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3. Sampling accuracy 
 
In this section readers will: 
 
(a) Be presented with a mathematical definition of sampling accuracy. 
(b) Examine accuracy in original and transformed (“normalized”) 

populations. 
(c) Make observations on the growth pattern of accuracy with varying 

sample size. 
(d) Verify the inverse relationship between variability and accuracy. 
(e) Determine population-specific accuracy boundaries. 
 
3.1 Definition 
 
Let us assume a finite population of  N  elements   with 

a minimum value , a maximum value 
N21 y,...,y,y

miny minmax yy ≠  and mean 

. We also consider a sample of n elements with sample mean m. A 
relative index of proximity of the sample mean m to the population 

mean (briefly referred to as accuracy A in the paper), is defined by 
the following formula: 

µ

µ

   
R

µm
1A

−
−=                 (3.1) 

where  R  denotes the population range - . maxy miny
The above definition is in accord with the classical approach of 
determining a minimum allowable difference between a true 
population parameter and its estimator (see Cochran, 1977; 
Thompson, 1992; for discussion), except for the introduction of the 
population range into the item describing absolute error.  
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3.2 Normalizing the target population 
 
Generally, the range R of a population is not known but this will not 
affect the study of accuracy if we consider the original population 
mapped onto the standard interval [0,1] through the transformation 
formula:   

   
R
yyu mini

i
−

=                 (3.2) 

 
It is evident that by its definition through (3.2) the resulting normalized 
population  will have elements between and including 0 
and 1. 

N21 u,...,u,u

 
3.3 Sampling accuracy in normalized populations 
 
It will be shown that the accuracy of any sample from the original 
population as defined in (3.1) is equal to the accuracy of its mapped 
equivalent taken from the normalized population. 
 
Proof: 
 
In the normalized population  all elements will be 
between and including 0 and 1 and the mean will be: 

N21 u,...,u,u

 

   
R
yµµ min

u
−

=                 (3.3) 

 
Any sample of n elements  with mean m is mapped 

onto a normalized sub-set  with mean: 
n21 kkk y,...,y,y

n21 kkk u,...,u,u
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R
ymm min

u
−

=                 (3.4) 

 
Since all normalized elements are between 0 and 1 the range of a 
normalized population is 1. By using expression (3.1) to formulate the 
accuracy  of sample and by taking into account 

(3.3) and (3.4), we find: 
uA

n21 kkk u,...,u,u

 

A
R

µm
1

R
yµym

1
1
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1A minminuu
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−

−=
+−−

−=
−

−=  

 
hence the proof of the proposition.  
 
The fact that sampling accuracy remains unchanged when a 
population is normalized by means of transformation formula (3.2) 
permits us to study the accuracy with regards to normalized 
populations only.  
 
From this point on it is assumed that all population parameters and 
sampling approaches are referring to normalized populations. In this 
manner the accuracy A  will be simply defined as: 
 
   µm1A −−=                              (3.5) 
 
By its definition (3.1) it also follows that accuracy A has a lower value 
of zero and a maximum of 1. 
 
Numerical example 
 
Consider the population of 11 elements 0, 1, 2, …, 10 with mean 5. By 
selecting the sample (2, 6), the population mean is estimated by the 
sample mean 4. By applying formula (3.1) we find that the resulting 
accuracy is: 
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Next we normalize the population by applying formula (3.2). It easy to 
verify that the normalized elements are: 0, 0.1, 0.2, …, 1 and the 
population mean is 0.5.  
 
The previous sample (2, 6) is mapped on the normalized sample 
(0.2, 0.6) with mean 0.4. By applying the same formula (3.1) for 
sampling accuracy we find: 
 

  90.0
01

5.04.0
1

R
µm

1A =
−
−

−=
−

−=  

 
Which verifies numerically that the accuracy of any sample from the 
original population as defined in (3.1) is equal to the accuracy of its 
mapped equivalent taken from the normalized population. 
 
3.4 Accuracy plots 
 
Let us assume a normalized and finite population of size N and a 
series of successive random samples with sizes 1, 2, 3, …, N. In each 
sample the population mean will be approximated by a sample mean 
with accuracy A defined as in (3.5). By plotting A against sample size 
the resulting graph will show a fluctuating accuracy curve of hyperbolic 
shape (first plot of Figure 3.1). In this example sample size is 
expressed by the ratio n/N  so that both the horizontal and vertical 
axis are scaled from 0 to 1. Notice that the curve does not start from 0 
but from  1/N  which is the smallest sample proportion. 
 
Accuracy plots are easier to view and analyze if sample proportion is 
expressed by the ratio log n / log N  rather than n/N. In this case the 
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curve takes an exponential shape starting from 0 (equivalent to the 
ratio  log 1 / log N). This is shown in the second plot of Figure 3.1. 
 

Figure 3.1.  Accuracy plots from a normalized and finite population of 
size  N. Accuracy values correspond to successive random samples 
with sizes 1, 2, 3, …, N.  Notice the different shapes of the two plots 
depending on the expression used for sample proportion. 
 
 
A striking feature of accuracy growth is its sharp increase near the 
small samples and its much slower and stabilized shape beyond a 
certain “critical” sample size. It will later be shown that for finite 
populations this critical size corresponds to N . 
 
3.5 Accuracy and variability 
 
It is easy to prove that in finite normalized populations the sample size 
achieving a minimum allowable accuracy  with a given 
probability is given by: 

minA
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N
1
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)A1(

1n

22

2
min +

−
=                 (3.6) 

 
Expression (3.6) is based on the classical approach for determining 
safe sample size (see Thompson, 1992; p. 32). In this approach a pre-
set maximum allowable difference d between the estimated mean and 
its true value is established,  as well as a small probability   that the 
error will not exceed that difference. Sample size is then determined 
as: 

α

   

N
1

σz
d

1n

22

2
+

=     (3.7) 

 
where  z  is the upper  point of the standard normal distribution 

and   the population variance. Expression (3.6) derives from (3.7) 
by taking into account that in normalized populations the maximum 
allowable error d will be between 0 and 1 and it can therefore 
represent the difference 

2/α
2σ

minA1− . 
 
3.6 Population-specific accuracy boundaries 
 
Expression (3.6) can be used to formulate a population-specific lower 
boundary function for sampling accuracy at varying sample size.  
Solving for    we obtain: minA

                             
N
n1

n
σz1)n(Amin −−=              (3.8) 
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The above expression indicates that with varying sample size the 
resulting accuracy will be expected to be found above the curve 
formed by   at a probability level determined by  z. )n(Amin
 
Figure 3.2 illustrates two examples of population-specific accuracy 
boundaries. The following parameters were used in evaluating 
expression (3.8): 
 
N=1000. 
 
n=1, 2, …, N. 
 
z=1.96. 
 
In both examples σ is the standard deviation of the normalized 
population.  
 
Accuracy values and boundary functions are plotted against the 
sampling variable log n / log N. With few exceptions all accuracy 
values, whether resulting from small or large samples, are above the 
lower boundary defined by (3.8).  
 
A weak point in the above process is that such accuracy boundaries 
can seldom be used as a priori guidance for achieving sampling 
accuracy at a desired level. Expression (3.8) constitutes only a 
population-specific accuracy boundary since the variance of the target 
population is assumed to be known. Generally this is not the case at 
the initial stage of a sampling programme, thus defeating the purpose 
of setting-up accuracy boundaries on an a priori basis. However, 
global boundaries can instead be constructed through the use of two 

specific populations for which  can be computed in advance and 
this will be the main subject of the next section. 

2σ
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Figure 3.2.  Fluctuating sampling accuracy and population-specific 
accuracy boundaries (dotted line) for two finite and normalized 
populations of size N=1000. The first population is flat, whereas the 
second is concave and binary.  
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SUMMARY 
 
At this point readers should be familiar with the mathematical 
definition of sampling accuracy and its relation to sample size. The 
following points have been emphasized: 
 
(a) In this handbook sampling accuracy is defined as a relative index 

of proximity between the actual population mean and an estimate 
resulting from a sampling operation. 

(b) Accuracy remains unchanged if the target population is 
normalized. 

(c) Accuracy values follow a standard growth pattern with sample 
size. 

(d) It is possible to formulate accuracy boundaries when the 
population variance is known or can be guessed at. 

(e) Property (d) is not very useful because it requires a priori 
knowledge about the target population, which normally cannot be 
obtained. 

(f) There is a clear need for global (i.e.general)  accuracy boundaries 
that are independent of the population variance and depend only 
on the population size. 
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