European oarp, fathead minnow, golden shinerg and Tilapia spp. (Snow 1970).

7. 52 Intensive

The intensive method of raising largemouth bass involves training them to accept artificial feed. The following procedure for intensively raising largemouth bass was developed by Jack Snow at the Marion, Alabama, National Fish Hatchery (Snow, 1970, 1971b, 1975).
A. Well fed male and female brood fish (see 7.2) are maintained in separate ponds for several weeks following normal time of spawning in order to avoid loss of eggs due to sudden drops in temperature.
B. Only ripe brood fish are moved into the unfertilized spawning pond (185 small or 94 large brood fish/ha). A stocking ratio of 3 males to 2 females is recommended.
C. Spawning may be on natural substrate, but a nylon spawning mat can be used (Chastain and Snow, 1966). The number of fry produced/ha should range from 250000 to 370 000.
a. If no spawning mats are used the eggs are allowed to hatch and the $10-15 \mathrm{~mm}$ fry are moved to nursery ponds by trapping or seining. They are graded and stocked 123 000-185 000 fry $/ \mathrm{ha}$) in nursery ponds which have been fertilized to produce large numbers of zooplankters. Before stocking, the fish may be treated for disease (see 7.6). In approximately 30 days the bass will reach $30-40 \mathrm{~mm}$ with 75-90 percent survival and a total standing crop of $84-100 \mathrm{~kg} / \mathrm{ha}$ 。Some selected production values are given in Table XL。
TABLE XL
Production of fingerling largemouth bass in fertilized rearing ponds stocked with $15-20 \mathrm{~mm}$ fry (except where footnoted)

[^5]TABLE XLI
Largemouth bass harvest from nursery ponds on the Crab Orchard National Wildlife Refuge, Williamson County, Illinois, in the winter of 1974-1975 a/

Pond number	Area (ha)	Number of fingerlings stocked	Number harvested	Recovery $\%$	Size TL (cm)
1	0.8	600	227	38	$20-28$
2	1.2	500	367	73	$18-28$
3	1.0	550	197	36	$25-30$
4	2.2	400	198	70	$18-30$
5	4.9	200	363	40	$15-25$
6	1.7	900	$20-30$		

a/ All ponds were renovated in the spring of 1974 with rotenone and stocked with adult golden shiners, fathead minnows and lake chubsuckers at a rate of $5 \mathrm{~kg} / \mathrm{ha}$ bf each plus 5 pairs of adult threadfin shad/ha
b. Many types of substrates can be used for a spawning mat. These include nylon, conservation webbing, rock, and Spanish moss. A mat size of $7 \mathrm{~cm} \times 15 \mathrm{~cm}$ is sufficient (Chastain and Snow, 1966). At the stocking rate for brood fish given above, 77 mats/ha should be used. The mats are most effective in ponds having a silt or mud bottom. Some success has been obtained in transferring the mats with eggs to a rearing pond and allowing the eggs to hatch (Chastain and Snow, 1966). Carlson (1973) hatched bass eggs on a mat in tanks with running water. If this method is used it is probably desirable to use a porous spawning substrate such as Spanish moss and to elevate the mat at least 10 cm off the bottom of the pond, tank or raceway (F. Leteux, personal communication).

The eggs can be washed from the nylon mat and incubated in Downing type hatching jars (Chastain and Snow, 1966) or a Heath Vertical Incubator (Snow, 1973). An $81 / \mathrm{min}$ flush is required. Snow (1973) obtained 2714000 eggs from 563 brood fish in seven 0.04 ha brood ponds. Approximately 22 percent of the eggs were not fertilized, but total hatching success was 58 percent.

If a Heath Incubator is used, a fine mesh screen is necessary. A standard tray will hold approximately 50000 eggs. The eggs should be washed and cleaned of debris before being placed in the incubator. They can be enumerated by the settled volume method. Snow (1973) found 1 ml (settled volume) equaled 281 eggs.

If the eggs are to be removed, the spawning mats should be checked each morming. If eggs are too old when separated, the stress of removal causes premature hatching. At a water temperature of $19^{\circ} \mathrm{C}$ the mats should be moved on the second day, at $19-22^{\circ} \mathrm{C}$ the day following observation, and at temperatures above $23^{\circ} \mathrm{C}$ the afternoon of the day observed. The mats should be moved in a tub of water (Snow, 1973).

Fry should be stocked in nursery ponds at 100 000-200 000/ha. Snow (1970) has found that enumeration by the pan comparison method is 90 percent accurate.
D. Regardless of the culture method used, after the fish reach $30-40 \mathrm{~mm}$ in the nursery ponds they are seined, graded, treated for disease and transferred to tanks or raceways to be trained to accept artificial food (non-living). Very poor survival (usually less than 10 percent) is attained when one attempts to train $10-25 \mathrm{~mm}$ bass to accept artificial food (Snow, 1960). Apparently a moist pellet is required. One of the best commercially prepared feeds for training bass is the Oregon Moist Pellet (OMP) (Snow, 1968a; Hublou, 1963). However, this type of pellet must be stored frozen. Bass can be trained to feed on ground fish, beef liver, etc., or a mixture of ground fish and artificial food. Care must be taken to prevent thaimine deficiency (Snow, 1965).

In order to train bass they must be concentrated. Snow (1975) recommends training for $10-14$ days in tanks stocked at $0.07-0.18 \mathrm{~kg} /$ 28.3 1. However, Flickinger and Langlois (1975) have trained at densities of $1.36 \mathrm{~kg} /$ 28.31 with 91 percent of the bass leaming to accept the food. Typically within 14 days 65-75 percent of the bass will learm to take the artificial feed.
TABLE XLII
Production of fingerling largemouth bass on artificial feed in rearing ponds stocked with $38-51$ man bass

Fatchery	Pond area (ha)	Number ponds	Number stocked/ha			Recovery $\%$		$\begin{gathered} \text { roduction } \\ \mathrm{kg} / \mathrm{ha} \end{gathered}$	Number/kg	Food conversion	Days stocked	Reference
Marion, AJ,	0.03-0.28	8		300-75		$\begin{aligned} & \text { avg。 } 75 \\ & (58-93) \end{aligned}$	1	223-2 661	13.9-22.7	$2.50-3.67$	100	Snow (1971b)
$\text { Marion, } \mathrm{AL}^{\mathrm{b}} /$	0.04	20		400-73		$\begin{aligned} & \text { avg. } 78 \\ & (53-98) \end{aligned}$	2	107-4 990	$\begin{aligned} & \text { avg. } 11.1 \\ & (6.4-19.6) \end{aligned}$	1.43-1.85	100	(as above)
Marion, AL	0.04-0.44	14		800-66		$\begin{aligned} & \text { avg. } 80 \\ & (55-11 \dot{2}) \end{aligned}$	2	230-8 011	$\begin{aligned} & \text { avg. } 9.4 \\ & (7.0-12.1) \end{aligned}$	1.13-1.59	100	(as above)
Marion, AL ${ }^{\text {a/ }}$	0.04-0.20	10		400-53		$\begin{aligned} & \text { avg. } 56 \\ & (39-87) \end{aligned}$		925-2 564	$\begin{aligned} & \text { avg. } 13.2 \\ & (7 \cdot 3-18.3) \end{aligned}$	$3.7-5.7$	81-97	Snow (1968b)
Inks Dam, TX	0.10-0.36	3		200-48		74-84	3	227-6 339	. $5.1-6.4$	avg. 1.22	148	McCraren (1974)
Ft. Worth, $T \mathrm{XX}^{\text {/ }}$	0.20-0.26	3		200-39		40-75	1	508-5 880	5.1-5.3	avg. 1.37	130	(as above)
Tishomingo, $\mathrm{OK}^{\text {(}}$	0.32	2		400-30		52-55		560-894	14.3-18.9	avg. 3.57	99-150	(as above)

[^6]TABLE XLIII
Treatments for control of various parasites of bass under hatchery conditions. (Except where footnoted these are recommendations by the author cited and no experimental data were presented)

Parssite or disease	Chemical	Treatment	Reference
Heemorrhagic septicemia	Oxytetracycline	Inject $50-75 \mathrm{mg}$ active $/ \mathrm{kg}$ bass	Snow (1970)
Prophylactic	(as above)	In food $3 \mathrm{~g} / 45 \mathrm{~kg}$ fish/day for $7-10$ days before moving	Snow (1971a) McCraren (1974)
(as above)	Acriflavine	2 ppm when transporting	Snow (1971b)
Prophylactic for fungus	(as above)	```Bass eggs 50 ppm for 15 min```	Snow (1973)
(as above)	Phridylmercuric actetate	Bass fry 2 ppm for 1 h	Snow (1961)
(as above)	Formalin	Bass fry 1:4000 for 1 h	(as above)
(as above)	Potassium permanganate	Bass fry 10 ppm for $30-60 \mathrm{~min}$	(as above)
(as above)	Simazine	$11.2 \mathrm{~kg} / \mathrm{ha}$ preflooded spawning pool	Snow (1975)
Trichodina	Formalin	In pond 25 ppm	Snow (1973)
Flexibacter	Acriflavine	5 ppm 4 h or 2 ppm continuous	Snow (1970)
(as above)	Sodium chloride	1% for 5-6 h	Nelson, Bowker and Robinson (1974)
(as above)	Combiotic	8 ppm 24 h	(as above)
(as above)	Copper sulfate	$1-2 \mathrm{ppm}$ for 1 h	(as above)
Bacteria	Potassium permanganate	2 pprn in pond	McCraren (1974)
(as above)	Copper sulfate	0.5 ppm in pond	(as above)
External protozoa or fungi.	Sodium chloride	1% for 6 h	Nelson, Bowker and Robinson (1974)
$\frac{\text { Proteocephalus }}{\text { ambloplitis }}$	Kamla	$\begin{gathered} 200 \mathrm{mg} / 0.45 \mathrm{~kg} \text { for } \\ 3 \text { days orally } \end{gathered}$	Snow (1970)
$\frac{\text { Corallobothrium }}{\text { Alloglossidium }}$	Di-n-butyl	$150 \mathrm{mg} / \mathrm{kg}$ for 7 days orally	Allison (1957)
Tadpole shrimp Apus fairy shrimp Streptocephalus	Dylox	0.25 ppm in pond	Hornbeck, White and Meyer (1966)
Aeromonas	Acriflavine	$\begin{aligned} & \text { Bass eggs } 500-700 \mathrm{ppm} \text { for } \\ & 15 \mathrm{~min} \end{aligned}$	Wright and Snow (1975)
(as above)	$\begin{aligned} & \text { Betadine }(150 \mathrm{ppm} \\ & \text { active } \left.\mathrm{I}_{2}\right) \end{aligned}$	Bass eggs 100 ppm for 15 min	(as above)
(as above)	$\begin{aligned} & \text { Wescodyne }(150 \\ & \text { ppm active } \left.I_{2}\right) \end{aligned}$	$\begin{aligned} & \text { Bass eggs } 100 \mathrm{ppm} \text { for } \\ & 15 \mathrm{~min} \end{aligned}$	(as above)
(as above)	Merthiolate	$\begin{aligned} & \text { Bass eggs } 750 \mathrm{ppm} \text { for } \\ & 15 \mathrm{~min} \end{aligned}$	(as above)

Feeding is initiated the day after the fish are stocked in the training tank. A $16-24 \mathrm{~mm}$ pellet is fed at 1-2 h intervals during the daylight hours. The daily ration should be about 15 percent of body weight of the fish. Cannibalism is not a problem at this time but the effect of attempted cannibalism needs further investigation. Nelson, Bowker and Robinson (1974) noted increased training success with water temperatures near $26^{\circ} \mathrm{C}$ (76 percent) against lower temperatures (30 percent). Waste material must be siphoned from the bottom of the training tank daily, and sufficient freshwater flush must be used to maintain good water quality.
E. The trained fish can be stocked in raceways, tanks, cages or ponds. Snow (1965) raised bass in troughs at densities of $645 \mathrm{~g} / 28.31$. This was equivalent to $113 \mathrm{~g} / \mathrm{l} / \mathrm{min} \mathrm{flush}$ with a tumover rate of $3-7 \mathrm{~h}$. Nelson, Bowker and Robinson (1974) maintained bass at $336 \mathrm{~g} / 28.31$ with a $28 \mathrm{l} / \mathrm{min} \mathrm{flush}$ and a turnover rate of 48 min . The fish were graded to reduce cannibalism, survival was 33 percent.

Snow and Wright (1975) stocked 302-404 fish ($11.5 \mathrm{~cm}, 15 \mathrm{~g}$) in $0.66 \mathrm{~m}^{3}$ cages having a mesh size of either 0.64 cm or 1.27 cm . These fish were fed on OMP for 2 months. Survival was $98-99$ percent with food conversions of 1.46-2.41. The maximum loading was $39 \mathrm{~kg} /$ cage. Growth was similar to bass stocked in open ponds at 50 000/ha.

The procedure which has been best evaluated is to stock the trained bass in ponds at 25 000-50 000/ha (Table XLII). Since food is supplied, production often exceeds $2000 \mathrm{~kg} / \mathrm{ha}$. The fish are fed at 15 percent of body weight for several weeks, after which the rate is dropped to 5 percent for one month followed by a 3 percent rate.

Pellet size should be increased as the fish grow. Oxygen depletion frequently occurs when feeding rates exceed $20 \mathrm{~kg} / \mathrm{ha}$ (Snow 1971). In fish larger than 27 cm food conversion is typically in the order of 3.0 (Snow 1975; Lewis, Heidinger and Konikoff; 1969).

7.6 Disease and parasite control

A number of chemicals and procedures for treatment are recommended in the literature (Table XLIII), but there are few studies which give both qualitative and quantitative data.

7.7 Harvest

Fry are harvested with a fine mesh seine or a fry trap. Hayford (1948), Severson. (1963) and Snow (1970) described fry trap designs and use. In general, the bass tend to swim around the spawning pond in a school. Guides made of screen, glass, or plexiglass divert the bass into the V-shaped trap entrance. The trap may have an opening at both.ends. A flow of water through the trap enhances its effectiveness. The trap may also be used by directing the flow of water through it, in which case the fish are concentrated and directed into the trap as a result of their response to the flowing water.

Largemouth bass fingerlings are harvested with a seine.

7.8 Transport

Bass should be held for 24 h after harvesting before being transported. It is preferable to transfer bass at water temperatures of $15^{\circ} \mathrm{C}$ or less. Snow (1970) recommends hauling densities of $0.06-0.12 \mathrm{~kg} / 1$ of water. McCraren (1974) has transported bass at $0.25 \mathrm{~kg} / \mathrm{l}$ of water for up to 11 h 。

8 REFPRENCRS

Agassiz, L., Notice of a collection of fishes from the southern bend of the Tennessee River, Alabama. 1854 AmoJ.Sci.Arts. 17(2):297-369

Aggus, L.R. and G.V. Elliott, Effects of cover and food on year-class strength of largemouth bass. 1975 In Black bass biology and management, edited by H. Clepper. Washington, D.C., Sport Fishing Institute, pp. 317-22

Allan, R.C. and J. Romero, Underwater observations of largemouth bass spawing and survival in 1975 Lake Mead. In Black bass biology and management, edited by H. Clepper. Washington, D.C., Sport Fishing Institute, pp. 104-12

Allen, E.R. and W.T. Neil, A xanthic largemouth bass (Micropterus) from Florida. Copeia, 19.53(2):116-7 1953

Allison, L.N., Horse liver as the causative factor in white blindness of hatchery brook trout. 1951 Trans.Am.Fish.Soc., 80(1950):140-7

Allison, R., A preliminary note on the use of Di-N-butyl tin oxide to remove tapeworms from fish. 1957 Prog.Fish-Cult.0, 19(3):128-30

Allison, R. and H.D. Kelly, Ancepizootic of Ichthyophthirius multifilis in a river fish population. 1963 Prog。Fish-Cult., 25(3):2

Al-Saadi, Abdul-Amir M., The micro and gross osteology of the largemouth bass, Micropterus salmoides 1962 (Lacepede), with special reference to the non-cellular bone. Ph.D. Thesis, University of Michigan, Ann Arbor, 131 p.

Anderson, R.O., Influence of mortality rate on production and potential sustained harvest of largemouth 1974 bass popuiations. In Symposium on overharvest and management of largemouth bass in small impoundments. Spec.Publ.Am.Fish.Soc.North Cent.Div., (3):18-28

Factors incluencing the quality of.largemouth bass fishing. In Black bass biology and 1975 management, edited by H. Clepper. Washington, D.C., Sport Fishing Institute, pp. 183-94

Applegate, R.L.g Pyloric caeca counts as a method for separating the advanced fry and fingerlings of 1966 largemouth bass and spotted basses. Trans.Am.Fish.Soc., 95(2):226

Amold, Jr. and Major Isaac, Successful propagation of black bass. Bull.U.S.Fish Commo, (2):113-5 1882

Badenhuizen, T.R., Effect of incubation temperature on mortality of embryos of the largemouth bass, 1969 Micropterus salmoides (Lacepède). MoS Thesis, Comell University, Ithaca, 88 p.

Bailey, R.M. and C.L. Hubbs, The black basses (Micropterus) of Florida, with description of a new 1949 species. Occas. Pap.Univ.Mich.Mus.Zool., (516):43 p.

Baird, S.F. and C. Girard, Description of new species of fishes collected in Texas, New Mexico and 1854 Sonora, by Mr. John H. Clark, on the U.S. and Mexican Boundary Survey, and in Texas, by Capt. Van Vliet, U.S.A. Proc.Acad.Nat.Sci.Philad., (7):24-9

Beker, W.D., A study of the chromosome numbers of some centrarchid fishes. M.S. Thesis, North 1956 Carolina State College, Raleigh, 42 p.

Ball, R.C., Farm pond management in Michigan. J.Wild..Manage., 16(3):266-9 1952

Ball, R.C. and J.R: Ford, Production of foodfish and minnows in Michigan ponds. Q.Bull.Mich.Agric. 1953 Exp.Stn., $35(3): 384-91$

Ball, R.C. and H.D. Tait, Production of bass and bluegills in Michigan ponds. Tech.Bull. Mich.State 1952 Coll.Agric.Exp.Stn., (231):24 p.

Bangham, R.V., Life history of the bass cestoda (Proteocephalus ambloplitis). Trans.Am.Fish.Soc. 1927 (57):206-8

Barry, J.J., Evaluation of creel census, rotenone embayment, gill net, traps and electrofishing geax 1967 samples, by complete drainage of Lenape and Bischoff reservoirs. Indiana Department of Natural Resources Division of Fish Geme, Fisheries Research Section, 18 p.

Bartholomew, J.P., Stream and lake improvement: Evaluation of cover retention as related to angling 1972 quality in Lake McClure (New Exchequer Reservoir), Maripose County, California. California Department of Fish and Game, ($\mathrm{F}-004-\mathrm{D}-18 / \mathrm{SP}$): 9 p .

Beamish, F.W.H., Oxygen consumption of largemouth bass, Micropterus salmoides, in relation to swimming 1970 speed and temperature. Can.J.Zool., 48(6):1221-8 , Ration, size and digestion in largemouth bass, Micropterus salmoides Lacepède. Can.J. 1972 Zool., $50(2): 153 \cdots 64$

Becker, C.D. and W.D. Brunson, The bass tapeworm: a problem in northwest trout management. Prog. 1968 Fish-Cult,., 30(2):76-83

Becker, D.A., R.G. Heard and P.D. Homes, A preimpoundment survey of the helminth and copepod parasites 1966 of Micropterus spp. of Beaver Reservoir in northwest Arkansas. Trans.Am,Fish.Soc., 95(1):23-34

Beckman, W.C., The rate of growth and sex ratio for seven Michigen fishes. Trans.Am.Fish.Soc., 1949 76(1946):63-81

Bennett, C.D. and B.E. Brown, A comparison of fish population sampling techniques on Lake Raymond Gary, 1969 Oklahoma. Proc.Annu.Conf.Southeast.Assoc. Game Fish Commo, 22(1968):425-44

Bennett, D.H. and J.W. Gibbons, Reproduction cycles of largemouth bass (Micropterus salmoides) in a 1975 cooling reservoir. Trans.Am.Fish.Soc., 104(1):77-82

Bennett, G.W., The bass-bluegill combination in a small, artificial lake. Bull. Ill.Net. Hist.Survo. 1948 (24):377-412 1954 (26):219-76 $1962-283 \mathrm{p}$.
\qquad , Management of lakes and ponds. New York, Van Nostrand Reinhold Co., 375 p. 1971

Bennett, G.W. and L. Durham, Cost of bass fishing at Ridge Lake, Coles County, Illinois. Biol.Notes 1951 Ill.Nat.Hist.Surv. (23):16 p.

Bennett, G.W., H.W. Adkins and W.F. Childers, Largemouth bass and other fishes in Ridge Lake, 1969 Illinois, 1941-1963. Bull.Ill.Nat.Hist.Survo, 30(1):1-67

Benson, N.G., Fish management on Wood's Reservoir. J.Tenn.Acad.Sci.: 34(3):172-89 1959

Berg, L.S., Classification of fishes both recent and fossil. Ann Arbor, Michigan, J.W. Edwards, 1947517 p.

Berger, B.L., R.E. Lennon and J.W. Hogan, Laboratory studies on antimycin as a fish toxicant. 1969 Invest.Fish Control U.S.Bur.Sport Fish.Wildle. (26):21 p.

Beverton, R.J.H. and S.J. Holt., On the dynamics of exploited fish populations. Fish.Invest.Minist. 1957 Agric. Fish Foode G.Bos (2) (19):533 p.

Bishop, H., Largemouth bass culture in the southwest. In Proceedings of the North Central warmwater 1968 fish culture workshop. Ames, Iowa, p. 24-7

Blondin, $G_{0} A_{0}$ et $\frac{\text { alo, }}{}$, The biosynthesis of squalene and sterols in fish. Comp. Biochem. Physiol., 1966 17(2):391-407 :.

Bond, C. Fish management problems of Lake of the Woods, Oregon. M.S. Thesis, Oregon State College, 1948 Corvallis, 107 p.

Bond, C. et ai., Determination of fish species and management practices best suited to farm ponds in 1958 Oregon. Progr.Rep.Oregon Agric.Exp.Stn.Proj., (294):27 p.

Bom, E.W., Experimental collecting techniques. Texas Parks and Wildlife Department, (F-008-R-13/wkpl 1967 E/Job 03):27 p.

Bottroff, L.J., Intergradation of Florida bass in San Diego County. M.S. Thesis, San Diego State 1967 College, San Diego, 131 po.

Bouck, G.R. and R.C. Ball, Influence of a diurnal oxygen pulse on fish serum proteins. Trans.Am. Fish. 1965 Soc: $94(4): 363-70$ $1967-24(3): 695-7$

Branson, B.A. and G.A. Moore, The lateralis components of the acoustico-lateralis system in the 1962 sunfish family Centrarchidae, Copeia, 1962(1):1-104

Brauhn, J.L. and RoN. Ray, Bacteria associated with redear sunfish mortality. Prog.Fish-Cult., 1970 32(2):80

Brauhn, J.L., Do Holz and R.O. Anderson, August spawning of largemouth bass. Prog.Fish-Cult., 1972. $34(4): 207-9$

Breder, C.Mo, Jro, The reproductive habits of the North American sunfishes (family Centrarchidae). 1936 Zoologica, (21):1-48

Bridges, W.Ro, Sodium cyanide as a fish poison. Spec.Sci.Rep.USFWS, (253):11 p. 1958

Bross, M.G., Fish samples and year-class strength (1965-1967) from Canton Reservoir, Oklahoma. Proc. 1967 Okla.Acad.Scio, (48):194-9

Brown, B. E. and N.A. Thoreson, Ranch fish ponds in Montana. J.Wildl.Manage., 16(3):275-8 1952

Brown; C̄.J.D. and R.C. Ball, A fish population study of Third Sister Lake. Trans.Am.Fish.Soc., 1943 (72):177-86

Brown, FoAe, Jro, Responses of the largemouth black bass to colors. Bull.Ill.Nat. Hist.Survo, 1937 (21):33-55

Brown, W.H., Results of stocking largemouth black bass and channel catfish in experimental Texas 1951 farm ponds. Trans.Am.Fish.Soc., $80(1950): 210-7$

Bryan, C.F., Variation in selected meristic characters of some basses, Micropterus. Copeia, 1969 1969 (2):370-3

Bryant, H.E. and A. Houser, Population estimates and growth of largemouth bass in Beaver and Bull Shoals 1971 reservoirs. Spec.Publ.Am.Fish.Soc.: (8):349-57

Buchanan, J.P., A meristic and morphometric comparison of Arkansas largemouth bass, Micropterus 1968 salmoides salmoides (Lacepede), and the Florida subspecies, Micropterus salmoidesfloridanus (LeSueur). M.S. Thesis, University of Arkansas, Fayetteville, 45 p.

Buck, D.H., Effects of turbidity on fish and fishing. Trans.North Am.Wildl.Confe, (21):249-61 1956

Buck, D.H. and F. Cross, Early limnological and fish population condition of Canton Reservoir, 1952 Oklahoma, and fishery management recommendations. Report to Oklahoma Fish and Game Council. Research Foundation, Oklehoma A\&M College, 110 p.

Buck, D.H. and C.F. Thoits, Dyamics on one-species populations of fishes in ponds subjected to 1970 cropping and additional stocking. Bull. Ill.Nat.Hist.Survo, (30):69-162

Burress; R.M., Enhancing bass production by the use of fish toxicants. In Black bass biology and 1975 management, edited by H. Clepper. Washington, D.C., Sport Fishing Institute, p. 480-8

Byrd, I.B. and D.D. Moss, The production and management of Alabama's state-owned public fishing lakes. 1957 Trans.Am.Fish.Soc., 85(1955):208-16

Cady, E.R., Fish distribution, Norris Reservoir, Tennessee, 1943. 1. Depth distribution of fish in 1945 Norris Reservoir. J.Tenn.Acad.Sci., 20(1):103-14

Caldwell, D. et al., Populations of spotted sunfish and Florida largemouth bass in a constant1957 temperature spring. Trans.Am.Fish.Soc., 85(1955):120-34

Carlander, K.D., The standing crop of fish in lakes. J.Fish.Res.Board Can., (12):543-70 1955

Some experiments in changing population balance in farm ponds. Prog. Fish-Cult.,
$1957(2): 92-4$
Carlander, K.D. and R.B. Moorman, Standing crops of fish in Iowa ponds. Proc.Iowa Acad.Sci., 1956 (63):659-68

Carlson, A.R., Induced spawning of largemouth bass (Micropterus salmoides). Trans.Am.Fish.Soc., 1973 102(2):442-4

Carlson, C.A. and M.H. Schealy, Marking larval bass with radio-strontium. J.Fish.Res.Board Can., 1972 29(4):455-8

Carr, M.H., The breeding habits, embryology, and larval development of the largemouthed black bass 1942 in Florida. Proc.New England Zool.Club, (20):43-77

Carter, B.T., Growth of three centrarchids in Lake Cumberland, Kentucky. Ky.Fish.Bull., (44):31 p. 1967

Chastain, G.A. and J.R. Snow, Nylon mats as spawning sites for largemouth bass Micropterus salmoides 1966 Lacepède. Proc.Annu.Conf.Southeast.Assoc.Game Fish Comm., 19(1965):405-8

Chatfield, R., Proximate composition of American food materials. Circ.U.S.Dep.Agric., (549) 1940

Chew, RoL., Early life history of the Florida largemouth bass. Fish.Bull.Fla.Game Fresh Water Fish 1974 Commo, (7):76 p.

Childers, W.F., Hybrid sunfish studies. In Water resources research catalogue, Vol. 4. Washington, 1968 D.C., U.S. Department of the Interior, Office of Water Resources Research, Item 6.0195
, Bass genetics as applied to culture and management. In Black bass biology and 1975 management, edited by H. Clepper. Washington, D.C., Sport Fishing Institute, pp. 362-72

Childers, WoF. and G.W. Bennett, Hook-and-line yield of largemouth bass and redear x green sunfish 1967 hybrids in a one-acre pond. Prog. Fish-Cult., 29(1):27-35

Childers, W.F. and G. Whitt, Isozyme differences in largemouth bass subspecies. Proc.Midwest Fish 1974 Wildl.Conf., (36) (Abstr.)

Davis, J.T. and J.S. Hughes, Effects of standing timber on fish populations and fisherman success in 1971 Bussey Lake, Louisiana. Spec.Publ.Am.Fish.Soc., (8):255-64

Dean, J.M. and C.J. Goodnight, A comparative study of carbohydrate metabolism in fish as affected by 1964 temperature and exercise. Physiol.Zool., (37):280-99

Dendy, J.S., Further studies on depth distribution of fish, Norris Reservoir, Tennessee. J.Tenn. 1946 Acad.Sci., 21(1):94-104

Denyes, H.A. and J.M. Joseph, Relationship between temperature and blood oxygen in the largemouth bass. 1956 J.Wild..Manage., $20(1): 56-64$

Dequine, J.F. and C.E. Hall, Jr., Results of some tagging studies of the Florida largemouth bass 1950 Micropterus salmoides floridanus (LeSueur). Trans.Am.Fish.Soc., 79(1949):155-66

DeRyke, W., Fish foods in relation to fish culture. Proc.Iowa Acad.Sci., (30):163-6 1923

Dietz, E.M.C. and K.C. Jurgens, An evaluation of selective shad control at Medina Lake, Texas. 1963 Texas Parks Wildlife Department (1F Rep.5):1-32

Dillard, J.G. and G. Novinger, Stocking largemouth bass in small impoundments. In Black bass biology 1975 and management, edited by H. Clepper. Washington, D.C., Sport Fishing Institute, pp. 459-74

Driscoll, D.F., Sexing the largemouth bass with an otoscope. Prog.Fish-Cult.; 31(3):183-4 1969

Dubets, H., Feeding habits of the largemouth bass as revealed by a gastroscope. Prog. Fish-Cult., 1954 (16):134-6

Dudley, R.G., Survival of largemouth bass embryos at low dissolved oxygen concentrations. M.S. Thesis, 1969 Cornell University, Ithaca, New York, 61 p.

Dudley, R.G. and A.W. Eipper, Survival of largemouth bass embryos at low dissolved oxygen concentrations. 1975 Trans.Am.Fish.Soc., 104(1):122-8

Dukes, G.H., R.M. Shealy and W.A. Rogers, Sebekia oxycephala (Pentastomida) in largemouth bass from 1971 Lake St. John, Concordia Parish, Louisiana. J.Parasitol., 5(5):1028

Eaton, T. F., Notes on the olfactory organs in Centrarchidae. Copeia, 1956(3):196-9 1956

Eckblad, J.W. and M.G. Shealy, Jr., Predation on largemouth bass embryos by the pond snail Viviparus 1972 georgianus. Trans.Am.Fish.Soc., 101(4):734-8

Eddy, S. and T. Surber, Northern fishes with special reference to the Upper Mississippi Valley. 1947 University of Minnesota Press, Minneapolis, Minnesota, 276 p.

Edwards, J.L. and J.D. Higgins, The effects of electric currents on fish. Atlanta, Georgia Institute 1973 of Technology, Engineering Experimental Station, Final report, Projects B-397, B-400 and E-200-301, 75 p.

Eipper, A.W. and J.L. Forney, Evaluation of partial fin clips for marking largemouth bass, walleyes 1965 and rainbow trout. N.Y. Fish Game J., 12(2):233-40

Elder, D.E., Reproduction of fish subjected to electric current. Prog.Fish-Cult., 16(3):130 1954

Elder, D.E. and W.M. Lewis, An investigation and comparison of the fish populations of two farm ponds. 1955 Am.Midl.Nat., 53(2):390-5

Elkin, R.E., An estimate of the fish population of a 16 acre lake based on recovery during draining. 1955 Proc.Okla.Acad.Sci., (36):53-9

Elrod, J.H., Dymamics of fishes in an Alabama pond subjected to intensive angling. Trans.Am.Fish.Soc., 1971 100(4):757-68

Elser, H.J., Escape of fish over spillways: Maryland, 1958-1960. Proc.Annu.Conf.Southeast.Assoc.Game 1961 Fish Comm, 14(1960):174-85

Emig, J.W., Largemouth bass. In Inland fisheries management, edited by A. Calhoun. Sacramento, 1966 California Department of Fish and Game, pp. 332-53

Erdman, D.S., Inland game fishes of Puerto Rico. San Juan, Department of Agriculture, 96 p. 1972

Eschmeyer, R.W., Growth of fishes in Norris Lake, Tennessee. J.Tenn.Acad.Sci., 15(3):329-41 1940

1942 J.Tenn.Acad.Sci., $17(1): 90-115$
Eschmeyer, R.W. and A.M. Jones, The growth of game fishes in Norris Reservoir during the first five 1941 years of impoundment. Trans.North Am.Wildl.Conf., (6):222-40

Evans, $I_{0} M_{0}$ Rates of growth of game and pan fishes in Ohio, their practical interpretation and some 1948 technical problems involved. Ohio Conservation Commission (mimeo)

Farabee, G.B., Factors influencing the vulnerability of largemouth bass to angling and the comparative 1970 leaming ability of selected fishes. M.S. Thesis, University of Missouri, Columbia, 35 p .

Fast, A.W., Stream and lake improvement: Fisheries management of El Capitán Reservoir, San Diego 1965 County, California, 1960-1962. Sacramento, California Department of Fish and Game ($\mathrm{F}-004-\mathrm{D}-11 / \mathrm{SP}$): 29 p .

Fellman, Wo, Der Forellenbarsch. Allg.Fisch.Ztg., (55):80 1930

Ferguson, R.G., The preferred temperature of fish and their midsummer distribution in temperate lakes 1958 and streams. J.Fish.Res.Board Cane, 14(4):607-24

Fetterolf, C. de la Mesa, Jr. ${ }^{\text {A }}$ A population study of the fishes of Wintergreen Lake, Kalamazoo County, 1952 Michigan. With notes on movement and effect of netting on condition. M.S. Thesis, Michigan State College, 127 p.

Fieldhouse, R.D., Results of stocking largemouth bass in Nassau Lake. N. Y.Fish Game J., 18(1):68-9 1971

Flickinger, S.A. and D.L. Langlois, Feeding artificial diets to smallmouth bass and to largemouth 1976 bass. Presented at the American Fisheries Society, National Fish Culture Workshop, Springfield, Missouri, 12 p. (mimeo)

Follis, B.J., Fi.sh stocking evaluation. Texas Parks Wildife Department, (F-005-R-19/Job 14):8 p. 1972

Fore, P.Lro, Responses of freshwater fishes to artificial light. Ph.D. Thesis, Southern Illinois 1969 University, Carbondale, 86 p.

Fowler, H.W., Studies of Hong Kong fishes. Hong Kong Nat., Suppl. (6):23-4 1938

Fox, A.C., Effects of traditional farvest regulations on bass populations and fishing. In Black 1975 bass biology and management, edited by H. Clepper. Washington, D.C., Sport Fishing Institute, pp.|392-8
Frey, D.G., The fishes of North Carolina's Bay Lakes and their intraspecific variation. J.Elisha 1951 Mitchell Sci.Soc., 67(1):1-44

Fuhrman, F. et al., The metabolism of the excised brain of the largemouthed bass (Huro salmoides) at 1944 graded temperature levels. Physiol.Zool.9 (17):42-50

Gaines, J.L., Jr., F.J. Ware and W.A. Rogers, A summary of findings on the nematode, Goezia sp. in the 1973 Southeastern United States. Proc.Annu.Conf.Southeast.Assoc.Game Fish Comme, 26(1972):334-75

Gammon, J.R. and A.D. Hasler, Predation by introduced muskellunge on perch and bass. 1. Year 1-5. 1965 Trans.Wisc.Acad.Sci.Arts Lett., (54):249-72

Garlick, T., A treatise.on the artificial propagation of certain kinds of fish, with the description 1857 and habits of such kinds as are the most suitable for pisciculture. Cleveland, 142 p.

Gasaway, C.R., Estimating the costs of sustained stocking of northern Great Plains reservoirs. In 197.1 Proceedings of the North Central Warmwater Fish Culture-Management Workshop, Iowa State University, Ames, pp. 65-83

Geldern, C.E. von, Abundance and distribution of fingerling largemouth bass, Micropterus galmoides, as 1971 determined by electrofishing, at Lake Nacimiento, California, CalifoFish Game, 57(4):228-45

Geldern, C.E. von and D.F. Mitchell, Largemouth bass and threadfin shad in California. In Black bass 1975 biology and management, edited by H. Clepper. Washington, D.C., Sport Fishing Institute, pp.436-49

Gibbons, J.W., J.T. Hook and D.L. Forney, Winter responses of largemouth bass to heated effluent from 1972 a nuclear reactor. Prog. Fish-Cult. $34(2): 88-90$

Glass, N.R., The effect of time of food deprivation on the routine oxygen consumption of largemouth 1968 black bass (Micropterus salmoides). Ecology, 49(2):340-3

Goodyear, C.P., A simple technique for detecting effects of toxicants or other stresses on predatory... 1972 prey interaction. Trans.Am.Fish.Soc., 11(2):367-70

Goodyear, C.P. and C.E. Boyd, Elemental composition of largemouth bass (Micropterus salmoides). 1972 Trans.Am。Fish.Soc., 101(3):545-7

Graham, L.K.g Effects of four harvest rates on pond fish populations. Publ.Am.Fish.Soc.Northcent. Divo, 1974 (3): 29-38

Grinstead, B.Go and R. Gomez, Catch of commercial and game fish with four-foot trap nets of various 1972 mesh sizes. Oklahoma Department of Wildife Conservation, 13 p.

Gulish, W.J.s Fisheries investigations on Elk Creek Lake. Indiana Division of Fish and Game, 1970 ($\mathrm{F}-011$-R-01/wkpl 03/SP 2): 28 p.

Hackney, P.A., On the theory of fish density. Prog. Fish-Cult., 36(2):66-71 1974 1975 edited by H. Clepper. Washington, D.C.g Sport Fishing Institute, pp. 131-9

Hancock, H.M., A study of the movements and capture of some fishes in Fort Gibson Reservoir, Oklahoma, 1956 Trans.Ky.Acad.Sci.-, 17(2):88-100

Hansen, D.F. et al., Hook-line catch in fertilized and unfertilized ponds. Bull. Ill.Nat. Histosurvo, 1960 27(5):345-90

Harrison, A.C., Black bass in the Cape Province. Second report on the progress of American largemouth 1936 black bass (Micropterus salmoides, Lacepède). Invest.Rep.Div.Fish.Union South Afr., (7):119 p.

Hart, J.S., Geographic variation of some physiological and morphological characteristics in certain 1952 freshwater fish. Univ.Toronto Biol.Ser., (60):79 p.

Hathaway, E.S. . The relation of temperature to the quantity of food consumed by fishes. Ecology, 1927 8(4):428-34

Hayford, R.A., Largemouth bass trap. Prog. Fish-Cul.t., 10(2):98-9 1948

Hayne, D.W., G.E. Hall and H.M. Nichols, An evaluation in Douglas Reservoir, Tennessee. In Reservoir 1967 fish resources symposium. Athens, University of Georgia, pp. 244-97

Heidinger, R.C.s An indexed bibliography of the largemouth bass (Micropterus salmoides). Starksville, 1975 Mississippi, Bass Research Foundation, 84 p.
, Life history and biology of the largemouth bass. In Black bass biology and management, 1975 edited by H. Clepper. Washington, D.C., Sport Fishing Institute, pp.11-20

Heman, M.L., R.S. Campbell and L.C. Redmond, Manipulation of fish populations through reservoir draw1969 down. Trans.Arn.Fish.Soc., 98(2):293-304

Henley, J.Pos Evaluation of rotenone sampling with scuba gear. Proc.Annu.Conf. Southeast.Assoc.Game 1967 Fish Commo, 20(1966):439-46.

Herman, E.F: ${ }^{\text {D. F. Holtman and J. O'Donnell, A doublemouth largemouth bass. Wisc.Conserv. Bull., }}$ 1947 12(10):27-8

Hester, F.E., The tolerance of eight species of warm-water fishes to certain rotenone formulations. 1960 Proc.Annu.Conf.Southeast.Assoc.Game Fish Comm., 13(1959):120-33

Phylogenetic relationships of sunfishes as demonstrated by hybridization. Trans.Am. 1970 Fish.Soc. 99(1):100-4

Hill, T.K. and E.W. Shell, Some effects of a sanctuary on an exploited fish population. Trans.Am. 1975 Fish.Soc., 104(3):441-5

Horf, J.G. and J.R. Westman, Experiments with a dibrom-malathion formulation as a selective piscicide. 1965. N.Y.Fish Game J., 12(1):99-107

Hoffman, GoLe, Parasites of North American freshwater fishes. Los Angeles, University of Califormia 1967 Press, 486 p.

Hogan, J., Experiments with commercial fertilizers in rearing largemouth bass fingerlings. Trans. 1933 Am.Fish.Soc., (63):110-9

Holbrook, J.A., Bass fishing toumaments. In Black bass biology and management, edited by H. Clepper. 1975 Washington, D.C., Sport Fishing Institute, pp.408-15

Holvik, J., Standing crop abundance, production and some ecological aspects of fish populations in 1970 some inland waters of Cuba. Vestn.Cesk.Spol.Z001., (33):184-201

Hooper, A. D., Enhancement of bass production by fertilization and feeding. In Black bass biology 1975 and management, edited by H. Clepper. Washington, D.C., Sport Fishing Institute, pp. 506-12

Hooper, A.D. and J.E. Crance, Use of rotenone in restoring balance to overcrowded fish populations in 1960 Alabama lakes Trans.Am. Fish.Soc., 89(4):351-7

Hooper, G.R., Results of stocking largemouth bass, bluegill, and redear sunfish in ponds less than 1970 0.25 acre. Proc.Annu.Conf.Southeast.Assoc.Game Fish Comme, 23(1969):474-9

Hooper, G.R. and W.C. Reeves, Survey of success and owner management of North Alabama ponds one acre 1975 and less in size. Proc.Annu.Conf.Southeast.Assoc.Game Fish Comme, 28(1974):13 p.

Hornbeck, R., W. White and F.P. Meyer, Control of Apus and fairy shrimp in hatchery rearing ponds. 1966 Proc.Annu. Conf. Southeast.Assoc. Game Fish Conm., 19(1965):401-3

Houser, A. and Bo Grinstead, The effect of black bullhead catfish and bluegill removals on the fish 1962 population of a small lake Proc.Annu.Conf.Southeast.Assoc.Game Fish Comm., 15(1961): 193-200

Houser, A. and W.C. Rainwater, Production of largemouth bass in Beaver Bull Shoals lakes. In Black 1975 bass biology and management, edited by H. Clepper. Washington, D.C., Sport Fishing Institute, pp. 310-6

Hubbs, C.L., A check-list of the fishes of the Great Lakes and tributary waters, with nomenclatorial 1926 notes and analytical keys. Misc.Publ.Mus.Zool.Univ.Mich., (15):1-77

Hubbs, C.L. and R.M. Bailey, A revision of the black basses (Micropterus and Huro), with descriptions 1940 of four new forms. Misc.Publ. Mus.Zool.Univ.Mich., (48):7-51

Hubbs, C.L. and K.F. Lagler, Guide to the fishes of the Great Lakes and tributary waters. Bull. 1941 Cranbook Inst.Sci., (18):100 p.

Hublow, W.F., Oregon pellets. Prog.Fish-Cult., 25(4):175-80 1963

Huish, M.T., Gizzard shad removal in Deer Island Lake, Florida. Proc.Annu.Conf.Southeast.Assoc.Game 1958 Fish Comm., 11(1957):312-8

Huish, M.T. and J.B. Copeland, Return rates of strap tags and Petersen tags. Proc.Annu.Conf.Southeast. 1963 Assac.Game Fish Comm., 16(1962):262-3

Hulsey, A.H., Effects of a fall and winter drawdown on a flood control lake. Proc.Annu.Conf.Southeast. 1957 Assoc.Game Fish Comm., 10(1956):285-9

Hundley, L.Ro, A check on two methods of estimating farm fishpond populations. Prog. Fish-Cult., 1954 16(4):163-8

Hunsaker, D. and R.W. Crawford, Preferential spawning behavior of the largemouth bass, Micropterus 1964 salmoides. Copeia, 1964(1):240-1

Hunt, B.P., Digestion rate and food consumption of Florida gar, warmouth, and largemouth bass. Trans. 1960 Am.Fish.Soc., 89(2):206-11

Isaac, G.W. and C.E. Bond, Standing crops of fish in Oregon farm ponds. Trans.Am. Fish.Soc., 92(1):25-9 1963

Isom, B.G., Outbreaks of Columnaris in Center Hill and Old Hickory Reservoirs, Tennessee. Prog. Fish1960 Cult., 22(1):43-5

Jackson, S.W., Summary of three-year creel census on Lake Eucha and Spavinaw Lake, Oklahoma, with 1957 comparisons of other Oklahoma reservoirs. Proc.Okla.Acad.Sci., (38):146-53
, Comparison of age and growth of four fishes from Lower and Upper Spavinaw Lakes, 1958 Oklahoma. Proc.Annu.Conf.Southeast.Assoc.Game Fish Comm., 11(1957):232-49

James, C.C., Floating fish nest. Prog.Fish-Cult., (21):19-21 1936

James, M.F., Histological changes in the gonads of the bluegill, Lepomis macrochirus, Rafinesque, and 1942 of the largemouth bass, Huro salmoides (Lacepède) accompanying season, age and condition. Ph.D. Thesis, University of Illinois, Urbana, 86 p.

1946a_, Hermaphroditism in the largemouth bass. J.Morpholo, 79(1):93-5

, Histology of gonadal changes in the bluegill, Lepomis macrochirus Rafinesque, and the 1946 b largemouth bass, Huro salmoides (Lacepède). J.Morphol.9 79(1):63-92
lkins, R.M., The standing crop of fish in Oklahoma ponds. Proc.Okla.Acad.Sci。, (38):157-72 1957

1967 U.S. The influence of some environmental factors on standing crop and harvest of fishes in $\overline{1967 \text { U.S. reservoirs. In Reservoir fisheries resources symposium. Athens, University of }}$ Georgia, pp. 298-321

Jenkins, RoM. and G.E. Hall, Growth of largemouth bass in Oklahoma. Rep.Okla.Fish.Res.Lab., (30):44 p. 1953

Jenkins, RoM. and D.I. Morais, Reservoir sport fishing effort and harvest in relation to environmental 1971 variables. Spec.Publ.Am.Fish.Soc., (8):371-84

Jensen, A.L., Predator-prey and competition models with state variables: biomass, number of individuals, 1974 and average individual weight. J.Fish.Res.Board Can., 31(10):1669-74

Jester, D.Bog Variations in catchability of fishes with color of gillnets. Trans.Am.Fish.Soc., 1973 102(1):109-15

Johnson, J.E., J.N. Rinne and W.L. Mincbley, Selectivity and efficiency of some commercial fishing 1970 devices in central Arizona reservoirs. J.Ariz.Acad.Sci., (6):46-50

Johnson, M.G.g Limnology of Ontario ponds in relation to winter-kill of largemouth bass. Prog. Fish1965 Cult $, 27(4): 193-8$

Johnson, MoGo and W.H. Charlton, Some effects of temperature on the metabolism and activity of the 1960 largemouth bass, Micropterus salmoides Lacepede. Prog.Fish-Cult., 22(4):155-63

Johnson, M.G. and H.R. McCrimmon, Survival, growth, and reproduction of largemouth bass in southern 1967 Ontario ponds. Prog. Fish-Culto, 29(4):216-21

Johnston, $P_{0} M_{0}$, The embryonic history of the germ cells of the largemouth black bass, Micropterus 1951. salmoides salmoides (Lacepède). JoMorpholo, (88):471-542 1953 The embryonic development of the swim bladder of the lat

Jordan, D.S., Notes on certain typical specimens of American fishes in the British Museum and in the 1880 Museum d'Histoire Naturelle at Paris. Proc.U.S.Nat.Mus., (2):218-26

Jordan, Dos. and Bow. Evermann, American food and game fishes. New York, Dover Publications Inc. 8 1969574 р.
Jubb, RoA., Freshwater fishes in southerm Africa. Cape Town, A.A. Balkema, 248 p. 1967

Jurgens, K.C. and W.H. Brown, Chilling the eggs of the largemouth bass. Prog. Fish-Cult., 16(4):172-5 1954

Keast, A. ${ }^{2}$, Feeding of some Great Lakes fishes at low temperatures. JoFishoRes.Board Can。, 25(6): 1968 1199-218

Keith, Wo ${ }^{\prime}$. Management by water level manipulation. In Black bass biology and management, edited 1975 by H. Clepper. Washington, D.C., Sport Fishing Institute, pp. 489-97

Keith, W.E. and S.W. Barkley, Predation on stocked rainbow trout by chain pickerel and largemouth bass 1971 in Lake Ouachita, Arkansas. Proc.Annu.Conf.Southeast.Assoc.Game Fish Comm., 24(1970):401-7

Kelley, $H_{0} D_{\text {. and }}$ R. Allisong Observations on the infestation of a freshwater fish population by a 1963 maxine copepod (Ergasilus lizae, Kroyer). Proc.Annu.ConfoSoutheast.Assoc.Geme Fish Commo, 16(1962): 236-9

Kelley, J.W., SexuEl maturity and fecundity of the largemouth bass, Micropterus salmoides (Lacepede), 1962 in Naine. Trans.Am.Fish.Soc., 91(1):23-8
, Effects of incubation temperature on survival of largemouth bass eggs. Prog. Fish1968 CuIto $30(3): 159-63$

Kempinger, J.J., Impact of underwater spearfishing on a mixed warmwater fish population. Res.Rep. 1968 Wisc.Dep.Nat.Resour., (30):10 p.

Experimental management of Spruce Lake, a small bog lake in northeasterm Wisconsin. Res. 1969 Rep.Wisc.Dep.Nat.Resour., (40):15 p.

Kenaga; E.E., TORDON herbicides-evaluation of safety to fish and birds. Down to Earth, 25(1):5-9 1969

Kimsey, J.B., Largemouth bass tagging. Calif.Fish Game, 42(4):337-46 1956
, Largemouth bass tagging at Clear Lake, Lake County, Califormia. Calif.Fish Game, $195743(2): 111-8$

Kimsey, J.B., R.H. Hagy and G.W. McCammon, Progress report on the Mississippi threadfin shad, 1957 Dorosoma petenensis atchafylae, in the Colorado River for 1956. Admin.Rep.Calif. Inland Fish. $(57-23): 48 \mathrm{p}$.

Kirk, W.L., The nutritional value of bullfrog tadpoles, Rana catesbeiana, as forage, for the largemouth 1967 bass, Micropterus salmoides. M.A. Thesis, Southern Illinois University, Carbondale, 29 p.

Kirkland, L., A tagging experiment on spotted and largemouth bass using an electric shocker and the 1963 Petersen disc tag. Proc.Annu.ConfoSoutheast.Assoc.Game Fish.Comm., 16(1962):424-32

Klavano, W.C., Age and growth of fish from Oregon farm pond.s. M.S. Thesis, Oregon State College, 195841 p.

Kostitzin, V.A.g Mathematical biology. London, Harrap, 411 p. 1939

Kramex, R.H. and L.L. Smith, Jro, Utilization of nests of largemouth bass, Micropterus salmoides, by 1960a golden shiners, Notemigonus crysoleucas. Copeia, 1960(1):73-4
, First-year growth of the largemouth bass, Micropterus salmoides, and some related 1960b ecological factors. Trans.Am.Fish.Soc., 89(2):222-33
, Formation of year classes in largemouth bass. Trans.Am。Fish.Soc., 91(1):29-41

Krumholz, L.A., A check on the fin clipping methods for estimating fish populations. Pap.Mich.Acad. 1944 Sci.Arts Lett., 29(1943): 281-91

Krummrich, J.T. and R.C. Heidinger, Vulnerability of channel catfish to largemouth bass predation. 1973 Prog.Fish-Cult., 35(3):173-5

Lacepede, B.G.E., Histoire naturelle des poissons. Paris, Plassan, Imprimeurlibrire, Vol. 4:728 p. 1802

Lackey, R.T., J.E. Powers and J.R: Zuboy, Modelling to improve management of bass fisheries. In 1975 Black bass biology and management, edited by H. Clepper. Washington, D.C., Sport Fishing Institute pp. 430-5

LaFaunce, D.A., Long-term retention of tags by some freshwater fish. CalifoFish Game, 51(1):52-3 1965

LaFaunce, D.A., J.B. Kinsey and HoK. Chadwick, The fishery at Sutherland Reservoir, San Diego County, 1964 Califomia. Calif.Fish Game, 50(4):271-91

Lagler, K.F. and G.C. DeRoth, Populations and yield to anglers in a fishery for lergemouth. bass. 1952 Pap.Mich.Acad.ScioArts Lette, (38):235-53

Lambou, V.W., Efficiency and selectivity of flag gill nets fished in Lake Bistineau, Louisiana。 1962 Proc.Annu.Conf.Southeast.Assoc.Gane Fish Comm., 15(1961):319-59

Lambou, V.W. and H. Stern, Jr., Preliminary report on the effects of the removal of rough fishes on 1959 the Clear Lake sport fishery. Proc, Annu. Conf. Southeast.Assoc.Game Fish Comm., 12(1958): 36-56

Lamkin, J. B. ${ }_{1901}{ }_{129-55}$ The spawning habits of the largemouth bass in the south. Trans.Am.Fish.Soc., 29(1900):
Latapie, W.Re, Evaluation of various tagging methods on several freshwater fishes and estuarine fishes 1968 of Louisiana. Proc.Annu. Conf.Southeast.Assoc.Game Fish Comm., 21(1967):505-9

Latta, W.C., Dynamics of bass in large natural lakes. In Black bass biology and management, edited 1975 by H. Clepper. Washington, D.C., Sport Fishing Institute, p. 175-82

Laurence, G.C., The energy expenditure of largemouth bass larvae, Micropterus salmoides, during yolk 1969 absorption, Trans.Am. Fish.Soo., 98(3):398-405 , Digestion rate of larval largemouth bass. N. X.Fish Geme J., 18(1):52-6 1971a , Feeding and bioenergetics of largemouth bass larva (Micropterus salmoides). Ph.D. Thesis, 1971b Cornell University, Ithaca, New York, 132 p.

Comparative swimming abilities of fed and starved largemouth bass (Micropterus salmoides). 1972 J.Fish.Biol., 4(1):73-8

Lawrence, J.M., Estimated sizes of various forage fishes largemouth bass can swallow. Proc.Annu.Conf. 1958 Southeast.Assoc.Game Fish Comm., (1957):220-5

Further investigations on the use of Delrad as an algaecide in fishponds. Prog.Fish1958 Cult., $20(2): 89-91$

Lennon, R.E. et alo, Reclamation of ponds, lakes and streams with fish toxicants: a review. FAO 1970 Fish. Tech.Pap., (100):99 p. (Reprinted in 1971 by the U.S. Department of the Interior, Fisheries and Wildlife, Bureau Sport Fisheries and Wildlife)

LeSueur, C.A., Descriptions of the five new species of the genus Chichla of Cuvier. J.Acad.Nat.Sci. 1822 Phila., (2):214-21

Lewis, W.M., Jr., Predation as a factor in fish populations. In Reservoir fisheries resources 1967 symposium. Athens, University of Georgia, pp: 386-90

Isobornyl thiocyanoacetate as a fish drugging agent and selective toxin. Prog. Fish-Cult., 1968 30(1):29-31
, Morphological adaptations of cyprinodontoids for inhabiting oxygen deficient waters. 1970 Copeia, 1970(2):319-25

Lewis, W.M., Jr. and S. Flickinger, Home range tendency of the largemouth bass (Micropterus salmoides). 1967 Ecology, 48(6):1020-3

Lewis, W.M., Jr. and R, Heidinger, Fish stocking combinations for farm ponds. Fish.Bull.South.Ill. 1973 Univ., Carbondale, (4):17 p.

Lewis, W.M., Jr. and D.R. Helms, Vulnerability of forage organisms to largemouth bass. Trans.Am. Fish. 1964 Soc. $93(3): 315-8$

Lewis, W.M., Jr., R. Heidinger and M. Konikoff, Loss of fishes over the drop box spillway of a lake. 1968 Trans.Am.Fish.Soc., 97(4):492-4
, Artificial feeding of yearling and adult largemouth bass. Prog.Fish-Cult., 31(1):44-6 1969

Lewis, $W_{\text {. Mo, }}$ Jr., R. Summerfelt and M. Bender, Use of an electric shocker in conjunction with the 1962 mark-and-recovery technique in making estimates of largemouth bass populations. Prog. Fish-Cult., (24):41-5

Lewis, W. M., Jr. et al., Food choice of largemouth bass as a function of availability and vulnerability 1961 of food items. Trans.Am. Fish.Soc., $90(3): 277-80$, Food intake of the largemouth bass. Trans.Am. Fish.Soc., 103(2):277-80
1974
Lincoln, R.P., Bass bug. In The Wise físherman's encyclopedia, edited by A.J. McClane. New York, 1953 Wm. Wise and Co., pp.63-81

Lincoln, R.S. and D.W. Smith, The use of antimycin Fintrol-Concentrate to selectively thin panfish 1974 populations in three lower Michigan lakes. Michigan Department of Natural Resources, Fisheries Division, 11 p.

Lockard, D.V., N.M. Wood and R.C. Allan, Vulnerability of game fish to spearfishing, Lake Mead. 1971 Nevada Fish and Game Commission, (F-020-R-06/SP1):18 p.

Logendyke, S_{0}, Bait casting. In The Wise fisherman's encyclopedia, edited by A.J. McClane. New York, 1953 Wm. Wise and Co., pp. 87-101

Lopinot, A.C., Pond fish and fishing in Illinois. Fish.Bull.Ill.Dep.Consery., (5):62 p. 1967

Evaluation of rehabilitated Illinois farm ponds 1959-1967. Spec.Fish.Rep.Ill.Dep. 1970 Conserv.Fish., (31):49 p.
, Procedures used by the Illinois Department of Conservation in the investigation of 1971 pollution caused fish kills. In Fish kill investigation seminar. Environmental Protection Agency, Federal Water Quality Administration, Cincinnati, Ohio, and Ohio Cooperative Fisheries Unit, Ohio State University, 17 p.

Lorenzen, W.E. and R.C. Heidinger, America's new competitive sport. Ill.Wild., 9(3):13 1973

Lotka, A.J., Elements of mathematical biology. New York, Dover Publications 1956
Louder, D.E., Escape of fish over spillways. Prog. Fish-Cult., 20(1):38 41 1958

Louder, D.E. and E.G. McCoy, Preliminary investigations of the use of Aqualin for collecting fishes. 1963 Proc.Annu.Conf.Southeast.Assoc.Game Fish Comm., 16(1962):240-2

MacKay, H.H., Largemouth black bass (Micropterus salmoides): Sylva Ont. Lands For. Rev., 16(5):25-31 1960
Mackenthum, K.M., A preface for the investigation of fish kills. In Investigation of fish kills. 1972 Environmental Protection Agency, Region 6, and Oklahoma State University, Stillwater, pp.4-9
MacLeod, J.C., A new apparatus for measuring maximum swimming speeds of small fish. J.Fish.Res. 1967 Board Can., 24(6):1241-52
Maloney, J.E., D.R. Schupp and W.J. Scidmore, Largemouth bass population and harvest, Gladstone Lake, 1962 Crow Wing County, Minnesota. Trans.Am.Fish.Soc., 91(1):42-52

Manning, J.H., A study of the populations and growth phenomena of centrarchid fishes in a soft-water 1951 impoundment of MaryIand. M.S. Thesis, University of Maryland, College Park, 85 p.
Marking, L.L., Toxicity of quinaldine to selected fishes. Invest. Fish Control U.S.Bur.Sport Fish. 1969 Wildl., (23):3-10
Marking, L.I. and J.W. Hogan, Toxicity of Bayer 73 fish. Invest. Fish Control U.S.Bur.Sport Fish. 1967 Wildl., (19):3-13

Marking, L.L. et al., Toxicity of 33NCS to freshwater fish and sea lampreys. Invest. Fish Control U.S. 1970 Bur.sport Fish.Wildl., (38):4-14

Markus, H.C. 2 The extent to which temperature changes influence food consumption in largemouth bass 1932 (Huro floridanus). Trans.Am.Fish.Soc., (62):202-10

Martin, R.G.g Fisheries management investigations of impoundments. Effect of the removal of the ten1959 inch minimum size limit on bass. Virginia Commission of Game and Inland Fisheries, (F-005-R-05/Job 01): 1-7

Martin, RoG. et alo, Evaluation of a minimum length limit on largemouth bass. Virginia Commission of 1964 Game and Inland Fisheries Job Completion Report, D.J. Proj. F-5-R-10, Job 12

Marzolf, R.C., Practicality and economic feasibility of rearing and stocking largemouth bass of one 1954 pound size. Missouri Conservation Commission, (F-001-R-03/wkpl 04/Job 01):21 p.

Mawdesley-Thomas, L.E., Some tumours of fish. Symp.Zool.Soc.Lond., (30):191-284 1972 1975 University of Wisconsin Press, pp. 805-70

May, B.E., Evaluation of large scale release programs with special reference to bass fishing tournaments. 1973 Proc.Annu.Conf.Southeast.Assoc.Game Fish Comm., 26(1972):325-9

McCaig, R.S. and J.W. Mullan, Growth of eight species of fishes in Quabbin Reservoir, Massachusetts, in 1960 relation to age of reservoir and introduction of smelt. Trans.Am.Fish.Soc., 89(1):27-31

McCraren, J.P., Hatchery production of advanced largemouth bass fingerlings. Proc.Annu.Conf.West. 1974 Assoc. Game Fish Comm., (54): 260-70

Meehean, O.L., The development of a method for the culture of largemouth bass in fertilized ponds on 1940. natural food. M.S. Thesis, Ohio State University, Mansfield

1940
Meyer, F.A., Development of some larval centrarchids. Prog.Fish-Cult. 32(3):130-6 1970

Meyer, F.P. and J.A. Robinson, Branchiomycosis: A new fungal disease of North American fishes. Prog. 1973 Fish-Culto: 35(2):74-7

Merriner, J.V., Development of intergenetic centrarchid hybrid embryos. Irans.Am。Fish.Soc., 100(4): 1971 611-8

Miller, E.E.s The age and growth of centrarchid fishes in Millerton and Pine Flat reservoirs, 1971 California. Admin.Rep.Calif.Fish Game Inland Fish., (71-4):17 p.

Miller, K.D. and R.H. Kramer, Spawning and early life history of largemouth bass (Micropterus 1971 - salmoides) in Lake Powell. Spec.Publ.Am.Fish.Soc., (8):73-83

Miller, L.W., A growth study and blood protein analysis of two subspecies of largemouth bass; the 1965 Florida bass, Micropterus salmoides floridanus (LeSueur), and the Northern bass; Micropterus salmoides salmoides (Lacepede), in San Diego County, California. Admin.Rep. Calif.Fish Game Inland Fisho, (65):17 p.

Miller, R.W., Effects of fanning on the dissolved oxygen environment and mortality of largemouth bass 1970 embryos. M.S. Thesis, Comell University, Ithaca, New York, 59 p.

Ming, A. and W.E. McDonald, Effects of length limit on an overharvested largemouth bass population. 1975 In Black bass biology and management, edited by H. Clepper, Washington, D.C., Sport Fishing Institute, pp. 416-24

MolnEr, G. and I. Tolg, Relation between water temperature and gastric digestion of largemouth bass 1962 (Micropterus salmoides salmoides Lacepède). J.Fish.Res.Board Can., 19(6):1005-12

Moody, H.I., Tournament catch of largemouth bass from St. Johns River, Florida. Proc.Annu.Conf. Southeast.Assoc.Game Fish Commo, 28(1974):25 p. (mimeo)

Moorman, R.Bo, Reproduction and growth of fishes in Marion County, Iowa, farm ponds. Iowa State Coll. 1957 J.Sci., $32(1): 71-88$

Morgan, G.D., A study of six different pond stocking ratios of largemouth bass, Micropterus salmoides 1958 (Lacepede), and bluegill, Lepomis macrochirus Rafinesque; and the relation of the chemical, physical and biological data to pond balance and productivity. JoSci.Lab.Denison Univ., (44):151-202 numbers, and pounds of bass harvested in eight one-acre ponds. J.Sci.Lab.Denison Univo, (35): $3-17$

Moss, D. and D.C. Scott, Dissolved oxygen requirements of three species of fisho Trans.Am.Fish.Soc., 1961 90(4):377-93

Moyle, J.B., J.H. Kuehan and C.R. Burrows, Fish-population and catch data from Minnesota lakes. 1949 Trans.Am.Fish.Soc., 78(1948):163-75

Mraz, D. and E.L. Cooper, Reproduction of carp, largemouth bass, bluegills and black crappies in small 1957 rearing ponds. J.Wildl.Manage., 21 (2):127-33

Mraz, D. and C.W. Threinen, Angler's harvest, growth rate and population estimates of the largemouth 1957 bass of Browns Lake, Wisconsin. Trans.Am.Fish.Soc., 84(1955):241-55

Mraz, D., S. Kimiotek and L. Frankenberger, The largemouth bass: its life history, ecology and 1961 management. Publ.Wisc.Conserv.Deps, (232):15 p.

Mulla, M.S., J. St. Amant and L.D. Anderson, Evaluation of organic pesticides for possible use as fish 1967 toxicants. Prog. Fish-Cult., 29(1):36-42

Muncy, R.J., Aging and growth of largemouth bass, bluegill, and redear sunfish from Louisiana ponds 1966 of known stocking history. Proc.Annu.Conf.Southeast.Assoc.Game Fish Commo, 19(1965):343-9

Nelson, J.T., R.G. Bowker and J.D. Robinson, Rearing pellet-fed largemouth bass in a raceway. Prog. 1974 Fish-Culto, 36(2):108-10

Niimi, A.J. and F.W.H. Beamish, Bioenergetics and growth of largemouth bass (Micropterus salmoides) 1974 in relation to body weight and temperature. Can.J.Zool., (52):447-56

Noble, R.I., R.D. Germany and C.R. Hall, Interactions of blue tilapia and•largemouth bass in a power
(in press) plant cooling reservoir. Proc.Annu.Conf.Southeast.Assoc.Game Fish Comm., 29(1975):11 p.
Norman, M.D., A comparative prem and postmimpoundment survey of the helminth and crustacean parasites 1971 of Micropterus salmoides (Lacepède) and Mo punctulatus (Rafinesque) (Perciformes) in Beaver Reservoir, Arkansas. M.S. Thesis, University of Arkansas, Fayetteville, 96 p.

Novotny, D.W. and G.R. Preigel, Electro-fishing boats: Improved designs and operating guidelines to 1974 increase the effectiveness of boom shockers. Tech.Bull.Wisc.Dep.Nat.Resour., (73):48 p.

Nyberg, D.W., Prey capture in the largemouth bass. Am.Mid..Nat., 86(1):128-44 1971

O'Hara, J.J., Variations in respiratory metabolism of four species of sunfish (Centrarchidae) in 1966 relation to size, temperature and ecological distribution. Ph.D. Thesis, University of Miami, Miami, Florida, 95 p.

Padfield, J.H., Jr., Age and growth differentiation between the sexes of the largemouth black bass 1951 Micropterus salmoides (Lacepède). J.Tenn.Acad.Sci., 26(1):42-54

Pardue, G.B. and F.E. Hester, Variation in the growth rate of known-age largemouth bass (Micropterus 1967 salmoides Lacepede) under experimental conditions. Proc.Annu.Conf.Southeast.Assoc.Game Fish Commo, 20 (1966): 300-10

Parker, F.R., Reduced metabolic rates in fishes as a result of induced schooling. Trans.Am. Fish.Soc., 1973 102(1):125-31

Parker, R.A., Some effects of thinning a population of fishes. Ecology, (39):304-17 1958

Parker, W.D., Preliminary studies on sexing adult largemouth bass by means of an external characteristic. 1971 Prog. Fish-Cult., 3.3(1):55-6

Paulik, G.J. and W. H. Bayliff, A generalized computer program for the Ricker model of equilibrium 1967 yield per recruitment. J.Fish.Res.Board Can., 24(2):249-59

Pfleiger, W.L., Checklist of the fishes of Missouri with keys for identifications. D.J.Ser.Mo.Dep. 1968 Conserv.Div.Fish., (3):64 p.

Pierce, P.C., J.E. Frey and H.M. Yawn, An evaluation of fishery management techniques utilizing 1964 winter drawdowns. Proc.Annu.Conf.Southeast.Assoc.Game Fish Comm., 17(1963):347-63

Plumb, J.A., J.L. Gaines and M. Jennings, Experimental use of antibiotics in preventing delayed 1974 mortality in a bass tournament on Lake Seminole, Georgia. Proc.Annu. Conf.Southeast.Assoc. Game Fish Comm., (28):8 p.

Powell, D.H., Management of largemouth bass in Alabama's state-owned public fishing lakes. In 1975 Black bass biology and management, edited by H. Clepper. Washington, D.C., Sport Fishing Institute, pp. 386-90

Prather, E.E., Efficiency of food conversion of young largemouth bass (Micropterus salmoides Lacepede). 1951. Trans.Am.Fish.Soc., 80(1950):154-7 , A note on the accuracy of the scale method in determining the ages of largemouth bass 1967 and bluegill from Alabama waters. Proc.Annu. Conf.Southeast.Assoc.Game Fish Comm., 20(1966): 483-6

Premvati, G., Multigonotylus micropteri gen. et sp. n. and Caecincola wakullata sp. n. (digenea: 1967 Cryptogonimidae) from freshwater bass, Micropterus salmoides. J.Parasitol., 53(4):743-6

Prentice, J.A. and B.G. Whiteside, Validation of ageing techniques for largemouth bass and channel 1975 catfish in central Texas farm ponds. Proc.Annu.Conf.Southeast.Assoc. Game Fish Comm., 28(1974): pp. 414-28

Pritchard, D.L., Fish marking study. Heart of the Hills Fisheries Station, Texas Parks and Wildife 1972 Department, (F-023-R-01/Job 01):7 p.

Prosser, N.S., Lake Burke creel census survey. Virginia Commission of Game and Inland Fisheries 1973 Final Report, D.J. Proj. F-23-3, Job 1, 48 p.

Purkett, C.A., Growth rates of Missouri stream fishes. D.J.Ser.Mo.Dep.Conserv., (1):48 p. n.d.

Radabaugh, D.C., Comparative study of learning in two species of centrarchid fish. Ph.D. Thesis, 1970 Ohio State Unjiversity, Mansfield, 122 p.

Rafinesque, C.S., Ichthyologia Ohiensis or natural history of the fishes inhabiting the Ohio River 1820 and its tributary streams, preceded by a physical description of the Ohio and its branches. Lexington, W.G. Hunt, 90 p.

Range, J.D., The possible effect of the threadfin shad, Dorosoma petenense (Gunther), on the growth 1971 of five species of game fish in Dale Hollow Reservoir, Tennessee. M.S. Thesis, Tennessee Technical University, Cookeville, 52 p.

Raver, D.D. and J.H. Cornell, Comparative growth rates of largemouth bass (Micropterus salmoides 1951 Lacepede) in North Carolina waters. Proc.Annu.Conf.Southeast.Assoc. Game Fish Common (5):7p.

Rawstron, R.R., Harvest, mortality, and movement of selected warmwater fishes in Folsom Lake, 1967 California. Calif.Fish Game, 53(1):40-8 , Nonreporting of tagged white catfish, largemouth bass, and bluegills by anglers at 1971 Folsom Lake, California. Calif.Fish Game, 57(4):246-52 , Nonreporting of tagged largemouth bass, 1966 1969. Calif.Fish Game, 58(2):143-5

Rawstron, R.R. and K.H. Hashagen, Mortality and survival rates of tagged largemouth bass (Micropterus 1972 salmoides) at Merle Collins Reservoir. Calif.Fish Game, 58(3):221-30

Redmond, L.C., Prevention of overharvest of largemouth bass in Missouri impoundments. In Symposium 1974 on overharvest and impoundments. Spec.Publ.Am.Fish.Soc.Northcent.Div., (3): $\overline{54}-68$

Regier, H.A., Ecology and management of largemouth bass and golden shiners in farm ponds in New York. 1963 J.N.Y.Fish Game Commo, 10(2):139-69
, Ecology and management of largemouth bass and bluegills in farm ponds in New York. 1963 J.N.Y.Fish Game Comm., 10(1):1-89

Reid, G.K., Jr., Anomalies in two species of centrarchid fishes from Florida. Copeia, 1951(1):94 1951

Reid, P. and E.L. Triplett, Observations on the immune system of Micropterus salmoides. Transplantation, 1968 6(3):338-41

Reighard, J.E., The breeding habits, development and propagation of the black bass. Bienn.Rep.Mich. 1906 State Board Fish.Comm., (16):1-73

Ricker, W.E., Effect of removal of fins upon the growth and survival of spiny-rayed fishes. J.Wildl. 1949 Manage., 13(1):29-40

Ricker, W.E. and J. Gottschalk, An experiment in removing coarse fish from a lake. Trans.Am. Fish.Soc., $194170(1940)$: 382-90

Robbins, W.H. and H.R. McCrimmon, The blackbass in America and overseas. Ontario, Canada, Biomanagement 1974 and Research Enterprises, 196 p.

Roberts, F.L., A chromosome study of twenty species of Centrarchidae, JoMorphol., (115):401-9 1964

Robins, R.C. and J.E. Böhlke, Pikea sericea, a synonym of the American centrarchid fish. Copeia, 1960 1960(2):147

Rodenheffer, I.A., The use of brush shelters by fish in Douglas Lake, Michigan. Pap.Mich.Acad.Sci。 1940 Arts Lett., 25 (1939):357-66
, The movement of marked fish in Douglas Lake, Michigan. Pap.Mich.Acad.Sci.Arts Lett., 1941 26(1940):265-80
, Fish populations in and around brush shelters of different sizes placed at varying
1945 depths and distances apart in Douglas Lake, Michigan. Pap.Mich.Acad.Sci.Arts Lett., $30(1944): 321-45$

Rogers, W.A., Food habits of young largemouth bass (Micropterus salmoides) in hatchery ponds. Proc. 1968 Annu. Conf.Southeast.Assoc.Game Fish Comm., 21 (1967):543-53

Rosebery, D.A., Game fish survey of the impounded public fishing waters. Fish survey of Black Bay. 1952 Virginia Commission of Game and Inland Fisheries, (F-001-R-01/SP):30 p.

Saila，S．B．and D．Horton，Fisheries investigation and management in Rhode Island lakes and ponds． 1957 Fish Publ．R．I．Div．Fish．Wild．．，（3）：134 p．

Sandow，J．，A comparison of population sampling results with the total fish population of a 90－acre 1971 Georgia reservoir．Proc．Annu．Conf．Southeast．Assoc．Game Fish Commo，24（1970）：321－31

Sarbahi，D．S．，Studies of the digestive tracts and the digestive enzymes of the goldfish，Carassius 1951 auratus（Linnaeus）and the largemouth black bass，Micropterus salmoides（Lacepede）． Biol．Bull．Mar．Biol．Lab．，Woods Hole，100（3）：244－57

Schaefer，M．B．Some aspects of the dynamics of populations important to the management of the 1954 commercial marine fisheries．Bull．I－ATTC，1（2）：27－56

Schafer，H_{0} ．${ }_{0}$ and $D_{0} W_{0}$ Greagen，Report on operation of the Lake Chicot Fishway．Prog．Fish－Culto， 1958 20（2）：82－8

Schneider，J．C．，Characteristics of a population of warm－water fishes in a southern Michigan lake， 1971 1964－1969．Dev．Rep．Mich．Dep．Conserv．：（236）：158 p．

Schnick，RoA．，A review of the literature on the use of rotenone in fisheries．Springfield，Virginia， 1974a U．S．Department of the Interior Fish Wildlife，National Technical Information Service， PB－235－454（Microfilm）

1974b A review of the literature on the use of Antimycin in fisheries．Springfield，Virginia， U．S．Department of the Interior Fish Wildlife，National Technical Information Service， PB－235－440（Microfilm）

Schumacher，FoX．and R．W．Eschmeyer，The recapture and distribution of tagged bass in Norris Reservoir， 1942 Tennessee．J．Tenn。Acad．Sci．，17（3）：253－67

Schwartz，FoJ．，Natural salinity tolerances of some freshwater fishes．Underwater Nat．，（2）：13－5 1964

Scott，W．B．and E．J．Crossman，Freshwater fishes of Canada．Bull．Fish．Res．Board Can．9（184）：966 p． 1973

Seaburg，K．and J．Moyle，Feeding habits，digestive rates and growth of some Minnesota warmwater 1964 fishes．Trans．Am．Fish．Soc．，93（3）：269－85

Severson，B．I．，A fish catching box．Prog．Fish－Cult．，25（1）：39 1963

Shafer，G．D．，The mosaic of the single and twin cones in the retina of Micropterus salmoides．Arch． 1900 Entwicklungsmech。Organ。，（10）：685－91

Shealy，MoH．，Jr．，Nesting bass observed with underwater television．N．Y．Food Life Scio，4（4）：18－20 1971

Shealy，M．H．，Jr．and G．W．Shiflet，Jr．，Acute toxicity of Diquat to largemcuth bass（Microptexus selmoides 1969 Lacepède）and golden shiners（Notemigonus crysoleucas Mitchell）in New York waters． Bull．S．C．Acad．Sci．，（31）：45

Sheridan，J．R．，Evaluation of minimum size limit on largemouth bass in state fishing lakes and other 1962 ponds．Virginia Commission of Game and Inland Fisheries，（F－005－R－081 Job 12／A）：91p．

Sherry，Do，Fish kill damages：monetary values of fishes．In Fish kill investigation seminar． 1971 Cincinnati，Ohio，Environmental Protection Agency；Federal Water Quality Administration， and Ohio Cooperative Fisheries Units，Ohio State University， 5 p．

Smith，B．W．，C．E．White and G．R．Hooper，Management techniques for laxgemouth bass in Alabama ponds． 1975 In Black bass biology and management，edited by H．Clepper．Weshington，D．C．，Sport Fishing Institute， $\mathrm{pp} \cdot 380-\mathrm{m}$

Smith，G．，Florida largemouth bass in southern Califomia．Fla，Wildl． 25 （4）：30 1971

Smith, W.A., J.B. Kirkwood and J.F. Hall, Survey of the success of various stocking rates and ratios 1955 of bass and bluegill in Kentucky farm ponds. Fish.Bull.Ky.Dep.Fish.Wildl.Resour., (16):42 p.
Snow, H. E., Harvest and feeding habits of largemouth bass in Murphy Flowage, Wisconsin. Tech. Bull. 1971 Wisc.Dep.Nat.Resour., (50):25 p.

Snow, J.R., An exploratory attempt to rear largemouth black bass fingerlings in a controlled environment. 1961 Proc.Annu.Conf.Southeast.Assoc.Game Fish Comm., 14(1959):253-7

1961 _-, Forage fish preference and growth rate of largemouth black bass fingerlings under 1961 experimental conditions. Proc.Annu. Conf.Southeast.Assoc.Game Fish Comm., 15(1960):303-13

1965 conditions. Proc.Annu.Conf.Southeast.Assoc. Game Fish Comm., 17(1963):191-208

1968a
, The Oregon moist pellet as a diet for largemouth bass. Prog. Fish-Cult., 30(4):235
, Production of six- to eight-inch largemouth bass for special purposes. Prog. Fish-Cult.,
1968b-30(3):144-52
, Some progress in the controlled culture of the largemouth bass, Micropterus salmoides, 1969 (Lacepède). Proc.Annu.Conf.Southeast.Assoc.Game Fish Comm., 22(1968):380-7
, Culture of the largemouth bass. In Report of the 1970 Workshop on fish feed technology 1970 and nutrition. Resour.Publ.U.S.Bur.Sport Fish.Wildl., (102):86-102

1971a Proc.Annu.Conf.Southeast.Assoc.Game Fish Comme, 24(1970):550-9
Culture of large bass fingerlings with artificial food. Paper presented at the 1971b Tennessee Fish Farmers Conference, 14 p. (mimeo) ; Controlled culture of largemouth bass fry. Proc.Annu.Conf.Southeast.Assoc. Game Fish 1973 Comm., 26(1972):392-8 , Hatchery propagation of the black basses. In Black bass biology and management, 1975 edited by H. Clepper. Washington, D.C., Sport Fishing Institute, pp. 344-56

Snow, J.R. and R.T. Lovell, Comparison or organoleptic quality of largemouth bass fed natural and 1974 artificial diets. Prog. Fish-Cult. $, 36(4): 216-8$

Snow, J.R. and C.F. Wright, Rearing largemouth bass fingerlings in cages. Proc.Annu.Conf.Southeast. Assoc.Game Fish Comme, 29(1975):21 p. (in press)

Spall, R.D., The endoparasitic helminths of fishes from Lake Carl Blackwell, Oklahoma. Proc.Okla. 1968 Acad.Scio, (49):91-6

Spencer, S.L., Internal injuries of largemouth bass and bluegills caused by electricity. Prog. Fish1967 Cult., 29(3):168-9 , Investigations in the use of electricity for thinning overcrowded populations of 1967 bluegill. Proc.Annu.Conf.Southeast.Assoc.Game Fish Comm., 20(1966):432-6

Starrett, W.C. and P.G. Barnickol, Efficiency and selectivity of commercial fishing devices used on 1955 the Mississippi River. Bull.Ill.Nat.Hist.Survo, 26(4):325-66

Starrett, W.C. and A.W. Fritz, A biological investigation of the fishes of Lake Chautauqua, Illinois. 1965 Bull.Ill.Nat.Hist.Survo, 29(1):100-4

Steucke, E.W., Jr. and C.R. Atherton, Use of microhematocrit values to sex largemouth bass. Prog. 1965 Fish-Cult., $27(2): 87-90$

Stevens, R.E., Hormonal relationships affecting maturation and ovrlation in largemouth bass (Micropterus 1970 salmoides Lacepede). Ph.D. Thesis, North Carolina State University, Aurora, 95 p.

Stevenson, F., Evaluation of the Florida strain of largemouth bass in Ohio. Ohio Division of Wildlife, 1972 (F-029-R-11/wkpl 06/Job c):6 p.

Stewart, N.E., D. Şchumway and P. Doudoroff, Influence of oxygen concentration on the growth of 1967 juvenile largemouth bass. J.Fish.Res. Board Can., (24):475-94

Stocek, R.F. and H.R. McCrimmon, The co-existence of rainbow trout (Salmo gairdneri Richardson) and 1965 largemouth bass (Micropterus salmoides Lacepède) in a small Ontario Lake. Can. Fish Cult., (35):37-58

Stroud, R.H., Growth of the basses and black crappie in Norris Reservoir, Tennessee. J.Tenn.Acad.Sci., 1948 23(1):31-99

Stroud, R.H. and H. Bitzer, Harvest and management of warm-water fish populations in Massachusetts 1955 lakes, ponds, and reservoirs. Prog.Fish-Cult., 17(1):51-62

Stroud, R.H. and R.G. Martin, Fish Conservation Highlights, Wash., D.C., (1963-1967):147 p. 1968

Summerfelt, R.C., Relationships between weather and year-class strength of largemouth bass. In 1975 Black hass biology and management, edited by H. Clepper. Washington, D.C., Sport Fishing Institutute, ppo167-74

Surber, E.W. and Q.H. Pickering, Acute toxicity of Endothal, Diquat, Hyamine, Dalapon, and Silvex to 1962 fish. Prog.Fish-Cult., (24):164-71
Swingle, H.S., Improvement of fishing in old pond.s. Trans.North Am.Wildl.Conf., (10):299-308 1945
\qquad , Some recent developments in pond management. Trans.North Am.Wildl.Conf., (14):295-310
1949
Relationships and dynamics of balanced and unbalanced fish populations. Bull.Ala. 1950 Polytech.Inst.Agric.Exp.Stn., (274):73 p.
, Experiments with various rates of stocking bluegills, Lepomis macrochirus Rafinesque, 1951 and largemouth bass, Micropterus salmoides (Lacepede), in ponds. Trans.Am.Fish.Soc., 80(1950): 218-30
\qquad , Farm pond investigations in Alabama. J.Wildl.Manage., 16(3):243-9
1952

1954
Fish populations in Alabama rivers and impoundments. Trans.Am.Fish.Soc., 83(1953):47-57

1956 farm fish ponds. Trans. North Am. Wildl.Conf., (21):298-322 4 . Determination of balance in Comparative evaluation of two tilapias as pond fishes in Alabama. Trans.Am.Fi.sh.Soc., 1960 89(2):142-8 , Management techniques for public fishing waters: Control of unbalanced fish populations. 1961 Alabama Division of Game and Fisheries, (F-010-R-02/Job 04):5p.
, Management techniques for public fishing waters: Control of unbalanced fish populations. 1962 Alabama Division of Game and Fisheries, (F-010-R-03/Job 04):4 p.
Swingle, F.S. and E.V. Smith, Factors affecting the reproduction of bluegill bream and largemouth 1943 black bass in ponds. Circ.Ala.Polytech.Inst.Exp.Stn., (87):8 p.
Swingle, H.S., E.E. Prather and J.M. Lawrence, Partial poisoning of overcrowded fish populations. 1953 Bull.Ala.Polytech.Inst.Agric.Exp.Stn., (113):15 p.
Swingle, W.E., Length-weight relationships of Alabama fishes. Auburn Univ.Zool. Fntom.Dep.Ser. Fish., 1965 (3):87 p.

Swingle, W.E. and R.O. Smitherman, Estimation of bass numbers in a farm pond prior to draining with 1966 electroshocking and angling. Proc.Annu. Conf. Southeast.Assoc.Game Frish Comm., 19(1965):246-53

Taber, C.A., The yellow grub in centrarchids of southwest Missouri streams. Prog. Fish-Cult., 34(2):119 1972

Tebo, L.B., Preliminary experiments on the use of spaghetti tags. Proc.Annu, Conf. Southeast. Assoc. Game 1957 Fish Comm., 10(1956):77-80

Tebo, L.B. and E.G. McCoy, Effect of seawater concentration on the reproduction and survival of 1964 largemouth bass and bluegill. Prog. Fish-Cult., 26(3):99-106

Tharratt, R.C., The age and growth of centrarchid fishes in Folsom Lake, California. Calif. Fish Game, 1966 52(1):4-16

Thompson, D.H., Growth of the large-mouth black bass, Huro salmoides, in Lake Naivasha, Kenya. 1939 Nature, Lond., (143):561-2 1941 edited by H.D. Thompson. Madison, University of Wisconsin Press, pp. 206a17

Thompson, D.H. and G.W. Bennett, Lake management reports. 3. Lincoln Lakes near Lincoln, Illinois. 1949 Biol.Notes Ill.Nat.Hist.Surv., (19):2-24

Thompson, J.D., Age and growth of largemouth bass in Clear Lake, Iowa. Proc.Iowa Acad.Sci.; (71): 1964 252-8

Threinen, C.W., The success of a seine in the sampling of largemouth bass populations. Prog. Fish-Cult., 1956 18(2):81-7

Toetz, D., J. Wilhm and R. Summerfelt, Biological effects of artificial destratification and aeration 1972 in lakes and reservoirs - analysis and bibliography. Denver, Colorado, U.S. Department of the Interior, Bureau of Reclamation Rep. REC-ERC-72-33:123 p.

Tompkins, W.A. and B.T. Carter, The growth rate of some Kentucky fishes. Fish.Bull.Ky.Div.Game Fish., 1951 (6):1-9

Toots, F., Exotic fishes in Rhodesia. Rhodesia Agric.J., 67(4):1-6 1970

Topel, H.C., Pond record of bass and bluegill production. Prog. Fish-Cult., 11(4):231-43 1949
Trautman, M.B., Fluctuations in lengths and numbers of certain species of fishes over a five-year 1941 period in Whitmore Lake, Michigan. Trans.Am. Fish.Soc., 70(1940):193-208

Trenary, J.D., Growth of three Centrarchidae in Lake Fort Smith, Arkansas. M.S. Thesis, University 1.958 of Arkansas, Fayetteville, 53 p.

Turner, C.L. and W.C. Kraatz, Food of young largemouth bass in some Ohio waters. Trans.Am。Fish.Soc., 1920 (50):372-80

Turner, W.R., Standing crops of fishes in Kentucky farm ponds. Trans.Am. Fish.Soc., 89(4):333-7 1960

Tyus, H.M., Artificial intergeneric hybridization of Amplophites rupestris, as an aid in determining 1969 phylogenetic relationships in the sunfish families. (Centrarchidae). M.S. Thesis, North Carolina State University, Aurora, 48 p.

Vanderhorst, J.R., The response of selected forage organisms to predation by the largemouth bass 1967 (Micropterus salmoides). M.A. Thesis, Southern Illinois University, Carbondale, 27 p.
Vasey, F.W., The fish populations of Pomme de Terre Reservoir. Missouri Conservation Commission, 1972 (F-001-R-16/wkpl 18/JOb 01): 30 p .

Viosca, P., Jr., A critical analysis of practices in the management of warmwater fish with a view to 1945 greater food production. Trans.Am.Fish.Soc., 73(1943):274-83

Vogele, L.E. and W.C. Rainwater, Use of brush shelters as cover by spawning black basses (Micropterus) 1975 in Bull Shoals Reservoir. Trans.Am.Fish.Soc., 104(2):264-9

Volterra, V., Variations and fluctuations of the number of individuals in animal species living 1928 together. J.Cons.CIEM, (3):1-51

Walker, C.R., Toxicological effects of herbicides on the fish environment. Proc.Annu.Air Water Pollut. 1962 Conf., 8(F-001-R):17-34

Diuron, Fenuron, Monuron, Neburon, and TCA mixtures as aquatic herbicides in fish 1964 habitats. Weeds, 13(4):297-301
, Simazine and other s-triazine compounds as aquatic herbicides in fish habitats. Weeds, 1964 12(2):134-9

Walker, C.R., R.E. Lennon and B.L. Berger, Preliminary observations on the toxicity of antimycin A to 1964 fish and other aquatic animals. Invest.Fish Control U.S.Bur.Sport Fish.Wildl., (2):18 p.

Wallen, I.E., The direct effects of turbidity on fishes. Biol.Ser.Arts Sci.Stud.Okla., (2):27 p. 1951

Warden, R.L., Jr., Movements of largemouth bass (Micropterus salmoides) in impounded waters as 1973 determined by underwater telemetry. M.S. Thesis, Mississippi State University, 46 p.

Warden, R.L., Jr. and W.J. Lorio, Movements of largemouth bass (Micropterus salmoides) in impounded 1975 waters as determined by underwater telemetry. Trans.Am.Fish.Soc., 104(4):696-702

Ware, F.J., Lake management and research haul seine study. Florida Game and Fresh Water Fish 1971 Commission, F-012-R-13/Job 01/Final, 31 p.

Warner, K., Further studies of fish predation on salmon stocked in Maine lakes. Prog.Fish-Cult., 1972 34(4):217-21

Wegener, W.L., A tag comparison study of largemouth bass in their natural environment. Proc.Annu. 1966 Conf.Southeast.Assoc.Game Fish Comm., 19(1965):258-64

Wegener, W.L. and V. Williams, Fish population responses to improved lake habitat utilizing an 1975 extreme drawdown. Proc.Annu.Conf.Southeast.Assoc:Game Fish Comm., 28(1974): pp. 144-60

Weiss, C.M., Physiological effect of organic phosphorus insecticides on several species of fish. 1961 Trans.Am.Fish.Soc., 90(2):143-52

Weissenberg, R., Studies on virus diseases of fish. 4. Lymphocystis disease in Centrarchidae. 1945 Zoologica, 30(16):169-84

Wenger, A.G., A review of the literature concerning largemouth bass stocking techniques. Tech.Ser. 1972 Texas Parks Wildl.Dep., (13):40 p.

West, J.Li, The gonads and reproduction of three intergeneric sunfish (family Centrarchidae) hybrids. 1970 Evolution, (24):378-94

West, J.L. and F.E. Hester, Intergeneric hybridization of centrarchids. Trans.Am.Fish.Soc., 95(3): 1966 280-8

Wheat, T.E., W.F. Childers and G.S. Whitt, Bio-chemical genetics of hybrid sunfish: differential 1974 survival of heterozygotes. Biochem.Genet., 11(3):205-19

Wheat, T.E. et al。s Genetic and in vitro molecular hybridization of malate dehydrogenase isozymes in 1971 interspecific bass (Micropterus) hybrids. Anim. Blood Groups Biochem.Genet., (2):3-14

White, W.J. and RoJ. Beamish, A simple fish tag suitable for long term marking experiments. J.Fish. 1972 Res.Board Can., (29):339-41

Whitmore, C.M., C.E. Warren and P. Doudoroff, Avoidance reactions of salmonid and centrarchid fishes 1960 to low oxygen concentrations. Trans.Am.Fish.Soc., 89(1):17-26

Whitt, G.S., W.F. Childers and T.E. Wheat, The inheritance of tissue-specific lactate dehydrogenase 1971 isozymes in interspecific bass (Micropterus) hybrids. Biochem。Genet., (5):257-73

Whitt, G.S., E.T. Miller and J.B. Shaklee, Developmental and biochemical genetics of lactate 1973 dehydrogenase isozymes in fishes. In Genetics and mutagenesis of fish, edited by J.H. Schröder. Berlin, Springer-Verlag

Wiebe, A.F., Notes on the exposure of several species of fish to sudden changes in the hydrogen 1931 concentration of the water and to an atmosphere of pure oxygen. Trans.Am. Fish.Soc., (61): 216-24

1935
, The pond culture of black bass. Bull.Texas Game Fish Oyster Comm., (8):6-58

Wiebe, A.H. and A.M. McGavock, The ability of several species of fish to survive on prolonged exposure 1932 to abnormally high concentrations of dissolved oxygen. Trans.Am.Fish.Soc., (62):267-74

Wilbur, R.L. and R.M. Duchrow, Differential retention of five floy tags on largemouth bass (Micropterus 1973 salmoides) in hatchery ponds. Proc.Annu.Conf. Southeast.Assoc.Game Fish Comm., 26(1972): 407-13

Wilbur, R.L. and F. Langford, Use of human chorionic gonadotropin (HCG) to promote gametic production 1975 in male and female largemouth bass. Proc.Annu.Conf.Southeast.Assoc.Game Fish Comm., 28(1974): pp. 242-50

Wilson, A.J., Dịstribution units for warmwater fish. Prog.Fish-Cult., 12(4):211-3 1950

Witt, A., Jr., Experiments in learning with fishes with shocking and hooking as penalties. Mos. Thesis, 1949 University of Illinois, Urbana, 60 p.

Wollitz, RoE., Back Bay fishery investigation. Virginia Commission of Game and Inland Fisheries, 1962 D.J. Proj. (F-5-R-8):33 p.

Wright, L.D., Forage size preference of the largemouth bass. Prog.Fish-Cult., 32(1):39-42 1970

Wright, L.D. and J.R. Snow, The effect of six chemicals for disinfection of largemouth bass eggs. 1975 Prog.Fish-Cult., 37(4):213-6

Wurtz-Arlet, J., Le black-bass en France. Ann.Stn.Cent.Hydrobiol.Appl., (4):203-86 1952

Zeller, H.D. and H.N. Wyatt, Selective shad removal in southern reservoirs. In Reservoir fisheries 1967 symposium, Southern Division American Fisheries Society. Athens, University of Georgia, pp.405-14

Zweiacker, P.L., Population dynamics of largemouth bass in an 808-hectare Oklahoma reservoir. 1972 Ph.D. Thesis, Oklahoma State University, Stillwater, 126 p.

Zweiacker, P.L. and B.E. Brown, Production of a minimal largemouth bass population in a 3000-acre 1971 turbid Oklahoma reservoir. Spec.Publ.Am.Fish.Soc., (8):481-93

Zweiacker, P.L. and R.C. Summerfelt, Seasonal variation in food diel periodicity in feeding of 1974 northern largemouth bass, Micropterus s. salmoides (Lacepède), in an Oklahoma reservoir. Proc.Annu.Conf.Southeast.Assoc.Game Fish Comn., 27(1973):579-91

FISHERIES SYNOPSES

This series of documents, issued by FAO, CSIRO, INP and NMFS, contains comprehensive reviews of present knowledge on species and stocks of aquatic organisms of present or potential economic interest. The Fishery Resources and Environment Division of FAO is responsible for the overall coordination of the series. The primary purpose of this series is to make existing information readily available to fishery scientists according to a standard pattern, and by so doing also to draw attention to gaps in knowledge. It is hoped that synopses in this series will be useful to other scientists initiating investigations of the species concerned or of related ones, as a means of exchange of knowledge among those already working on the species, and as the basis for comparative study of fisheries resources. The will be brought up to date from time to time as further information becomes available.

The documents of this Series are issued under the following titles:

> Symbol
FAO Fisheries Synopsis No. FIR/S
CSIRO Fisheries Synopsis No. DFO/S
INP Sinopsis sobre la Pesca No. INP/S
NMFS Fisheries Synopsis No. NMFS/S

Synopses in these series are compiled according to a standard outline described in Flb/S1 Rev. 1 (1965). FAO, CSIRO, INP and NMFS are working to secure the cooperation of other organizations and of individual scientists in drafting synopses on species about which they have knowledge, and welcome offers of help in this task. Additions and corrections to synopses already issued will also be most welcome. Comments on individual synopses and requests for information should be addressed to the coordinators and editors of the issuing organizations, and suggestions regarding the expansion or modification of the outline, to FAO:

FAO:

Fishery Resources and Environment Division Aquatic Resources Survey and Evaluation Service Food and Agriculture Organization of the United Nations
Via delle Terme di Caracalla
00100 Rome, Italy
INP:
Instituto Nacional de Pesca
Subsecretaria de Pesca
Secretaria de Pesca
Secretaria de Industria y Comercio
Carmona y Valle 101-403
México 7, D.F.

CSIRO:

CSIRO Division of Fisheries and Oceanography Box 21
Cronulla, N.S.W. 2230
Australia

NMFS:

Systematics Laboratory
U.S. National Museum of Natural History

Washington, D.C. 20560
U.S.A.

Consolidated lists of species or groups covered by synopses issued to date or in preparation will be issued from time to time. Requests for copies of synopses should be addressed to the issuing organization.

The following synopses in this series have been issued since January 1974:

FIRS/S90	Synopsis of biological data on Sarotherodon galilaeus	July 1974
FIRS/S109	Exposé synoptique des données biologiques sur le germon Thunnus alalunga	
	de l'océan Atlantique	October 1974
FIRS/S111	Synopsis of biological data on Labeo rohita	June 1975
FIRS/S112	Synopsis of biological data on Nephrops norvegicus	September 1975
INP/S2	Sinopsis de datos biológicos sobre la tortuga golfina	Febrero 1976
FIR/S115	Synopsis of biological data on the Micropterus salmoides	November 1976

[^0]: a/ Johnson and Charlton (1960) reported cruising speed of $6-10 \mathrm{~g}$ largemouth bass to be $9.6,22.3,24.3,41.5 \mathrm{and} 20.5 \mathrm{~cm} / \mathrm{s}$ b/ $S D=$ standard deviation

[^1]: a/ Used monofilament: 2 people can apply 30 tags/h
 For every 5 cm increase in fork length there is a 25 mm increase in width. Thus for a 23 cm bass in California waters 2 year's growth are required before pressure is placed on the bones. Tantalum wire was best since it aided
 c/ Tag was attached with a. stainless steel pin

[^2]: Average of 3 years
 Approximately 17 km of timber in bands $91-137 \mathrm{~m}$ wide
 d/ Range

[^3]: a/ Schnabel estimate b/ Yield averages $47 \mathrm{~kg} / \mathrm{ha} / \mathrm{h} / \mathrm{ha}$ with a yield of $17 \mathrm{~kg} / \mathrm{ha}$ c/ $524 \mathrm{~h} / \mathrm{ha}$ with a yield of $17 \mathrm{~kg} / \mathrm{ha}$
 d/ Not cropped
 e/ Range
 lange
 Cropped
 Forage stocked 1 year before bass
 h/ Gambusia (Gambusia affinis) eliminated

[^4]: a/ Sex ratio approximately 1:1
 b/ 2:1 males to females
 of 3:1 males to females
 Range

[^5]: a. 51 mm fish average $579 / \mathrm{kg}, 76 \mathrm{~mm}$ fish average $191 / \mathrm{kg}$ (Meehean, 1940)
 c. Stocked with 123-240 adult bluegill/ha d/ Stocked with forage minnows

[^6]: Fed ground fish mixed with trout food (50/50 or $60 / 40$) Fed OMP - Oregon Moist Pellet (Hublou, 1963)

 तोलेणेन्च

