PROPAMOCARB (148)

First draft prepared by Eloisa Dutra Caldas, University of Brasilia, Brasilia, BRAZIL

EXPLANATION

Propamocarb hydrochloride is a carbamate fungicide with specific activity against Oomycete species that cause seed, seedling, root, foot and stem rots and foliar diseases in a number of edible crops. The compound was evaluated by the JMPR in 1984, 1986, 1987 and 2005, when an ADI of 0–0.4 mg/kg bw and an ARfD of 2 mg/kg bw were established. At the 37th Session of the CCPR it was scheduled for residue evaluation, within the periodic review programme, by the 2006 JMPR. The manufacturer submitted data on metabolism in animal and plants, degradation in soil, residues in succeeding crops; GAP, analytical methods and processing studies. Residue trials submitted were conducted on potato, radish, onion, lettuce, spinach, cabbage, cauliflower, chicory, sweet pepper, tomatoes, summer squash, cantloupe and melon. GAP information and residue trials results on lettuce, cucumber and ginger were provided by the Government of Japan.

IDENTITY

Common name: Chemical name: IUPAC: CAS: CAS number: CIPAC number: EEC number: Molecular formula: Molecular mass: Structural formula: Propamocarb hydrochloride

Propyl 3-(dimethylamino) propylcarbamate hydrochloride Propyl [3-(dimethylamino)propyl] carbamate hydrochloride 25606-41-1 399

245-125-9 C₉H₂₁ClN₂0₂ 224.7 g/mol

0 x HC

PHYSICAL AND CHEMICAL PROPERTIES

A detailed chemical and physical characterisation of the active ingredient is given below.

Property	Results	Reference Report No.		
Colour and odour	Cream coloured sticky crystals with typical carbamate odour/white opaque crystalline soft liquid with weak, sickly sweet odour	(Sixl/Rexer, 1998; C001715/C001717; Walker <i>et al.</i> , 1995; 722/013)		
Melting point	64.2°C	(Lehne, 1990; A89312)		
Relative density	1.051 g/cm ³ at 20°C/1.15 g/cm ³ at 20.5 <u>+</u> 0.5°C	(Bittner/Rexer, C003480. Muehlberger and Lemke, 2004; C044109. Walker <i>et al.</i> , 1995; 722/013)		
Vapour pressure (extrapolated)	3.8x10 ⁻⁵ / 1.4 x10 ⁻³ Pa at 20 °C 8.1x10 ⁻⁵ / 1.7x10 ⁻³ Pa at 25 °C 1.6x10 ⁻⁴ Pa at 30 °C	(Miklautz, 1990; A85057; Howarth <i>et al.</i> , 1995; 722/015)		

Property	Results	Reference Report No.
Volatility (calculated)	Henry's law constant at 20 °C: 8.50 x 10 ⁻⁹ Pa m ³ mol ⁻¹	(Renaud, 2005; C046819)
Solubility in water at 20°C	 > 900 g/L at pH 3 > 855 g/L at pH 6.9 > 536 g/L at pH 9.6 between 89.2 and 93.5%w/w at pH 4 between 89.1 and 93.8%w/w at pH 7 between 89.6 and 94.6%w/w at pH 10 	(Muehlberger, 2001; C012641/C042353; Renaud, 2004; C045318 ; Walker <i>et al.</i> , 1995 ; 722/013)
Solubility in organic solvent [g/L] at 20°C s	Hexane: < 0.01 Toluene: 0.14 Methanol: > 656 Dichloromethane: > 626 Ethyl acetate: 4.34 – 4.8 Acetone: 560.3 Xylene: $1.6x10^{-2}$ Heptane: $< 1x10^{-4}$	(Müller, 1990; A85046; Walker <i>et al.</i> , 1995; 722/013; Ryckel, 2002; 20528)
Dissociation constant	pKa=9.3 <u>+</u> 0.03 at 20°C pKa=9.63 <u>+</u> 0.03 at 20°C	(Miklautz, 1991; A85060; Poerschke, 2001; C014007; Walker <i>et al.</i> , 1995; 722/013)
Partition coefficient n- octanol/water	Log Pow at 22°C = -2.87 (at pH 2), -1.21 (at pH 7) and 0.67 (at pH 9) Log Pow at 21-22°C = -0.98 (at pH 4), -1.36 (at pH 7) and 0.32 (at pH 9)	(Muehlberger, 2004; C012642; Walker <i>et al.</i> , 1995; 722/013)
Hydrolysis rate	< 10% hydrolysis after 5 days at 50°C at pH 4, 7 and 9	(Shepler et al., 2001; B003419; Walker <i>et al.</i> , 1995; 722/013)
Photochemical degradation	No photo degradation of propamocarb HCl in aqueous solution by irradiation with artificial sunlight during 22 days	(Klehr, 2003; A85564/A85466; Mullee <i>et al.</i> 1995; 722/014)

METABOLISM AND ENVIRONMENTAL FATE

All the metabolism and environmental fate studies submitted to the Meeting were conducted with 14 C-propamocarb hydrochloride labelled as shown on Figure 1.

Parent compound	Metabolites of propamocarb found in animals and plants						
		H ₃ C _N CH ₃ HO CH ₃ HO CH ₃					
Labeled propamocarb	Propyl propamocarb N-oxide (Met IV)	Propamocarb oxazolidin-2-one (Met VI)	2-Hydroxy propamocarb	N-desmethyl propamocarb			

Figure 1. Position of ¹⁴C in propamocarb and the metabolites found in animals and plants.

Animal metabolism

Rat

Four studies conducted in rats with ¹⁴C-propamocarb hydrochloride were submitted to the Meeting (Reynolds, 1994, A85144; O'Boyle, 1994, A85146/A91169; Reynolds, 1994, A85148/ A91170;

Propamocarb

Morley, 1997, A8386, A84072/C000632). These studies were evaluated by the 2005 JMPR during the toxicological periodic review of propamocarb, and are detailed in the 2005 JMPR Toxicology Evaluation and Report. In summary, propamocarb was rapidly absorbed and extensively metabolised in rat, with no accumulation of parent compound or metabolites in tissues, which are mainly excreted in urine and faeces. Half-life for all tissues ranged from 11–26 hours, with 3 to 20% of the applied dose being excreted as parent compound. The proposed metabolism of propamocarb hydrochloride in the rat involved aliphatic oxidation of the propyl chain, N-oxidation of the tertiary amine and N-dealkyation. Four major metabolites were identified: 2-hydroxy propamocarb, mono-N-desmethyl propamocarb (AEB132677), propylpropamocarb N-oxide (Met IV) and the cyclic propamocarb oxazolidin-2-one (Met VI). There was no evidence of conjugation with glucuronic or sulfuric acid.

Livestock

A lactating cow was orally dosed twice daily for seven consecutive days at a dose level equal to 11.5 mg/kg [¹⁴C]-propamocarb HCl equivalents in the diet. Based on dry weight of feed, this corresponds to 2.0 mg propamocarb HCl/kg body weight per day (Daniel and Rupprecht, 2000; B002935). Milk, faeces and urine were collected twice a day during the treatment period. Approximately 15 hours after the last dose, the cow was sacrificed and edible tissues (liver, kidney, muscle, fat and bile) were collected.

Samples of kidney, liver, and muscle were extracted 6 to 8 times with acidified methanol. Radioactivity in the extracts was directly counted by liquid scintillation counting (LSC). Total radioactive residues (TRR) in fat was 0.002 mg/kg propamocarb HCl eq. and no further extraction was performed. Liver and kidney extracts were directly subject to chromatography, but muscle extracts were 'de-fatted' previously with hexane. Milk was extracted with hexane to remove the fat before being dialysed with water. Faeces were extracted with acidic methanol followed by soxhlet extraction with acidic methanol. Identification and quantification of the metabolites in the extracted residue was accomplished by reverse phase and cation exchange HPLC. Samples were analyzed within 2–6 months after collection.

The majority of the administered dose was excreted (81.4%), via the urine (71.9%) and the faeces (9.5%). An overall recovery (including stall wash) of 82.9% of the administered dose was achieved. The residues in the milk were always higher in the afternoon, with a mean of 0.054 ± 0.008 mg/kg propamocarb HCl eq (n=7), and a maximum of 0.057 mg/kg on Day 6 than in the morning (mean: 0.035 ± 0.003 mg/kg propamocarb HCl eq. (n=7) and the maximum of 0.037 mg/kg on Day 5). Cumulative radioactivity recovered in the milk (0.599 mg/kg) accounted for 0.46% of the administered dose. TRR found in tissues and bile accounted for 0.7% of the administered dose. Radioactivity found in tissues, milk and faeces are summarized in Tables 1 and 2. Unextracted residues were not analyzed further.

Matrix	TRR	Extracted	l Residue	Unextracted Residue		
	mg/kg ^a	%TRR	mg/kg ^a	%TRR	mg/kg ^a	
Kidney	0.107	92.5	0.099	7.2	0.008	
Liver	0.415	96.4	0.4	3.6	0.015	
Milk ^b	0.057	100	0.057	NA	NA	
Muscle	0.019	83.2	0.016	16.8	0.003	
Milk fat ^b	< 0.01	NA	NA	NA	NA	
Faeces ^c	NA	93.6	-	6.3	-	

Table 1. Extractability of residues in tissues, milk and faeces.

a. Expressed as propamocarb HCl equivalents; b. sample from day 6 afternoon; c. days 4 and 5; NA= not analysed

The majority of the residue comprised propamocarb, propamocarb N-oxide (Met IV), and the cyclic propamocarb oxazolidin-2-one (Met VI). Minor amounts of 2-hydroxy propamocarb and desmethyl propamocarb (AE B132677) were also identified (Table 2; Figure 1). The majority of the residue was identified in all matrices.

	Propa	nocarb	 Propyl propamocarb N- oxide (Met IV) 		Propamocarb oxazolidin-2- one (Met VI)		2-Hydroxy propamocarb		N-desmethyl propamocarb		Identified	
	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg
Kidney	23.5	0.025	40.8	0.044	14.1	0.015	13	0.014	nd	nd	91.4	0.098
Liver	6.2	0.026	49.0	0.203	21.7	0.09	4.8	0.02	nd	nd	81.7	0.339
Milk	6.0	0.003	21.3	0.012	23.4	0.014	37.6	0.022	3.4	0.002	91.7	0.053
Muscle	24.6	0.005	40.5	0.008	2.3	< 0.001	0.9	< 0.001	4.1	0.001	72.4	0.014
Faeces	33.7	NA	24.6	NA	2.0	NA	13.1	NA	7.6	NA	81	NA
Urine	1.2	NA	28.2	NA	59.0	NA	9.9	NA	NA	NA	98.3	NA

Table 2. Summary of metabolite identification in tissues, milk and excreta.

Figure 2 shows the proposed metabolic pathway for propamocarb hydrochloride in the cow. The compound is oxidised or N-demethylated at the di-methyl amine group, or is hydroxylated at the propyl side chain, with the subsequent cyclization to form propamocarb oxazolidin-2-one (metabolite VI).

Figure 2. Proposed metabolic pathway of propamocarb hydrochloride in the cow.

Plant metabolism

Spinach

In a study conducted in USA in 2000, [¹⁴C]-propamocarb HCl was applied twice to <u>spinach</u> by foliar spray at a rate of 2.53 kg ai/ha (Rupprecht and Daniel, 2000; B002936). Duplicate samples were harvested immediately following the 1st application (day 0), just prior to the second application (Day 20) and 3 days after the second application (Day 23). Samples were extracted three times with methanol/1M hydrochloric acid (99:1), the extract filtered and the ¹⁴C content determined by LSC. The filter cake was extracted with acidic methanol in a soxhlet system. Sample extracts were analysed by HPLC and TLC using a radioactive detector. Propamocarb and a selected number of targeted metabolites were used as external standards to identify the residues present. The results are presented in Table 3. Propamocarb was the main residues found in all samples collected.

Sample time	TRR, mg/kg ^a	Propamocarb, %TRR	Propyl propamocarb N-oxide (Met IV),%TRR	Propamocarb oxazolidin-2- one (Met VI),%TRR	2-Hydroxy propamocarb, %TRR	N-desmethyl propamocarb, %TRR	Total identified, %TRR
Day 0	203.0	89.2	2.2	1.8	0.0	0.0	93.2
Day 20	207.3	76.0	3.5	2.6	7.1	3.6	92.7
Day 23	236.9	83.1	3.6	2.8	5.4	1.1	96.1

Table 3. Distribution of metabolites in spinach extracts.

a. Expressed as propamocarb HCl equivalents; mean values from duplicate samples

Lettuce

In one study conducted in UK in 2002, [¹⁴C]-Propamocarb HCl (>98% radiochemical purity) was applied (a) to soil on which <u>lettuce</u> was grown three times at 7.22 g ai/m², corresponding to 72.2 kg ai/ha immediately after sowing and at intervals of 14 and 28 days thereafter, and (b) three times as a foliar spray in a greenhouse at 1.08 kg ai/ha with 10 day intervals (Goodyear, 2002a; 16669/6-D2149).

Plants were harvested at mature size 38 days after the final soil treatment and 21 days after final foliar treatment. Samples were homogenized in dry ice and stored frozen until analyzed. Portions (approximately 20g) of the homogenates were extracted with methanol, the extracts centrifuged and the radioactivity present determined by LSC. The plant residue remaining was air-dried and the unextracted radioactivity determined by LSC following combustion. The results are shown in Table 4.

	Table 4. Radioactive	residues in	lettuce after	soil and	foliar treatment.
--	----------------------	-------------	---------------	----------	-------------------

Treatment, days after the last	TRR	Metha	nol	Unextracted	
treatment	(mg/kg) ^a	(mg/kg) ^a	(%)	(mg/kg) ^a	(%)
Soil, 38 days	10.7	3.8	35.5	6.9	64.5
Foliar, 21 days	9.51	8.04	84.3	1.47	15.5
Control	0.35	0.10	29.1	0.24	70.9

a. As propamocarb HCl equivalents.

Larger sub-samples (about 100 g) were extracted sequentially with methanol and water. The plant residue remaining was re-extracted by refluxing with 2M HCl and with 2M NaOH. The liquid extracts in each case were separated by centrifugation and the radioactivity present determined by

LSC. The unextracted radioactivity accounted for 7.1 and 0.2% of the total residue in soil and foliar treated sample respectively (Table 5).

	TRR	Meth	anol	Wa	ter	2M I	HCl	2M Na	OH	Unextra	acted
Treatment ^a	(mg/kg)	(mg/kg)	(%)								
Soil	8.19	4.37	53.3	0.95	11.7	1.58	19.3	0.71	8.6	0.58	7.1
Foliar	10.7	9.76	91.5	0.69	6.5	0.15	1.4	0.04	0.4	0.02	0.2
Control	0.292	0.20	68.4	NA	NA	0.05	16.9	0.03	11.2	0.01	3.5

Table 5. Distribution of radioactivity in extracts of lettuce.

a. After 38 days of the last soil treatment and 21 days after foliar application; NA = not analyzed

Methanol and water extracts of plants following soil and the foliar treatments, containing 65% and 98% of TRR, were analysed by HPLC. Table 6 shows that propamocarb formed only in a small proportion of the residue (2.8%) in the lettuce plants grown in treated soil. The residue was composed mainly of an unidentified polar region, Unknown 1. Extracts from the foliar treated samples showed predominantly unchanged propamocarb (90.2%) (Table 7).

Table 6. Profile of radioactive residues in (¹⁴C)-propamocarb soil treated lettuce.

Compound	Methano	l Extract	Water H	Extract	То	otal
	Residue	%TRR	Residue	% TRR	Residue	%TRR
	(mg/kg)		(mg/kg)		(mg/kg)	
Propamocarb	0.215	2.6	0.015	0.2	0.230	2.8
Unknown 1	3.650	44.6	0.811	10.0	4.461	54.6
Unknown 4	0.158	1.9	ND	ND	0.158	1.9
Unknown 8	0.274	3.4	0.069	0.8	0.343	4.2
Unknown 10	ND	ND	0.050	0.6	0.050	0.6
Unallocated	0.070	0.8	0.010	0.1	0.080	0.9
Extracted residue	4.367	53.3	0.954	11.7	5.321	65.0
			2M HCI	reflux	1.579	19.3
			2M NaOl	H reflux	0.708	8.6
			Unextr	acted	0.580	7.1
				TRR = 8.19	9mg/kg	

Table 7. Profile of radioactive residues in (¹⁴C)-propamocarb foliar treated lettuce.

Compound	Methano	anol Extract Water Extract Total		Water Extract		otal
	Residue	Percent TRR	Residue (mg/kg)	Percent TRR	Residue	Percent TRR
	(mg/kg)				(mg/kg)	
Propamocarb	9.016	84.6	0.599	5.6	9.615	90.2
Unknown 1	0.081	0.8	0.053	0.5	0.134	1.3
Unknown 4	0.284	2.7	0.019	0.2	0.303	2.9
Unknown 7	0.318	3.0	0.020	0.2	0.338	3.2
Unallocated	0.057	0.5	0.001	< 0.1	0.058	0.5
Extracted residue	9.756	91.5	0.692	6.5	10.448	98.0
			2M HCl	reflux	0.151	1.4
			2M NaOl	H reflux	0.043	0.4
			Unextr	acted	0.020	0.2
				TRR = 10.662	2mg/kg	

A total radioactive residue of 0.346 mg/kg was observed in samples from the untreated control lettuce, 29% of which was extracted with methanol. More exhaustive extraction of a second sub-sample of control lettuce using methanol, water, acid and base reflux, showed that 68% of the total residue was extracted with methanol, 17% with acid and 11% with base.

Potato

In a greenhouse study conducted in 1989 in Germany, [¹⁴C]-Propamocarb hydrochloride was applied three times to potato plants, at a rate corresponding to 2.45 kg ai/ha (approximately 20 days between applications) (Förtsch, 1991; A85140).

Potatoes samples were harvested 6 weeks after the final application, extracted using acidified methanol and the radioactivity of the combined extracts measured by LSC. On average, 45.5% TRR was found in the extracts (10 samples), corresponding to a TRR of 0.82 mg/kg propamocarb HCl equivalents. The ¹⁴C residue present was equally distributed between peel and flesh (0.96 mg/kg and 0.84 mg/kg, respectively). Control potatoes which were grown in the vicinity of the treated plants contained up to 0.3 mg/kg of propamocarb equivalents, the bulk of which was not extracted with acidified methanol.

Further extraction and partitioning of the extracted residue into chloroform was conducted, following the acidification and alkalisation of the extracts. Between 22 to 31% of the residue partitioned into the aqueous phase (mean = 25.5%) while 14 to 29% of the residue (mean = 23.6%) was present in the organic fraction (n=6). HPLC analysis of the crude methanol extract of sample No. 10 indicated that propamocarb was the main component, representing 58.4% of the total radioactivity extracted (Table 8). The identities of the metabolites shown on Table 8 were not confirmed in the study, but M1 had the same chromatographic behaviour as propyl propamocarb-N-oxide (Met IV).

	Crude	methanol extract	After purification			
	% TRR*	mg/kg prop HCl equ.	Chloroform,% TRR*	Aqueous,% TRR*		
Propamocarb HCl	27.8	0.23	11.8	1.5		
M1	8.6	0.07	2.3	18.8		
M2	7.2	0.06	3.5	-		
M3	2.0	0.02	1.6	-		
M4	-	-	2.5	1.4		
Undefined region	2.0	-	0.6	3.6		
Total	47.6	0.32	22.3	25.3		

Table 8. Extracted resides in potato treated with propamocarb.

* % of the total amount of recovered radiolabel residues of sample No. 10 (47.6% TRR)

In another greenhouse study conducted in German in 1994, potato plants were treated as in the previous study and tubers harvested about 6 weeks after the final treatment (Förtsch, 1994; A85141). Samples were macerated and soxhlet extracted with acidified methanol or acetonitrile followed by alkaline and acid hydrolysis of the remaining material. About 90% of the radiolabeled material was recovered by this method. One sample containing 1.12 mg/kg propamocarb eq, had 31.8% of this residue extracted by acetonitrile and 6.6% unextracted. Table 9 shows the chromatographic profile of this sample using different HPLC elution systems. About 7% of TRR was identified as the parent compound in the two HPLC systems, about 50% of TRR showed the same chromatographic behavior as radiolabeled natural products formed from the exposure of spinach plants with ${}^{14}CO_2$ gas, and identified as d-glucose.

Table 9. Metabolic	patterns of	f the extracted	residues	present in	plant extracts.
--------------------	-------------	-----------------	----------	------------	-----------------

HPLC peak i.d.	Retention	Macerate	Soxhlet	HCl	NaOH	Total
	time (min)	extract (%)	extract (%)	hydrolysate (%)	hydrolysate (%)	(%)
Normal phase HPLC analys						
Si-1	2-3	0.17	0.6	1.84	5.86	8.47
Si-2 – d-glucose	3.5-6	5.62	6.18	28.46	13.58	53.84
Si-3	6.5-7	0.14	1.79	1.89	0.5	4.32
Si-4 – propamocarb HCl	8-10.5	2.75	4.41	n.d.	n.d.	7.16
Si-5	11-12.5	0.07	0.38	n.d.	n.d.	0.45
Si-6	13-15	0.35	0.67	n.d.	n.d.	1.02
Si-7	15.5-18	0.19	n.d.	n.d.	n.d.	0.19

HPLC peak i.d.	Retention	Macerate	Soxhlet	HCl	NaOH	Total
_	time (min)	extract (%)	extract (%)	hydrolysate (%)	hydrolysate (%)	(%)
Si-8	22-25	0.06	0.11	n.d.	n.d.	0.17
Total characterized		9.95	14.14	32.19	19.94	75.62
Unassigned ¹⁴ C		1.6	0.5	6.2	2.9	11.2
% of ¹⁴ C lost		1.1	5.1			6.2
% of ¹⁴ C recovered.		12.1	19.7	38.4	22.8	93
Reverse phase HPLC analys	sis of potato tub	ers, System 2				
RP-1 - d-glucose	2 - 4.5	4.83	5.89	27.38	7.4	45.5
RP-2	5.5-8.5	1.01	0.96	1.61	4016	7.74
RP-3	9 – 11.5	0.72	0.74	1.18	1.16	3.8
RP-4	14 - 16.5	0.32	0.56	1.1	3.53	5.51
RP-5	17 – 19.5	0.29	0.28	n.d.	0.5	1.07
RP-6	20 - 22	0.31	0.64	n.d.	n.d.	0.95
RP-7 propamocarb HCl	23.5 - 25.5	2.5	3.26	0.68	0.47	6.91
RP-8	26 - 28	0.5	1.07	2.03	1.79	5.39
Total characterized		10.47	13.4	33.98	19.01	76.86
Unassigned ¹⁴ C		0.5	1.2	4.4	3.8	9.9
% of ¹⁴ C lost		1.1	5.1			6.2
% of ¹⁴ C recovered.		12.1	19.7	38.4	22.8	93

In a third study conducted with potato in the UK in 2002 (Goodyear, 2002b; 1669/5-D2149) [¹⁴C]-Propamocarb (> 98% radiochemical purity) was applied 6 times as a foliar spray to potatoes grown outdoors in crates at a rate of 2.2 kg ai/ha and at 10.8 kg ai/ha. Initially the treatment solution was applied to the foliage and the drift to soil was small, however by the sixth application the foliage had died back to such an extent that the majority of the treatment solution was sprayed on soil.

Samples were harvested when the tubers reached maturity, about 7 days after the last treatment, or 161 days after sowing. Samples of tubers were washed with water and divided equally into two samples, one of which was peeled. Samples of foliage and roots were also taken.

Fresh sub-samples of the whole tuber, peel, flesh and foliage were extracted sequentially with methanol, water and refluxed in 2M HCl acid and 2M NaOH base. The liquid extracts in each case were separated by centrifugation and the radioactivity present determined by LSC (Table 10).

Extract	Who	le tuber	Peel		Flesh		Foliage	
	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg
2.2 kg ai/ha								
Methanol	48.5	0.054	59.2	0.029	60.2	0.013	38.7	33.260
Water	27.3	0.031	18.6	0.009	15.7	0.003	14.7	12.670
2M HCl	19.4	0.022	11.5	0.006	15.2	0.003	20.4	17.511
2M NaOH	ND	ND	ND	ND	ND	ND	13.9	11.952
Unextracted	4.8	0.005	10.7	0.005	9.0	0.002	12.2	10.520
Residue								
	TRR =0	.112mg/kg	TRR =0.05mg/kg		TRR =0.02mg/kg		TRR =85.9mg/kg	
10.8 kg ai/ha								
Methanol	39.2	0.02	59.9	0.119	52.0	0.164	52.5	249.8
Water	32.3	0.016	16.4	0.033	18.7	0.059	15.5	73.6
2M HCl	22.0	0.011	13.3	0.027	21.2	0.067	14.0	66.62
2M NaOH	ND	ND	ND	ND	ND	ND	11.7	55.93
Unextracted	6.6	0.003	10.3	0.021	8.1	0.025	6.3	30.0
Residue								
	TRR =0.	.050 mg/kg	TRR =0.	199 mg/kg	TRR =0.	316 mg/kg	TRR =47	6.0 mg/kg

Table 10. Distribution of residues of [¹⁴C]-propamocarb in extracts of parts of treated potato.

The methanol, water and acid extract of whole tuber and foliage from the lower rate treatment were analysed by HPLC, TLC and LC-MS (Table 11). Only a small proportion of the residue (< 2% TRR) in whole tuber was identified as propamocarb. The residue was composed predominantly of an

unidentified region (Unknown 1) and five smaller regions containing each $\leq 6\%$ of TRR. In foliage extracts, a greater proportion of the residue was present as unchanged propamocarb (29%). The remainder of the residue showed a similar pattern of metabolites to those seen in the tuber.

HPLC with positive ion mass spectrometry analysis using reference standards tentatively identified the compounds 4, 6 and 7 as being a hydroxypropyl-propamocarb, N-methyl-propamocarb and propamocarb-N-oxide. There was no indication which carbon atom in the propane chain has been hydroxylated. Unknown compounds 2, 3, 5, 8, 9 and 10 were not identified.

	Whole tuber		Foliage	
Compound	Residue (mg/kg)	% TRR	Residue (mg/kg)	% TRR
Propamocarb	0.002	1.9	24.506	28.6
Unknown 1	0.087	77.4	25.843	30.0
Unknown 3	< 0.001	0.4	0.675	0.8
Compound 4: Hydroxypropyl	0.001	0.5	1.188	1.4
propamocarb				
Unknown 5	0.006	6.0	1.095	1.3
Compound 6: N-methyl propamocarb	ND	ND	4.838	5.7
Compound 7: Propamocarb N-oxide	0.004	3.2	3.543	4.1
Unknown 8	ND	ND	0.359	0.4
Unknown 9	ND	ND	0.567	0.7
Unknown 10	0.001	0.8	ND	ND

Table 11. Total amounts of propamocarb and metabolites in potato tuber and foliage.

The nature of the metabolites was investigated using the water extract of foliage treated at the higher rate. The radioactivity present in the water extract was composed mainly of the polar materials (Unknown 1 and Unknown 5). These materials were isolated and subjected to different treatments: 2M HCl at 60 °C; β -glycosidase in 0.1M ammonium acetate (pH5) at 37 °C; cellulase in 0.1M ammonium acetate (pH5) at 37 °C; hesperidinase in 0.1M ammonium formate (pH3.8) at 37°C; 0.1M ammonium acetate (pH5) at 37 °C. Between 91–106% radioactivity was recovered following each treatment. The reaction products analysed by HPLC showed that the treatments had no observable effect on the nature of the radioactivity present and no unchanged propamocarb was released.

Cucumbers

In a greenhouse study, conducted in Germany in 1998, cucumbers were grown in soil treated once with [¹⁴C]-propamocarb HCl applied at 2.9 kg ai/ha (11.8 mg ai/plant) and samples harvested at 30 days PHI. Hydroculture-grown cucumbers were treated once at a rate of 53.4 mg ai/plant, applied directly to the hydroponic solution and samples were harvested at 21 days post-application. Analysis of the hydroponic nutrient solution used to feed the cucumber plants showed that propamocarb hydrochloride was the only ¹⁴C active compound present. Plant samples were separated into fruit, leaves/stems and roots and were analysed by LSC and by HPLC (Feyerabend and Rupprecht, 1998; A85149).

Cucumber samples were first extracted by maceration with methanol/1 M hydrochloric acid (99:1), centrifuged and the extracted solids re-extracted using the same solvent system in a soxhlet. Sample extracts were analysed using both normal phase and reverse phase HPLC conditions. The majority of the radioactivity was extracted by maceration (about 81% TRR) with unextracted residues representing < 8% of TRR. In the foliar treatment, propamocarb represented < 20% of TRR, and it was the major source of the extracted radioactivity in the hydroponic treatment (Table 12). The polar metabolites were not identified in the study. As part of the same study, sample extracts from spinach grown in a ¹⁴CO₂ enriched atmosphere were analysed in a similar manner and demonstrated that apart

from parent propamocarb the majority of the remaining ¹⁴C residues detected were present as a result of the incorporation of ¹⁴C into natural products.

Table 12. Extraction profile of cucumber fruit	after soil and hydroponic	treatments with propamocarb
hydrochloride.		

	Foliar (TRR = 0.069 mg/kg eq.)			Hydropo	Hydroponic (TRR = 3.09 mg/kg eq.) mg/kg eq. (% TRR)		
Acid methanol	Total in	Propamocarb	Polar	Total in	Propamocarb	Polar	
extract	extract	HCl	metabolites	extract	HCl	metabolites	
Maceration	0.056 (81.2)	0.012 (17.4)	0.029 (42)	2.57 (83.3)	1.59 (51.4)	0.885 (28.6)	
Soxhlet	0.008 (11.6)	0.0013 (1.9)	0.005 (7.2)	0.341 (11.0)	0.217 (7.0)	0.107 (3.5)	
Unextracted	0.005 (7.2)	-	-	0.18 (5.8)	-	-	

Tomatoes

In a greenhouse study conducted, in the UK in 2001, on tomato [¹⁴C]-propamocarb (> 98% radiochemical purity) was applied 4 times to soil at rates of 0.007 and 0.036 kg ai/ha, and as a single foliar treatment at 2.2 kg ai/ha (Goodyear, 2001; 1669/3-D2149). Immature foliage (BBCH Stage 18, 8 true leaves unfolded) was harvested 7 days after the second soil treatment, i.e., 45 days after sowing. Mature tomatoes from the soil treatment were harvested at intervals of 14, 21, 28 and 35 days following the last application. Mature tomatoes, from foliar treated plants, were harvested at intervals of 7, 14, 21 and 28 days following application. Plant foliage was also sampled at the final harvest interval for both treatments. Samples were homogenised in dry ice and stored until analysis.

Plant material was extracted by maceration with methanol and water, with further extraction in 0.1M HCl and 0.1M NaOH (maceration and reflux) performed as necessary. The resulting extracts were separated by centrifugation and the radioactivity determined by LSC. The residue remaining was airdried and the unextracted radioactivity was determined by LSC following combustion. Table 13 shows the radioactivities recovered from the foliage from soil and foliar treatments.

Treatment,		TRR	mg/kg eq. (% TRR)				
kg ai/ha	PHI	mg/kg eq.	Water	methanol	0.1M HCl	0.1M NaOH	Non-extracted
Soil,	7	11.8	6.6 (56.5)	0.792 (8.2)	0.31 (2.6)	1.02 (8.6)	2.8 (23.9)
0.007 (1X)	35	4.9	-	2.1 (43.1)			2.8 (56.9)
Soil,	7	69.4	38.5 (55.5)	5.4 (7.9)	1.76 (2.5)	6.04 (8.7)	17.6 (25.4)
0.036 (5X)	35	19.8	-	8.2 (41.4)	-	-	11.6 (59.6)
Foliar, 2.2	28	5.21	-	367 (70.6)	-	-	1.53 (29.4)

Table 13. Radioactivity from foliage extracts.

The water and methanol extracts from the homogenised immature foliage (7 days PHI) were partitioned with chloroform and the resulting aqueous fractions contained 43% of TRR for the 1× treated samples and 37% of TRR for the 5× treated samples. HPLC of the extracts showed about 5% of TRR (0.61 and 3.1 mg/kg eq) as propamocarb, and four unidentified regions of radioactivity ranging from 2 to 22% TRR. The largest single region was polar in nature.

Residues in tomato fruit extracts harvested at each interval from the soil and foliar treated plants are shown in Table 14.

Table 14. Residues i	in mature tomato f	fruit.
----------------------	--------------------	--------

	Interval	TRR	Methanol		Unextracted	
Treatment	(days)	mg/kg eq	mg/kg eq.	% TRR	mg/kg eq.	% TRR
Soil $1 \times / 5 \times$	14	1.48 / 8.4	1.0 / 5.35	67.5 / 63.4	0.41 / 3.03	32.5 / 36.1
	21	1.34 / 7.32	0.89 / 4.84	66.3 / 66.1	0.45 / 2.48	33.7 / 33.9
	28	1.39 / 6.17	0.93 / 4.01	67.0 / 65.0	0.46 / 2.16	33.0 / 35.0

	Interval	TRR	Methanol		Unextracted	
Treatment	(days)	mg/kg eq	mg/kg eq.	% TRR	mg/kg eq.	% TRR
	35	1.23 / 7.17	0.80 / 4.49	65.1 / 62.7	0.43 / 2.68	34.9 / 37.35
Foliar	7	0.09	0.04	46.5	0.01	13.2
	14	0.12	0.10	82.9	0.02	17.1
	21	0.21	0.18	84.4	0.03	15.6
	28	0.27	0.23	85.7	0.04	14.3

HPLC analysis of the methanol and water extracts from the 1× soil treated fruit showed that propamocarb was not present in the sample. The radioactive residue was composed mainly of Unknown 1 and five other unidentified regions, each one with < 0.06 mg/kg eq. (Table 15). Analysis of the corresponding 5× soil treated fruit extracts gave similar results. HPLC analysis of the water and methanol extract from the foliar treated fruit contained mainly propamocarb (0.07mg/kg). The water wash contained mainly propamocarb (0.04 mg/kg) while the methanol extract contained only propamocarb (0.03mg/kg).

Table 15. Distritution of residues in tomatoes extracts.

Sample	Compound	Residue (mg/kg eq.)	% TRR
14 days, 1X soil	Propamocarb	Not detected	Not detected
TRR = 1.48 mg/kg eq.	Unknown 1	1.01	68.4
	Unknown 2 - 6	1.57	10.6
	Unallocated	0.004	0.2
	2M HCL reflux	0.170	11.5
	2M NaOH reflux	0.136	9.2
	Non-extracted	0.002	0.1
7 days,	Propamocarb	0.065	75.2
foliar treated fruit	Unknown 1	0.014	16.6
TRR = 0.086 mg/kg eq.	Unallocated	< 0.001	0.3
	2M HCL reflux	0.003	3.5
	2M NaOH reflux	0.002	2.6
	Non-extracted	0.002	1.8

Total radioactive residues of between 0.32 and 0.39 mg/kg were observed in samples of untreated control fruit, with methanol extraction releasing between 56 and 64% of the residue. When a second sub-sample was extracted 73% appeared in the methanol extract, 15% in the acid extract and the remaining 12% was unextracted. When the methanol extract was analysed by HPLC the radioactivity was present as a single region of polar material. The Unknown 1 observed in treated plants was also observed in control plants when extracts were analysed by HPLC. No explanation was given for the high residue foud in control samples.

The proposed metabolic pathway for propamocarb HCl in crops is presented in Figure 3

Rotational crops - confined

In one study conducted in USA under confined conditions, bare soil was treated at 5.96 – 6.16 kg/ha, representing 1.2 times the annual maximum application rate for propamocarb hydrochloride (Meyer, 2000, Report No. B002934). Leafy lettuce, radishes and wheat were planted at 30 days, 120 days and 365 days after treatment. Mature plants and immature wheat were harvested for analysis.

Residues were extracted with acidic methanol at either ambient temperature or by soxhlet and quantified by LSC. Residues remaining in the extracted fibber, as well as total residues in the RACs before extraction, were determined by combustion. Acid and base hydrolysis at elevated temperature was used to release non-extracted residues in the fibber. Methanol extracts and residues released from the fibber were analysed by reverse-phase HPLC and TLC using certified reference standards.

Total residues in the rotational crops, planted into the 30 day aged soil, ranged from 0.36 (radish roots) to 2.33 mg/kg (wheat straw) (Table 16). Total residues were much lower in crops planted in 120 days and 365 days aged soil.

	Aged treated soil			
Сгор	30 days	120 days	365 days	
Lettuce	0.79	0.03	0.02	
Radish Tops	1.35	0.02	0.02	
Radish Roots	0.36	0.03	0.01	
Immature Wheat	1.10	0.04	0.04	
Wheat Grain	0.66	0.09	0.06	
Wheat Straw	2.33	0.08	0.08	

Table 16. Mean Total Radioactive Residue, as mg/kg propamocarb eq.

Analysis of the extracts at 30 days and also from a wheat sample at 365 days showed a similar profile as in all crops at both time points. Propamocarb was found consistently in all samples and was frequently the major component. The identification of the metabolites is summarized in Table 17. The remaining metabolites identified comprised of 2-hydroxy propamocarb (lettuce and wheat) and the oxazolidine (Met VI) with traces of N-oxide (Met IV) and desmethyl propamocarb (30 days wheat only). The remaining radioactivity was composed of a complex mixture of highly polar components, which eluted at the solvent front on HPLC and at, or close to the origin on TLC.

Residues released after acid and base hydrolysis indicated a similar pattern of metabolites to those in the extracted residues, albeit with generally a higher proportion of the very polar components. Residues which remained unextracted after hydrolysis were less than 10% of the total radioactive residue.

	Methacidic e	anol extract	Propam	locarb	Prop propamoc oxide (M	yl arb N- et IV)	Propamo oxazolid one (Me	ocarb in-2- t VI)	2-Hydr propamo	oxy ocarb	Largest un detec	nknown sted
Crop	mg/kg eq	% TRR	mg/kg eq	% TRR	mg/kg eq	% TRR	mg/kg eq	%	mg/kg eq	%	mg/kg eq	% TRR
Lettuce	0.551	74.6	0.302	40.9	0.045	6.1	0.049	6.6	0.031	4.1	0.029	4.0
Radish tops	1.103	81.7	0.911	67.4	0.042	3.1	0.06	4.4	nd	nd	0.035	2.6
Radish roots	0.24	72.6	0.104	31.5	0.015	4.6	0.018	5.5	0.01	2.9	0.01	3.0
Wheat forage	0.753	68.8	0.496	45.3	0.035	3.2	0.033	3.0	nd	Nd	0.039	3.6
Wheat grain	0.271	41.2	0.009	1.3	0.008	1.2	0.131	19.9	0.038	5.7	0.004	0.6
Wheat straw	1.06	45.3	0.359	15.4	0.131	5.6	0.231	9.9	0.064	2.6	0.021	0.9
Wheat straw ¹	0.014	16.8	nd	nd			nd	nd	0.002	2.3	0.069	3.0

Table 17. Summary of the compounds identified in the extracted residues from crops cultivated on soil treated with propamocarb 30 days befor planting.

1. Planted 365 day after soil treatment

A field study was conducted in the USA to determine residues in soil of propamocarb in rotational crops resulting from four applications to bare ground (Singer, 1999; C003451). The rotational crops selected were those anticipated to be grown after potatoes, in line with the typical agricultural cropping practices for each location. Four applications at a nominal rate of 1.68 kg ai/ha of propamocarb were made to bare soil at five-day intervals. Crops were planted 30, 60 or 365 days after the final soil treatment (Table 18).

Table 18. Summary of rotational crop trials.

Trial	Sate	Soil age		Crops planted	
R01-01	NY	30 and 60	Winter wheat		Soybean
R02-01	NC	30 and 60	Winter wheat		Soybean
R02-02	NJ	30 and 60	Winter wheat		Soybean
R03-01	FL	30 and 60	Winter wheat		Soybean
R05-01	WI	365	Spring wheat		Soybean
R05-02	ND	365	Spring wheat	Sugar beet	Soybean
R06-01	TX	30 and 60	Winter wheat	Sugar beet	
R08-01	CO	30 and 60	Winter wheat	Sugar beet	Dry beans
R10-01	CA	30 and 60	Spring wheat	Table beet	Dry beans
R10-02	CA	30 and 60	Winter wheat		Dry beans
R11-01	ID	365	Spring wheat	Sugar beet	Dry beans

Samples of wheat grain, forage, hay and straw, soybean seed, forage and hay, beets root and tops, and dry bean were harvested at typical harvest times. Winter wheat in some instances yielded a forage crop before the winter dormant period, while in other areas it did not yield forage until spring. All

samples from the 30 days plant back soil and all 60 days wheat forage samples were analysed for propamocarb.

Wheat was the only crop grown on 30 days aged soils which contained residues at or above LOQ. Therefore, only wheat samples were analysed for crops grown in the 60 days aged soil.

Wheat forage grown in soils treated 30 days before seeding contained detectable residues ranging from 0.055 to 0.229 mg/kg. The residues in 60 day wheat forage samples were generally below the LOQ of 0.05 mg/kg. In a few cases where detectable residues were found, they were around the LOQ level, i.e., 0.05–0.07 mg/kg. It was therefore decided that it would be unnecessary to analyse the crops grown in soil treated 365 days before seeding.

The 30 day plant back wheat hay samples, from four trials, contained residues in the range of 0.057 to 0.225 mg/kg, while no residue was detected in the other samples. The samples from the corresponding 60 day sites did not contain residues above LOQ.

All wheat straw samples derived from the 30 day and 60 day plant back sites contained residues below the LOQ of 0.05 mg/kg, with the exception of one replicate (0.05 mg/kg) from a 30 day site and one (0.055 mg/kg) from a 60 day plant back site.

ENVIRONMENTAL FATE

Aerobic soil degradation

The route of degradation for [¹⁴C]-propamocarb hydrochloride, under aerobic conditions, has been extensively investigated under a range of temperatures, i.e., 10 to 25 °C. Five studies were conducted from 1978 to 1986 in loamy sand soil treated at 200 mg/kg and incubated at 15 or 25 °C in the dark (Bruhl and Celorio, 1978; Bruhl, 1979; Bruhl and Celorio, 1980a, b; Bruhl and Celorio, 1986). Propamocarb degraded very rapidly to several unidentified products, each having < 3% TRR, with a half life ranging from 10 to 28 days. After 60 days of incubation, about 80% of the radioactivity had been mineralized.

Fent and Hein (2001a, b, c) conducted three soil degradation studies with [¹⁴C[-propamocarb HCl. In one study conducted at 20 °C (C012748), clay loam (Minnesota), loamy silt (Sarotti), loamy sand (Abington) and silty sand (Borstel) soils were incubated for 120 days with 0.48 mg/kg propamocarb, which corresponded to a field rate of 3.61 kg ai/ha. The amount of parent compound at the end of the study varied from < 2% TRR for loamy and silty sand soils to 27.1% TRR in clay loam soil (higher clay and organic matter content, Table 19). The formation of ¹⁴CO₂ increased steadily in all soils, ranging from 22.8% TRR in Minnesota soil to 66.2% TRR in Sarotti soil after 120 days. Up to eight non-identified metabolites were found in the soil extracts, which represented a total < 10% TRR in the course of the experiment. In another study conducted with loamy silt soil (Sarotti) at the same rate as previously, but at 10 °C incubation temperature (C012749), 79.1% TRR was assigned to propamocarb on Day 0, which decreased to 2.7% TRR on Day 120, with six unidentified metabolites, each one with < 6% TRR. Non-extracted residues ranged from 14.3% TRR at Day 0 to 21.1% TRR at Day 120, when 59.8% TRR was ¹⁴CO₂.

In the third study (C012750), silty sand soil (Borstel) was incubated at a rate 100 times lower than the previous studies (corresponding to 0.00361 kg ai/ha in the field) for 120 days, at 10 °C with the residue profile investigated at different soil depth layers. At the end of the study, the radioactivity assigned as propamocarb ranged from 25.7% TRR at 20 cm to 58.1% TRR at 90 cm. Up to nine non-identified metabolites were found in the extracts, none at > 6% TRR. DT_{50} and DT_{90} of the studies conducted by Fent and Hein were reported by Kley (2001a, b, and c) and are shown on Table 19.

Soil	Clay,% (< 2 μm)	Organic carbon,%	Temperature	Rate, kg ai/ha	DT ₅₀ , days	DT ₉₀ , days
Clay loam (Minnesota)	32.2	3.15	20°C	3.61	136	452
Loamy silt (Sarotti)	17.7	1.3	20°C	3.61	11.7	38.9
Loamy sand (Abington	6.4	1.86	20°C	3.61	10.9	23.1
Silty sand (Borstel)	4.0	1.04	20°C	3.61	29.7	98.8
Loamy silt (Sarotti)	17.7	1.3	10°C	3.61	25.3	84.2
Silty sand (Borstel) 20 cm	4.0	1.04	10°C	0.00361	73.7	245
Silty sand (Borstel) 40 cm	4.0	1.04	10°C	0.00361	136	452
Silty sand (Borstel) 60 cm	4.0	1.04	10°C	0.00361	239	794
Silty sand (Borstel) 90 cm	4.0	1.04	10°C	0.00361	267	886

Table 19. DT₅₀ and DT₉₀ of various soils treated with propamocarb HCl under aerobic conditions.

Schnöder (2002a/2003) conducted a study with four sandy loam soils and two clay loam soils incubated with 250 or 10 mg/kg [¹⁴C]-propamocarb HCl at 20 or 10 °C for 120 or 365 days (soil A) (Table 20). For all soils, the majority of the radioactivity was assigned to propamocarb, decreasing from > 90% TRR at Day 0 to < 1% TRR in soils A, B, C and E, to 2.3% TRR in soil F and to 22.1% TRR in soil D. Soil D had the lowest organic carbon content and biomass amongst all soils used. The major metabolite was a polar unidentified component, with < 8% TRR after 90 days. Half life ranged from 14.1 to 87.7 days. The amount of ¹⁴CO₂ increased to 42.7% TRR after 365 days (soil A) and to 30.7–48.4% after 120 days (soils B-F). Non-extracted radioactivity increase to 31.1% TRR after 365 days in soil A and from 29.4 to 47.4% TRR after 120 days in soils B to F.

Table 20. DT_{50} and DT_{90} of sandy and clay soils treated with propamocarb HCl under aerobic conditions.

Soil	А	Е	F	D	В	С
Туре	Sandy loam	Sandy loam	Sandy loam	Sandy loam	Clay loam	Clay loam
PH, in 0.01MCaCL ₂	6.7	6.7	6.7	4.9	6.2	7.3
Organic carbon (%)	2.5	2.5	2.5	1.3	4.5	2.7
Biomass, ugC/g	451.4	451.4	451.4	198.8	620.6	394.9
Rate, mg/kg	250	250	10	250	250	250
Temperature, °C	20	10	20	20	20	20
DT ₅₀ (days)	22.4	47.2	14.1	87.7	23.4	17.8
DT ₉₀ (days)	74.3	156.9	46.8	291.5	77.6	59.0

The metabolism of propamocarb HCl by soil micro-organisms was tested in sterilized and nonsterilized German standard soil 2.2 (Iwan, 1979: A85480; Iwan, 1980: A85481). After 14 days of incubation, recoverable propamocarb contents of sterilized samples remained constant (approximetaely 60% of applied material) the initial decrease being due to adsorption. In microbially active soil, extensive mineralization occurred following a lag-phase of 7 days. Degradation of propamocarb under these conditions was described by zero-order kinetics with a half-life of about 18 days. A mixed culture of bacteria and fungi capable of degrading the pesticide was identified. Intermediate metabolic products did not accumulate in any of the samples investigated.

Anaerobic soil degradation

Two studies were conducted to investigate the degradation of ¹⁴C-propamocarb hydrochloride under anaerobic conditions. In one study conducted by Bruhl in 1979 (A85478), a loamy sand soil treated at a rate of 200 mg/kg and kept at 25 °C, propamocarb degraded very slowly, with a half life of 459 days. Three unidentified degradation products were detected at levels < 2.5% TRR. In the second study, a sandy loam soil flooded with water up to 3 cm above the surface was kept in the dark in a chamber at 20°C and purged continuously with nitrogen (Schneider, 2002b). After > 30 days, the system was treated with propamocarb HCl and kept under anaerobic conditions for 365 days (A) or 120 days (B). Total soil and water samples were sampled during the period of the study. Propamocarb rapidly dissipated from the water phase into the soils, leading to increases in radioactivity extracted from the soil. Propamocarb extracted from the soil decreased during the experiment with a consequent increase of the radioactivity in non-extracted residues. The major degradation product detected reached a maximum of 6.6% TRR in the system after 365 days. The half life for propamocarb in the system is shown in Table 21.

Table 21. DT₅₀ and DT₉₀ of flooded sandy loam treated soil under anaerobic conditions.

	Group A: 250 mg/kg		Group B	: 10 mg/kg
	DT ₅₀	DT_{90}	DT ₅₀	DT ₉₀
Total system	308.2	1024	65.7	218.2
Water phase ^a	72.9/14.7	242.0/318.9	10.7/7.0	35.1/53.1

a. values correspond to 1-phase/2-phase models

Photolysis on soil surfaces

In one study conducted by Tschampel (1990/1994), [¹⁴C]-propamocarb HCl was sprayed on to metal plates covered with a loamy sand soil at a concentration corresponding to typical agricultural use. The plates were irradiated with filtered light simulating natural sunlight. The estimated DT_{50} value under irradiated conditions was 35.4 days and over 97% TRR was recovered from the dark controls after 30 days. No degradation products exceed 10% TRR.

Field dissipation

Field dissipation studies (Willard, 2002, AA010716) were conducted in the USA, California (sandy loam) and Georgia (loamy sandy). A SL formulation of propamocarb hydrochloride was applied 4 times to soils, with 7 day intervals, at an application rate of 9.35 kg ai/ha. In each trial there was a treated plot covered in turf grass and a bare soil plot. In the turf grass plots, grass, thatch (0–7.5 cm deep) and turf soil (> 7.5 cm deep) samples were collected. In the bare soil plots, samples were collected up to 56 cm deep. Samples were collected from 1 day before treatment to 4 months after treatment. No residues (< 0.002 mg/kg) were detected at any time in samples > 15 cm deep collected from the bare soil from the Georgia loamy sand and > 30 cm deep from the bare soil from the California sandy loam. DT₅₀ and DT₉₀ from this study are shown on Table 22.

Table 22. Results from field dissipation studies conducted in USA.

Sample	DT ₅₀ (days)	DT ₉₀ (days)
Loamy sand	17.6	58.6
Sandy loam	22.1	73.3
Loamy sand thatch	17.4	57.7
Sandy loam thatch	23.7	78.6
Grass	13.2	43.9
Grass	18.1	60.1

RESIDUE ANALYTICAL METHODS

The residue methods used for plant, animal tissues and soil are based on either the analysis of propamocarb (free base) or propamocarb hydrochloride, depending on the internal standard used and the preparation of the standard solutions (calculated for the molecular weight of propamocarb or propamocarb hydrochloride). The methods involve a solvent extraction step (mostly diluted acetic

acid) followed by different matrix dependant clean up steps. The final determination is carried out by HPLC/MS/MS, GC/N-FID or GC/MSD.

Plant matrices

An enforcement method was validated for the determination of residues of propamocarb hydrochloride in various crops by LC-MS/MS (Diot and Rosati, 2005). For all sample materials, propamocarb hydrochloride was extracted with a mixture of water/acetic acid (99/1). For cauliflower, two extractions were necessary and avocado extracts were de-fatted with n-hexane. After centrifugation and dilution of the final extract, the residues are quantified by HPLC/MS with electrospray ionisation. The quantification was done by an external standardisation in solvent or using matrix matched standards. The LOQ was set at 0.01 mg/kg for propamocarb hydrochloride in all the sample materials. Mean recovery values and relative standard deviations at each fortification level are presented in Table 23.

Crop	Level [mg/kg]	Mean [%]	RSD [%]
Lettuce head	0.01	79	13
	0.10	89	4
Chicory Witloof root	0.01	82	7
Chicory Witloof leaf	0.10	84	8
Pepper	0.01	73	4
	0.10	90	3
Potato	0.01	77	2
	0.10	98	3
Spinach	0.01	97	2
opinaci	0.10	97	1
Leek*	0.01	92	8
	0.10	77	7
Onion*	0.01	87	7
	0.10	93	13
Cabbage	0.01	75	18
	0.10	87	2
Cauliflower	0.01	73	10
	0.10	73	6
Brussels sprout	0.01	79	4
	0.10	73	4
Broccoli	0.01	88	7
	0.10	79	7
Cucumber	0.01	102	16
	0.10	89	4
Avocado*	0.01	73	4
	0.10	74	9
Wheat grain	0.01	86	8
	0.10	80	5

Table 23. Recovery of propamocarb HCl from plant materials (n=5).

*recovery rates obtained using matrix matched standards

In another method, propamocarb (free base) was extracted with dilute acetic acid, the extract clean-up by C18 solid-phase-extraction (SPE) and propamocarb eluted with acetonitrile/water/acetic acid (Mende, 2001). Final determination was performed by HPLC-MS/MS, with quantification at m/z 102 and/or 144 (daughter ions). No peaks interfering with propamocarb were detectable (< 0.003 mg/kg) in control samples of all matrices. The limits of quantification for propamocarb were established at 0.01 mg/kg. Mean recovery values and relative standard deviations at each fortification level are presented in Table 24.

Matrix	Fortification level	Mean recovery	RSD [%]	n
	[mg/kg]	[%]		
Cabbage head	0.01	82	14	5
	0.1	91	19	5
	1.0	106	13	3
Cabbage plant	0.01	100	4	4
	0.1	97	10	5
	1.0	94	16	3
	100	91		1
Cauliflower head	0.01	81	16	9
	0.1	97	10	4
	1.0	106		1
Cauliflower plant	0.01	102	8	3
	0.1	91	20	4
	1.0	109		1
	100	82		1
Cucumber fruit	0.01	98	4	3
	0.1	94	7	7
	1.0	93	1	7
	2.0	108	3	2
	100	82		1
Head lettuce	0.01	88	12	3
	0.1	91	5	5
	1.0	87	12	5
	3.0	93	8	2
	10	80		1
	30	87	5	2
	50	97		1
	100	86		1
Melon pulp	0.01	88	8	3
	0.1	92	9	3
	2.0	102	2	3
	10	91		1
Melon peel	0.01	105	10	3
	0.1	97	3	4
	10	101		1
Melon fruit	0.01	94	4	4
	0.1	94	15	6
	1.0	95	7	4
	10	94	6	3
Sweet pepper fruit	0.01	83	19	13
	0.1	91	16	7
	1.0	95	4	5
Tomato fruit	0.01	82	12	6
	0.1	89	7	6
	1.0	89	2	3

Table 24. Recovery of propamocarb (free base) from plants.

The previous analytical method was validated by independent laboratories for the analysis of propamocarb (free base) in potato tubers and potato products (Class, 2002a and b), lettuce and tomato (Wrede, 2001). The results from both studies are shown in Table 25.

Table 25. Recovery of propamocarb (free base	e) from plant materials.
--	--------------------------

Matrix	Fortification	Mean	RSD	n
	Level [mg/kg]	Recovery [%]	[%]	
Potato	0.01	97	5	3
	0.10	109	0	2
Puree	0.01	78	11	3
	0.10	103	4	3

Matrix	Fortification	Mean	RSD	n
	Level [mg/kg]	Recovery [%]	[%]	
Fries	0.01	82	32	4
	0.10	91	5	3
Crisp	0.01	99	9	4
	0.10	140	29	3
Flakes	0.01	79	17	3
	0.10	92	12	3
Lettuce	0.01	67	14	5
	0.1	74	11	10
	30	101	4	5
Tomato	0.01	86	3	5
	0.1	77	10	10
Lettuce*	0.01	84	14	5
	0.1	95	10	5
	30	110	4	5
Tomato*	0.01	115	3	5
	0.1	102	10	10

* Matrix matched standards

A GC method was validated for propamocarb hydrochloride in different vegetables matrices after acidified methanol extraction followed by different clean-up steps of the extract (Wrede, 1988). The extract was basified with sodium hydroxide solution, extracted with chloroform and re-extracted with acidic water solution and further with di-isopropryl ether. The free base formed by alkaline hydrolysis was quantitatively determined by GC/N-FID. The method was validated at fortification levels of 0.1–10 mg/kg (Table 26). The same method was validated in another study (Scheuermann, 1983), with the results shown also in Table 26.

Table 26. Recovery of Propamocarb hy	drochloride from plant materials (G	C/N-FID)
--------------------------------------	-------------------------------------	----------

Matrix	Fortification level	Mean recovery	RSD [%]	n
	[mg/kg]	[%]		
Cabbage	0.1	71	5	3
Lettuce	0.1	91	1	3
	0.2	105	4	3
	0.5	105	2	3
	1	98	8	3
	5	103	8	6
	10	108	10	3
Potato	0.1	82	3	2
	1.0	117	4	3
Pepper	0.1	82	2	3
	10	107	5	3
Radish	0.1	97	10	2
	1.0	110	3	2
Lettuce	0.1	120	17	7
	0.5	83		2
	1	91	5	4
	5	74		2
Cucumber	0.2	73	8	3
	1	71	6	6
	5	91	3	5
Spinach	0.5	106		2
	2	112		2
	20	65		2
Tomato	0.2	66	6	5
	1	63		2
Radish,	0.2	83	10	4
Small radish	0.5	124	21	4
	10	79	14	4

Matrix	Matrix Fortification level		RSD [%]	n
	[mg/kg]	[%]		
Brussels sprouts	0.05	106	18	2
	0.2	63	10	5
	0.5	70		2
Cornsalad	0.2	100		2
	0.5	93		2
	1	99		2
	10	77		2
	50	91		2
	200	80		2
Celery	0.5	81	12	4
	1	63		2
Red beet roots	0.2	73		1
	0.5	76		1

This GC method was optimized for the analysis of propamocarb hydrochloride in potato samples (Wrede-Rücker, 1991) and various other crops (Chambers *et al.*, 1997), with the free base quantitatively determined by GC/MSD. For validation of the method, recovery experiments were performed at fortification levels from 0.05 mg/kg (LOQ) to 2.0 mg/kg (Table 27). Calibration curves of 2^{nd} order were applicable over the tested range of 0.1 to $2.5\mu g/mL$. No apparent residue (< 0.3 × LOQ) were detected in the control samples (Chambers *et al.*, 1997).

Matrix	Fortification level	Mean recovery [%]	RSD [%]	n
Potato	0.10	83	19	16
Leek	0.05	91	0	2
	0.10	98	7	3
	0.50	89	18	3
	1.0	83	5	3
Onion	0.05	86	5	3
	0.10	87	10	3
	0.50	87	9	4
Brassicae	0.05	89	6	8
	0.50	91	2	8
Tomato	0.05	78	3	2
	0.10	78	3	4
	0.50	83	3	2
Potato	0.05	83	2	2
	0.50	109		1
Melon	0.05	99	6	2
	0.10	91	7	4
	0.20	85	15	5
	0.50	86	4	4
	2.0	72		1

Table 27. Recovery of Propamocarb hydrochloride from plant samples.

Animal matrices

Residues of propamocarb were extracted from animal products with 1.0% HCL in methanol and analyzed by HPLC-MS/MS (Leonard and Oden, 2001). Recovery experiments were performed at fortification levels of 0.01 mg/kg (LOQ) and 0.10 mg/kg. A linear calibration function was applicable over the tested range of 0.02 to 0.10 ng/mL. No peaks interfering with propamocarb were detectable (< 0.003 mg/kg) in the samples. This method was independently validated by another laboratory in milk, meat and eggs (Perez and Perez, 2001). Mean recovery values and relative standard deviations at each fortification level found in both studies are presented in Table 28.

		1	
Matrix	Fortification level	Mean recovery	RSD
	[mg/kg]	[%]	[%]
Beef Muscle	0.01	85.5	11.4
	0.10	92.0	3.9
Beef Liver	0.01	86.8	7.4
	0.10	88.3	5.6
Beef Kidney	0.01	87.4	3.8
	0.10	90.0	3.7
Beef Milk	0.01	82.6	3.3
	0.10	91.4	3.0
Chicken Eggs	0.01	100	6.4
	0.10	101	4.1
Milk	0.01	101	8.4
	0.10	88.1	6.2
Meat	0.01	94.3	4.6
	0.10	107	3.5
Egg	0.01	83.7	9.5
	0.10	97.8	15.1

Table 28 Recover	v of n	opamocarb	(free base)) from a	nimal	tissues	milk and	egg	(n=5)	•
1 abic 20. Recover	yorpi	opamocaro	Ince base	<i>i</i> 110111 a	ummai	ussues,	mink and	CBB	(n-J)	۰.

Soil

Residues of propamocarb hydrochloride are extracted from soil using HCL or acidified methanol, followed by different clean-up steps with chloroform and di-isopropyl ether and the free base formed by alkaline hydrolysis is quantitatively determined by GC/N-FID or GC/MSD (Scheuermann, 1983; Moede, 1991; Wrede, 2001). The extraction/clean-up procedure is similar to the one described previoulsly for plants (Wrede, 1988).

For method validation, recovery experiments were performed at fortification levels of 0.026 mg/kg (LOQ) to 50 mg/kg. The results are shown on Table 29.

Table 29. Recovery of Propamocarb hydrochloride from soil.	
--	--

Reference	Fortification level	Mean recovery [%]	RSD	n
	[mg/kg]		[%]	
Scheuermann, 1983	1.0	94		2
	50	89		2
Moede, 1991	0.026	88	7	3
	0.05	89	8	3
	0.1	76	1	3
	1.0	88	5	3
Wrede, 2001	0.026	88	7	3
	0.05	99	8	11
	0.1	83	14	9
	1.0	79	16	6
Wrede, 2001	0.1	81	7	5
	0.1	50	10	5
	1.0	57	20	16

In another method (Mende, 2002), residues of propamocarb (free base) were extracted from soil using hydrochloric acid, followed by a clean-up of the extract on a C18 column. The final extract is basified with ammonia solution and the free base of propamocarb is quantitatively determined by LC-MS/MS (ratio of m/z = 102 to m/z = 144). A linear calibration function was applicable over the tested range of 3 to 800 ng/mL. No peaks interfering with propamocarb were detected (< 0.003 mg/kg) in control samples. The LOQ for propamocarb were established at 0.02 mg/kg in soil (mean recovery of 89%, RSD of 8%; n=5). At 0.20 mg/kg, mean recovery and RSD were 102 and 5%, respectively (n=5). Mean recovery at 0.002 mg/kg was 54%.

Stability of residues in stored analytical samples

The stability of propamocarb HCl under freeze conditions (-18 to -20 $^{\circ}$ C) was investigated in tomato and lettuce samples stored for up to 26 months. A range of 59 to 106% of the added residues remained after the storage period (Table 30).

Crop	Fortification	Storage period, months	% remained	Reference
	level, mg/kg			
Tomato	0.5	14.5	82, 83, 98	Moede, 1990;
	5.0	14.5	59, 75, 67	A85300
	0.5*	4	90, 98, 106	Sutton and
		8	80, 78, 106	Charter, 1999
		17	78, 88, 82	C003740
		26	90, 88, 86	
Lettuce	0.5	14	109, 115	Wrede-Rücker,
	5.0	14	100, 87.8	1990; A85303

Table 30. Stability of propamocarb HCl residues under frozen conditions.

* as free base

USE PATTERN

Formulations containing Propamocarb hydrochloride, alone or co-formulated with other active substances, are registered for use on a wide variety of crops in over 100 countries. Registrations cover foliar treatment of vegetable crops and potatoes, soil drench, application via drip irrigation to vegetables and ornamentals and as seed treatments. Registered uses of propamocarb hydrochloride in crops and countries which were relevant to this evaluation are shown on Table 31. All the labels were provided to the Meeting.

Crop	Country	F/G	Formulation		Application			
			Content ai	Method	ai kg/ha	water	Max.	PHI
						L/ha	No.	days
Cabbage	Belgium	G	SL 722 g/L	Seedbed	36.1	10000	2	n.a.
(brassica)				Drench				
Cabbage	Spain	G	SL 530 g/L	Seedbed drench	15.9	10000-	2	14
(brassica)						20000		
Cabbage, head	Germany	F	SL 722 g/L	Foliar spray	1.08	400-600	2	21
Cabbage, head	Greece	G	SL 722 g/L	Seedbed drench	36.1	20000-	2	n.a.
						40000		
Cabbage, head	Greece	F/G	SL 722 g/L	Soil drench	21.6	20000-	3	21
						40000		
Cabbage, head	Italy	F/G	SL 722 g/L	Seedbed	57.8-86.6	40000-	2	20
				Incorporation		80000		
Cabbage, head	Italy	F/G	SL 722 g/L	Foliar spray	1.08-2.17	1500-2000	3	20
Cabbage, head	Italy	G	SL 530 g/L	Seedbed drench	16	20000-	2	20
						40000		
Cabbage, head	Netherlands	F/G	SL 722 g/L	Seedbed drench	3.61	1000	2	14
Cabbage, head	Netherlands	F/G	SL 722 g/L	Foliar spray	2.2-3.6	500	2	14
Cabbage, head	UK	G	SL 722 g/L	Drench	72.2	20000-	1	n.a.
				preplanting		40000		
Cabbage, head	UK	G	SL 722 g/L	Drench	72.2	20000-	1	n.a.
				postplanting		40000		
Cauliflower	Belgium	F	SL 722 g/L	Foliar spray	2.17	500-1000	2	n.a.
Cauliflower	Germany	F	SL 722 g/L	Foliar spray	1.08	400-600	2	21
Cauliflower	Greece	G	SL 722 g/L	Seedbed drench	36.1	20000-	2	n.a.
						40000		

Table 31. Registered uses of propamocarb hydrochloride.

Crop	Country	F/G	Formulation		Application			
			Content ai	Method	ai kg/ha	water L/ha	Max. No.	PHI days
Cauliflower	Greece	F/G	SL 722 g/L	Soil Drench	21.6	20000- 40000	3	21
Cauliflower	Italy	G	SL 530 g/L	Seedbed drench	31.8	20000- 40000	1	20
Cauliflower	Italy	F/G	SL 722 g/L	Foliar spray	1.08-2.17	1500-2000	3	20
Cauliflower	Italy	G	SL 530 g/L	Seedbed drench	15.9	20000- 40000	2	20
Cauliflower	Luxembourg	F	SL 722 g/L	Foliar spray	2.17	500	2	n.a.
Cauliflower	Netherlands	G	SL 722 g/L	Seedbed drench	3.61	1000	2	14
Cauliflower	Netherlands	F/G	SL 722 g/L	Foliar spray	2.2-3.6	500	2	14
Cauliflower	UK	F/G	SL 722 g/L	Drench preplanting	72.2	20000- 40000	1	n.a.
Cauliflower	UK	F/G	SL 722 g/L	Drench postplanting	72.2	20000- 40000	1	n.a.
Cauliflower	UK	F/G	SL 722 g/L	Seedbed Foliar spray	3.61	1000	2	14
Cauliflower	UK	F	SL 722 g/L	Foliar spray	1.81	1000	2	21
Chicory	Belgium	*	SL 722 g/L	Hydroponic forcing irrigation	9 g/hL	-	-	n.a.
Chicory Witloof	Cyprus	F	SL 722 g/L	Foliar spray	0.722 kg ai/hL		3	20
Chicory Witloof	France	*	SL 722 g/L	Watering roots after planting	72.2	30000- 50000	1	21
Chicory Witloof	France	*	SL 722 g/L	Irrigation via nutrient solution	9 g/hL	-	1	21
Chicory Witloof	Greece	*	SL 722 g/L	Seedbed drenching	0.18 kg ai/hl	20000- 40000	2	-
Chicory Witloof	Greece	F/G	SL 722 g/	Soil drench post planting	0.11 kg ai/hl	200-300 ml/plant	3	21
Chicory	Luxembourg	*	SL 722 g/L	Hydroponic forcing irrigation	9 g/hL	-	-	n.a.
Chicory	Luxembourg	F	SL 722 g/L	Foliar spray	1.1	500-1000	3	21
Chicory Witloof	Malta	*	SL 722 g/L	Spray roots after planting	57.8 86.6	40000 60000	1	14
Cucumber	Belgium	G	SL 722 g/L	Seedbed drench	36.1	50000	1	n.a.
Cucumber	Belgium	F/G	SL 722 g/L	Drip appl.	1.1 0.07-0.11 g/plant	-	4	n.a.
Cucumber	Bulgaria	F	SL 722 g/L	Foliar spray	1.81	-	5	14
Cucumber	France	F/G	SL 722 g/L	Foliar spray	2.17	200-1000	1	3
Cucumber	France	F/G	SC 375 g/L	Foliar spray	1.13	200-800	6	3
Cucumber	Germany	G	SL 722 g/L	Seedbed drench	65.0	60000	2	n.a.
Cucumber	Germany	F	SL 722 g/L	Foliar spray	2.2	600	4	4
Cucumber	Greece	*	SL 722 g/L	Seedbed drench	0.18 kg ai/hl	20000- 40000	2	n.a.
Cucumber	Greece		SL 722 g/L	Soil drench	0.11 kg ai/hl	200-300 ml/plant	3	21
Cucumber	Greece	F/G	SL 722 g/L	Foliar spray	0.72-5.42	500-2500	3	3
Cucumber	Greece	F/G	SC 248 g/L	Foliar spray	1.44-3.61	500-1000	3	3
Cucumber	Italy	F	SC 375 g/L	Foliar spray	0.94-1.13	1000	3	20
Cucumber	Italy	G	SL 722 g/L	Seed treatment	7.2-28.9 mg/kg seed	-	1	n.a.
Cucumber	Italy	F/G	SL 722 g/L	Soil incorporation before drilling	300 ml/m ³	20 l/m ³	1	20
Cucumber	Italy	F/G	SL 722 g/L	Seedbed incorporation after drilling	57.8-86.6	40000 - 80000	2	20

Crop	Country	F/G	Formulation		Application			
			Content ai	Method	ai kg/ha	water L/ha	Max. No.	PHI days
Cucumber	Italy	F/G	SL 722 g/L	Soil treatment pre- and transplanting via spraving	57.8-86.6	30000- 50000	1	20
Cucumber	Italy	F/G	SL 722 g/L	Soil treatment post planting via spraving	0.14 kg ai/hl	0.1-0.2 l/plant	4	20
Cucumber	Italy	F/G	SL 722 g/L	Foliar spray	1.1-2.2	1500-2000	3	20
Cucumber	Italy	G	SL 530 g/L	Seedbed drench	31.8 or	20000-	1	20
					15.9	40000	2	
Cucumber	Italy	F/G	SL 530 g/L	Soil treatment with dripping	1.1-1.6	20000	2	20
Cucumber	Japan	F/G	640 g/kg	Soil drench	4.8	30000	3	21
Cucumber	Luxembourg	G	SL 722 g/L	Seedbed drench	36.1	50000	1	n.a.
Cucumber	Luxembourg	F/G	SL 722 g/L	Plant drench	1.01	1400	2	n.a.
Cucumber	Netherlands	G	SL 722 g/L	Seedbed drenching	36.10	50000	3	n.a.
Cucumber	Netherlands	G	SL 722 g/L	Drench postplanting	1.01	100-150 ml/plant	2	n.a
Cucumber	Netherlands	G	SL 722 g/L	Drip application	0.72-1.44	20000	3	3
Cucumber	Poland	G	SL 530 g/L	Drench	10.6-23.9	20000- 30000	2	3
Cucumber	Spain	G	SL 722 g/L	Seedbed treatment	14.4 – 21.7 kg ai./hl	80000- 100000	1	-
Cucumber	Spain	F/G	SL 722 g/L	Soil drench (preventive)	0.18 – 0.36 kg ai/hl	20000- 30000	1	-
Cucumber	Spain	F/G	SL 722 g/L	Drench to plant root	0.11 kg ai/hl	100ml/plant	1	-
Cucumber	Spain	F/G	SL 722 g/L	Dripping Treatment	1.44-2.17	1500-2000	1	3
Cucumber	Spain	F/G	SL 722 g/L	Foliar spray	0.144 – 0.22 kg ai/hl	300-1500	2	3
Cucumber	Spain	G	SL 530 g/L	Seedbed treatment	15.9	10000- 20000	2	3
Cucumber	Spain	F/G	SL 530 g/L	Drip irrigation (preventive)	0.53	3000- 15000	2	3
Cucumber	Spain	F/G	SL 530 g/L	Drip irrigation (curative)	1.1-1.6	20000	2	3
Cucumber	Sweden	G	SL 722 g/L	Seedbed drench	1.5-3.03	1400-2800	1	21
Cucumber	UK	F/G	SL 722 g/L	Drench at planting	72.2	20000- 40000	4	3
Cucumber	UK	F/G	SL 722 g/L	Compost incorporation	2166-2888	200000- 1000000	4	3
Cucumber	UK	F/G	SL 722 g/L	Trickle Irrigation	0.072 kg ai/hl	0.1-0.2 l /plant	4	3
Cucumber	UK	F/G	SL 722 g/L	Rockwood trickle	0.009 kg ai/hl	0.1-0.2 l /plant	4	3
Cucumber	UK	F/G	SL 722 g/L	Drench	72.2	20000- 40000	2	3
Cucumber	UK	F/G	SL 722 g/L	Foliar spray	1.81	1000	3	3
Cucumber (cucurbits)	USA	F	SL 722 g/L	Foliar or drip irrigation	1.0 kg ai/ha	140-935	5	2
Ginger	Japan	F	640 g/kg	Soil drench	3.21-4.8	30000	5	30
Lettuce	Belgium	F	SL 722 g/L	Foliar spray	1.08	500-1000	3	21
Lettuce	Germany	F	SL 722 g/L	Foliar spray	1.08	1000	3	21
Lettuce	Greece	G	SL 722 g/L	Seedbed Drench	1.8 g/L	2-41/m ²	2	n.a.
Lettuce	Greece	F/G	SL 722 g/L	Soil drench postplanting	1.08 g/L	0.2- 0.31/plant	3	21

Crop	Country	F/G	Formulation	on Application				
			Content ai	Method	ai kg/ha	water L/ha	Max. No.	PHI days
Lettuce	Italy	G	SL530 g/L	Seedbed	16	20000- 40000	2	20
Lettuce	Italy	F/G	SL 530 g/L	Foliar spray	1.1-1.6	400-1000	2	14
Lettuce	Japan	F/G	640 g/kg	Foliar spray	0.384	3000	3	14
Lettuce	Netherlands	F/G	SL 722 g/L	Seedbed drench	36.1	500-1000	2	n.a.
Lettuce	Netherlands	F/G	SL 722 g/L	Foliar spray	1.1	1000	2	21
Lettuce	Spain	-	SL 530 g/L	Seedbed treatment	16	10000- 20000	2	14
Lettuce	Spain	F	SL 530 g/L	Foliar spray	1.06-1.33	300-800	2	14
Lettuce	UK	F/G	SL 722 g/L	Foliar spray	1.1-1.4	600-1500	3	21
Lettuce	USA	F	SL 722g/L	Foliar spray or Drip irrigation	1.68	GA:140-935 Aerial: 95	4	2
Melon	Belgium	G	SL 722 g/L	Seedbed drench	36.1	50000	1	n.a.
Melon	Belgium	G	SL 722 g/L	Drip appl. (preventive)	1.01	1400	2	n.a.
Melon	Belgium	G	SL 722 g/L	Drip appl. (curative)	1.0-2.0	1400-2800	2	n.a.
Melon	France	F/G	SL 722 g/L	Foliar spray	2.17	200-1000	1	3
Melon	France	F/G	SC 375 g/L	Foliar spray	1.13	200-800	6	3
Melon	Germany	F	SL 722 g/L	Foliar spray	2.17	400-600	4	4
Melon	Greece	G	SL 722 g/L	Seedbed drench	36.1-72.2	20000- 40000	2	n.a.
Melon	Greece	F/G	SL 722 g/L	Soil drench	0.18 kg ai/hl	0.2-0.3 ml/plant	3	21
Melon	Italy	F/G	SC 375 g/L	Foliar spray	0.94-1.13	1000	3	20
Melon	Italy	F/G	SL 722 g/L	Seedbed	57.8-86.6	40000-	2	20
Melon	Italy	F/G	SL 722 g/L	Soil spraying Pre and transplanting	57.8-86.6	80000 300000- 580000	1	20
Melon	Italy	F/G	SL 722 g/L	Soil post planting	0.14 kg ai/hl	0.1- 0.21/plant	4	20
Melon	Italy	F/G	SL 722 g/L	Foliar	1.1-2.2	1500-2000	2	20
Melon	Italy	G	SL 530 g/L	Seedbed disinfection	31.8 or 15.9	20000- 40000	1	20
Melon	Italy	G	SL 530 g/L	Drip irrigation	1.06-1.59	20000	2	20
Melon	Netherlands	G	SL 722 g/L	Drench	36.1	50000	3	3
Melon	Netherlands	G	SL 722 g/L	preplanting Drench	1.01	1400	2	3
Melon	Netherlands	G	SL 722 g/L	Drip Irrigation	0.72-1.44	300-600	3	1
Melon	Spain	G	SL 530 g/L	Seedbed treatment	15.9	20000	2	14
Melon	Spain	F/G	SL 530 g/L	Drip irrigation (preventive)	0.53	3000- 15000	2	14
Melon	Spain	F/G	SL 530 g/L	Drip irrigation (curative)	1.06-1.59	20000	2	14
Onion	Poland	F	SC 375 g/L	Foliar spray	0.94	700	5	7
Onion	Sweden	F	SC 248 g/L	Foliar spray	0.5 / 1	150-300	8/4	30
Onion	UK	F	SL 722 g/L	Drench preplanting	72.2	20000- 40000	1	133
Onion	UK	F	SL 722 g/L	Foliar spray	1.8-3.6	500	2	133
Onion	UK	F	SL 722 g/L	Seed treatment	21.7g/kg seed	-	1	n.a.
Onion	UK	F	SL 722 g/L	Bulb dipping preplanting	2.2 g/L	-	1	n.a.
Peppers	Greece	G	SL 722 g/L	Seedbed drench	1.8 kg ai/hl	20000- 40000	2	21

Crop	Country	F/G	Formulation	ormulation Application					
			Content ai	Method	ai kg/ha	water L/ha	Max. No.	PHI days	
Peppers	Greece	F/G	SL 722 g/L	Soil drench	1.1 kg ai/hl	0.2-0.3 l/plant	3	21	
Peppers	Italy	G	SL 530 g/L	Seedbed drench	31.8 or	20000- 40000	1	20	
Peppers	Italy	F/G	SL 530 g/L	Soil treatment with	15.9	20000	2 2	20	
Peppers	Italy	F/G	SL 722 g/L	Seedbed	57.8-86.6	40000- 80000	2	20	
Peppers	Italy	F/G	SL 722 g/L	Soil spraying Pre and transplanting	57.8-86.6	300000- 580000	1	20	
Peppers	Italy	F/G	SL 722 g/L	Soil treatment post planting	0.14 kg ai/hl	0.1- 0.2l/plant	4	20	
Peppers	Italy	F/G	SL 722 g/L	Foliar	1.1-2.2	1500-2000	2		
Peppers	USA	F	SL 722 g/L	Foliar Spray or drip irrigation	1.0	GA-average 400 Aerial 47	-	5	
Potato	France	F	SC 375 g/L	Foliar spray	1.01	-	-	21	
Potato	Germany	F	SC 248 g/L	Foliar spray	0.99	400-600	6	7	
Potato	UK	F	SC 375 g/L	Foliar spray	0.56-0.94	200-400	6	7	
Potato	USA	F	SL 66.5%	Foliar spray	0.59-1.01	400	8–5	14	
Radish	Germany	F/G	SL 722 g/L	Seed treatment	7.22 g/kg seed	-	1	14	
Radish	Germany	F/G	SL 722 g/L	Foliar spray	0.72	1000	2	14	
Radish	Netherlands	F/G	SL 722 g/L	Foliar spray	1.08	500	2	14	
Spinach	Italy	F/G	SL 722 g/L	Seed treatment	0.722-28.9 g/kg seed	-	1	n.a.	
Spinach	Italy	G	SL 722 g/L	Seedbed Incorporation	57.8-86.6	40000- 80000	2	20	
Spinach	Italy	F/G	SL 722 g/L	Foliar spray	1.1-2.2	1500-2000	3	20	
Summer squash (cucurbits)	USA	F	SL 66.5%	Foliar spray or drip irrigation	1.0	GA average=400 Aerial 47	5	2	
Sweet pepper	Belgium	G	SL 722 g/L	Seedbed drench	36.1	-	1	n.a.	
Sweet pepper	Belgium	F/G	SL 722 g/L	Drip appl.	1.1 0.07-0.11 g/plant	-	4	n.a.	
Sweet pepper	Netherlands	G	SL 722 g/L	Seedbed drenching	36.1	50000	3	n.a.	
Sweet pepper	Netherlands	G	SL 722 g/L	Drench postplanting	1.01	100-150 ml/plant	2	n.a	
Sweet pepper	Netherlands	G	SL 722 g/L	Drip application	0.72-1.44	20000	3	3	
Sweet pepper	Spain	F/G	SL 722 g/L	Seedbed drench	1200-1800	80000- 10000	1	14	
Sweet pepper	Spain	F/G	SL 722 g/L	Soil drench (preventive)	36.1-72.2	20000- 30000	1	14	
Sweet pepper	Spain	F/G	SL 722 g/L	Soil drench to plant root	3.8	3500	1	14	
Sweet pepper	Spain	F/G	SL 722 g/L	Dripping treatment	1.44-2.17	1500-2000	1	14	
Sweet pepper	Spain	G	SL 530 g/L	Seedbed treatment	15.9	20000	2	3	
Sweet pepper	Spain	F/G	SL 530 g/L	Soil drip irrigation (preventive)	0.53	3000- 15000	2	3	
Sweet pepper	Spain	F/G	SL 530 g/L	Soil drip irrigation (curative)	1.01-1.6	20000	2	3	
Sweet pepper	UK	F/G	SL 722 g/L	Foliar spray	2.2-3.6	600-1000	2	14	
Tomato	Belgium	G	SL 722 g/L	Seedbed drench	36.1	50000	1	n.a.	
Tomato	Belgium	F/G	SL 722 g/L	Drip appl.	1.1 0.07-0.11 g/plant	-	4	n.a.	

Crop	Country	F/G	Formulation	lation Application					
			Content ai	Method	ai kg/ha	water L/ha	Max. No.	PHI days	
Tomato	Germany	G	SL 722 g/L	Watering before and after planting	65.0	60000	2	n.a.	
Tomato	Greece	G	SL 722 g/L	Seedbed drench	1.8 kg ai/hl	20000- 40000	2	21	
Tomato	Greece	F/G	SL 722 g/L	Soil drench	1.1 kg ai/hl	0.2-0.3 l/plant	3	21	
Tomato	Italy	G	SC 375 g/L	Foliar spray	0.94-1.13	1000	5	20	
Tomato	Italy	F	SC 375 g/L	Foliar spray	0.94-1.13	1000	3	20	
Tomato	Italy	F/G	SL 722 g/L	Seed treatment	7.22-28.88 mg/kg seed	-	1	n.a.	
Tomato	Italy	G	SL 530 g/L	Seedbed drench	31.8 or 15.9	20000- 40000	1	20	
Tomato	Italy	F/G	SL 530 g/L	Soil treatment with dripping	1.1-1.6	20000	2	20	
Tomato	Italy	F/G	SL 722 g/L	Seedbed incorporation	57.8-86.6	40000- 80000	2	20	
Tomato	Italy	F/G	SL 722 g/L	Soil spraying Pre and transplanting	57.8-86.6	300000- 580000	1	20	
Tomato	Italy	F/G	SL 722 g/L	Soil post planting	0.14 kg ai/hl	0.1- 0.21/plant	4	20	
Tomato	Italy	F/G	SL 722 g/L	Foliar	1.1-2.2	1500-2000	2		
Tomato	Luxembourg	G	SL 722 g/L	Seedbed drench	36.1	50000	1	n.a.	
Tomato	Luxembourg	F/G	SL 722 g/L	Plant drench	1.01	1400	2	n.a.	
Tomato	Netherlands	G	SL 722 g/L	Seedbed drenching	36.1	50000	3	n.a.	
Tomato	Netherlands	G	SL 722 g/L	Drench postplanting	1.01	100-150 ml/plant	2	n.a	
Tomato	Netherlands	G	SL 722 g/L	Drip application	0.72	20000	3	3	
Tomato	Spain	F/G	SL722 g/L	Seedbed drench	1200-1800	80000- 10000	1	14	
Tomato	Spain	F/G	SL 722 g/L	Soil drench (preventive)	36.1-72.2	20000- 30000	1	14	
Tomato	Spain	F/G	SL 722 g/L	Soil drench to plant root	3.8	3500	1	14	
Tomato	Spain	F/G	SL 722 g/L	Dripping treatment	1.44-2.17	1500-2000	1	14	
Tomato	Spain	G	SL 530 g/L	Seedbed treatment	15.9	20000	2	3	
Tomato	Spain	F/G	SL 530 g/L	Soil drip irrigation (preventive)	0.53	3000- 15000	2	3	
Tomato	Spain	F/G	SL 530 g/L	Soil drip irrigation (curative)	1.01-1.6	20000	2	3	
Tomato	UK	F/G	SL 722 g/L	Drench at planting	72.2	20000- 40000	4	14	
Tomato	UK			Compost incorporation	2888	20000- 1000000			
Tomato	UK	F/G	SL 722 g/L	Trickle Irrigation	2.53-5.05	3500-7000			
Tomato	UK	F/G	SL 722 g/L	Rockwood trickle Irrigation	2.53-3.16	14000- 17500			
Tomato	UK	F/G	SL 722 g/L	Foliar spray	1.81-2.17	1000	3	7	
Tomato	USA	F	SL 66.5%	Foliar spray	0.59 0.84 1.26	GA average=400 Aerial 47	8 7 5	5 5 5	

* protected site = dark forcing room; ** application to roots after transplanting in hydroponic container via drench, spray or irrigation via nutrient solution; GA = ground application

RESIDUE FROM SUPERVISED TRIALS

A number of residue trials have been performed with propamocarb hydrochloride on several vegetable crops. Table 32 provides a summary of the data provided to the Meeting. All studies were conducted according to GLP and the reports included detailed information on trial conditions and analytical method validation with the exception of radish trials conducted in the 80's. The trials were conducted either in glasshouses (GH) or in the field (F). The Japanese trial results were submitted to the Meeting by the Japanese Government in a summary table.

When residues were reported in the studies as propamocarb hydrolcholoride, the values were multiplied by 0.84 (MW propamocarb/MWpropamocarb HCl) and expressed as propamocarb. Residues within 30% GAP are underlined and were considered for recommendation of STMR, HR and MRL. Residues on the crop pulp were double underlined and considered only for recommendation of STMR and HR.

Crop	Number of trials	Countries	Table
Onion	7	France, Germany, Netherlands, Spain, UK	33
Cabbage	18	France, Germany, Italy, Spain	34
Cauliflower	23	France Germany, Greece, Italy, Spain, UK	35
Cucumber	41	Belgium, France, Germany, Greece, Italy, Netherlands, Spain, USA, Japan	36
Melons	55	France, Germany, Greece, Italy, Netherlands, Portugal, Spain, USA	37
Summer Squash	6	USA	38
Sweet peper	35	Belgium, Germany, Greece, Italy, Netherlands, Spain, USA	39
Tomato	45	Belgium, France, Germany, Greece, Italy, Netherlands, Spain, USA	40
Lettuce	26	France, Germany, Greece, Italy, Netherlands, Spain, USA, Japan	41
Spinach	7	Belgium, Germany, Italy, Spain	42
Potato	32	France, Germany, UK, USA	43
Radish	13	Germany and Netherlands	44
Chicory witloof	20	France Germany, Netherlands	45
Ginger	4	Japan	46

Table 32. Summary of supervised trials conducted with propamocarb hydrolcoride.

Onion

Seven field trials were conducted with propamocarb hydrochloride on onion in Europe from 1988 to 2003. The results are shown in Table 33.

Table 33. Residue field trials with propamocarb hydrochloride conducted with foliar treatment on onion.

		Applicatio	on		PHI	Residues, as	Residues, as	
Country,	Form.	kg ai/ha	Water	No.	(Days)	Propamocarb	propamocarb HCl,	Report
Year Variety			L/ha			mg/kg	mg/kg	
France, 2003	450 SC	0.75	300	4	0	0.25	0.30*	C047478
Barito	375 g ai/L				14	0.04	0.05*	
Germany	450 SC	0.75	300	4	0	0.075	0.09*	C047478
2003	375 g ai/L				14	< 0.008	< 0.01*	
Stuttgarter	-							
Riesen								
Germany	450 SC	0.75	300	4	0	0.08	0.10*	C047478
2003	375 g ai/L				14	< 0.008	< 0.01*	
Stuttgarter	-							
Riesen								
Netherlands	450 SC	0.75	300	4	0	0.29	0.35*	C047478
2003 Hyskin	375 g ai/L				14	0.03	0.04*	

		Applicatio	on		PHI	Residues, as	Residues, as	
Country,	Form.	kg ai/ha	Water	No.	(Days)	Propamocarb	propamocarb HCl,	Report
Year Variety			L/ha			mg/kg	mg/kg	
Spain, 1988	722 SL	1.8		4	14	< 0.08	< 0.1*	A85277
Babosa	722 g ai/L							
Spain, 1988	722 SL	2.9		4	14	0.17	0.2*	A85277
Babosa	722 g ai/L							
UK, 2003	450 SC	0.75	300	4	0	0.23	0.27*	C047478
	375 g ai/L				14	0.03	0.04*	

* value reported

Cabbage

Eighteen field trials were conducted with propamocarb hydrochloride on cabbage in Europe using a seedbed drench followed by foliar spray applications. The results are shown in Table 34.

Country,		Ar	oplication			PHI	Sample	Residues as	Residues	Report
Year of trial	Form.	Method	kg ai/ha	Water	No.	(Days)	analysed	Propamocarb	Propamocarb	
Variety			application	L/ha			-	mg/kg	HCl, mg/kg	
France	722 SL	Seedbed	72.5-36.3	20000	2	0	Head	8.2	9.8*	C022939
2001	722 g	drench				42	Head	0.02	0.03*	
Tex 600 F1	ai/L	Sprav	2.1-3.1	486-	2	54	Head	0.02	0.02*	
		1 1		714						
France	722 SL	Seedbed	72.8-36.4	20156	2	0	Head	3.9	4.6*	C022939
2001	722 g	drench				42	Head	0.008	0.01*	
Delus	ai/L	Spray	2.2	500	2	54	Head	0.02	0.02*	
France,	722 SL	Seedbed	72.2-36.1	20000	2	0	Whole Plant	23	28*	C022953
2001	722 g	drench				45	Head	0.20	0.24*	
Milan	ai/L	Spray	2.2	500	2	56	Head	0.43	0.51*	
France	722 SL	Seedbed	72.2-36.1	20000	2	0	Whole Plant	36	43*	C015430
2000	722 g	drench				14	Whole Plant	1.1	1.3*	
Destiny F1	ai/L					34	Head	< 0.008	< 0.01*	
		Spray	3.7	616-	2	47	Head	< 0.008	< 0.01*	
				829		55	Head	< 0.008	< 0.01*	
France	722 SL	Seedbed	72.2-36.1	20000	2	0	Whole Plant	56.0	66*	C015430
2000	722 g	drench				14	Whole Plant	7.7	9.2*	
Delus F1	ai/L					55	Head	< 0.008	< 0.01*	
		Spray	3.8-3.5	630-	2	62	Head	< 0.008	< 0.01*	
				770		69	Head	< 0.008	< 0.01*	
Germany	722 SL	Seedbed	71-36.1	20000	2	0	Whole Plant	39	46*	C015430
2000	722 g	drench				12	Whole Plant	0.9	1.1*	
Bartolo	ai/L					47	Head	< 0.008	< 0.01*	
		Spray	3.6	500	2	68	Head	< 0.008	< 0.01*	
						96	Head	< 0.008	< 0.01*	
Germany	722 SL	Seedbed	71.5-37.7	20000	2	0	Whole Plant	42	51*	C015430
2000	722 g	drench				6	Whole Plant	8.0	9.5*	
Lennox	ai/L					42	Head	< 0.008	< 0.01*	
		Spray	3.5	500	2	63	Head	< 0.008	< 0.01*	
						93	Head	< 0.008	< 0.01*	
Germany	722 SL	Seedbed	72.2-36.1	20000	2	0	Whole Plant	37	44*	C015430
2000	722 g	drench				12	Whole Plant	2.8	3.4*	
Perfecta F1	ai/L					36	Head	< 0.008	< 0.01*	
		Spray	3.65	603-	2	50	Head	< 0.008	< 0.01*	
		~ ~ ~		827	-	55	Head	< 0.008	< 0.01*	
Germany	722 SL	Seedbed	72.5-36.3	20000	2	0	Head	9.2	11*	C022939
2001	722 g	drench			-	42	Head	0.02	0.02*	
Tex 600 F1	ai/L	Spray	22	500	2	56	Head	0.01	0.01*	
Germany	722 SL	Seedbed	73.6-36.1	20000	2	0	Head	11	13*	C022939
2001	722 g	drench				45	Head	< 0.008	< 0.01*	
Bartolo	ai/L	Spray	2.2	500	2	59	Head	< 0.008	< 0.01*	

Table 34. Residue field trials with propamocarb hydrochloride conducted on cabbage.

Propamocarb

Country,		Aı	oplication			PHI	Sample	Residues as	Residues	Report
Year of trial	Form.	Method	kg ai/ha	Water	No.	(Days)	analysed	Propamocarb	Propamocarb	-
Variety			application	L/ha				mg/kg	HCl, mg/kg	
Italy	722 SL	Seedbed	72.2-36.1	20000	2	0	Whole Plant	58	69*	C022953
2001	722 g	drench				44	Head	< 0.008	< 0.01*	
Marcanta	ai/L	Spray	2.1	490	2	58	Head	< 0.008	< 0.01*	
Italy, 2000	722 SL	Seedbed	69.5-36.9	20000	2	0	Whole Plant	40	48*	C015431
Mercato di	722 g	drench				23	Whole Plant	0.04	0.5*	
Copenhage	ai/L					30	Head	< 0.008	< 0.01*	
n		Spray	3.6	500	2	36	Head	< 0.008	< 0.01*	
						41	Head	< 0.008	< 0.01*	
Italy, 2000	722 SL	Seedbed	75.2-35.8	20000	2	0	Whole Plant	109	130*	C015431
Mercato di	722 g	drench				26	Whole Plant	1.0	1.1*	
Copenhage	ai/L					34	Head	0.02	0.02*	
n		Spray	3.6	600	2	41	Head	< 0.008	< 0.01*	
						46	Head	< 0.008	< 0.01*	
Italy, 2000	722 SL	Seedbed	72.3-36.9	20000	2	0	Whole Plant	43	52*	C015431
Mercato di	722 g	drench				15	Whole Plant	3.7	4.4*	
Copenhage	ai/L					22	Head	<u>0.03</u>	0.04*	
n		Spray	3.81-3.57	600	2	29	Head	0.02	0.02*	
						36	Head	0.008	0.01*	
Spain, 2001	722 SL	Seedbed	71.9-36.1	20000	2	0	Whole Plant	98	117*	C022953
Sentinel	722 g	drench				48	Head	< 0.008	< 0.01*	
	ai/L	Spray	2.2	500	2	64	Head	< 0.008	< 0.01*	
Spain, 2001	722 SL	Seedbed	72.1-36.7	20000	2	0	Whole Plant	30	36*	C022953
Sentinel	722 g	drench				49	Head	< 0.008	< 0.01*	
	ai/L	Spray	2.2	500	2	61	Head	< 0.008	< 0.01*	
Spain, 2000	722 SL	Seedbed	72.2-36.1	20000	2	0	Whole Plant	24	29*	C015431
Sentinel	722 g	drench				82	Whole Plant	0.04	0.05*	
	ai/L					113	Head	< 0.008	< 0.01*	
		Spray	3.7-3.5	550	2	123	Head	< 0.008	< 0.01*	
						138	Head	< 0.008	< 0.01*	
Spain, 2000	722 SL	Seedbed	72.2-36.1	20000	2	0	Whole Plant	96	115*	C015431
Sentinel	722 g	drench				71	Whole Plant	0.1	0.1*	
	ai/L					89	Head	< 0.008	< 0.01*	
		Spray	3.5-3.8	481-	2	110	Head	< 0.008	< 0.01*	
				637		125	Head	< 0.008	< 0.01*	

*actual value reported

Cauliflower

Twenty three field trials were conducted on cauliflower with propamocarb hydrochloride in Europe using a seedbed drench followed by a foliar application. The results are shown in Table 35.

Table 35.	Residue fi	ield trials	with pro	pamocarb	hydrochloride	conducted c	n cauliflower.
				1			

Country,		Appl	ication			PHI	Sample	Residues	Residues as	Report
Year of trial	Form.	Method	kg	Water	No	(Days)	analysed	Propamocarb	Propamocarb	_
Variety			ai/ha	L/ha				mg/kg	HCl, mg/kg	
France	722 SL	Seedbed	72.2-	20000	2	0	Head	1.4	1.7*	C033812
2002	722 g	drench	36.0			7	Head	0.05	0.06*	
Cortes	ai/L					14	Head	0.05	0.06*	
		Spray	3.6	500	2	20	Head	0.03	0.04*	
						28	Head	0.02	0.03*	
France	722 SL	Seedbed	72.2-	20000	2	0	Head	0.24	0.29*	C033812
2002	722 g	drench	36.0			7	Head	0.03	0.04*	
Amerigo	ai/L					15	Head	0.03	0.03*	
		Spray	3.6	500	2	21	Head	0.09	0.11*	
						28	Head	0.11	0.13*	

Country,		Appl	ication			PHI	Sample	Residues	Residues as	Report
Year of trial	Form.	Method	kg	Water	No	(Days)	analysed	Propamocarb	Propamocarb	
Variety			ai/ha	L/ha				mg/kg	HCl, mg/kg	
Germany	722 SL	Seedbed	72.2-	20000	2	0	Shoots	42	50*	C033812
2002	722 g	drench	36.0			7	Shoots	13	16*	
Spacestar	ai/L					14	Shoots	7.9	9.4*	
		Spray	3.6	600	2	21	Shoots	0.69	0.82*	
						41	Head	0.02	0.03*	
Germany	722 SL	Seedbed	72.2-	20000	2	0	Shoots	47	56*	C033812
2002	722 g	drench	36.0			7	Shoots	10	12*	
Fremont	ai/L					14	Shoots	0.51	0.61*	
		Spray	3.6	600	2	21	Head	<u>0.02</u>	0.03*	
						28	Head	0.08	0.10*	
France	722 SL	Seedbed	72.8-	20156	2	0	Whole	71	84*	C023895
2001	722 g	drench	36.4			44	Plant	0.008	0.01*	
CLX 33903	ai/L	Spray		482-	2	58	Head	< 0.008	< 0.01*	
			2.1-2.3	528			Head			
France	722 SL	Seedbed	72.5-	20156	2	0	Whole	79	94*	C023895
2001	722 g	drench	36.23			44	Plant	0.03	0.03*	
Aviso F1	ai/L	Spray		482-	2	58	Head	< 0.008	< 0.01*	
			2.15	528			Head			
France	722 SL	Seedbed	72.3-	20000	2	0	Whole	60	72*	C024417
2001	722 g	drench	33.2			49	Plant	< 0.008	< 0.01*	
Fremont	ai/L	Spray		498	2	56	Head	< 0.008	< 0.01*	
			2.2		_		Head			
France,	722 SL	Seedbed	72.2-	20000	2	0	Whole	95	113*	C015428
2000	722 g	drench	36.0			34	Plant	0.03	0.04*	
Fremont F1	aı/L	a	2 (0	(10		55	Whole	< 0.008	< 0.01*	
RS		Spray	3.68-	612-	2	62	Plant	< 0.008	< 0.01*	
			3.48	112		64	Head	< 0.008	< 0.01*	
							Head			
Enonas	722 61	Saadhad	72.2	20000	2	0	Whala	100	110*	C015429
France	722 SL	dranah	12.2-	20000	2	0	Dlant	100	119*	C015428
2000 Enemont	/22 g	drench	50.0			20	Whole	-0.03	0.04^{+}	
гтетопі	al/L	Spray	38	625	2	39 43	Plant	< 0.008	$< 0.01^{\circ}$	
		Spray	5.0	852	2	43	Head	< 0.008	$< 0.01^{\circ}$	
				0.52		47	Head	< 0.000	< 0.01	
							Head			
Germany	722 SL	Seedbed	69.0-	19200	2	0	Whole	70	83*	C015428
2000	722 of	drench	35.8	19834	-	12	Plant	2.7	3.2*	0010120
Aviso	ai/L	arenen	55.0	17051		47	Whole	< 0.008	< 0.01*	
11000	ui, 2	Spray	3.7	513-	2	54	Plant	< 0.008	< 0.01*	
		Spray	017	510	-	57	Head	0.008	0.01*	
							Head			
							Head			
Germany	722 SL	Seedbed	72.4-	20000	2	0	Whole	95	113*	C015428
2000	722 g	drench	35.9			6	Plant	13.4	16.0*	
BK Fargo	ai/L					42	Whole	< 0.008	< 0.01*	
Ū		Spray	3.6	500	2	48	Plant	< 0.008	< 0.01*	
						51	Head	< 0.008	< 0.01*	
							Head			
							Head			
Germany	722 SL	Seedbed	72.2-	20000	2	0	Whole	85	101*	C015428
2000	722 g	drench	36.0			28	Plant	1.3	1.5*	
Fremont F1	ai/L					43	Whole	< 0.008	< 0.01*	
RS		Spray	3.7-3.6	620-	2	50	Plant	< 0.008	< 0.01*	
				806		55	Head	< 0.008	< 0.01*	
							Head			
							Head			
Germany	722 SL	Seedbed	72.2-	20156	2	0	Whole	49	58*	C023895
2001	722 g	drench	36.0		_	49	Plant	< 0.008	< 0.01*	
Aviso	ai/L	a		482-	2	58	Head	< 0.008	< 0.01*	
		Spray	2.4-2.3	528	l		Head			

Country,		Appl	ication			PHI	Sample	Residues	Residues as	Report
Year of trial	Form.	Method	kg	Water	No	(Days)	analysed	Propamocarb	Propamocarb	1
Variety			ai/ha	L/ha			-	mg/kg	HCl, mg/kg	
2								00		
Germany	722 SL	Seedbed	72.5-	20156	2	0	Whole	52	62*	C023895
2001	722 g	drench	36.3			45	Plant	< 0.008	< 0.01*	
Aviso F1	ai/L			482-	2	60	Head	< 0.008	< 0.01*	
		Spray	2.2	528			Head			
Greece	722 SL	Seedbed	72.2-	20000	2	0	Whole	52	62*	C024417
2001	722 g	drench	36.0			49	Plant	0.09	0.11*	
Siria	ai/L			487-	2	65	Head	0.12	0.14*	
		Spray	2.0	453			Head			
Italy, 2000	722 SL	Seedbed	70.236.	19450	2	0	Whole	57	68*	C015429
Aviso	722 g	drench	5	20236		47	Plant	0.02	0.02*	
	ai/L					64	Whole	< 0.008	< 0.01*	
		Spray	3.5-3.62	588-	2	70	Plant	< 0.008	< 0.01*	
				602		76	Head	< 0.008	< 0.01*	
							Head			
							Head			
Italy, 2000	722 SL	Seedbed	70.9-	19646	2	0	Whole	106	127*	C015429
Aviso	722 g	drench	35.8	19842		55	Plant	0.02	0.02*	
	ai/L					73	Whole	< 0.008	< 0.01*	
		Spray	3.60	600	2	80	Plant	< 0.008	< 0.01*	
						84	Head	< 0.008	< 0.01*	
							Head			
							Head			
Italy, 2000	722 SL	Seedbed	71.6-	19842	2	0	Whole	59	70*	C015429
Aviso	722 g	drench	36.89	20432		40	Plant	0.03	0.04*	
	ai/L					56	Whole	< 0.008	< 0.01*	
		Spray	3.5-3.6	587-	2	63	Plant	< 0.008	< 0.01*	
				599		68	Head	< 0.008	< 0.01*	
							Head			
							Head			
Spain, 2001	722 SL	Seedbed	72.6-	20000	2	0	Whole	52	62*	C024417
Arizona	722 g	drench	36.0			49	Plant	0.008	0.01*	
	ai/L	Spray		540	2	63	Head	< 0.008	< 0.01*	
			2.3				Head			
Spain, 2001	722 SL	Seedbed	71.8-	19880	2	0	Whole	39	46*	C024417
Arizona	722 g	drench	35.9			44	Plant	0.03	0.03*	
	ai/L	Spray		532-	2	56	Head	0.008	0.01*	
			2.3-2.2	512			Head			
UK	722 SL	Seedbed	72.2-	20000	2	0	Head	1.3	1.6*	C033812
2002	722 g	drench	36.0			7	Head	0.10	0.12*	
Freedom	ai/L					14	Head	0.008	0.01*	
		Spray	3.6	600	2	22	Head	<u>0.008</u>	0.01*	
						28	Head	0.05	0.06*	
Spain, 2000	722 SL	Seedbed	72.3-	20000	2	0	Whole	54	64*	C015429
Dunkel	722 g	drench	36.0			116	Plant	< 0.008	< 0.01*	
	ai/L	-			_	125	Whole	< 0.008	< 0.01*	
		Spray	3.8-3.61	526-	2	138	Plant	< 0.008	< 0.01*	
				603		141	Head	< 0.008	< 0.01*	
							Head			
a	700 67	a		00000			Head		1403	0015400
Spain, 2000	722 SL	Seedbed	72.2-	20000	2	0	Whole	117	140*	C015429
Dunkel	722 g	drench	36.1			104	Plant	< 0.008	< 0.01*	
	aı/L	0	0 1 0	470	~	110	Whole	< 0.008	< 0.01*	
		Spray	3.4-3.65	472-	2	113	Plant	0.05	0.06*	
				607		125	Head	< 0.008	< 0.01*	
							Head			
							Head			

*actual value reported

Cucumber

Thirty seven trials with propamocarb hydrochloride on cucumber were reported from Europe and the USA. The propamocarb hydrochloride was applied using either drench irrigation, drip irrigation and or spray application. The results are shown in Table 36.

Table 36. R	Results of residue trials with propame	ocarb hydrochloride	conducted on	cucumber 1	receiving
drench, drip	o and/or foliar treatments.				

Country,	Application						Residues as	Residues	Report
Year of trial	Form.	Method	kg ai/ha or	Water	No.	(Days)	Propamocarb	Propamocarb	
Variety			kg ai/hL ^a	L/ha			mg/kg	HCl,	F/GH
								mg/kg	
Belgium	840 SL	Drench irrig.	15.9		2	0	1.3*		RA
2004 Grendel	530 g	Drip Irrigation	1.59		4	1	2.1*		2552/04
	ai/L					3	1.4*		GH
						7	0.98*		
						14	0.51*		
France, 2000	722 SL	Seedbed	72.2-36.0	20000	2	0	1.0*	1.2*	C016108
Kansas	722 g	drench				1	0.9*	1.1*	GH
	ai/L	Drip irrig.	0.144 ^a	1215	1	4	0.8*	1.0*	
		Sprav	$0.36/0.18^{a}$	470-498	2	7	1.1^{*}	1.3*	
		Drip irrig	0.144^{a}	1215	1	14	0.8*	0.9*	
Germany	722 SL	Spray	2.2	600	4	0	2.9	3 5*	A85339
1992	722 σE	opiuj	2.2	000		2	1.0	1.2*	F
Orthello	, 22 5 ai/I					4	0.9	1.1*	•
Ormeno	ai/ L					7	0.67	0.82*	
						ģ	0.66	0.02	
Germany	722 ST	Spray	2.2	600	4	0	2.6	3.1*	485330
1002	722 SL	Spray	2.2	000	4	2	2.0	5.1* 1.4*	A03333
1992 Orthallo	/22 g						1.2	1.4	Г
Ormeno	al/L					4	0.9	1.1	
						0	0.08	0.81*	
Comment	722.01	Courses	2.2	(00	4	9	0.08	0.81*	195220
Germany	722 SL	Spray	2.2	600	4	0	1.2	1.4*	A85559
1992 D	/22 g					2	0.9	1.1*	F
Passavia	al/L					4	0.55	0.00*	
						6	0.68	0.81*	
G	722 GI			(00		8	0.55	0.65*	105220
Germany	722 SL	Spray	2.2	600	4	0	0.9	1.1*	A85339
1992 D	722 g					2	0.62	0.74*	F
Profi	aı/L					4	<u>0.54</u>	0.64*	
						6	0.7	0.83*	
~		~				8	0.62	0.74*	
Germany	722 SL	Spray	2.2	600	4	0	4.9	5.9*	A85339
1992	722 g					2	2.5	3.0*	F
Profi	aı/L					4	<u>1.3</u>	1.5*	
						6	1.3	1.5*	
~		~				8	1.1	1.3*	
Germany	722 SL	Spray	2.5	700	4	0	2.1	2.5*	A85339
1992	722 g					2	1.6	1.9*	F
Nienhagen	ai/L					4	<u>1.0</u>	1.2*	
Alexis						7	0.9	1.1*	
						8	1.0	1.2*	
Germany	722 SL	Spray	2.2	600	4	0	2.0	2.4*	A85341
1991	722 g					2	0.69	0.82*	F
Paramount F	ai/L					4	<u>0.6</u>	0.71*	
						6	0.4	0.5*	
						8	0.54	0.64*	
Germany	722 SL	Spray	2.2	600	4	0	3.5	4.2*	A85341
1991	722 g					2	0.6	0.73*	F
Orestes	ai/L					4	0.9	1.1*	
						6	0.54	0.65*	
						8	0.62	0.74*	

Country,		App	lication		PHI	Residues as	Residues	Report	
Year of trial	Form.	Method	kg ai/ha or	Water	No.	(Days)	Propamocarb	Propamocarb	1
Variety			kg ai/hL ^a	L/ha			mg/kg	HCl,	F/GH
,			e				00	mg/kg	
Germany	722 SL	Seedbed	29.0	10000	1	0	1.1*	1.3*	C015432
2000	722 g	drench	2.6	1823	2	3	1.3*	1.5*	GH
Korinda	ai/L	Soil drench	2.8	430-630	2	5	0.8*	0.9*	
		Spray	2.7	1860	2	7	0.7*	0.8*	
		Soil drench							
Germany	722 SL	Seedbed	28.44	98490	1	0	1.3*	1.5*	C015432
2000	722 g	drench	2.7	1850	2	3	1.4*	1.6*	GH
Europa	ai/L	Soil drench	2.7	416-604	2	5	<u>1.7</u> *	2.0*	
		Spray	2.65	1832	2	7	0.9*	1.1*	
		Soil drench							
Germany	722 SL	Seedbed	28.50	98680	1	0	1.6*	1.9*	C015432
2000	722 g	drench	2.2	1714	2	3	1.1*	1.3*	GH
Europa	ai/L	Soil drench	2.2-2.1	410-590	2	5	<u>1.4</u> *	1.7*	
		Spray	2.2	1720	2	7	0.8*	1.0*	
		Soil drench							
Germany	722 SL	Seedbed	29.0	416667	1	0	1.2*	1.5*	C015432
2000	722 g	drench	2.90	2000	2	3	<u>1.0</u> *	1.2*	GH
Paramos F1	ai/L	Soil drench	3.0	316-530	2	5	0.8*	1.0*	
		Spray	2.90	2000	2	7	0.6*	0.7*	
		Soil drench							
Germany	722 SL	Seedbed	29.0	390625	1	0	0.5*	0.6*	C015432
2000	722 g	drench	2.87	1990	2	3	$\frac{0.7}{0.5}$	0.8*	GH
Sudica	ai/L	Soil drench	2.8-2.98	290-515	2	5	0.6*	0.7*	
		Spray	2.9	2000	2	7	0.6*	0.7*	
9	722 GI	Soil drench	20.0	11///=		0	0.7.	0.0*	G015400
Germany	722 SL	Seedbed	29.0	416667	1	0	0.7*	0.8*	C015432
2000	722 g	drench	1.9	1300	2	3	$\frac{1.0}{0.0*}$	1.2*	GH
Paramos F1	aı/L	Soil drench	2.0-1.71	314-455	2	5	0.9*	1.1*	
		Spray Soil drench	1.9	1300	2	/	0.5*	0.6*	
Germany	722 SL	Seedbed	29.0	390625	1	0	0.8*	1.0*	C015432
2000	722 g	drench	1.9	1294	2	3	<u>0.8</u> *	1.0*	GH
Dominica	ai/L	Soil drench	1.9-1.8	310-481	2	5	0.5*	0.6*	
		Spray	1.9	1315	2	7	0.6*	0.7*	
		Soil drench							
Germany	840 SL	Seedbed	16	20000	2	0	1.4	1.7*	C021346
2001	530 g	drench				3	<u>0.59</u>	0.70*	GH
Indira RZ F1	ai/L	Drip irrigation ¹	1.5-2.0	1500- 1910	4				
Germany	840 SL	Drench irrig.	15.9		2	0	0.04*		RA
2004 Pinto	530 g	Drip Irrigation	1.59		4	3	0.06*		2552/04
Fl	ai/L	1 0							GH
Germany	840 SL	Drench irrig.	15.9		2	0	0.37*		RA
2004 Ladner	530 g	Drip Irrigation	1.59		4	3	0.42*		2552/04
	ai/L								GH
Greece	722 SL	Seedbed	72.2-36.0	20000	2	0	4.0*	4.7*	C016108
2000	722 g	drench				1	3.4*	4.0*	GH
Palmera	ai/L	Drip irrig.	2.40	1665	1	4	<u>4.8</u> *	5.7*	
		Spray	2.0	570-548	2	7	4.1*	4.8*	
		Drip irrig.	2.41	1665	1	14	2.1*	2.5*	
Italy, 2000	722 SL	Seedbed	72.5-	20000	2	0	0.8*	1.0*	C016108
40026 Imola	722 g	drench	35.23			1	0.9*	1.0*	
Emilia-	ai/L	Drip irrig.		2023	1	4	<u>0.6</u> *	0.7*	GH
Romag		Spray	3.0	592-618	2	7	0.5*	0.6*	
Kansas		Drip irrig.	3.0-3.1	2083	1	14	0.4*	0.5*	
T 1000			3.0	266			0.00	0.453	
Japan, 1980	SL	sowing	0.16 kg	300	3	21	0.39	0.46*	(1)
	640g/kg		aı/L	ml/plant		35	0.19	0.23*	GH
						49	0.09	0.11*	

Country,		App	lication		PHI	Residues as	Residues	Report	
Year of trial	Form.	Method	kg ai/ha or	Water	No.	(Days)	Propamocarb	Propamocarb	1
Variety			kg ai/hL ^a	L/ha			mg/kg	HCl,	F/GH
5			0				00	mg/kg	
Japan, 1980	SL	sowing	0.16 kg	300	3	21	0.37	0.44*	(1)
1 /	640g/kg	0	ai/L	ml/plant		35	0.33	0.39*	ĠĤ
	00			1		49	0.31	0.37*	
Japan, 1980	SL	sowing	0.16 kg	300	3	21	0.34	0.41*	(1)
.	640g/kg	0	ai/L	ml/plant		35	0.16	0.19*	GH
	00			1		49	0.07	0.09*	
Japan, 1980	SL	sowing	0.16 kg	300	3	21	0.42	0.50*	(1)
1	640g/kg	U	ai/L	ml/plant		35	0.22	0.26*	GH
	00					49	0.13	0.16*	
Netherlands	840 SL	Seedbed	16	20000	2	0	0.78	0.93*	C021346
2001, Toledo	530 g	drench				3	<u>0.83</u>	0.99*	GH
	ai/L	Drip irrigation ¹	2.66	2500	4				
Netherlands	840 SL	Seedbed	16	20000	2	0	0.78	0.93*	C021346
2001, Enduro	530 g	drench				3	<u>1.0</u>	1.2*	GH
	ai/L	Drip irrigation ¹	2.66	2500	4				
Netherlands	840 SL	Drench irrig	15.9		2	0	0.39*		RA
2004	530 g	Drip Irrigation	1.59		4	1	1.3*		2552/04
Grendel	ai/L					3	1.5*		GH
						7	0.75*		
						14	0.19*		
Spain	722 SL	Seedbed	72.2-36.0	20000	2	0	0.5*	0.6*	C016108
2000	722 g	drench				1	0.4*	0.5*	GH
Serena	ai/L	Drip irrig.	3.0	2083	1	4	<u>0.4</u> *	0.5*	
		Spray	2.2-2.1	399-590	2	7	0.4*	0.4*	
		Drip irrig	3.01	2083	1	14	0.4*	0.4*	
Spain	722 SL	Seedbed	72.2-36.0	20000	2	0	1.4*	1.7*	C016108
2000	722 g	drench				1	1.1*	1.3*	GH
46800 Xativa	ai/L	Drip irrig.	2.1	1464	1	4	<u>1.0</u> *	1.2*	
Valencia		Spray	2.2	397-519	2	7	0.6*	0.7*	
Cornichon		Drip irrig	2.1	1464	1	14	0.3*	0.4*	
Spain	722 SL	Seedbed	29.0	20000	1	0	1.5*	1.8*	C015432
2000	722 g	drench	3.2	2201	2	3	1.2*	1.4*	GH
Serena	ai/L	Soil drench	3.2	585-734	2	5	<u>1.4</u> *	1.7*	
		Spray	3.2	3669-	2	7	1.2*	1.4*	
		Soil drench		4403					
Spain	722 SL	Seedbeddrench	29.0	20000	1	0	0.9*	1.1*	C015432
2000	722 g	Soil drench	3.3	2286	2	3	1.1*	1.3*	GH
Serena	ai/L	Spray	3.5-3.2	491-589	2	5	1.7*	2.0*	
		Soil drench	3.30	3810-	2	7	<u>1.8</u> *	2.2*	
				4571					
Spain, 2001	840 SL	Seedbed	16	20000	2	0	0.56	0.67*	C021346
Serena	530 g	drench				3	<u>0.54</u>	0.64*	GH
	ai/L	Drip irrigation ¹	1.99	1875-	4				
				2343					
USA, 1997	750 SC	Spray	1.0	195-200	5	2	0.29*		B002741
Poinsett 76	375 g								F
	ai/L								
USA, 1997	750 SC	Spray	1.0	183-187	5	2	0.32*		B002741
Poinsett 76	375 g								F
	ai/L								
USA, 1997	750 SC	Spray	1.0	187	5	2	0.26*		B002741
Poinsett 76	375 g								F
	ai/L								
USA, 1997	750 SC	Spray	1.0	180-199	5	2	0.62*		B002741
Dasher 2	375 g								F
	ai/L								
USA, 1997	750 SC	Spray	1.0	184-196	5	2	0.69*		B002741
SMR 58	375 g								F
	ai/L								

Country,		Арр	lication		PHI	Residues as	Residues	Report	
Year of trial <i>Variety</i>	Form.	Method	kg ai/ha or kg ai/hL ^a	Water L/ha	No.	(Days)	Propamocarb mg/kg	Propamocarb HCl,	F/GH
-			°,					mg/kg	
USA, 1997 Straight Eight	750 SC 375 g	Spray	1.0	183-201	5	2	<u>0.75*</u>		B002741 F
	ai/L								
USA, 1997	750 SC	Spray	1.0	186-196	5	1	0.55*		B002741
Pointsett 76	375 g					2	<u>0.61</u> *		F
	ai/L					4	0.26*		
						6	0.19*		
						8	0.16*		

*actual value reported; 1. only a summary report of the trial was provided;

Melons

Fourty eight field and glasshouse trials in melons were reported from Europe, spanning 1993 to 2004. Seven trials were also reported in field grown cantaloupe, conducted in 1997, from the USA. Methods of application included the use of drench, drip and/or foliar spray (Table 37).

Table 37. Residue trials with propamocarb hydrochloride conducted in melon in the field and glass house.

Country,		Aplie	cation					Residues as	Residue	Report
Year of trial	Form.	Method	kg ai/ha	Water	No.	PHI	Sample	Propamocarb	Propamocab	F/GH
Variety			_	L/ha		(Days)	analysed	mg/kg	HCl, mg/kg	
France	750 SC	Spray	2.2	333	5	3	Fruit	0.44	0.53*	A89361
1993	375 g ai/L					5	Fruit	0.81	0.97*	F
Delta						7	Fruit	0.17	0.2*	
France	750 SC	Spray	2.2	333	4	3	Fruit	<u>0.49</u>	0.58*	A89361
1993	375 g ai/L					5	Fruit	0.13	0.15*	F
Bastion						7	Fruit	0.3	0.3*	
France	750 SC	Spray	1.1	333	3	0	Fruit	0.60	0.72*	A89363
1994	375 g ai/L					3	Fruit	0.38	0.45*	
Manta						0	Pulp	< 0.08	< 0.1*	F
						3	Pulp	<u>< 0.08</u>	< 0.1*	
France	750 SC	Spray	1.1	333	3	0	Fruit	0.32	0.38*	A89363
1994	375 g ai/L					3	Fruit	0.11	0.13*	
Bastion						0	Pulp	< 0.08	< 0.1*	F
						3	Pulp	<u>< 0.08</u>	< 0.1*	
France	750 SC	Spray	1.1	333	3	0	Fruit	0.18	0.21*	A89363
1994	375 g ai/L					3	Fruit	0.23	0.28*	F
Delta						0	Pulp	< 0.08	< 0.1*	
						3	Pulp	<u>< 0.08</u>	< 0.1*	
France	750 SC	Spray	1.1	333	3	0	Fruit	0.18	0.22*	A89363
1994	375 g ai/L					3	Fruit	0.24	0.29*	F
Delta						0	Pulp	0.13	0.15*	
						3	Pulp	<u>0.21</u>	0.25*	
France	750 SC	Spray	2.2	333	3	0	Fruit	0.49	0.58*	A89363
1994	375 g ai/L	1 2				3	Fruit	0.44	0.52*	F
Manta	U					0	Pulp	< 0.08	< 0.1*	
						3	Pulp	<u>< 0.08</u>	< 0.1*	
France	750 SC	Sprav	2.2	333	3	0	Fruit	0.32	0.38*	A89363
1994	375 g ai/L				-	3	Fruit	0.28	0.34*	F
Bastion						0	Pulp	< 0.08	< 0.1*	
						3	Pulp	< 0.08	< 0.1*	
France	750 SC	Spray	2.2	333	3	0	Fruit	0.44	0.52*	A89363
Delta	375 g ai/L	opiuj	2.2	000	5	3	Fruit	0.40	0.32	F
Dena	575 g ul E					0	Pulp	0.11	0.13*	1
						3	Pulp	< 0.08	< 0.1*	
Country,		Aplic	cation					Residues as	Residue	Report
---------------	--------------------------	---------	----------	-------	-----	---------	---------------	------------------	------------------	---------
Year of trial	Form.	Method	kg ai/ha	Water	No.	PHI	Sample	Propamocarb	Propamocab	F/GH
Variety				L/ha		(Days)	analysed	mg/kg	HCl, mg/kg	
France	750 SC	Spray	2.2	333	3	0	Fruit	0.70	0.83*	A89363
1994	375 g ai/L					3	Fruit	<u>1.1</u>	1.3*	F
Delta	-					0	Pulp	0.13	0.16*	
						3	Pulp	<u>0.13</u>	0.15*	
France	722 SL	Sprav	2.1	300	3	0	Fruit	0.54	0.64*	A83662
1995	722 g ai/L	1 1			-	3	Fruit	0.65	0.78*	F
Alpha	U					0	Pulp	0.08	0.1*	
1						3	Pulp	<u>0.07</u>	0.08*	
France	722 SL	Sprav	2.1	300	3	0	Fruit	1.8	2.2*	A83662
1995	722 g ai/L	1 5				3	Fruit	0.92	1.1*	F
Sierra	C					0	Pulp	0.09	0.11*	
						3	Pulp	<u>0.04</u>	0.05*	
France	722 SL	Spray	2.1	300	3	0	Fruit	1.17	1.4*	A83662
1995	722 g ai/L	Spruy	2.1	500	5	3	Fruit	0.57	0.68*	F
Averell	/ 8 ul/ _					0	Pulp	0.1	0.12*	-
						3	Pulp	< 0.04	< 0.05*	
France	722 SL	Spray	2.1	300	3	0	Fruit	0.84	1.0*	A83662
1995	722 g ai/L	Spruy	2.1	500	5	3	Fruit	0.38	0.45*	F
Dalton	/ 22 5 ul/ D					0	Pulp	< 0.04	< 0.05*	1
Dunion						3	Pulp	< 0.04	< 0.05*	
France	722 SI	Seedbed	22	20000	2	0	Fruit	0.84*	1.0*	C017451
2000	722 SL 722 g ai/I	drench	22	20000	2	3	Fruit	0.50*	0.6*	E017451
Galonhet	722 g al/L	Spray	22	1046	2	7	Fruit	0.55	0.3*	1
Guionoci		Spruy	2.2	1010	2	, 14	Fruit	0.25*	0.3*	
						21	Fruit	0.25*	0.3*	
						0	Peel	3.2*	3.9*	
						3	Peel	1.0*	1.2*	
						7	Peel	1.5*	1.8*	
						14	Peel	0.59*	0.7*	
						21	Peel	0.7*	0.9*	
						0	Pulp	< 0.01*	< 0.01*	
						3	Pulp	< 0.01*	< 0.01*	
						7	Pulp	< 0.01*	< 0.01*	
						14	Pulp	< 0.01*	< 0.01*	
						21	Pulp	<u>0.02*</u>	0.02*	
France	722 SL	Seedbed	22	20000	2	0	Fruit	0.42*	0.5*	C017451
2000	722 g ai/L	drench				3	Fruit	0.34*	0.4*	F
Innenheim		Spray	2.2	1025	2	7	Fruit	0.17*	0.2*	
Bastion						14	Fruit	0.09*	0.1*	
						21	Fruit	<u>0.17*</u>	0.2*	
						0	Peel	1.0*	1.2*	
						3	Peel	1.1*	1.3*	
						/	Peel	0.43*	0.5*	
						14	Peel De -1	0.25*	0.3*	
						21 0	Peel	0.25*	0.5^{-1}	
						0	ruip Dula	< 0.01*	$< 0.01^{*}$	
						3 7	r uip Dulo	$< 0.01^{\circ}$	$< 0.01^{\circ}$	
						/ 1/	Pulp	$< 0.01^{\circ}$	$< 0.01^{\circ}$	
						21	Pulp	< 0.008*	< 0.01*	

Country		Anlie	ration					Residues as	Residue	Report
Vear of trial	Form	Method	kg ai/ha	Water	No	рні	Sample	Propamocarb	Propamocab	F/GH
Variety	TOIIII.	Wiethou	Kg al/lla	I /ha	110.	(Davs)	analysed	mg/kg	HCl mg/kg	17011
France	722 SI	Seedbad	22	20000	2	(Days)	Eruit	1.5*	1 7*	C017451
2000	722 SL	drench	22	20000	2	3	Fruit	0.67*	0.8*	C017451
2000 Ardor El	722 g al/L	Spray	2.2	1007	2	3 7	Fruit	0.76*	0.8*	F
Aruor F1		Spray	2.2	1007	2	14	Fruit	0.70	0.5	1
						21	Fruit	0.50	0.8*	
						0	Peel	3.4*	4 1*	
						3	Peel	1.9*	7.1	
						7	Peel	3.2*	3.8*	
						14	Peel	1.3*	1.6*	
						21	Peel	1.0*	1.2*	
						0	Pulp	< 0.01*	< 0.01*	
						3	Pulp	< 0.01*	< 0.01*	
						7	Pulp	0.02*	0.02*	
						14	Pulp	0.02*	0.02*	
						21	Pulp	0.02*	0.02*	
France	722 SL	Seedbed	24	22292	2	0	Fruit	2.5*	3.0*	C017451
2000	722 g ai/L	drench		-		3	Fruit	0.59*	0.7*	F
Heliobel	0	Spray	2.2	1039	2	7	Fruit	0.50*	0.6*	
						14	Fruit	0.67*	0.8*	
						21	Fruit	0.17*	0.2*	
						0	Peel	1.1*	1.3*	
						3	Peel	1.0*	1.1*	
						7	Peel	2.2*	2.6*	
						14	Peel	1.4*	1.6*	
						21	Peel	0.84*	1.0*	
						0	Pulp	0.59*	0.7*	
						3	Pulp	0.09*	0.1*	
						7	Pulp	0.07*	0.08*	
						14	Pulp	0.06*	0.07*	
						21	Pulp	<u>0.03*</u>	0.04*	
France	722 SL	Seedbed	22	11146	2	0	Fruit	1.8*	2.2*	C017451
2000	722 g ai/L	drench				3	Fruit	2.5*	2.9*	F
Buffalo		Spray	2.2	995	2	7	Fruit	1.5*	1.8*	
						14	Fruit	1.5*	1.8*	
						21	Fruit	<u>0.3*</u>	0.4*	
						0	Peel	5.4*	6.4*	
						3	Peel	9.7*	12.0*	
						7	Peel	5.5*	6.5*	
						14	Peel	4.8*	5.8*	
						21	Peel	1.1*	1.3*	
						0	Pulp	0.34*	0.4*	
						3 7	Pulp	0.08*	0.1*	
						14	Pulp	0.04*	0.03*	
						14	Pulp	0.07*	0.08*	
Eronaa	722 51	Saadbad	21.6	10066	2	21	Fuip	0.52*	0.62*	C020066
2001	722 SL	dranch	21.0	19900	2	13	Fruit	0.52*	0.02*	C020900 E
2001 Marlene	722 g al/L	Sprov	2 22	529	2	15	Paal	2.2*	2.0*	Г
winnene		Spray	2.33	558	2	13	Peel	5.5* 1 /*	5.9 ° 1 7*	
						13	Pulp	0.30*	0.47*	
						13	Pulp	0.39*	0.47	
France	722 61	Seadbad	21.5	10804	n	13	Fruit	0.02	0.02*	C020066
2001	722 o si/I	drench	21.3	17000	2	14	Fruit	0.00*	0.93° 0.41*	C020900 F
Sierra	122 g al/L	Spray	22	511	2	0	r Tult امم	3.24	4.5×	1.
Sicilia		Spray	2.2	511	2	14	Peel	0.62*		
						0	Puln	0.02*	0.08*	
						14	Puln	< 0.01*	0.01*	
	1 1					* 1	1 arp	20.01	0.01	

Country,		Aplic	cation					Residues as	Residue	Report
Year of trial	Form.	Method	kg ai/ha	Water	No.	PHI	Sample	Propamocarb	Propamocab	F/GH
Variety			0	L/ha		(Days)	analysed	mg/kg	HCl, mg/kg	
France	722 SL	Seedbed	22	20000	2	0	Fruit	0.15*	0.17*	C020952
2001	722 σ ai/L	drench	22	20000	2	14	Fruit	0.15	0.21*	GH
Fiesta	722 5 ul/L	Spray	2.1	492	2	0	Peel	1 4*	1.7*	011
1 10510		opiuy	2.1	172	2	14	Peel	1.1	1.7	
						0	Puln	0.05*	0.06*	
						14	Pulp	0.03	0.00	
Cormony	840 SI	Dranah	16.0	20020	2	0	Fruit	0.02	0.02*	C024008
2001	530 g ai/I	Dienen	10.0	20030	2	13	Fruit	1.42	1.7*	C024908
2001 Molina El	550 g al/L	Drin	2.0	21380	2	13	Deal	$\frac{1.42}{0.60}$	0.71*	UII
Metha P1		Irrigation	2.0	1860	2	12	Deal	0.00	0.71*	
		Ingation		1000-		15	Dulp	0.52	0.38*	
				1900		12	r uip Dulp	0.14	0.17*	
Crassa	722 51	Saadhad	21.4	10770	2	15	Fuip	2.4*	2.0*	C017451
Greece	722 SL	Seeabea	21.4	19770	2	0	Fruit	2.4*	2.9*	C017451
2000	/22 g ai/L	drench	2.2	1045	2	3	Fruit	1.2*	1.5*	F
Ananas		Spray	2.2	1045	2	/	Fruit	1./*	2.0*	
						14	Fruit	0.70*	0.9*	
						21	Fruit	$\frac{0.08^{*}}{2^{*}}$	0.1*	
						0	Peel	6. <i>3*</i>	/.6*	
						3	Peel	5.2*	6.2*	
						7	Peel	2.6*	3.1*	
						14	Peel	1.4*	1.7*	
						21	Peel	0.25*	0.3*	
						0	Pulp	0.50*	0.6*	
						3	Pulp	0.17*	0.2*	
						7	Pulp	0.08*	0.1*	
						14	Pulp	0.04*	0.05*	
						21	Pulp	<u>0.02*</u>	0.02*	
Greece	722 SL	Seedbed	22	20000	2	0	Fruit	1.2*	1.5*	C016109
2000	722 g ai/L	drench				3	Fruit	2.6*	3.1*	
Gallia		Spray	2.1	1013	2	7	Fruit	1.9*	2.3*	GH
						14	Fruit	1.5*	1.8*	
						21	Fruit	<u>2.2*</u>	2.6*	
						0	Peel	2.0*	2.4*	
						3	Peel	5.3*	6.3*	
						7	Peel	3.1*	3.7*	
						14	Peel	4.1*	4.9*	
						21	Peel	5.6*	6.6*	
						0	Pulp	0.08*	0.1*	
						3	Pulp	0.17*	0.2*	
						7	Pulp	0.07*	0.08*	
						14	Pulp	0.08*	0.1*	
						21	Pulp	<u>0.08*</u>	0.1*	
Italy, 2000	722 SL	Seedbed	22	20722	2	0	Fruit	2.7*	2.6*	C016109
Scudo	722 g ai/L	drench				3	Fruit	1.0*	1.2*	
		Spray	2.2	1029	2	7	Fruit	0.84*	1.0*	GH
						14	Fruit	0.76*	0.9*	
						21	Fruit	<u>0.67*</u>	0.8*	
						0	Peel	1.8*	2.2*	
						3	Peel	1.3*	1.6*	
						7	Peel	1.9*	2.2*	
						14	Peel	1.5*	1.7*	
						21	Peel	0.76*	0.9*	
						0	Pulp	0.08*	0.1*	
						3	Pulp	0.02*	0.02*	
						7	Pulp	0.02*	0.02*	
						14	Pulp	0.02*	0.02*	
						21	Pulp	<u>0.02*</u>	0.02*	

Country		Anlia	ration					Residues as	Residue	Report
Vear of trial	Form	Method	ka ai/ha	Water	No	рні	Sample	Propamocarb	Propamocah	F/GH
Variety	i onn.	wicthou	Kg al/lla	I /ha	110.	(Dave)	analysed	mg/kg	HCl mg/kg	17011
Variety	700 61	ار و داله و د ک	21	10760	2	(Days)	Emit	1.5*	1 0*	C017451
	722 SL	Seeabea	21	19760	2	0	Fruit	1.5*	1.8*	C01/451
2000 Dimension	722 g ai/L	Grench	2.1	002	2	3	Fruit	0.0/*	0.8*	Б
Bingo		Spray	2.1	992	2	/	Fruit	1.0*	1.2*	Г
						14	Fruit	0.42*	0.3*	
						21		<u>0.39*</u>	0.7*	
						0	Peel	2.2*	2.6*	
						3	Peel	1./*	2.0*	
						/	Peel	1.4*	1.0*	
						14	Peel	1.0*	1.2*	
						21	Peel	0.17*	0.2*	
						0	Pulp	0.02*	0.02*	
						3	Pulp	0.02*	0.02*	
						/	Pulp	< 0.01*	< 0.01*	
						14	Pulp	0.02*	0.02*	
						21	Pulp	0.03*	0.04*	
Italy	722 SL	Seedbed	22	19966	2	0	Fruit	0.53*	0.63*	C020952
2001	722 g ai/L	drench				14	Fruit	0.19*	0.22*	GH
Bingo		Spray	2-2.2	484-	2	0	Peel	1.1*	1.3*	
				516		14	Peel	0.34*	0.4*	
						0	Pulp	0.02*	0.02*	
						14	Pulp	< 0.01*	0.01*	
Italy	722 SL	Drench	20-22.0	18604	2	0	Fruit	0.59*	0.7*	C020966
2001	722 g ai/L			-		14	Fruit	0.11*	0.13*	F
Bingo		Spray	2.2	20000	2	0	Peel	1.6*	1.8*	
				513		14	Peel	0.19*	0.23*	
						0	Pulp	0.02*	0.03*	
						14	Pulp	< 0.01*	< 0.01*	
Italy, 2004	840 SL	Drench	15.9	20000	2	0	Fruit	< 0.008*	< 0.01	RA 2554/04
Proteo	530 g ai/L	Drip	1.59	100	2	14	Fruit	< 0.008*	< 0.01	GH
		Irrigation								
Italy, 2004	840 SL	Drench	15.9	20000	2	0	Fruit	< 0.008*	< 0.01	RA 2554/04
H. Best Jumbo	530 g ai/L	Drip	1.59	100	2	14	Fruit	< 0.008*	< 0.01	GH
		Irrigation								
Netherlands	722 SL	Spray	2.1	1543	3	0	Fruit	0.80	0.96*	C004255
1997	722 g ai/L					3	Fruit	0.12	0.14*	
Lunastar	-					0	Peel	1.1	1.3*	GH
						3	Peel	0.31	0.37*	
						0	Pulp	< 0.04	< 0.05*	
						3	Pulp	<u>< 0.04</u>	< 0.05*	
Netherlands	722 SL	Spray	2.1	1493	3	0	Fruit	0.61	0.73*	C004255
1997	722 g ai/L					3	Fruit	0.1	0.15*	
Lunastar	C					0	Peel	1.3	1.5*	GH
						3	Peel	0.55	0.66*	
						0	Pulp	0.04	0.05*	
						3	Pulp	< 0.04	< 0.05*	
Netherlands	722 SL	Sprav	2.2	1547	3	0	Fruit	0.52	0.62*	C004255
1997	722 g ai/L	1 1				3	Fruit	0.14	0.17*	
Lunastar	8					0	Peel	1.3	1.5*	GH
						3	Peel	0.9	1.1*	2
						0	Puln	0.04	0.05*	
						3	Puln	< 0.04	< 0.05*	
Portugal	840 SI	Drench	15.9	20000	2	0	Fruit	< 0.008*	< 0.01	RA 2554/04
2004 Galas	530 g ai/I	Drin	1 50	100	$\frac{2}{2}$	14	Fruit	0.12*	0.14	GH
2001, <i>Julius</i>	550 g an L	Irrigation	1.57	100	2	17	iiuit	0.12	0.17	011
Portugal	840 SI	Drench	15.0	20000	2	0	Fruit	< 0.008*	< 0.01	RA 2554/04
2004	530 g ai/I	Drin	15.9	20000	2	1	Fruit	0.000	0.02	КА 2334/04 СЦ
2004 Ananas da	550 g al/L	Irrigation	1.39	100	2	1	Fruit	0.02	0.02	UL
America		inigation				5 7	Fruit	0.175	0.2	
1 merica						/ 14	Fruit	0.02*	0.02	
						17	iiuit	0.04	0.05	

Country,		Aplic	cation					Residues as	Residue	Report
Year of trial	Form.	Method	kg ai/ha	Water	No.	PHI	Sample	Propamocarb	Propamocab	F/GH
Variety			c	L/ha		(Days)	analysed	ng/kg	HCl, mg/kg	
Spain, 2004	840 SL	Drench	15.9	20000	2	0	Fruit	< 0.008*	< 0.01	RA 2554/04
Vulcano	530 g ai/L	Drip	1.59	100	2	1	Fruit	< 0.008*	< 0.01	
		Irrigation				3	Fruit	< 0.008*	< 0.01	GH
						7	Fruit	< 0.008*	< 0.01	
						14	Fruit	<u>< 0.008*</u>	< 0.01	
Spain, 2001	840 SL	Drench	16.0	20300	2	0	Fruit	0.63	0.75*	C024908
Deltex F1	530 g ai/L		• •	-		15	Fruit	$\frac{1.0}{1.0}$	1.2*	GH
(Galia)		Drip	2.0	19930	2	0	Peel	1.9	2.3*	
		Irrigation		1600		15	Peel	2.0	2.4*	
						0	Pulp	0.62	0.74*	
Spain 2001	840 SI	Drench	16.0	20000	2	15	Fuit	0.18	0.03*	C024908
Deltex Fl	530 g ai/I	Drin	2.0	20000	$\frac{2}{2}$	14	Fruit	0.13	0.22	GH
(Galia)	550 g ul/L	Irrigation	2.0	2310	~	0	Peel	$\frac{0.21}{0.35}$	0.42*	011
(Gunu)		migution				14	Peel	0.4	0.48*	
						0	Pulp	0.04	0.05*	
						14	Pulp	<u>0.06</u>	0.07*	
Spain, 2001	840 SL	Drench	16.0	20000	2	0	Fruit	0.36	0.43*	C024908
Deltex F	530 g ai/L	Drip	2.0	2610	2	13	Fruit	<u>0.45</u>	0.54*	GH
(Galia)		Irrigation				0	Peel	1.1	1.3*	
						13	Peel	1.0	1.2*	
						0	Pulp	0.29	0.35*	
					-	13	Pulp	0.17	0.2*	
Spain	722 SL	Drench	22.0	20000	2	0	Fruit	0.17*	0.20*	C020966
2001 Di	722 g ai/L	Spray	2.1-2.3	492-	2	13	Fruit	0.10*	0.12*	F
Pinonet				538		0	Peel	0.07*	0.09*	
						15	Pulp	0.30*	0.30*	
						13	Puln	0.03*	0.04*	
Spain	722 SL	Drench	22.0	20000	2	0	Fruit	1 4*	1.7*	C020966
2001	722 g ai/L	Spray	2.1	500	$\frac{2}{2}$	14	Fruit	0.93*	1.1*	F
Pinonet	8	~			_	0	Peel	1.7*	2.0*	-
						14	Peel	1.3*	1.6*	
						0	Pulp	0.29*	0.35*	
						14	Pulp	0.03*	0.03*	
Spain	722 SL	Drench	22.0	20000	2	0	Fruit	0.35*	0.41*	C020952
2001	722 g ai/L	Spray	2.2	514	2	14	Fruit	0.12*	0.15*	GH
Pinonet						0	Peel	0.73*	0.87*	
						14	Peel	0.39*	0.46*	
						0	Pulp	0.08*	0.1*	
o :	700.01	D 1	22.0	20000	2	14	Pulp	0.02*	0.02*	0000050
Spain 2001	722 SL	Drench	22.0	20000	2	0 14	Fruit	0.81*	0.97*	C020952
2001 Pinonet	722 g al/L	Spray	2.2	321	2	0	Peel	1.30	1.7*	ОП
1 monei						14	Peel	0.92*	1.7	
						0	Pulp	0.19*	0.23*	
						14	Pulp	0.03*	0.04*	
Spain	722 SL	Drench	22	20000	2	0	Fruit	0.84*	1.0*	C017451
2000	722 g ai/L	Spray	2.1	999	2	3	Fruit	0.34*	0.4*	F
Sancho						7	Fruit	0.92*	1.1*	
						14	Fruit	0.25*	0.3*	
						21	Fruit	0.17*	0.2*	
						0	Peel	1.0*	1.2*	
						3	Peel	1.0*	1.2*	
						/	Peel	0.50*	0.0*	
						14 21	Peel	0.0/*	0.5*	
						0	Pulp	0.42*	0.01*	
						3	Puln	0.008*	0.01*	
						7	Pulp	0.008*	0.01*	
						14	Pulp	0.008*	0.01*	
						21	Pulp	<u>0.008*</u>	0.01*	

Country.		Aplic	cation					Residues as	Residue	Report
Year of trial	Form	Method	kg ai/ha	Water	No	PHI	Sample	Propamocarb	Propamocab	F/GH
Variety	i onn.	wieniou	Kg ul/llu	I /ha	110.	(Days)	analysed	mg/kg	HCl mg/kg	1/011
France	722 61	Dranah	24	22220	n	(Days)	Emit	0.94*	1 0*	C016100
Prance	722 SL	Drench	24	1004	2	0	Fruit	0.84*	1.0*	C016109
2000	722 g al/L	Spray	2.1	1004	2	4	Fruit	0.42*	0.5*	CII
Lunastar						/	Fruit	0.42*	0.5*	GH
						14	Fruit	0.1/*	0.2*	
						21	Fruit	<u>0.08*</u>	0.1*	
						0	Peel	1.8*	2.2*	
						4	Peel	1.1*	1.3*	
						7	Peel	1.8*	2.2*	
						14	Peel	0.7*	0.8*	
						21	Peel	0.25*	0.3*	
						0	Pulp	0.08*	0.1*	
						4	Pulp	0.08*	0.1*	
						7	Pulp	0.04*	0.05*	
						14	Pulp	0.02*	0.02*	
						21	Pulp	<u>0.08*</u>	0.01*	
Spain	722 SL	Drench	22	20000	2	0	Fruit	0.4*	0.5*	C016109
2000	722 g ai/L	Spray	2.2	1031	2	3	Fruit	0.34*	0.4*	
Sancho						7	Fruit	0.34*	0.4*	GH
						14	Fruit	0.25*	0.3*	
						21	Fruit	0.07*	0.08*	
						0	Peel	1.0*	1.2*	
						3	Peel	0.34*	0.4*	
						7	Peel	0.34*	0.4*	
						14	Peel	0.42*	0.5*	
						21	Peel	0.25*	0.3*	
						0	Pulp	0.25*	0.21*	
						3	Pulp	0.01*	0.01*	
						7	Pulp	0.02*	0.02*	
						14	Pulp	< 0.01*	< 0.01*	
						21	Pulp	0.01*	0.01*	
Spain	722 SL	Drench	22	20000	2	0	Fruit	0.17*	0.2*	C016109
2000	722 g ai/I	Snrav	21	992	$\frac{2}{2}$	3	Fruit	0.18*	0.2*	001010)
Sancho	722 g al/L	Spray	2.1	<i>))</i>	2	7	Fruit	0.18*	0.2	GH
Suneno						, 14	Fruit	0.10	0.1*	011
						21	Fruit	0.00	0.05*	
						0	Deel	0.50*	0.05	
						3	Peel	0.50	0.8*	
						5 7	Deel	0.00	0.3	
						14	Peel	0.3	0.3*	
						14	Peel	0.20^{+}	0.5*	
						21	Peel	0.17^{*}	0.2^{+}	
						0	Pulp	< 0.01*	< 0.01*	
						3	Pulp	< 0.01*	< 0.01*	
						/	Puip	< 0.01*	< 0.01*	
						14	Pulp	< 0.01*	< 0.01*	
110 4 1007	750.00	C	1.0	101	~	21	Pulp	0.1/*	0.2*	D000741
USA, 1997	750 SC	Spray	1.0	191-	Э	2	Fruit	0.29*		B002741
Hale's best				195						F
USA, 1997	750 SC	Spray	1.0	187	5	2	Fruit	1.4*		B002741
										F
USA 1007	750 SC	Spray	1.0	170	5	1	Fruit	0.3//*		B002741
Dorlita	750 SC	Spray	1.0	1/9-	5	1	Fiun	0.54		B002741 E
1 6/11/14				177						1.
USA, 1997	750 SC	Spray	1.0	182-	5	2	Fruit	<u>0.77*</u>		B002741
Tam uvalde				195						F
USA, 1997	750 SC	Sprav	1.0	185-	5	2	Fruit	0.44*		B002741
. , / ,		J		198		-		<u></u>		F

Country,	Aplication					Residues as	Residue	Report		
Year of trial	Form.	Method	kg ai/ha	Water	No.	PHI	Sample	Propamocarb	Propamocab	F/GH
Variety				L/ha		(Days)	analysed	mg/kg	HCl, mg/kg	
USA, 1997	750 SC	Spray	1.0	185-	5	2	Fruit	0.29		B002741
				198						F
USA, 1997	750 SC	Spray	1.0	187-	5	1	Fruit	0.90*		B002741
Top mark				188		2		0.66*		F
						4		0.60*		
						6		0.50*		
						8		0.26*		

*actual value reported

Summer squash

Six field trials were reported with propamocarb in summer squash, from the USA, conducted in 1997 (Table 38).

Table 38: Residue field trials with propamocarb hydrochloride conducted in summer squash received foliar treatment (Report B002741).

Country,		А		PHI	Residues as		
Year of trial	Form.	Method	kg ai/ha	Water	No.	(Days	Propamocarb
Variety				L/ha			mg/kg
USA, 1997	750 SC	Spray	1.0	191-195	5	2	<u>0.99*</u>
Supreme							
USA, 1997	750 SC	Spray	1.0	187	5	2	0.49*
E Yellow Straightneck							
USA, 1997	750 SC	Spray	1.0	179-199	5	2	0.37*
Dark Green Zucchini							
USA, 1997	750 SC	Spray	1.0	182-195	5	2	<u>1.1*</u>
Early Polific Strain							
USA, 1997	750 SC	Spray	1.0	185-198	5	2	<u>0.43*</u>
Samma Yellow							
USA, 1997	750 SC	Spray	1.0	187-188	5	1	0.51*
Straightneck Early						2	<u>0.64*</u>
						4	0.63*
						6	0.58*
						8	0.48*

Peppers, sweet

Thirty five trials were conducted with propamocarb hydrochloride on greenhouse (GH) grown sweet peppers in Europe from 1999 to 2004 and 10 trials in field (F) grown sweet peppers from the USA in 1997 using drench, drip or foliar treatment (Table 39).

Table 39. Residue trials with propamocarb hydrochloride conducted on sweet pepper in the greenhouse (Europe) and in the field (USA).

Country,		Applica	tion			PHI	Residues as	Residues	Report no.
Year of trial	Form.	Method	kg ai/ha	Water	No	(Days	Propamocarb	Propamocarb	
Variety				L/ha			mg/kg	HCl, mg/kg	
Belgium	840 SL	Drench irrig.	31.8-	20000	2	0	0.20*	0.24	RA 2559/04
2004, Rapido	530 g	-	15.9			1	0.12*	0.14	
	ai/L	Drip irrig.		250	4	3	0.16*	0.19	
			1.59						
Germany 2001	840 SL	Seedbed	16-32	20000	2	0	0.08	0.10*	C024482
Bell Boy F1	530 g	drench	1.9	1800	4	3	<u>0.10</u>	0.13*	
	ai/L	Drench/drip.							

Country,		Applica	tion			PHI	Residues as	Residues	Report no.
Year of trial	Form.	Method	kg ai/ha	Water	No	(Days	Propamocarb	Propamocarb	-
Variety				L/ha			mg/kg	HCl, mg/kg	
Germany,2001	840 SL	Seedbed	15-32	20000	2	0	0.09	0.11*	C024482
Mazurka RZ	530 g	drench	1.9-2.5	1800	4	3	0.11	0.13*	
	ai/L	Drench/drip.							
Greece	722 SL	Seedbed	72.2-36	20000	2	0	< 0.03*	< 0.04*	C016110
2000	722 g	drench				1	0.05*	0.06*	
Balo	ai/L		2.4	1667	3	3	< 0.008*	< 0.01*	
		Drench/drip.				7	< 0.008*	< 0.01*	
						14	< 0.008*	< 0.01*	
Greece	840 SI	Seedbed	16-32	20000	2	0	0.16	0.10*	C024482
2001 <i>Floring</i>	530 σ	drench	3 31	3125	4	3	1.0	1.2*	024402
2001 1 1011114	ai/L	Drench/drip.	5.51	5125	'	5	1.0	1.2	
Greece, 2003	840 SL	Seedbed	15.9	5000-	1	0	0.07	0.08*	C048490
Raiko RZ	530 g	drench		10000	1	3	0.14	0.17*	
	ai/L		1.59	1267	4				
		Drench irrig							
Italy	722 SL	Seedbed	74.4-	20000	2	0	< 0.008*	< 0.01*	C016110
2000	722 g	drench	35.7			1	< 0.008*	< 0.01*	
Linares	ai/L			1333	3	3	<u>< 0.008</u> *	< 0.01*	
		Drench/drip.	1.93			7	< 0.008*	< 0.01*	
						14	< 0.008*	< 0.01*	
Italy, 2001	840 SL	Seedbed	16-32	20000	2	0	0.61	0.73*	C024482
Magnigold	530 g	drench	3.22	3030	4	3	0.22	0.26*	
T . 1	aı/L	Drench/drip	21.0	20000		0	0.01.4	0.01	D 4 0550/04
Italy	840 SL	Drench irrig.	31.8-	20000	2	0	0.01*	0.01	RA 2559/04
2004 A din a	530 g	Duin innia	15.9	100	4	1	0.02*	0.02	
Aaina	al/L	Drip irrig.	1 50	100	4	3	0.02*	0.02	
Italy 2003	840 SI	Seedbed	15.0	5000-	2	0	0.008	< 0.01*	C048490
Valdor	530 g	drench	15.9	10000	2	3	0.008	< 0.01	040490
(dido)	ai/L	urenen	1.59	1267	4	5	0.000	C 0.01	
	ui, 12	Drench irrig	1107	1207					
Netherlands	722 SL	Seedbed	29.0	50000	1	0	< 0.008	< 0.01*	C016842
1999	722 g	drench	0.72-	1500-	4	3	< 0.008	< 0.01*	
Mazurka	ai/L	Drench	2.17	3000		5	< 0.008	< 0.01*	
						7	< 0.008	< 0.01*	
	722 GI		20.0	50000	1	0	0.000	0.01#	601(040
Netherlands	722 SL	Seedbed	29.0	50000	1	0	< 0.008	< 0.01*	C016842
1999 Fiesta	/22 g	Drench	0.72-	3000-	4	5	$\frac{< 0.008}{< 0.008}$	$< 0.01^{*}$	
riesiu	al/L	Dienen	2.17	3000		7	< 0.008	$< 0.01^{\circ}$	
						,	< 0.000	< 0.01	
Netherlands	722 SL	Seedbed	29.0	50000	1	0	< 0.008	< 0.01*	C016842
1999	722 g	drench				3	< 0.008	< 0.01*	
Mazurka	ai/L	Drench	0.72-	1500-	4	5	< 0.008	< 0.01*	
			2.17	3000		7	< 0.008	< 0.01*	
Netherlands	722 SL	Seedbed	29.0	50000	1	0	< 0.008	< 0.01*	C016842
1999 Ei anta	722 g	drench	0.72	1500	4	3	< 0.008	< 0.01*	
Fiesta	aı/L	Drench	0.72-	1500-	4	5	< 0.008	< 0.01*	
			2.17	3000		/	< 0.008	< 0.01*	
Netherlands	722 SL	Seedbed	29.0	50000	1	0	< 0.008	< 0.01*	C016842
1999	722 g	drench	_/.0	2 3 8 8 9 9	1	3	0.06	0.07*	2010012
Spirit	ai/L	Drench	0.72-	1500-	4	5	< 0.008	< 0.01*	
-			2.17	3000		7	< 0.008	< 0.01*	
Netherlands	722 SL	Seedbed	29.0	50000	1	0	< 0.008	< 0.01*	C016842
1999 D	722 g	drench	0.72	1.500	,	3	<u>< 0.008</u>	< 0.01*	
Basanova	aı/L	Drench	0.72-	1500-	4	5	< 0.008	< 0.01*	
			2.17	3000		/	< 0.008	< 0.01*	

Country,		Applica	tion			PHI	Residues as	Residues	Report no.
Year of trial	Form.	Method	kg ai/ha	Water	No	(Days	Propamocarb	Propamocarb	-
Variety				L/ha			mg/kg	HCl, mg/kg	
Netherlands	722 SL	Seedbed	29.0	50000	1	0	0.10	0.12*	C016842
1999	722 g	drench				3	<u>< 0.008</u>	< 0.01*	
Spirit	ai/L	Drench	0.72-	1500-	4	5	< 0.008	< 0.01*	
			2.17	3000		7	0.008	0.01*	
N 4 1 1	700.01	0 11 1	20.0	50000	1	0	.0.000	.0.01*	001(040
Netherlands	722 SL	dranah	29.0	50000	1	0	< 0.008	< 0.01*	C010842
1999 Rasanova	/22 g ai/I	Drench	0.72-	1500-	4	5	≤ 0.008	$< 0.01^{\circ}$	
Dusanova	al/ L	Diction	2.17	3000	-	7	< 0.008	< 0.01	
			2.17	5000		,	0.000	CO.01	
Netherlands	840 SL	Seedbed	15.9	5000-	2	0	0.02	0.02*	C048490
2003, Zerto	530 g	drench		10000		3	<u>0.03</u>	0.03*	
	ai/L		1.59	1267	4				
NT 1 1 1	0.40.01	Drench irrig	21.0	20000	-	0	0.15*	0.10	D. 4. 0550/04
Netherlands	840 SL	Drench irrig.	31.8-	20000	2	0	0.15*	0.18	RA 2559/04
2004, <i>Festivo</i>	550 g	Drin irria	15.9	250	4	1	0.18*	0.21	
	al/L	Drip inig	1 59	250	4	5	0.15	0.18	
Spain, 2003	840 SL	Seedbed	15.9	5000-	2	0	0.02	0.02*	C048490
Flamenco	530 g	drench		10000	-	3	0.008	< 0.01*	
	ai/L		1.59	1267	4				
		Drench irrig							
Spain	840 SL	Drench irrig.	31.8-	20000	2	0	0.12*	0.14	RA 2559/04
2004	530 g		15.9	-	1	1	0.11*	0.13	
Olmo	ai/L	Drip irrig.	0.60	100	4	3	<u>0.08*</u>	0.10	
<u> </u>	700.01	0 11 1	1.59	20000	2	0	0.04*	0.05*	001(110
Spain	722 SL	Seedbed	12.2-36	20000	2	0	0.04*	0.05*	C016110
2000 Turia	/22 g ai/I	utenen	5 5 5	38/16	3	1	0.02*	0.02*	
1 11111	al/ L	Drench/drin	5.55	50+0	5	7	0.03*	0.00	
		Drenen/arip.				, 14	0.03*	0.04*	
Spain	722 SL	Seedbed	72.2-36	20000	2	0	< 0.008*	< 0.01*	C016110
2000	722 g	drench				1	< 0.008*	< 0.01*	
Taliano	ai/L		2.7	1860-	3	3	< 0.008*	< 0.01*	
		Drench/drip.		9354		14	0.02*	0.02*	
Spain	722 SI	Seedbed	72 2-36	20000	2	0	< 0.008*	< 0.01*	C016110
2000	722 SL 722 σ	drench	72.2-30	20000	2	1	0.008*	0.01*	010110
Cipari	, 22 g ai/L	urenen	1.5	1082	3	3	0.008*	0.01*	
equit	ui/ <u>L</u>	Drench/drip.	110	1002		7	0.008*	0.01*	
		r				14	0.008*	0.01*	
USA, 1997	750 SC	Spray	1.0	186-	5	5	<u>0.27*</u>	0.32	B003364
Wonder	375 g			191					
	ai/L								
USA, 1997	750 SC	Spray	1.0	165-	5	5	<u>0.62*</u>	0.74	В003364
Enterprise	3/5 g			182					
USA 1007	al/L 750 SC	Spray	1.0	182	5	1	0.32*	0.38	B003364
Camelot X3R	750 SC 375 σ	Spray	1.0	102-	5	4	0.32	0.38	B005504
Cumetoi ASK	ai/L			172					
US, 1997	750 SC	Spray	1.0	183-	5	5	0.07*	0.08	B003364
Jupiter	375 g	1 5		189					
	ai/L								
USA, 1997	750 SC	Spray	1.0	174-	5	5	<u>1.8*</u>	1.4	B003364
Bell	375 g			197					
104 1007	ai/L	C.	1.0	107	~		0.16*	0.10	D002264
USA, 1997	/50 SC 275 -	Spray	1.0	187-	5	5	<u>0.16*</u>	0.19	B003364
Jaiepeno	⊃/⊃g ∋i/Г			190					
USA 1997	750 SC	Spray	1.0	176-	5	5	0.23*	0.27	B003364
Big Jim	375 g	Spiny	1.0	195	5	5	<u>0.20</u>	0.27	2003301
0	ai/L								

Country,		Applica	tion			PHI	Residues as	Residues	Report no.
Year of trial	Form.	Method	kg ai/ha	Water	No	(Days	Propamocarb	Propamocarb	_
Variety				L/ha			mg/kg	HCl, mg/kg	
USA, 1997	750 SC	Spray	1.0	188-	5	5	0.26*	0.31	B003364
Jupiter	375 g			190					
	ai/L								
USA, 1997	750 SC	Spray	1.0	187-	5	5	<u>0.98*</u>	1.2	B003364
TMR23	375 g			190					
	ai/L								
USA, 1997	750 SC	Spray	1.0	187-	5	1	0.18*	0.21	B003364
Yolo Wonder	375 g			190		3	0.32*	0.38	
В	ai/L					5	<u>0.20</u> *	0.24	
						7	0.16*	0.19	
						9	0.18*	0.21	

*actual value reported

Tomato

Fourty four tomato trials from Europe and 18 trials from the USA were reported. The European results were reported from either greenhouses (GH) or field (F) trials while the US data was all from field trials. The results are shown in Table 40.

Table 40.	Field and	glass	house	residue	trials	with	pro	pamocarb	hvo	irochl	oride	conducte	d on	tomato.
		0							/ -					

Country,		Applic	ation			PHI	Residues as	Residues	Report no.
Year of trial	Form.	Method	kg	Water	No.	(Days)	Propamocarb	Propamocarb	
Variety			ai/ha	L/ha			mg/kg	HCl, mg/kg	F/GH
Belgium	840 SL	Drench	15.9	20000	2	0	0.06*	0.07	RA 2506/04
2004	530 g	irrig.	1.59	250^{2}	4	1	0.05*	0.06	
Clotilde	ai/L	Drip irrig.				3	0.07*	0.08	GH
						7	0.04*	0.05	
						14	0.02*	0.02	
Germany	840 SL	Drench	15.9	20000	2	0	< 0.008*	< 0.01	RA 2506/04
2004	530 g	irrig.	1.59	100^{2}	4	1	< 0.008*	< 0.01	GH
Culina	ai/L	Drip irrig.				3	< 0.008*	< 0.01	
						7	< 0.008*	< 0.01	
						14	< 0.008*	< 0.01	
Italy, 2004	840 SL	Drench	15.9	20000	2	1	< 0.008*	< 0.01	RA 2506/04
Conchita	530 g	irrig.	1.59	100^{2}	4	3	< 0.008*	< 0.01	GH
	ai/L	Drip irrig.							
Spain, 2004	840 SL	Drench	15.9	20000	2	1	0.02*	0.02	RA 2506/04
Pitenza	530 g	irrig.	0.60-	100	5	3	0.02*	0.02	GH
	ai/L	Drip irrig.	1.59						
Germany,	840 SL	Seedbed	15.92	20026	2	1	0.02	0.02*	C021852
2001,	530 g	drench	1.89-	1763-	4	3	<u>< 0.008</u>	< 0.01*	GH
Rougella	ai/L	Drench/Drip	2.02	1914					
RZ F1									
Netherlands	840 SL	Seedbed	15.78	19860	2	1	0.05	0.06*	C021852
2001	530 g	drench	2.65	2500	4	3	0.04	0.05*	GH
Fergie	ai/L	Drench/Drip							
Netherlands	840 SL	Seedbed	15.90	20000	2	1	0.03	0.03*	C021852
2001,	530 g	drench	2.66	2500	4	3	0.03	0.04*	GH
Rapsodie	ai/L	Drench/Drip							
Spain, 2001	840 SL	Seedbed	15.96	20074	2	1	0.04	0.05*	C021852
Salvador	530 g	drench	1.99	2300	4	3	<u>0.08</u>	0.10*	
	ai/L	Drench/Drip							
France,	722 SL	Seedbed	72.2-	20000	2	0	< 0.008	< 0.01*	C023899
2001	722 g	drench	36.0			3	< 0.008	< 0.01*	
Cobra	ai/L			2607-	2	5	< 0.008	< 0.01*	F
		Drench	3.77-	2328		7	< 0.008	< 0.01*	
			3.62						

Country		Applic	ation			рні	Residues as	Residues	Report no
Vear of trial	Form	Method	ka	Watar	No	(Dave)	Propamocarb	Propamocarh	Report no.
Variaty	Porm.	Wiethou	кg ai/ha	V ater	110.	(Days)	mg/kg	HCl mg/kg	E/CH
variety			ai/na	L/IIa	-		mg/kg	nci, ilig/kg	Г/ОП
Greece,	722 SL	Seedbed	72.2-	20000	2	0	< 0.008	< 0.01*	C023899
2001	722 g	drench	36.0			3	< 0.008	< 0.01*	
ACE	ai/L			2500	2	5	< 0.008	< 0.01*	F
		Drench	3.6			7	< 0.008	< 0.01*	
Italy, 2001	722 SL	Seedbed	72.2-	20000	2	0	< 0.008	< 0.01*	C023899
Italdor	722 g	drench	36.0			3	< 0.008	< 0.01*	F
	ai/L			1667	2	5	< 0.008	< 0.01*	
		Drench	2.41			7	< 0.008	< 0.01*	
g : 2001	700.01	0 11 1	70.0	20000	~	0	.0.000	.0.01*	0022800
Spain, 2001	722 SL	Seeabea	12.2-	20000	2	0	< 0.008	< 0.01*	C023899
Kobin	/22 g	drench	30.8	25000	~	5	0.02	0.02*	Г
	ai/L		2.0	25000	2	5	0.008	0.01*	Г
		Drench	2.9			/	< 0.008	< 0.01*	
Spain	722 SI	Seedbed	72.2-	20000	2	0	< 0.008	< 0.01*	C023899
2001	72.2 o	drench	36.8	_0000	-	3 3	< 0.008	< 0.01*	2023077
Robin	ai/L	urenen	2010	29800	2	5	< 0.008	< 0.01*	F
Robin	ui/ 12	Drench	2 87	27000	-	7	< 0.008	< 0.01*	1
		Dienen	2.07			,	< 0.000	< 0.01	
Germany	722 SL	Seedbed	29.0	10000	1	0	< 0.01*	< 0.01*	C015427
2000	722. g	drench	2.74-	0	4	3	< 0.01*	< 0.01*	GH
Lamaica	/ 22 5 ai/L	Drench	2.77	1897-		5	< 0.01*	< 0.01*	011
Jamaica	ui/ 12	Dienen	2.77	1917		7	0.01*	0.01*	
Compony	722 61	Saadhad	205	00520	1	,	0.01	0.06*	C015427
Cermany 2000	722 SL	dranah	28.5	96550	1	2	0.05*	0.00*	CU13427
2000 David all a	/22 g	Drench	2.0-	1021-	4	5	0.03*	0.00*	ОП
Kougena	al/L	Drench	2.77	1905		5 7	0.09*	0.1*	
G	722 01	a 11 1	2 0.4	00406		/	0.04	0.03	0015405
Germany	722 SL	Seedbed	28.4	98426	1	0	< 0.01*	< 0.01*	C015427
2000	722 g	drench	2.2	1841	4	3	< 0.01*	< 0.01*	GH
Rougella	aı/L	Drench				5	< 0.01*	< 0.01*	
						/	0.02*	0.02*	
Germany	722 SI	Seedbed	29.0	39062	1	0	< 0.01*	< 0.01*	C015427
2000	722 OL	drench	3.6	5	4	3	< 0.01*	< 0.01*	GH
Rahor	/ 22 5 ai/L	Drench	5.0	2500		5	< 0.01*	< 0.01*	011
nabbi	ui/ 12	Dienen		2300		7	< 0.01*	< 0.01*	
Germany	722 SI	Seedbed	29.2	39523	1	0	< 0.01*	< 0.01*	C015427
2000	722 GL	drench	36	2	4	3	< 0.01*	< 0.01	GH
Transfero	, ∠∠ g ai/I	Drench	5.0	2500	*	5	< 0.01	< 0.01	011
1 runsjer0	an L	Dielieli		2500		7	< 0.01*	< 0.01	
Germany	722 51	Seedbad	20.0	15702	1	,	< 0.01	< 0.01*	C015427
2000	722 SL	drench	29.0 16	13703	1	3	$< 0.01^{\circ}$	$< 0.01^{\circ}$	C013427 CH
Rougella	,∠∠ g ai/I	Drench	+.0	3185	+	5 5	$< 0.01^{\circ}$	$< 0.01^{\circ}$	UII
Kougena	ai/ L	Dielich		5165		7	$< 0.01^{\circ}$	$< 0.01^{\circ}$	
Comment	700 61	C	20.0	15420	1	,	< 0.01*	< 0.01*	C015407
Germany	722 SL	Seeabea	29.0	15429	1	0	< 0.01*	< 0.01*	C015427
2000	722 g :л	arench	4.0	2105	4	3 5	< 0.01*	< 0.01*	GH
панјах	ai/L	Drench		5185		כ ד	< 0.01*	< 0.01*	
g : 2 000	700.01	0 11 1	20.0	20000	-	/	< 0.01*	< 0.01*	0015425
Spain, 2000	722 SL	Seedbed	29.0	20000		0	< 0.01*	< 0.01*	C015427
Daniela	722 g	drench	3.3	2301-	4	3	< 0.01*	< 0.01*	GH
	aı/L	Drench		4603		5	< 0.01*	< 0.01*	
					<u> </u>	7	< 0.01*	< 0.01*	
Spain, 2000	722 SL	Seedbed	29.0	20000	1	0	< 0.01*	< 0.01*	C015427
Daniela	722 g	drench	3.3	2286-	4	3	< 0.01*	< 0.01*	GH
	ai/L	Drench		4571		5	< 0.01*	< 0.01*	
						7	< 0.01*	< 0.01*	

Country,		Applic	ation			PHI	Residues as	Residues	Report no.
Year of trial	Form.	Method	kg	Water	No.	(Days)	Propamocarb	Propamocarb	1
Variety			ai/ha	L/ha			mg/kg	HCl, mg/kg	F/GH
France.	722 SL	Drench	72.2-	20000	2	0	< 0.01*	< 0.01*	C015573
2000	722 g	Drench/Drip	36.0	1877	2	1	< 0.01*	< 0.01*	GH
Frya	ai/L	Irrigation	2.0			3	< 0.01*	< 0.01*	
2		U				7	< 0.01*	< 0.01*	
						14	< 0.01*	< 0.01*	
Greece,	722 SL	Drench	72.2-	20000	1	0	< 0.01*	< 0.01*	C015573
2000	722 g	Drench/Drip	36.0	1664	2	1	< 0.01*	< 0.01*	
Garnell 534	ai/L	Irrigation	1.8			3	< 0.01*	< 0.01*	GH
Emben						7	< 0.01*	< 0.01*	
						14	< 0.01*	< 0.01*	
Italy, 2000	722 SL	Drench	72.2-	20118	1	0	< 0.01*	< 0.01*	C015573
Vivaldi HY	722 g	Drench/Drip	36.0	4000	2	1	< 0.01*	< 0.01*	GH
	ai/L	Irrigation	4.3			3	< 0.01*	< 0.01*	
						7	< 0.01*	< 0.01*	
a . a aaa				• • • • • •		14	< 0.01*	< 0.01*	
Spain, 2000	722 SL	Drench	72.2-	20000	1	0	< 0.01*	< 0.01*	C015573
James Bond	722 g	Drench/	36.0	2389-	2	1	< 0.01*	< 0.01*	CII
	aı/L	Drip	2.6-2.7	2535		3	< 0.01*	< 0.01*	GH
		Irrigation				1	< 0.01*	< 0.01*	
G : 2 000	700 01		72.6	20204	1	14	< 0.01*	< 0.01*	0015572
Spain, 2000	722 SL	Drench	13.0-	20384		0	< 0.01*	< 0.01*	015573
Raff	/22 g	Drench/	36.0	1844-	2	1	< 0.01*	< 0.01*	CII
	aı/L	Drip	2.0-2.1	1984		3	< 0.01*	< 0.01*	GH
		Irrigation				14	< 0.01*	< 0.01*	
USA 1006	750 50	Samori	1.22	210	5	14	< 0.01*	< 0.01*	C002417
USA, 1990	730 SC	Spray	1.52	210	3	3	0.10*	0.19	C002417
Celebrily	375 g								Г
USA 1006	750 SC	Spray	1 3 2	105	5	5	0.25*	0.30	C002417
8892	750 SC 375 σ	Spray	1.52	195	5	5	0.25	0.50	E E
0072	ai/L								1
USA 1996	750 SC	Spray	1 32	190	5	5	0.86*	1.0	C002417
UC-82B	375 σ	opiay	1.52	170	5	5	0.00	1.0	F
000012	ai/L								-
USA, 1996	750 SC	Sprav	1.32	192	5	5	0.94*	1.1	C002417
Jackpot	375 g			-	-	_	<u></u>		F
1	ai/L								
USA, 1996	750 SC	Spray	1.32	188	5	5	0.65*	0.78	C002417
3155	375 g								F
	ai/L								
USA, 1996	750 SC	Spray	1.32	187	5	5	0.68*	0.81	C002417
512	375 g								F
	ai/L								
USA, 1996	750 SC	Spray	1.32	193	5	5	0.60*	0.72	C002417
Rio Grande	375 g								F
	ai/L								
USA, 1996	750 SC	Spray	1.32	187	5	5	0.61*	0.73	C002417
6229	375 g								F
	aı/L	~	1.25	105			0.001	~ ~-	C C C C C C C C C C C C C C C C C C C
USA, 1996	750 SC	Spray	1.32	187	5	5	0.23*	0.27	C002417
Kio Grande	375 g								F
110 4 1007	a1/L	0	1.00	107	5	~	0.51*	0.71	0002417
USA, 1996	/50 SC	Spray	1.32	195	5	5	<u>0.51*</u>	0.61	C002417
Kio Grande	3/3 g								F
USA 1006	ai/L	Smar-	1.20	224	5	5	0.14*	0.17	C002417
USA, 1990	150 SC 375 a	Spray	1.32	224	5	Э	0.14*	0.17	C002417
Celebruy	<i>этэ</i> g ај/Г								Г
USA 1006	ai/L 750 SC	Spray	1 3 2	102	5	5	0.40*	0.48	C002/17
Agri Sot	375 g	Spray	1.32	192	5	5	0.40	0.40	E002417
118111501	əi/I								1
	աւլ	1	1	1					1

Country,		Applic	ation			PHI	Residues as	Residues	Report no.
Year of trial	Form.	Method	kg	Water	No.	(Days)	Propamocarb	Propamocarb	_
Variety			ai/ha	L/ha			mg/kg	HCl, mg/kg	F/GH
USA, 1996	750 SC	Spray	1.32	184	5	5	0.61*	0.73	C002417
AgriSet	375 g								F
	ai/L								
USA, 1996	750 SC	Spray	1.32	190	5	5	0.34*	0.41	C002417
Heinz 9035	375 g								F
	ai/L								
USA, 1996	750 SC	Spray	1.32	195	5	5	0.37*	0.44	C002417
CAL-ACE	375 g								F
	ai/L								
USA, 1996	750 SC	Spray	1.32	190	5	5	<u>1.4*</u>	1.6	C002417
Apex 1000	375 g								F
	ai/L								
USA, 1996	750 SC	Spray	1.32	190	5	1	0.52*	0.62	C002417
Better Boy	375 g					3	0.47*	0.56	F
	ai/L					5	<u>0.38*</u>	0.45	
						7	1.1*	1.3	
						9	0.46*	0.55	
USA, 1996	750 SC	Spray	1.32	193	5	1	0.97*	1.2	C002417
Shady Lady	375 g					3	0.62*	0.74	F
	ai/L					5	0.52*	0.44	
						7	0.35*	0.42	
						9	0.35*	0.42	

*actual value reported

Lettuce

Canasta

Canasta

Rosalba

France, 1994

France, 1994

722g ai/L

722 SL

722g ai/L

722 SL

722g ai/L

Sixty eight greenhouse (GH) and field (F) trials were with propamocarb hydrochloride were reported for lettuce. The propamocarb was applied either as a drench and/or foliar spray in Europe and USA between 1997 and 2003. The results are shown in Table 41.

Table 41. Results of residue thats with propaniocarb hydrochloride conducted in fettuce.												
		Appl	ication			PHI	Sample	Residues as	Residues as	Report		
Country,	Form.	Method	kg	Water	No.	(Days)	analysed	Propamocarb	Propamocarb			
Year, Variety			ai/ha	L/ha				mg/kg	HCL, mg/kg	F/GH		
France, 1993	722 SL	Spray	1.08	1000	4	21	Head	<u>20</u>	24*	A85676		
Batavia	722g ai/L					40		10	12*	GH		
France, 1993	722 SL	Spray	1.44	1000	4	21	Head	<u>39</u>	47*	A85676		
Batavia	722g ai/L					40		11	13*	GH		
France. 1993	722 SL	Spray	1.44	1000	4	21	Head	<u>40</u>	48*	A85676		
Batavia	722g ai/L					28		23	28*	GH		
France, 1993	722 SL	Spray	1.08	1000	4	21	Head	14	17*	A85676		
Ramona	722g ai/L					28		9.2	11*	GH		
France, 1993	722 SL	Spray	1.44	1000	4	21	Head	<u>15</u>	18*	A85676		
Ramona	722g ai/L					28		18	14*	GH		
France, 1993	722 SL	Spray	1.44	1000	4	20	Head	<u>24</u>	29*	A85676		
Ramona	722g ai/L									GH		
France, 1994	722 SL	Spray	1.1	500	3	0	Head	24	29*	A83358		
Samourai	722g ai/L					21		<u>4.9</u>	5.9*	GH		
France, 1994	722 SL	Spray	1.1	1000	3	0	Head	22	26*	A85675		

20

0

20

0

21

Head

Head

3

3

1000

-

1.3

1.1

Spray

Spray

1.2

24.

1.7

18

6.5

1.4*

29*

2.0*

21*

7.8*

 GH

A85675

 GH

A85679

 GH

Table 41. Results of residue trials with propamocarb hydrochloride conducted in lettuce.

		Appl	ication			PHI	Sample	Residues as	Residues as	Report
Country,	Form.	Method	kg	Water	No.	(Days)	analysed	Propamocarb	Propamocarb	
Year, Variety			ai/ha	L/ha			-	mg/kg	HCL, mg/kg	F/GH
France	840 SL	Seedbed	15.9	20000	2	0	Head	17	20*	C01573
2000	530 g ai/L	drench				14	Head	7.1	8.5*	4
Macarena	C	Spray	1.25-	470-540	2	21	Head	0.56	0.90*	GH
			1.43			28	Head	0.08	0.1*	
France	SL	Seedbed	72.2-	20000	2	0	Head	54	65*	C02295
2001	722g ai/L	drench	36.1			7	Head	12*	15*	1
Nadine	-					14	Head	<u>3.2</u> *	3.8*	F
		Spray		400-	2	21	Head	0.3*	0.4*	
			1.66	1000		14	Head ¹	1.7*	2.0*	
						14	Outer	11*	13*	
							Leaves			
France	SL	Seedbed	72.2-	20000	2	0	Head	103*	123*	C02295
2001	722g ai/L	drench	36.1			7	Head	7.9*	9.5*	1
Macarena						14	Head	<u>1.0</u> *	1.2*	
		Spray		400-	2	21	Head	0.1*	0.2*	F
			1.66	1000		14	Head ¹	0.1*	0.2*	
						14	Outer	3.2*	3.8*	
							Leaves			
France	SL	Seedbed	72.2-	20000	2	0	Head	11	13*	C02415
2001	722g ai/L	drench	36.1			13	Head	<u>8.1</u>	9.7*	7
Sensai		Spray		400-	2	21	Head	2.9	3.5*	
			1.66	1000						
France, 2003	840 SL	Seedbed	15.90	20000	2	0	Head	31*	43*	RA
Sensai	530g a1/L	drench		100		3	Head	16*	19*	2/12/03
		Spray	1.33	400	2	7	Head	16*	19*	GH
						14	Head	<u>13</u> *	15*	
E 2002	702 61	0 11 1	70.0	20000		21	Head	8.2*	9.8*	000077
France, 2002	722 SL	Seedbed	12.2-	20000	2	0	Head	69* 0.17*	83*	C03377
Laitue Batavia	/22g a1/L	drench	30.1	400	2	21	неаа	0.1/*	0.2*	Г
Eole		Spray	1 66	400	2					
Franco	722 81	Saadbad	1.00	20000	2	0	Hand	Q1 *	07*	C02271
2002	722 SL 722g si/I	drench	72.2-	20000	2	21	Head	01.	97* 0.7*	7
2002	722g al/L	Sprov	50.1	400	2	21	Tieau	2.2	2.7	/ E
Aulun		Spray	1.66	400	2					1.
France	722 SL	Seedbed	72.2-	20000	2	0	Head	25	30*	C01557
2000	722 g ai/L	drench	36.1	20000	-	14	Head	14	17*	2
Mistral	/ 225 ul/ 2	arenen	20.1			21	Head	<u>11</u>	13*	Ē
in tori at		Spray		1000	2	28	Head	10	12*	
		Spray	1.66	1000	-		muu	10		
France	722 SL	Seedbed	72.2-	20000	2	0	Head	39	46*	C01557
2000	722g ai/L	drench	36.1			14	Head	31	37*	2
Mistral	U					20	Head	31	37*	F
		Spray		1000	2	27	Head	23	28*	
			1.66							
France	722 SL	Seedbed	72.2-	20000	2	0	Head	71	85*	C01542
2000	722g ai/L	drench	36.1			14	Head	<u>40</u>	48*	3
Flandra RZ						21	Head	32	31*	GH
		Spray		472-830	2	28	Head	14	17*	
			1.66			35	Head	13	16*	
France	722 SL	Seedbed	72.2-	20000	2	0	Head	25	30*	C01542
2000	722g ai/L	drench	36.1			14	Head	<u>7.9</u>	9.4*	3
RZ 42-77						21	Head	1.5	1.8*	GH
		Spray		475-838	2	28	Head	0.08	0.1*	
			1.66			35	Head	< 0.08	< 0.1*	

Cummy, Year, Variery Furm. Method a/ba kg a/ba Water Lab No. Lab (Days) analysed progamocable (Days) Progamocable method (Days) Progamocable method (Days) Progamocable (Days)			Appl	ication			PHI	Sample	Residues as	Residues as	Report
Year, Variery rame ni/hu L/hu r mg/kg HCL. mg/kg F/GH France 722 sti. Seedhed 72.2 i.6 20.0 0 Head 22 26 0.14 Head 92.2 11* 6 6H Macarena 722 sti. Seedhed 72.2 Seedhed 72.2 1.66 2000 2 0 Head 5.1 0.14* 6H 2000 722 sti. Seedhed 15.9 20000 2 0 Head 2.6 31* C01542 2000 Sag at/L Grench 5.1 4 6H 2.6 31* C01573 2000 Sag at/L Seedhed 15.9 20000 2 0 Head 0.65 5.4* 4 Macarena Sag at/L Seedhed 15.9 20000 2 0 Head 0.5* 0.04* C01573 2000 Sag at/L Grench Seedhed 15.9 <td>Country,</td> <td>Form.</td> <td>Method</td> <td>kg</td> <td>Water</td> <td>No.</td> <td>(Days)</td> <td>analysed</td> <td>Propamocarb</td> <td>Propamocarb</td> <td>-</td>	Country,	Form.	Method	kg	Water	No.	(Days)	analysed	Propamocarb	Propamocarb	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Year, Variety			ai/ha	L/ha				mg/kg	HCL, mg/kg	F/GH
$ \begin{array}{c} \mbox{Fance} \\ \mbox{Prance} \\ P$											
	France	722 SL	Seedbed	72.2-	20000	2	0	Head	22	26*	C01542
Macarena Spray 1.66 480-520 2 21 Head 0.7 0.84* CH France 722 SL Seedbed 7.2. 2000 2 00 Head 5.1 6.1*	2001	722g ai/L	drench	36.1			14	Head	<u>9.2</u>	11*	6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Macarena		Spray		480-520	2	21	Head	0.7	0.8*	GH
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1.66			28	Head	0.1	0.14*	
2002 722g ai/L drom h Spray 36.1 470-520 2 14 Head 2.0	France	722 SL	Seedbed	72.2-	20000	2	0	Head	5.1	6.1*	C01542
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2002	722g ai/L	drench	36.1			14	Head	2.0	2.4*	6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Macarena	C	Spray		470-520	2	21	Head	1.7	2.0*	GH
Germany 2000 840 SL Sol g ai/L Seedbed drench Spray 15.9 2000 2 0 Head 14 26 31* C01573 4 Germany 2000 840 SL 530 g ai/L Seedbed drench Spray 13.1.4 500.820 2 14 Head Head 25 30* C01573 4 4 Germany 2000 530 g ai/L Seedbed drench Spray 13.1.4 400-630 2 0 Head Head 25 30* C01573 4 6 Germany 2001 SL 722 g ai/L Seedbed drench Spray 13.1.4 400-630 2 0 Head Head 0.05 0.06* C01573 4 6 Germany 2001 SL 722 g ai/L Seedbed drench Spray 166 1000 2 0 Head Head 0.6* 0.7* 1 Einstein 722 g ai/L Seedbed drench Spray 166 1000 2 0 Head Head 0.3* 0.3* 0.3* 1 Einstein 722 g ai/L Seedbed drench 2.2 0 Head Head 0.3* <t< td=""><td></td><td></td><td></td><td>1.66</td><td></td><td></td><td>28</td><td>Head</td><td>< 0.008</td><td>< 0.01*</td><td></td></t<>				1.66			28	Head	< 0.008	< 0.01*	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Germany	840 SI	Seedbed	15.9	20000	2	0	Head	26	31*	C01573
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2000	530 g ai/L	drench	15.7	20000	2	14	Head	4.5	5.4*	4
	Macarena	000 g ui/2	Sprav	1.3-1.4	500-820	2	21	Head	1.7	2.0*	GH
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	in the area of the		Spray		200 020	-	28	Head	0.03	0.04*	011
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Germany	840 SL	Seedbed	15.9	20000	2	0	Head	25	30*	C01573
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2000	530 g ai/L	drench			_	14	Head	<u>8.1</u>	9.6*	4
Germany 2001 SL 722 gai/L Seedbed (herench spray) 72.2- (herench spray) 2000 2 0 Head (herench spray) Herench spray) Herench spray) Herench spray) Herench spray) </td <td>Flandria</td> <td></td> <td>Spray</td> <td>1.3-1.4</td> <td>400-630</td> <td>2</td> <td>21</td> <td>Head</td> <td>1.1</td> <td>1.3*</td> <td>GH</td>	Flandria		Spray	1.3-1.4	400-630	2	21	Head	1.1	1.3*	GH
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							28	Head	0.05	0.06*	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Germany	SL	Seedbed	72.2-	20000	2	0	Head	44*	53*	C02295
$ \begin{array}{c cccc} Comina \\ Comina \\$	2001	722g ai/L	drench	36.1			7	Head	6.9*	8.3*	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Comina	-					14	Head	<u>1.9*</u>	2.3*	F
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Spray		400-	2	21	Head	0.3*	0.4*	
Germany SL Seedbed 72.2 2000 2 0 Head 60* 72* C02295 2001 722g ai/L drench 36.1 7 Head 9.3* 11* 1 Einstein Spray 400- 2 21 Head $2.5*$ $3.0*$ F Germany SL Seedbed 72.2. 20000 2 0 Head $0.3*$ $0.3*$ $0.3*$ Germany SL Seedbed 72.2. 20000 2 0 Head $0.7*$ $9.0*$ $0.3*$ 2001 722g ai/L drench 36.1 7 Head $0.07*$ $0.8*$ $0.04*$ $0.02*$ $0.8*$ 1.66 1000 14 Head $0.04*$ $0.05*$ F Quon 722g ai/L drench 36.1 2.2^{-2} 0.04 Head 16 $19*$ 3 Germany 722g ai/L drench 36.1				1.66	1000		14	Head ¹	0.6*	0.7*	
Germany 2001 SL 722g ai/L Seedbed drench Spray 72.2- drench 4 2000 36.1 2 0 Head 4 60° 9.3* 72° 1.4 C02295 Head C02295 9.3* Germany 2001 SL 722g ai/L Seedbed 4 72.2- 7 14 Head 9.3° 11° 1 Germany 2001 SL 722g ai/L Seedbed 72.2- 722g ai/L 2000 2 0 Head 0.3° 0.3° 0.3° Addine 722g ai/L Seedbed 72.2- 722g ai/L 2000 2 0 Head 0.2° 74° C02295 Germany 2000 722g ai/L Seedbed 72.2- 722g ai/L 2000 2 0 Head 0.04° 0.05° F Germany 2000 722g ai/L Seedbed 72.2- 72g ai/L 2000 2 0 Head 10 12^{\circ} GH Germany 722 g ai/L Greech 36.1 14 Head 10 12^{\circ} GH Greenhouse Spray							14	Outer	14*	16*	
Ordinary She in the second of t	Germany	SI	Seedbed	72.2	20000	2	0	Head	60*	70*	C02205
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2001	722g ai/L	drench	36.1	20000	2	7	Head	9.3*	11*	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Einstein	/ 22 8 ul/ 2	aronon	0011			14	Head	4.2*	5.0*	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Spray		400-	2	21	Head	2.5*	3.0*	F
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1.66	1000		14	Head ¹	0.3*	0.3*	
Germany SL Seedbed 72.2- 2000 2 0 Head 62* 74* C02295 2001 722g ai/L drench 36.1 7 Head 4.6* 5.5* 1 Nadine Spray 400- 2 21 Head 0.04* 0.05* F Nadine Spray 400- 2 21 Head 0.04* 0.05* F 0 1.66 1000 14 Head 0.1* 0.2* 5.3* - Germany 722 SL Seedbed 72 20000 2 0 Head 16 19* 3 Trobadur RZ Grenhouse Spray 380-630 2 28 Head 9.2 11* 6H Germany 722 SL Seedbed 72 2000 2 0 Head 9.2 11* Greenhouse - 1.66 - 14 Head 9.2 24*							14	Outer	7.5*	9.0*	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								Leaves			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Germany	SL	Seedbed	72.2-	20000	2	0	Head	62*	74*	C02295
Nadime Spray Spray Ado- Law 14 400- 1.66 Head 1000 O.04* 14 O.04* 0.04* O.08* 0.04* F Germany 722 SL 2000 Seedbed 72.2- 4 2000 2 0 Head 14 Outer 4.5* 5.3* Colored 0.1* Colore 0.1* Colored 0.1* Colore 0.	2001	722g ai/L	drench	36.1			7	Head	4.6*	5.5*	1
SpraySpray400- 1.66221Head Head0.04-* 0.11*0.05-* 0.05*FGermany722 SL 2000Seedbed72.2- 36.12000020Head3744*C015422000722g ai/L Greenhousedrench36.114Head1619*3Germany722 SL Tzigone RZSeedbed72.2-2000020Head3744*C01542Germany722 g ai/LSeedbed72.2-2000020Head5.56.6*66*Germany722 g ai/LSeedbed72.2-2000020Head5060*C015422000722g ai/Ldrench36.114Head2024*33Trigone RZ GreenhouseSpray400-640228Head1316*6HGermany722 SL 722g ai/LSeedbed72.2-2000020Head1316*7Germany722 SL 722g ai/LSeedbed72.2-2000020Head1316*7Germany722 SL 722g ai/LSeedbed72.2-2000020Head1316*7Germany722 SL 722g ai/LSeedbed72.2-2000020Head14Head1214*3GreenhouseSpray476-838228Head1821*GH <td>Nadine</td> <td></td> <td>Course</td> <td></td> <td>400</td> <td>2</td> <td>14</td> <td>Head</td> <td>$\frac{0.7^{*}}{0.04^{*}}$</td> <td>0.8*</td> <td>Б</td>	Nadine		Course		400	2	14	Head	$\frac{0.7^{*}}{0.04^{*}}$	0.8*	Б
Germany 2000722 SL 722g ai/LSeedbed drench72.2 36.1Seedbed 36.172.2 72.220000 36.12 200000Head 2 1437 14444* 16 37C01542 38Germany Germany722 SL 722g ai/LSeedbed drench72.2 1.6620000 220Head 2137 14444* 10C01542 12*GH 33 380-630Germany 2000722 SL 722g ai/LSeedbed drench72.2 36.120000 2.220Head 4.665060* 60*C01542 2.8Germany 2000722g ai/L 722g ai/LSeedbed drench72.2 36.120000 400-640228 2.8Head 1.661518* 4.8GH 2.2*Germany 2000722 SL 722g ai/LSeedbed drench72.2 36.120000 4.0*-640228 2.8Head 4.1413 4.416*Germany 2000722 g ai/L 722 g ai/Ldrench d.1.636.114 4.4Head 4.1316*C01542 4.4*3 3.4Germany 2000722 g ai/L 722 g ai/LSeedbed d.1.6672.2- 72.220000 72.220 72.2Head 72.2114*br3 72.2Germany 2000722 SL 72.2Seedbed 72.2-72.2- 72.220000 72.220 72.2Head 72.2114*br3 72.2Germany 200072.2 SL 72.2Seedbed 72.2-72.2- 72.220000 72.2			Spray	1.66	400-	Z	21	Head ¹	0.04*	0.05*	Г
Germany 2000722 SL 722 g ai/LSeedbed drench72.2- 36.12000 36.120Head Leaves3744* 44*C01542 36.1Germany Greenhouse722 g ai/Ldrench drench36.114Head 141619* 19*3Germany Germany722 SL 722 g ai/LSeedbed drench72.2- 1.66200020Head 349.211* 11*Germany Greenhouse722 g ai/LSeedbed drench72.2- 36.12000020Head 44*5060* 60*C01542 2002000 2000722 g ai/LGrench drench36.114Head 202224* 213Greenhouse72.2 g ai/Ldrench drench36.114Head 4141518* 416*GHGreenhouse722 g ai/LGrench drench36.114Head 41316*16*Germany 2000722 g ai/LGerch drench36.114Head 41316*16*Germany 2000722 g ai/LGerch drench36.114Head 4141214* 4143GreenhouseSpray 472 g ai/L476-838 46228Head 4141821* 414GHGermany 722 g ai/LSeedbed 47c-72.2- 420000 4620Head 4141113* 44*C01542Germany 722 g ai/L722 g ai/LSeedbed 46.1<				1.00	1000		14	Outer	0.1* 4 5*	5.3*	
Germany 2000722 SL 722g ai/LSeedbed drench72.2- 36.1200020Head3744* 16C01542 3 3 GHTrobadur RZ GreenhouseSpray380-630228Head1012* 1.66GHGermany 2000722 SL 722g ai/LSeedbed72.2- drench200020Head5.56.6*Germany 2000722 g ai/L 722g ai/LSeedbed72.2- drench2000020Head5060* 2000C01542Germany Greenhouse722 g ai/L drenchGench36.114Head2024* 24*3GreenhouseSpray 1.66400-640228Head1518* 25*Germany 2000722 g ai/L drenchSpray400-640220Head1316*Germany 2000722 g ai/L drenchGench36.114Head1214* 33Germany 2000722 g ai/L drenchSeedbed72.2- 36.12000020Head1214* 33Germany 2000722 g ai/L drenchGench36.114Head1214* 333Germany 2000722 g ai/L drenchGench36.114Head1214* 333GreenhouseSpray drench476-838228Head1821* 35GHGermany <b< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Leaves</td><td>1.5</td><td>5.5</td><td></td></b<>								Leaves	1.5	5.5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Germany	722 SL	Seedbed	72.2-	20000	2	0	Head	37	44*	C01542
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2000	722g ai/L	drench	36.1			14	Head	<u>16</u>	19*	3
Greenhouse Spray 1.66 2 28 Head 9.2 11* Germany 722 SL Seedbed 72.2- 2000 2 0 Head 5.5 6.6* 2000 722 g ai/L drench 36.1 14 Head 20 24* 3 Tzigone RZ Greenhouse Spray 400-640 2 28 Head 15 18* GH Greenhouse Spray 400-640 2 28 Head 13 16* 16* Germany 722 g ai/L Seedbed 72.2- 20000 2 0 Head 13 16* Germany 722 g ai/L drench 36.1 14 Head 13 16* 2000 722 g ai/L drench 36.1 14 Head 12 14* 3 Greenhouse Spray 476-838 2 28 Head 18 21* GH 2000 722 g	Trobadur RZ	-					21	Head	10	12*	GH
Germany 2000722 SL 722g ai/LSeedbed drench72.2- 36.12000 220Head5.5 6.6^* C015422000722g ai/Ldrench 36.1 14Head20 24^* 3Tzigone RZ GreenhouseSpray400-640228Head15 18^* GHGermany722 SL 722g ai/LSeedbed72.2-200020Head13 16^* Germany722 SL 722g ai/LSeedbed72.2-2000020Head4959* 59^* 2000722g ai/Ldrench 36.1 14Head29 34^* C01542RZ 42-77 GrenhouseSpray476-838228Head1821*GHGermany722 SL 722g ai/LSeedbed72.2-200020Head1821*GHGreenhouseSpray476-838228Head1821*GHGermany722 SL 722g ai/LSeedbed72.2-2000020Head1113*C015422000722g ai/Ldrench36.114Head1720*33RZ 42-77 GreenhouseSpray495-819228Head43.35.1*6HGreenhouseSpray495-819228Head43.35.1*6HGreenhouseSpray495-819228Head4	Greenhouse		Spray		380-630	2	28	Head	9.2	11*	
Germany 2000 722 SL Seedbed drench 72.2 - 36.1 2000 2 0 Head 50 60^{*} $C01542$ $24*$ 2000 $722g \text{ ai/L}$ drench 36.1 14 Head 20 $24*$ 3 $Tzigone RZ$ GreenhouseSpray $400-640$ 2 28 Head 21 $18*$ GH $Greenhouse$ Spray $400-640$ 2 28 Head 13 $16*$ $16*$ $Germany$ 722 SL Seedbed 72.2 - 20000 2 0 Head 49 $59*$ 2000 $722g \text{ ai/L}$ drench 36.1 14 Head 22 $34*$ $C01542$ $RZ 42-77$ $Greenhouse$ Spray $476-838$ 2 28 Head 18 $21*$ GH $Greenhouse$ Spray $476-838$ 2 28 Head 18 $21*$ GH $Greenhouse$ Spray $476-838$ 2 28 Head 11 $13*$ $C01542$ 2000 $722g \text{ ai/L}$ drench 36.1 14 Head 11 $13*$ $C01542$ 2000 $722g \text{ ai/L}$ drench 36.1 14 Head 11 $13*$ $C01542$ 2000 $722g \text{ ai/L}$ drench 36.1 14 Head 11 $13*$ $C01542$ 2000 $722g \text{ ai/L}$ drench 36.1 14 Head 11 $13*$ $C01542$ 2000 $722g \text{ ai/L}$				1.66			34	Head	5.5	6.6*	
2000 $722g al/L$ drench 36.1 14 $14ead$ 20 24^{+} 3 $T_{zigone RZ}$ $Spray$ $400-640$ 2 28 $Head$ 15 18^{*} GH $Greenhouse$ $Spray$ $400-640$ 2 28 $Head$ 11 15 18^{*} GH $Germany$ 722 SLSeedbed 72.2 - 20000 2 0 $Head$ 49 59^{*} $722g al/L$ $drench$ 36.1 14 $Head$ 29 34^{*} $C01542$ 2000 $722g al/L$ $drench$ 36.1 2000 2 0 $Head$ 12 14^{*} 3 $Greenhouse$ $Spray$ $476-838$ 2 28 $Head$ 18 21^{*} GH $Greenhouse$ $Spray$ $476-838$ 2 28 $Head$ 18 21^{*} GH $Germany$ 722 SLSeedbed 72.2 - 20000 2 0 $Head$ 18 21^{*} GH $Greenhouse$ $Spray$ $476-838$ 2 28 $Head$ 11 13^{*} $C01542$ 2000 $722g al/L$ $drench$ 36.1 I I I I I I I $Greenhouse$ $Spray$ $476-838$ 2 28 $Head$ 11 13^{*} $C01542$ I $Greenhouse$ $Spray$ I <td>Germany</td> <td>722 SL</td> <td>Seedbed</td> <td>72.2-</td> <td>20000</td> <td>2</td> <td>0</td> <td>Head</td> <td>50 20</td> <td>60*</td> <td>C01542</td>	Germany	722 SL	Seedbed	72.2-	20000	2	0	Head	50 20	60*	C01542
Tagone K2 GreenhouseSpraySpray400-640228Head1318*OHGermany722 SLSeedbed72.2-2000020Head1316*2000722g ai/Ldrench36.1-14Head2934*C01542RZ 42-7721Head1821*6HGermany722 SLSpray476-838228Head1821*6HGreenhouse1.66-35Head1821*6HGermany722 SLSeedbed72.2-2000020Head1113*C01542Q000722g ai/Ldrench36.1-14Head1113*C015422000722g ai/LGrench36.1-14Head1113*C015422000722g ai/LGrench36.1-14Head1113*C015422000722g ai/Ldrench36.1-14Head1113*C015422000722g ai/Ldrench36.1-14Head1720*3RZ 42-7721Head9.211*6HGreenhouse-5pray495-819228Head4.35.1*1.66-35Head7.79.2*-	2000 Trigona PZ	/22g ai/L	arench	36.1			14	Head	20 15	24* 18*	3 CH
OrrenhouseSprayFoo-oro220Indu 21 25 25 Germany722 SLSeedbed72.2-2000020Head4959*2000722g ai/Ldrench36.114Head2934*C01542RZ 42-7789476-838228Head1821*GHGreenhouse591.6635Head6.67.9*6HGermany722 SLSeedbed72.2-2000020Head1113*C015422000722g ai/LGrench36.114Head1720*33Germany722 SLSeedbed72.2-2000020Head1113*C015422000722g ai/Ldrench36.114Head1720*33RZ 42-778228Head4.35.1*GHGreenhouseSpray495-819228Head4.35.1*GHGreenhouse551.6635Head7.79.2*55	Tzigone KZ Greenhouse		Sprav		400-640	2	21	Head	13 21	10 ⁺ 25*	ОП
Germany 722 SL Seedbed 72.2- 2000 2 0 Head 49 59* 2000 722g ai/L drench 36.1 14 Head 49 59* 59* 2000 722g ai/L drench 36.1 14 Head 29 34* C01542 RZ 42-77 Spray 476-838 2 28 Head 18 21* GH Greenhouse Spray 476-838 2 28 Head 18 21* GH 2000 722g ai/L Seedbed 72.2- 20000 2 0 Head 18 21* GH 2000 722g ai/L Greenhouse Germany 722g ai/L drench 36.1 14 Head 11 13* C01542 2000 722g ai/L drench 36.1 14 Head 11 13* C01542 2000 722g ai/L drench 36.1 14 Head 17 20* 3 RZ 42-77 Spray 495-819 2	Greennouse		Spray	1.66	100-040	4	34	Head	$\frac{21}{13}$	16*	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Germany	722 SL	Seedbed	72.2-	20000	2	0	Head	49	59*	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2000	722g ai/L	drench	36.1			14	Head	<u>29</u>	34*	C01542
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RZ 42-77						21	Head	12	14*	3
Germany 722 SL Seedbed 72.2- 20000 2 0 Head 11 13* C01542 2000 722g ai/L drench 36.1 14 Head 11 13* C01542 2000 722g ai/L drench 36.1 14 Head 17 20* 3 RZ 42-77 6 1.66 21 Head 9.2 11* GH Greenhouse 5.1* 1.66 35 Head 7.7 9.2*	Greenhouse		Spray		476-838	2	28	Head	18	21*	GH
Germany 722 SL Seedbed 72.2 - 20000 2 0 Head 11 13^* C01542 2000 $722g$ ai/L drench 36.1 14 Head 17 20^* 3 RZ 42-77 $Greenhouse$ Spray 495-819 2 28 Head 4.3 5.1^* $Greenhouse$ 1.66 35 Head 7.7 9.2^* 9.2^*		500 67		1.66	20000		35	Head	6.6	7.9*	G 01 T 1 T
2000 722g al/L drencn 30.1 14 Head $\underline{17}$ 20^{*} 3 RZ 42-77 Spray 495-819 2 28 Head 9.2 11* GH Greenhouse Spray 1.66 20 28 Head 4.3 5.1*	Germany	722 SL	Seedbed	72.2-	20000	2	0	Head	11	13*	C01542
$A2 + 2^{-7/7}$ Spray 495-819 2 28 Head 4.3 5.1* 1.66 35 Head 7.7 9.2* 9.2*	2000 R7 12 77	122g a1/L	urench	30.1			14	Пеаd	$\frac{1}{0.2}$	20** 11*	сн Сн
1.66 35 Head 7.7 9.2*	Greenhouse		Snrav		495-810	2	21	Head	9.2 4 3	5.1*	Un
	Siccimonse		Spray	1.66	175 019	-	35	Head	7.7	9.2*	

		Appl	ication			PHI	Sample	Residues as	Residues as	Report
Country,	Form.	Method	kg	Water	No.	(Days)	analysed	Propamocarb	Propamocarb	1
Year, Variety			ai/ha	L/ha			-	mg/kg	HCL, mg/kg	F/GH
Germany	722 SL	Seedbed	72.2-	20000	2	0	Head	82	98*	C03371
2002	722g ai/L	drench	36.1			21	Head	0.64	0.76*	7
Nadine	c	Spray		600	2					F
			1.66							
Germany	722 SL	Seedbed	72.2-	20000	2	0	Head	105	125*	C03371
2002	722g ai/L	drench	36.1			21	Head	0.57	0.68*	7
Nadine		Spray		400	2					F
			1.66							
Germany	840 SL	Seedbed	15.9	18750	2	0	Head	37*	44*	RA
2003	530g ai/L	drench				3	Head	14*	17*	2712/03
Alexandria		Spray	1.33	400	2	7	Head	11*	13*	GH
						14	Head	<u>3.9</u> *	4.7*	
						21	Head	0.64*	0.76*	
Germany	840 SL	Seedbed	15.9	18750	2	0	Head	31*	37*	RA
2003	530g ai/L	drench		100		3	Head	16*	19*	2712/03
Alexandria		Spray	1.33	400	2	1	Head	7.4*	8.8*	GH
						14	Head	$\frac{4.0}{2.0}$ *	4.8*	
9	722 01	0 11 1	70.0	20000	2	21	Head	0.71*	0.85*	001540
Germany	722 SL	Seedbed	72.2-	20000	2	0	Head	20	24*	C01542
2000 Eltan	/22g ai/L	drench	36.1	200	2	14	Head	$\frac{13}{1.9}$	15*	6 CU
Ellon		Spray	1.((399- 1010	2	21	Head	1.8	2.2*	GH
			1.00	1019		28	Head	< 0.008	< 0.01*	
Cormony	722 81	Saadbad	72.2	20000	r	0	Hand	12	1.4*	C01542
2000	722 SL	drench	72.2-	20000	2	14	Head	12	14 · 9 9*	6
2000 Flandria	/22g al/L	Spray	30.1	562 638	r	21	Head	$\frac{7.4}{0.4}$	0.5*	СH
riunania		Spray	1.66	302-038	2	21	Head	0.4	0.01*	UII
			1.00			20	Ticau	0.008	0.01	
Germany	722 SL	Seedbed	72 2-	20000	2	0	Head	31	37*	C01542
2000	722 SE	drench	36.1	20000	2	14	Head	65	7 7*	6
Macarena	/22g ul/12	Spray	50.1	480-840	2	21	Head	<u>18</u>	2.2*	GH
		Spray	1.66	.00 0.0	-	28	Head	1.8	0.05*	011
Greece	SL	Seedbed	72.2-	20000	2	0	Head	76	91*	C02415
2001	722g ai/L	drench	36.1			14	Head	13	15*	7
Estivena	C	Spray		400-	2	21	Head	12	14*	
			1.66	1000						F
Greece	722 SL	Seedbed	72.2-	20000	2	0	Head	28	33*	C01557
2000	722g ai/L	drench	36.1			7	Head	9.2	11*	2
Romana		Spray		581-	2	14	Head	<u>6.0</u>	7.2*	F
			1.66	1018		21	Head	3.3	3.9*	
Greece	840 SL	Seedbed	14.1	18000	2	0	Head	19*	23	C01557
2000	530 g ai/L	drench				14	Head	<u>11*</u>	13	7
Romana		Spray	1.3	600-970	2	21	Head	2.2*	2.6	F
						28	Head	0.84*	1.0	
Italy	840 SL	Seedbed	16.7-	20000	2	0	Head	43*	51	C01557
2000	530 g ai/L	drench	17.2			14	Head	<u>1.8*</u>	2.2	7
Titan		Spray		500-700	2	21	Head	0.07*	0.08	
			1.3			28	Head	< 0.008*	< 0.01	F
.										
Italy 2000	722 SL	Seedbed	72.2	20000	2	0	Head	35	42*	C01557
1 itan	/22g a1/L	drench	30.1	402 727	~	14	Head	<u>1.0</u>	1.2*	2
		Spray	1.00	493-727	2	21	Head	0.04	0.05*	Г
			1			28	Head	< 0.008	< 0.01*	

		Appl	ication			PHI	Sample	Residues as	Residues as	Report
Country,	Form.	Method	kg	Water	No.	(Days)	analysed	Propamocarb	Propamocarb	
Year, Variety			ai/ha	L/ha				mg/kg	HCL, mg/kg	F/GH
Italy	840 SL	Seedbed	15.9	20000	2	0	Head	65*	78*	RA
2003	530g ai/L	drench				3	Head	27*	32*	2712/03
Settelune						7	Head	14*	17*	GH
		Spray	1.33	400	2	14	Head	<u>0.92</u> *	1.1*	
						21	Head	0.08*	0.1*	
Japan, 1991	SL	?	1.28	1000	3	7	leaf	22	26*	(2)
Gokuwase	640 g/kg					14		1.8	2.1*	F
shisuko						21		0.10	0.12*	
						28		0.15	0.18*	
Japan, 1991	SL	?	1.28	1000	3	7	leaf	14	17*	(2)
Shinanogreen	640 g/kg					14		0.28	0.33*	F
						21		0.08	0.10*	
						28		0.04	0.05*	
Japan, 1991	SL	?	1.28	1000	3	7	leaf	20	24*	(2)
Gokuwase	640 g/kg					14		1.6	1.9*	F
shisuko						21		0.10	0.12*	
						28		0.09	0.11*	
Japan, 1991	SL	?	1.28	1000	3	7	leaf	16	19*	(2)
Shinanogreen	640 g/kg					14		0.60	0.68*	F
						21		0.11	0.13*	
						28		0.06	0.0/*	
Netherland	840 SL	Seedbed	15.9	20000	2	0	Head	58*	69*	RA
2003	530g ai/L	drench	1 00	100	•	3	Head	32*	38*	2712/03
Alexandria		Spray	1.33	400	2	7	Head	25*	30*	GH
						14	Head	<u>9.8</u> *	12*	
NT (1 1 1	040 CI	0 11 1	15.0	20000		21	Head	4.2*	5.0*	DA
Netherland	840 SL	Seeabea	15.9	20000	2		Head	53* 20*	63* 26*	KA 2712/02
2005 Alexandria	550g al/L	Sprov	1 2 2	400	2	5	Head	50* 21*	50* 25*	2/12/05 CH
Анехинини		Spray	1.55	400	2	14	Head	0.4*	2.5*	UII
						21	Head	$\frac{9.4}{1.0*}$	11*	
Spain 2000	722 SI	Seedbed	72.2	20000	2	0	Head	27	32*	C01557
Inverna	722 SE	drench	36.1	20000	2	14	Head	47	5.6*	2
niverna	, 22g ul/E	Spray	1.66	670-988	2	21	Head	$\frac{1.7}{0.08}$	0.1*	Ē
		Spray	1100	010 200	-	28	Head	< 0.008	< 0.01*	-
Spain 2000	722 SL	Seedbed	72.2	20000	1	0	Head	10	12*	C01542
Cahezo	722 off	drench	36.1	20000	1	14	Head	34	4 1*	3
Greenhouse	, 22 8 ui, 2	Spray	1.66	401-941	1	21	Head	3.3	4.0*	GH
		~ []			1	28	Head	1.0	1.2*	
						35	Head	4.4	5.3*	
Spain [,] 2000	722 SL	Seedbed	72.2-	20000	2	0	Head	29	35*	C01542
Cabezo	722g ai/L	drench	36.1			14	Head	<u>15</u>	18*	3
Greenhouse	c	Spray		404-	2	21	Head	15	18*	GH
			1.66	1004		28	Head	6.9	8.2*	
						35	Head	2.2	2.6*	
Spain' 2000	722 SL	Seedbed	72.2-	20000	2	0	Head	28	33*	C01542
Cabezo	722g ai/L	drench	36.1			14	Head	14	17*	3
Greenhouse		Spray		384-980	2	21	Head	<u>16</u>	19*	GH
			1.66			28	Head	10	12*	
a						35	Head	5.7	6.8*	
Spain	SL	Seedbed	72.2-	20000	2	0	Head	87	104*	C02415
2001 Fative	/22g a1/L	drench	36.1	400	~	13	Head	<u>3.3</u>	4.0*	1
Estivena		Spray	1.00	400-	2	21	Head	0.34	0.41*	F
			1.00	1000						Г
Spain 2001	CI	Seedler 1	72.2	20000	2	0	LI ac J	02	102*	C02415
Spani, 2001 Estivene	ЗL 722 с о;Л	drench	12.2-	20000	2	12	Head	80 2 °	105* 2 /*	C02415
Estivenu	122g al/L	Spray	50.1	400	r	20	Head	$\frac{2.0}{0.56}$	3.4* 0.67*	/
		Spray	1 66	100-	2	20	incau	0.50	0.07	F
			1.00	1000						1
	1									

		Appl	ication	ŕ		PHI	Sample	Residues as	Residues as	Report
Country,	Form.	Method	kg	Water	No.	(Days)	analysed	Propamocarb	Propamocarb	
Year, Variety		l I	ai/ha	L/ha	1			mg/kg	HCL, mg/kg	F/GH
		I								
Spain, 2000	840 SL	Seedbed	15.8	20000	2	0	Head	24*	29	C01557
Inverna	530 g ai/L	drench		1 1		14	Head	10*	12	7
	_	Spray	1.3-1.76	700-	2	21	Head	0.50*	0.60	
				1000	1	28	Head	0.03*	0.04	F
USA 1997	724 5 SL	Spray	1.6	154-189	4	2	Leaves	41*	49	B00274
Gene Corn	724 5 g ai/L	opraj	1.0		'	-	Louise	<u> </u>	17	0
Green	121.0 g un 2	1			1					Ĕ
UTEA 1007	7045 81	Carou	1.6	105 100			Lanvas	21*	26	P00274
USA, 1997	724.5 SL	Spray	1.0	183-107	4	2	Leaves	<u>31*</u>	50	BUU274
Darkiana	724.3 g al/L	1			1					U E
Komaine	7045.01		1.6	176 105	4		T	10*	10	Г D00274
USA, 1997	724.5 SL	Spray	1.6	176-195	4	2	Leaves	<u>10*</u>	12	B00274
Presidio	724.5 g ai/L	1			1					
					<u> </u>	<u> </u>	Ļ	2.2.4	125	F
USA, 1997	724.5 SL	Spray	1.6	187-193	4		Leaves	88*	105	B00274
Rapids Waldman	724.5 g aı/L	1			1	2	Leaves	<u>60</u> *	71.3	0
		1			1	4	Leaves	60*	72.1	F
		1			1	6	Leaves	45*	53.2	
		 	<u> </u>	<u> </u>	L	8	Leaves	50*	59.3	
USA, 1997	724.5 SL	Spray	1.6	182-187	4	2	Leaves	<u>51*</u>	61	B00274
Black Seeded	724.5 g ai/L	1			1			l I		0
Simpson		1			1			l I		F
		I			[
USA, 1997	724.5 SL	Spray	16	171-190	4	2	Leaves	17*	20	B00274
Romaine	724.5 g ai/L	- · ·			1			· · ·		0
		1			1					F
USA, 1997	724.5 SL	Spray	1.6	187	4	2	Leaves	86*	102	B00274
Blacks Simpson	724.5 g ai/L	1 2			1					0
	/=	1			1					F
USA. 1997	SL	Spray	1.6	184-191	4	2	Head	48*	58	B00274
Crispino	724.5 g ai/L	~r			1		Head ¹	8.0*	9.6	0
01.57	/=	1			1					F
USA 1997	SL	Spray	1.6	171-190	4	2	Head	8.2*	9.8	B00274
Icehero	724 5 g ai/L	op		*** ***	· ·	-	Head ¹	$\frac{0.2}{0.21*}$	0.3	0
1000018	/2	1			1		110	0.21	0.0	Ĕ
USA 1997	SI	Spray	16	101	4	1	Head	11*	13	R00274
Ithaca	724 5 g ai/L	Spray	1.0	171		1	Head ¹	0.31*	0.4	0
Шиси	127.3 g an 1	1			1		Titau	0.51	0.7	F
USA 1007	SI	Spray	1.6	154-180		2	Uead	11*	13	B00274
USA, 1977	ы 7045 сај/Г	Spray	1.0	134-102	+	2	Head ¹	$\frac{11}{0.23*}$	13	D00274
Magnum	124.5 g an L	1			l		Ficau	0.25	0.5	С Б
TICA 1007	CI CI	Coroy	1.6	193 104		2	Uand	10*	22	Г D00274
USA, 1997	5L 7245 a ai/I	Spray	1.0	103-194	4	2	Head ¹	<u>19</u> 0.24*	22	DU0274
Lagacy	724.3 g al/L	1			1		пеац	0.34	0.4	
TTO A 1007	CI	C TOT	1.6	194 101	4		Trad	0.7*	10	Г D00274
USA, 1997	SL 7245 stat	Spray	1.0	184-191	4	2	Head	$\frac{9.7}{1.5*}$	12	B00274
Top Gun	724.5 g ai/L	1			1		Head	1.5*	1.8	
	GT	~ ~		107.100	<u> </u>	<u> </u>		20.5		F
USA	SL	Spray	1.6	187-193	4		Head	38*	46	B00274
1997	724.5 g aı/L	1			1	2		$\frac{41}{24}$ *	49	0
		1			1	4		34*	41	F
		1			1	6		27*	32	
		1			1	8	.1	20*	24	
		I.		1		1	Head	2.1*	2.5	
		I.		1		2		2.1*	2.5	
		1			1	4		0.99*	1.2	
		1			1	6		0.64*	0.8	
		1		1	1	8		0.52*	0.6	

1 Head without wrapper leaves;

2. only a summary of the trial was provided;

*actual value reported

Spinach

Seven field trials were conducted with propamocarb hydrochloride on spinach were reported from Belgium, Germany, Italy and Spain using foliar application. The results are shown in Table 42.

Country,		А	pplication			PHI	Residues as	Report
Year of trial	Form.	Method	kg ai/ha	Water	No.	(Days)	Propamocarb	-
Variety				L/ha			mg/kg	
Belgium	840 SL	Spray	1.325	300	3	0	83*	RA 2558/04
2004, Mig						14	1.6*	
Germany	840 SL	Spray	1.325	300	3	0	73*	RA 2558/04
2004, Matador						14	18*	
Germany	840 SL	Spray	1.325	300	3	0	79*	RA-2619/03
2003	530 g ai/L					3	22*	
Fentos						7	13*	
						14	2.9*	
						21	<u>0.41</u> *	
Germany	840 SL	Spray	1.325	300	3	0	49*	RA-2619/03
2003	530 g ai/L					3	27*	
Matador						7	18*	
						14	10*	
Italy, 2004	840 SL	Spray	1.59	500	2	0	100*	RA 2557/04
Riccio D'america	530 g ai/L					3	53*	
						7	42*	
						14	16*	
						21	<u>14</u> *	
Italy, 2004	840 SL	Spray	1.59	450	2	0	54*	RA 2557/04
Riccio D'america	530 g ai/L					3	52*	
						7	37*	
						14	8.3*	
						21	<u>8.4</u> *	
Spain	840 SL	Spray	1.59	400	2	0	99*	RA 2557/04
2004	530 g ai/L					3	58*	
Dolfin						7	46*	
						14	45*	
						21	<u>29</u> *	

Table 42. Residues from field trials with Propamocarb hydrochloride conducted in spinach.

*actual value reported

Potato

Thirty two field trials on potatoes were reported with propamocarb HCl, conducted between 1990 and 2003, using foliar application in Europe (13) and USA (19). The results are shown in Table 43.

Table 43. Residues from field trials with propamocarb hydrochloride conducted in potato, foliar spray.

Country, Year of trial	Form.	App kg ai/ha	lication Water	No.	PHI (Days)	Sample analysed	Residues, as Propamocarb	Residues, as propamocarb	Report
Variety			L/ha		ĺ		mg/kg	HCl, mg/kg	
France	450 SC	0.75	400	6	0	Tuber	< 0.01*	< 0.012	C042791
2003, Spunta	386 g ai/L		1 '	!	7	Tuber	< 0.01*	< 0.012	
Germany	549.6 SC	0.99	400	6	0	Tuber	< 0.08	< 0.1*	A85312
1990	248 g ai/L		1		2	Tuber	< 0.08	< 0.1*	
Akula			1 '	!	5	Tuber	< 0.08	< 0.1*	
					7	Tuber	< 0.08	< 0.1*	
Germany	549.6 SC	0.99	400	6	0	Tuber	0.25	0.3*	A85312
1990	248 g ai/L		1 '	!	3	Tuber	< 0.08	< 0.1*	
Bintje			1 '	!	5	Tuber	< 0.08	< 0.1*	
·		1 1	1 '	1 1	7	Tuber	< 0.08	< 0.1*	

Vear of rial Variety kg ai/h kg ai/h Luar No. (Days) analysed Propanocarb mg/kg propanocarb HCL mg/kg Propanocarb HCL mg/kg Report 1990 248 g ai/L 0.99 400 6 0 Tuber 0.03* A85312 1maxa 549.6 SC 0.99 400 6 0 Tuber 0.17 0.2* A85312 1maxa 549.6 SC 0.99 400 6 0 Tuber 0.17 0.2* A85312 1msa 1msa 1 7 Tuber 0.08 0.1* A85332 1991 248 g ai/L 0.99 400 6 0 Tuber 0.08 0.1* 1991 248 g ai/L 0.99 400 6 0 Tuber, waked 0.08 0.1* 1991 248 g ai/L 0.99 400 6 0 Tuber, waked 0.08 0.1* 1991 248 g ai/L 0.99 400 6 0 <	Country,	Form.	App	lication		PHI	Sample	Residues, as	Residues, as	
Variery Image of the second sec	Year of trial		kg ai/ha	Water	No.	(Days)	analysed	Propamocarb	propamocarb	Report
	Variety			L/ha				mg/kg	HCl, mg/kg	
	Germany	549.6 SC	0.99	400	6	0	Tuber	0.25	0.3*	A85312
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1990	248 g ai/L	0.,,,	.00	Ũ	3	Tuber	0.08	0.1*	1100012
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Hansa	0				5	Tuber	0.17	0.2*	
Germany 1990 549.6 SC 248 g ai/L 0.99 400 6 0 Tuber 3 0.08 0.1* 0.2* A85312 Germany 1991 248 g ai/L 0.99 400 6 0 Tuber 7 0.17 0.2* A85332 Germany 1991 248 g ai/L 0.99 400 6 0 Tuber 7 0.08 0.1* A85332 Germany 1991 248 g ai/L 0.99 400 6 0 Tuber 7 0.08 0.1* A85332 Germany 1991 549.6 SC 248 g ai/L 0.99 400 6 0 Tuber 7 0.08 0.1* Germany 1991 549.6 SC 248 g ai/L 0.99 400 6 0 Tuber 7 0.08 0.1* Roxy 549.6 SC 7 0.99 400 6 0 Tuber 7 0.08 0.1* Roxy 549.6 SC 7 0.99 400 6 0 Tuber 7 0.08 0.1* Germany 1991 248 g ai/L 0 0						7	Tuber	<u>0.17</u>	0.2*	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Germany	549.6 SC	0.99	400	6	0	Tuber	0.17	0.2*	A85312
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1990	248 g ai/L				3	Tuber	0.08	0.1*	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hansa					5	Tuber	0.17	0.2*	
						7	Tuber	<u>0.17</u>	0.2*	
	Germany	549.6 SC	0.99	400	6	0	Tuber	< 0.08	< 0.1*	A85332
$ \begin{array}{ccc} Celena \\ Ce$	1991 Calara	248 g ai/L				5	Tuber	0.08	0.1*	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Celena					5	Tuber	< 0.08	< 0.1*	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						0	Tuber washed	< 0.08	$< 0.1^{*}$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						7	Tuber, washed	< 0.08	< 0.1*	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						0	Tuber, peeled	< 0.08	< 0.1*	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						7	Tuber, peeled	<u>< 0.08</u>	< 0.1*	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						0	Peel, washed	< 0.08	< 0.1*	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						7	Peel, washed	< 0.08	< 0.1*	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Germany	549.6 SC	0.99	400	6	0	Tuber	< 0.08	< 0.1*	A85332
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1991	248 g ai/L				3	Tuber	0.08	0.1*	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Roxy					5	Tuber	< 0.08	< 0.1*	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						/	Tuber	<u>< 0.08</u>	< 0.1*	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						07	Tuber, washed	< 0.08	< 0.1*	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						0	Tuber, washed	< 0.08	$< 0.1^{\circ}$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						7	Tuber, peeled	< 0.08	< 0.1*	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						0	Peel, washed	0.08	0.1*	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						7	Peel, washed	< 0.08	< 0.1*	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Germany	549.6 SC	0.99	400	6	0	Tuber	0.08	0.1*	A85332
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1991	248 g ai/L				3	Tuber	< 0.08	< 0.1*	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Grandifolia					5	Tuber	< 0.08	< 0.1*	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						7	Tuber	< 0.08	< 0.1*	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Germany	549.6 SC	1.2	400	6	0	Tuber	< 0.08	< 0.1*	A85349
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1992	248 g ai/L				3	Tuber	< 0.08	< 0.1*	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Grandifolia					5	Tuber	< 0.08	< 0.1*	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	.	0.005	100		/	Tuber	<u>< 0.08</u>	< 0.1*	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Germany	549.6 SC	0.995	400	6	0	Tuber	< 0.08	< 0.1*	A85349
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1992 Sommonoold	248 g ai/L				5	Tuber	< 0.08	< 0.1*	
Germany 1992549.6 SC 248 g ai/L1.2 - 1.33 A400 46 00 0 3Tuber Tuber 4<0.08 4<0.1* 4A853491992 1992248 g ai/L1.2 - 1.33 4400 56 30 3Tuber Tuber 4<0.08 4<0.1* 4<0.1* 4<0.08 4<0.1* 4<0.1* 4<0.08 4<0.1* 4<0.08 4<0.1* 4<0.08 4<0.1* 4<0.08 4<0.1* 4<0.08 4<0.1* 4<0.08 4<0.1* 4<0.01* 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 4<0.012 	sommergoia					5	Tuber	< 0.08	$< 0.1^{*}$	
Octimative 1992 248 g ai/L $12 - 1.53$ 400 0	Germany	540.6 SC	1 2 1 3 3	400	6	,	Tuber	<u>< 0.08</u>	< 0.1*	485340
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1992	248 σ ai/L	1.2 - 1.55	400	0	3	Tuber	< 0.08	$< 0.1^{*}$	A03349
Initial<	Anosta	210 5 41/12				5	Tuber	< 0.08	< 0.1*	
Germany 450 SC 0.75 600 6 0 Tuber $< 0.01^*$ < 0.012 C042791 2003, Cilena 375 g ai/L 7 Tuber $< 0.01^*$ < 0.012 C042791 UK, 2003 450 SC 0.75 400 6 0 Tuber $< 0.01^*$ < 0.012 C042791 $Spey$ 375 g ai/L 7 Tuber $< 0.01^*$ < 0.012 C042791 USA, 1996 750 SC 1.9 187 5 15 Tuber $< 0.05^*$ < 0.06 A91233 Superior 375 g ai/L 10 187 5 14 Tuber $< 0.05^*$ < 0.06 A91233 Chippewa 375 g ai/L 10 187 5 14 Tuber $< 0.05^*$ < 0.06 A91233 Superior 375 g ai/L 10 187 5 14 Tuber $< 0.05^*$ < 0.06 WF31-4 375 g ai/L 10						7	Tuber	< 0.08	< 0.1*	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Germany	450 SC	0.75	600	6	0	Tuber	< 0.01*	< 0.012	C042791
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2003, Cilena	375 g ai/L				7	Tuber	< 0.01*	< 0.012	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	UK, 2003	450 SC	0.75	400	6	0	Tuber	< 0.01*	< 0.012	C042791
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Spey	375 g ai/L				7	Tuber	<u>< 0.01*</u>	< 0.012	
Superior 375 g ai/L Image: state of the state of th	USA, 1996	750 SC	1.9	187	5	15	Tuber	< 0.05 <u>*</u>	< 0.06	A91233
USA, 1996 750 SC 1.0 187 5 14 Tuber $\leq 0.05^*$ < 0.06 A91233 Chippewa 375 g ai/L 1.0 187 5 14 Tuber $\leq 0.05^*$ < 0.06 A91233 USA, 1996 750 SC 1.0 187 5 14 Tuber $< 0.05^*$ < 0.06 A91233 Superior 375 g ai/L 1.0 187 5 14 Tuber 0.05^* < 0.06 A91233 USA, 1996 750 SC 1.0 187 5 14 Tuber 0.05^* 0.06 WF31-4 375 g ai/L 10 187 5 14 Tuber 0.05^* 0.06 USA, 1996 750 SC 1.0 187 5 14 Tuber 0.05^* 0.05 A91233 Red Pontiac 375 g ai/L 187 5 14 Tuber 0.05^* < 0.06 A91233 USA, 1996 750 SC 1.0 187 5 14 Tuber $< 0.05^*$ < 0.06 A91233	Superior	375 g ai/L	1.0	107				0.051	0.04	101000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	USA, 1996	750 SC	1.0	187	5	14	Tuber	<u>< 0.05*</u>	< 0.06	A91233
USA, 1990 750 SC 1.0 187 5 14 Tuber $\leq 0.05^{+}$ < 0.06 A91233 Superior 375 g ai/L 1.0 187 5 14 Tuber 0.05^{*} < 0.06 A91233 USA, 1996 750 SC 1.0 187 5 14 Tuber 0.05^{*} 0.06 WF31-4 375 g ai/L 1.0 187 5 14 Tuber 0.05^{*} 0.06 USA, 1996 750 SC 1.0 187 5 14 Tuber 0.05^{*} 0.05 A91233 Red Pontiac 375 g ai/L 10 187 5 14 Tuber 0.05^{*} 0.06 USA, 1996 750 SC 1.0 187 5 14 Tuber 0.05^{*} < 0.06 A91233 Superior 375 g ai/L 10 187 5 14 Tuber $< 0.05^{*}$ < 0.06 A91233	Chippewa	3/3 g a1/L	1.0	107	5	1 /	T1.	~ 0 0E*	<0.0C	A01022
Superior 575 g a/L Image: Constraint of the second secon	USA, 1996	/50 SC	1.0	187	С	14	Tuber	<u>< 0.03*</u>	< 0.06	A91233
WF31-4 375 g ai/L 1.0 1.67 5 1.4 Tuber 0.05^{*} 0.00^{*} USA, 1996 750 SC 1.0 187 5 1.4 Tuber 0.05^{*} 0.05 A91233 Red Pontiac 375 g ai/L 1.0 187 5 1.4 Tuber 0.05^{*} 0.05 A91233 USA, 1996 750 SC 1.0 187 5 1.4 Tuber $<0.05^{*}$ <0.06 A91233 Superior 375 g ai/L 1.0 187 5 1.4 Tuber $<0.05^{*}$ <0.06 A91233	Superior	750 SC	1.0	197	5	14	Tuber	0.05*	0.06	
USA, 1996 750 SC 1.0 187 5 14 Tuber 0.05^* 0.05 A91233 Red Pontiac 375 g ai/L 10 187 5 14 Tuber 0.05^* 0.05 A91233 USA, 1996 750 SC 1.0 187 5 14 Tuber $<0.05^*$ <0.06 A91233 Superior 375 g ai/L 187 5 14 Tuber $<0.05^*$ <0.06 A91233	WF31-4	750 SC 375 g ai/I	1.0	10/	5	14	ruber	0.05 -	0.00	
Red Pontiac 375 g ai/L 10 10 10 11 100 10 100	USA 1996	750 SC	1.0	187	5	14	Tuber	0.05*	0.05	A91233
USA, 1996 750 SC 1.0 187 5 14 Tuber $\leq 0.05^*$ < 0.06 A91233 Superior 375 g ai/L 1 14 Tuber $\leq 0.05^*$ < 0.06 A91233	Red Pontiac	375 g ai/L	1.0	107	5	14	10001	0.05	0.05	11/1233
Superior 375 g ai/L	USA, 1996	750 SC	1.0	187	5	14	Tuber	< 0.05*	< 0.06	A91233
	Superior	375 g ai/L			-	-			#	

Country,	Form.	Арр	lication		PHI	Sample	Residues, as	Residues, as	
Year of trial		kg ai/ha	Water	No.	(Days)	analysed	Propamocarb	propamocarb	Report
Variety			L/ha				mg/kg	HCl, mg/kg	
USA, 1996	750 SC	1.0	187	5	14	Tuber	< 0.05*	< 0.06	A91233
N. Dark Red	375 g ai/L								
USA, 1996	750 SC	1.0	187	5	10	Tuber	< 0.05*	< 0.06	A91233
Atlantic	375 g ai/L				12	Tuber	< 0.05*	< 0.06	
	-				14	Tuber	<u>< 0.05*</u>	< 0.06	
					16	Tuber	< 0.05*	< 0.06	
					18	Tuber	< 0.05*	< 0.06	
USA, 1996	750 SC	1.0	187	5	14	Tuber	<u>< 0.05*</u>	< 0.06	A91233
Atlantic	375 g ai/L								
USA, 1996	750 SC	1.0	187	5	14	Tuber	< 0.05*	< 0.06	A91233
Atlantic	375 g ai/L								
USA, 1996	750 SC	1.0	187	5	14	Tuber	<u>< 0.05*</u>	< 0.06	A91233
Norkotah	375 g ai/L								
USA, 1996	750 SC	1.0	187	5	14	Tuber	< 0.05*	< 0.06	A91233
Chieftan	375 g ai/L								
USA, 1996	750 SC	1.0	187	5	14	Tuber	<u>< 0.05*</u>	< 0.06	A91233
R. Burbank	375 g ai/L								
USA, 1996	750 SC	1.0	187	5	14	Tuber	<u>< 0.05*</u>	< 0.06	A91233
R. Burbank	375 g ai/L								
USA, 1996	750 SC	1.0	187	5	14	Tuber	<u>< 0.05*</u>	< 0.06	A91233
R.Burbank	375 g ai/L								
USA, 1996	750 SC	1.0	187	5	14	Tuber	<u>< 0.05*</u>	< 0.06	A91233
	375 g ai/L								
USA, 1996	750 SC	1.0	187	5	14	Tuber	<u>< 0.05*</u>	< 0.06	A91233
Mac	375 g ai/L								
USA, 1996	750 SC	1.0	187	5	14	Tuber	< 0.05*	< 0.06	A91233
R. Burbank	375 g ai/L								
USA, 1996	750 SC	1.0	187	5	10	Tuber	< 0.05*	< 0.06	A91233
Russet	375 g ai/L				12		< 0.05*	< 0.06	
Burbank	č				14		< 0.05*	< 0.06	
					16		< 0.05*	< 0.06	
					18		< 0.05*	< 0.06	

* value reported

Radish

Eleven glasshouse trials with radish, conducted between 1984 and 2002, were reported from Germany and the Netherlands using seed and/or foliar treatment. The results are shown in Table 44.

Table 44. Residue trials	with propamocarb	hydrochloride conducted	in radish in the glass house.
--------------------------	------------------	-------------------------	-------------------------------

Country,		Applica	ation			PHI	Sample	Residues,	Residues,	
Year	Form.	Method	kg	Water	No.	(Days)	analysed	Propamocarb	Propamocarb	Report
Variety			ai/ha	L/ha		 		mg/kg	HCl, mg/kg	
Germany,	722 SL	Seed	7.22	n.a	1	24	Leaves	29.53	35.24*	A85238
1984 Hilds	722g ai/L	Treatment	g/kg	1		31	Root	11.05	13.19*	1
Karissima		ļ	seed	1		34	Root	2.35	2.80*	1
1		Spray	0.72	1000		38	Root	2.20	2.63*	1
				<u>ا</u>	1	45	Root	1.05	1.25*	
Germany	722 SL	Seed	7.22	n.a	1	27	Leaves	0.75	0.89*	A85238
1984	722g ai/L	Treatment	g/kg	1		34	Leaves	0.14	0.17*	1
Cherry Belle		ļ	seed	1		38	Root	0.11	0.13*	1
1		Spray	0.72	1000	1	41	Root	0.09	0.11*	1
1	i l			1		45	Root	< 0.08	< 0.1*	1
1	i I	ļ		1		48	Root	< 0.08	< 0.1*	1

Country,		Applic	ation			PHI	Sample	Residues,	Residues,	
Year	Form.	Method	kg	Water	No.	(Days)	analysed	Propamocarb	Propamocarb	Report
Variety			ai/ha	L/ha				mg/kg	HCl, mg/kg	-
Germany	722 SL	Seed	7.22	n.a	1	17	Leaves	1.84	2.2*	A85238
1984	722g ai/L	Treatment	g/kg			24	Root	0.33	0.39*	
Juwasprint	U		seed			26	Root	< 0.08	< 0.1*	
1		Spray	0.72	1000	1	32	Root	< 0.08	< 0.1*	
						34	Root	< 0.08	< 0.1*	
Germany	722 SL	Seed	7.22	n.a	1	21	Leaves	3.75	4.47*	A85238
1984	722g ai/L	Treatment	g/kg			29	Root	0.36	0.43*	
Saxa			seed			31	Root	0.45	0.54*	
		Spray	0.72	1000	1	35	Root	0.39	0.46*	
						37	Root	0.15	0.18*	
						42	Root	0.18	0.22*	
Germany	722 SL	Seed	7.22	n.a	1	7	Leaves	5.6	6.7*	A85238
1984	722g ai/L	Treatment	g/kg			14	Leaves	1.76	2.1*	
Hild's Topsi		~	seed	1000		17	Root	0.33	0.39*	
GS		Spray	0.72	1000	1	22	Root	0.23	0.28*	
						27	Root	0.13	0.16*	
Germany	722 SL	Seed	7.22	n.a	1	18	Leaves	0.59	0.71*	A85238
1984	722g ai/L	Treatment	g/kg			26	Root	0.09	0.11*	
Eterna		~	seed	1000		28	Root	< 0.08	< 0.1*	
		Spray	0.72	1000	1	32	Root	< 0.08	< 0.1*	
9	700 01	<u> </u>	7.00		1	39	Root	< 0.08	< 0.1*	105000
Germany	722 SL	Seed	1.22	n.a	1	14	Leaves	3.85	4.59*	A85238
1984 Det a	/22g ai/L	Treatment	g/Kg			21	Root	0.16	0.19*	
кона		Spray	o 72	1000	1	24	Root	0.13	0.18*	
		Spray	0.72	1000	1	20	Root	0.20	0.24*	
Natharlanda	722 61	Constr	1 1	500	2	12	Deat	0.22	0.20	105000
1083	722 SL	Spray	1.1	500	2	15	KOOL	0.42	0.5*	A63223
1905 Heemskerk	122g al/L									
Netherlands	722 SL	Spray	11	500	1	15	Root	0.34	0.4*	A85223
1983	722 o E	opiuj	1.1	500	-	10	noor	0.51	0.1	1100220
Heemskerk	/ 225 ui/ 2									
Netherlands	840 SL	Sprav	1.5-	533-	2	0	Root	0.92	1.1*	C035997
2002	530g ai/L		1.6	619		7	Root	0.75	0.9*	
Gudar	U					14	Root	0.38	0.45*	
						19	Root	0.28	0.34*	
Netherlands	840 SL	Sprav	1.3	548-	2	0	Root	0.80	0.96*	C035997
2002	530g ai/L			536		7	Root	0.60	0.72*	
Gudar	U					14	Root	0.36	0.43*	
						19	Root	0.25	0.30*	
Netherlands	840 SL	Spray	1.3	548-	2	0	Root	1.26	1.5*	C035997
2002	530g ai/L			543		8	Root	0.30	0.36*	
Gudar						14	Root	0.27	0.32*	
						21	Root	0.17	0.2*	
Netherlands	840 SL	Spray	1.3	452-	2	0	Root	1.6	1.9*	C035997
2002	530g ai/L			537		7	Root	0.20	0.24*	
Gudar						14	Root	<u>0.30</u>	0.36*	
						21	Root	0.26	0.31*	

* value reported

Chicory witloof

Twenty greenhouse trials on chicory Witloof with propamocarb hydrochloride were reported from France, Germany and the Netherlands using drip or drench irrigation and foliar spray (Table 45).

a						DIT	~ ·	- · ·		
Country,		Арр	lication			PHI	Sample	Residues as	Residues	Report no.
Year of trial	Form.	Method	kg ai/ha	Water	No.	(Days)	analysed	Propamocarb	Propamocarb	
Variety			application	L/ha				mg/kg	HCl, mg/kg	
France. 1998	722 SL	Spray onto	53.8	26700	1	21	Leaves	0.5*		11358 ^a
Atlas	722 g ai/I	roots								
France, 1998	722 SL	Spray onto	57.1	28300	1	21	Leaves	<u>0.7*</u>		11358 ^a
Atlas	722 g ai/I	roots								
France, 1998	722 SL	Spray onto	58.9	29200	1	21	Leaves	0.6*		11358 ^a
Atlas	722 g ai/I	roots								
France, 1998	722 SL	Spray onto	60.5	30000	1	21	Leaves	0.9*		11358 ^a
Atlas	722 g ai/I	roots								
France, 2001	840 SL	Nutrient	15.8 g	g/hL	1	21	Leaves	0.18	0.22*	C024398
Bea	530 g ai/I	solution								
France, 2001	840 SL	Nutrient	15.1 g	g/hL	1	21	Leaves	0.03	0.03*	C024398
I	530 g ai/I	solution	-	·						
France, 2003	840 SL	Spray onto	106	40000	1	21	Leaves	1.0*		RA 2709/03 ^a
Opal	530 g ai/I	roots				21	Roots	12*		
France, 2003	840 SL	Spray onto	106	40000	1	21	Leaves	3.6*		RA 2709/03 ^a
Atlas	530 g ai/I	roots				21	Roots	15*		
France, 2004	840 SL	Spray onto	106	60000	1	21	Leaf	0.56*		RA 2550/04 a
Mont Blanc	530 g ai/I	roots				21	Root	2.8*		
France, 2004	840 SL	Spray onto	106	60000	1	21	Leaf	0.41*		RA 2550/04 a
Mont Blanc	530 g ai/I	roots	-			21	Root	3.2*		
France, 2004	840 SL	Irrigation	84.8	40000	1	21	Leaf	0.09*		RA 2551/04
Passion	530 g ai/I	water	-	-		21	Root	0.36*		
Germany	840 SL	Nutrient	12.2 g	/hL	1	19	Leaves	0.1	0.12*	C024398
2001, Atlas	530 g ai/I	solution		,				· · ·		
Germany	840 SL	Nutrient	47.1 s	י∕hL	1	22	Leaves	8.0	9.6*	C024398
2001. <i>Focus</i>	530 g ai/I	solution		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-			0.0	2.0	002.000
Germany.	840 SL	Nutrient	47.1 s	r/hI.	1	21	Leaves	1.6	2.1*	C024398
2001 Focus	530 σ ai/I	solution	1/11 2	,/IIL	1		Leuves	1.0	2.1	021570
2001,10000	550 5 41 2	50161101.								
Germany	840 SL	Spray onto	95.0	40000	1	21	Leaf	<u>0.46</u> *		RA 2550/04 "
2004, Atlas	530 g ai/l	roots				21	Root	4.4*		
Germany	840 SL	Irrigation	21.2 g	g/hL	1	22	Leaf	5.3*		RA 2551/04
2004, Plantine	530 g ai/I	water				22	Root	24*		
Netherlands	840 SL	Irrigation	21.2 g	g/hL	1	21	Leaves	0.1*		RA 2709/03
2003, Vintor	530 g ai/I	water				21	Roots	0.92*		
Netherlands	840 SL	Irrigation	21.2 g	g/hL	1	21	Leaves	0.34*		RA 2709/03
2003,	530 g ai/I	water				21	Roots	2.3*		
Plantin					-					
Netherlands	840 SL	Irrigation	21.2 g	g/hL	1	20	Leaf	0.35*		RA 2551/04
2004, Vintor	530 g ai/I	water				20	Root	2.3*		
Netherlands	840 SL	Spray onto	106	50000	1	20	Leaf	0.69*		RA 2550/04 a
2004, Vintor	530 g ai/I	roots	. •		-	20	Root	12*		

Table 45. Residue greenhouse trials with propamocarb hydrochloride conducted in Chicory Witloof.

*actual value reported; ^{a.} the roots were treated prior to the forcing step, at forcing after tranplanting of chicory roots into the forcing room as tank dilution.

Ginger

Four trials with propamocarb hydrochloride in ginger were reported from Japan (Table 46).

Table 46: Residue field trials with Propamocarb hydrochloride conducted in ginger in Japan using three drench applications of SL 640 g/kg formulation at 0.213 kg ai/hL (30,000 L/ha).

Location		Residues as	Residue	Location		Residues as	Residue
Variety	PHI	Propamocarb	Propamocab*	Variety	PHI	Propamocarb	Propamocab*
	(Days)	mg/kg	HCl, mg/kg		(Days)	mg/kg	HCl, mg/kg
Ibaraki	14	1.2	1.4	Ibaraki	14	1.7	2.0
Sanshu	30	0.64	0.76	Sanshu	30	0.79	0.94
	60	0.19	0.23		60	0.46	0.55

Location		Residues as	Residue	Location		Residues as	Residue
Variety	PHI	Propamocarb	Propamocab*	Variety	PHI	Propamocarb	Propamocab*
	(Days)	mg/kg	HCl, mg/kg		(Days)	mg/kg	HCl, mg/kg
Chiba	14	21	25	Chiba	14	12	14
Zairaishu	30	4.3	5.2	Zairaishu	30	4.5	5.4
	60	0.92	1.1		60	1.3	1.5

FATE OF RESIDUES DURING PROCESSING

Cabbage

Four field trials were conducted with propamocarb hydrochloride in Germany with cabbage (Pollmann, 2002, C025591). The product was applied twice as a drench treatment (72.2 and 36.1 kg ai/ha 7–10 days before transplanting) with a further 2 foliar applications 14 ± 1 days after transplanting (2.17 kg and 4.33 kg ai/ha), which corresponds to approximately double the maximum label rate. Samples of whole head cabbage were taken 27–31 days after the last application.

The cabbage samples were processed to sauerkraut and cooked cabbage according to industrial processing procedures. In the procedure for sauerkraut, the cabbage heads were cut in an Alexanderwerk mill and compacted by hand into the fermentation jars and salt solution added. The jars were firmly closed so that lactic-acid fermentation would begin for a period of 3 weeks. After opening the jars the fermented sauerkraut was sieved in order to separate it from the sauerkraut juice. For pasteurisation the sauerkraut was put into glass bottles and the sauerkraut juice added and then heated up to 90 °C. For the cooked cabbage, each cabbage head was cut into 8 parts with further processing steps carried out using two parts from opposite sides of each head. The outer leaves of each cabbage head were removed. The stem was separated into inner and outer stalks and inner leaves. The inner leaves were cut and cooked until the cut cabbage was 'well done'.

Samples were analysed for residues of propamocarb, calculated as propamocarb hydrochloride, using a validated method (C015449). For this method, recoveries of propamocarb in spiked processed samples were between 89–106%. The LOQ was 0.01 mg/kg. The residue levels and the processing factor for each sample are shown on Table 47.

	Trial	1	Tria	12	Trial	3	Tria	14	
Matrix	Residue (mg/kg)	PF	Residue (mg/kg)	PF	Residue (mg/kg)	PF	Residue (mg/kg)	PF	PF (mean)
Cabbage	0.17	-	0.26	-	0.84	-	0.05	-	-
Processing of sauerkraut									
Outer Leaves	0.14	0.82	1.10	4.2	8.5	10.1	0.07	1.4	4.1
Cut Cabbage	0.04	0.24	0.02	0.08	0.04	0.05	0.05	1.00	0.34
Sauerkraut	0.04	0.24	0.01	0.04	0.04	0.05	0.05	1.00	0.33
Sauerkraut Juice	0.09	0.53	0.02	0.08	0.12	0.14	0.06	1.20	0.49
Pasteurised Sauerkraut	0.05	0.29	0.02	0.08	0.06	0.07	0.05	1.00	0.36
Pasteurised Sauerkraut Juice	0.10	0.59	0.05	0.19	0.06	0.07	0.04	0.80	0.41
Cooking process									
Outer Leaves	1.0	6.1	0.86	3.3	7.7	9.2	0.15	3.0	5.4
Inner Leaves	0.03	0.18	0.05	0.19	0.01	0.01	0.04	0.80	0.29
Stem (Inner & outer stalks)	0.09	0.53	0.02	0.08	0.61	0.73	0.03	0.60	0.48
Cooked Cabbage	0.03	0.18	0.04	0.15	0.03	0.04	0.05	1.00	0.34
Cooked Liquid	0.04	0.24	0.03	0.12	0.03	0.04	0.04	0.80	0.30

Table 47. Processing factors for propamocarb in cabbage processed products.

Potatoes

In one study conducted with potatoes in the USA propamocarb hydrochloride was applied five times as a foliar spray at a rate of 2.4 kg ai/ha ($2.5 \times \text{GAP}$) (Williams, 1996; A89423). The potatoes were processed into potato flakes, potato chips, wet peel, and dry peel or cleaned by hand, washed, washed and peeled and washed peel. Details of the processing procedures were not given in the report. Samples were analysed by validated methods, and no residues of propamocarb were found in any raw potato or processed product (LOQ of 0.05 mg/kg).

Tomatoes

Propamocarb was applied to tomato five times as a foliar spray at a rate of 6.62 kg ai/ha, corresponding to approximately 5 times the recommended label rate in the USA. Applications were made on a seven day interval and the tomatoes were harvested at normal maturity, 3 days after the last application (Singer, 1999; C002143).

Three sub-samples were taken from the field and processed individually into tomato purée and tomato paste using a procedure that simulates typical commercial practices. The tomatoes were washed twice while being conveyed by flumes and moving belts through flume washers and spray washers. The washed tomatoes were ground and crushed while heated to approximately 93 °C. The juice was passed through a 0.033-inch mesh screen to remove peel and seeds (wet pomace), which was weighed and discarded. The filtered juice was concentrated to puree in a vacuum evaporator. The juice was assayed for the natural tomato soluble solids (NTSS) and was concentrated until it contained 10-11% NTSS. The puree was mixed to homogeneity before a sample was taken for canning. The remainder was condensed further in a steam-jacketed kettle to tomato paste which contained 25-26% NTSS. After further heating, the samples taken for canning contained 29-31% NTSS.

Samples were analysed for residues of propamocarb using a validated analytical method (A85140). The mean recovery for propamocarb in the processed samples spiked at all fortification levels was 91% and the LOQ was 0.05 mg/kg. The level of residues in the samples and the calculated processing factor is shown in Table 49.

	Subsar	nple A	Subsar	nple B	Subsar	nple C	
Matrix	Residue	PF	Residue	PF	Residue	PF	PF
	(mg/kg)		(mg/kg)		(mg/kg)		(mean)
Tomato (RAC)	10.9	-	10.3	-	11.0	-	-
Tomato Purée	12.2	1.1	14.8	1.4	14.9	1.4	1.3
Tomato Paste	32.4	3.0	32.8	3.2	33.2	3.0	3.1

Table 48. Processing of tomatoes to tomato purée and paste.

RESIDUES IN FOOD IN COMMERCE AND AT CONSUMPTION

No monitoring data for propamocarb/propamocarb HCl on food commodities was submitted.

APPRAISAL

Propamocarb, a carbamate fungicide, was evaluated by JMPR three times in the 1980's and the last time in 2005, when an ADI of 0–0.4 mg/kg bw and an ARfD of 2 mg/kg bw were established. The residue evaluation of the compound was completed by the current Meeting within the periodic review program.

Data submitted by the manufacturers and evaluated at this Meeting include metabolism in animal and plant, degradation in soil, residues in succeeding crops, analytical methods, residue trials and

processing studies. The Government of Japan submitted GAP information and summary tables of residue trials.

Animal metabolism

A study was conducted with a <u>lactating cow</u> orally dosed twice daily for seven consecutive days at 11.5 mg/kg [¹⁴C]-propamocarb HCl equivalents in the diet (2.0 mg/kg bw/day). Over 70% of the administered dose was excreted in the urine and total radioactive residues (TRR) in tissues and bile accounted for 0.7% of the administered dose. Cumulative radioactivity recovered in the milk (0.599 mg/kg) accounted for 0.46% of the administered dose. The residues in the milk were always higher in the afternoon, with a mean of 0.054 ± 0.008 mg/kg propamocarb HCl eq (n = 7), and a maximum of 0.057 mg/kg on day 6 than in the morning (mean: 0.035 ± 0.003 mg/kg propamocarb HCl eq. (n = 7) and the maximum of 0.037 mg/kg on day 5). No residues (< 0.01 mg/kg) were found in milk fat. TRR was higher in liver (0.415 mg/kg) and muscle contained < 0.02 mg/kg.

Propamocarb represented 24.6% TRR in muscle (0.005 mg/kg), 23.5% in kidney (0.025 mg/kg), 6.2% TRR in liver (0.026 mg/kg) and 6.0% TRR in milk (0.003 mg/kg). The compound was either oxidised to form propyl propamocarb N-oxide (Met IV), dimethylated at the di-methyl amine group or hydroxylated at the propyl side chain following cyclisation to form propamocarb oxazolidin-2-one (Met VI). Met IV was the main metabolite found in kidney, liver and muscle (40–49% TRR or 0.008 to 0.203 mg/kg), Met VI was mainly found in urine (59% TRR). 2-hydroxy propamocarb was the main metabolite in milk, with 37.5% TRR (0.022 mg/kg). N-desmethyl propamocarb metabolite was found in milk, muscle and faeces (< 10% TRR), but not in kidney and liver.

Rat metabolism studies provided to the Meeting and extensively reviewed by the 2005 JMPR has shown a pathway and metabolism profile similar to that found in cow.

Plant metabolism

In one study conducted in the USA in 1996 on spinach, 14C-propamocarb was applied twice as a foliar spray at 2.53 kg ai/ha. Samples were harvested immediately following the first application (day 0), just prior to the second application (day 20) and three days after the second application (day 23). Samples were extracted with acidic methanol and extracted filter cake re-extracted with acidic methanol in a Soxhlet system. On average, TRR ranged from 203 to 236 mg/kg propamocarb HCl equivalents, with over 97% TRR being extracted. Propamocarb was the main residue found in the sample extracts, with over 75% TRR. Metabolites IV, VI, 2-hydroxyl and N-desmethyl propamocarb corresponded to < 7.5% TRR

In one study conducted in UK in 2002 in <u>lettuce</u>, [¹⁴C]-propamocarb was applied three times to soil at 72.2 kg ai/ha followed by three foliar applications in a greenhouse at 1.08 kg ai/ha. Plants were harvested 38 days after final soil treatment and 21 days after final foliar treatment. Samples were extracted sequentially with methanol and water and the remained plant residues re-extracted by refluxing with 2M HCl and 2M NaOH. TRR in the samples harvested after soil applications was 8.2 mg/kg propamocarb HCl eq., of which only 2.8% TRR (0.23 mg/kg) was the parent compound. Most of the residues (54.4% TRR) was found in an unidentified polar region. Samples harvested 21 days after the foliar treatments had a TRR of 10.7 mg/kg, of which 91% was extracted with methanol and 0.2% remained unextracted. About 90% of the radioactivity found in the methanol and water extracts was identified as propamocarb and three unknown regions accounted each for < 4% TRR. The presence of radioactive residues in the control samples (0.35 mg/kg) suggests the incorporation of volatile radioactive products, probably ¹⁴CO₂ into the structure of the plant.

Three metabolism studies conducted with <u>potato</u> were submitted to the Meeting. In two greenhouse studies conducted in Germany in 1989/1994, plants were treated three times by foliar application, at 2.45 kg ai/ha and potato tubers harvested approximately 6 weeks after the final treatment. In the first study, TRR present in the samples corresponded, on average, to 0.82 mg/kg propamocarb HCl

equivalents, of which 45.5% was extracted with acidic methanol. The ¹⁴C residue present was equally distributed between peel and flesh. Propamocarb represented 49.6% TRR, partitioning mainly in the methanol fraction. One metabolite, representing 8.6% TRR or 0.07 mg/kg, had the same chromatographic behaviour as propyl-propamocarb-N-oxide (Met IV). In the second study, 90% of the radiolabelled material was recovered after acidic methanol or acetonitrile extraction followed by alkaline and acid hydrolysis of the remaining material. About 32% TRR was present in the organic extract and 6.6% was unextracted. HPLC analysis using normal and reverse phase showed about 7% TRR of the sample being identified as propamocarb and approximately 50% TRR as d-glucose.

In a field study conducted with potato in UK in 2001, [¹⁴C]-Propamocarb was applied six times as a foliar spray at 2.2 kg ai/ha and at 10.8 kg ai/ha. Samples were harvested approximately 7 days after the last treatment and extracted with methanol, water and refluxed in HCl and NaOH base. At the lower spray rate, TRR corresponded to 0.112 mg/kg propamocarb HCl eq. in tuber, 0.05 mg/kg in peel, 0.02 mg/kg in flesh and 85.9 mg/kg in foliage. Values for samples from the higher rate ranged from 0.05 to 476 mg/kg. Unextracted residues ranged from 4.8 to 12.2% TRR. Chromatographic and MS analysis of extracts from the lower rate treatment showed < 2% TRR as propamocarb in tuber and 28.6% TRR in foliage. Residues were mainly found in an unidentified chromatographic region (77.4 and 30% TRR in tuber and foliage). Three metabolites were tentatively identified in both samples: hydroxypropyl propamocarb (0.5% TRR in the tuber), N-desmethyl propamocarb (only detected in foliage at 5.7% TRR) and propyl propamocarb N-oxide (Met IV), present at 3.2% TRR in the tuber (0.004 mg/kg). No unchanged propamocarb was released from the foliage water extract from the higher rate treatment after acid, base and enzyme treatment

In a greenhouse study conducted in Germany in 1998, <u>cucumbers</u> were grown in soil treated once with [¹⁴C]-propamocarb HCl applied at 2.9 kg ai/ha (11.8 mg ai/plant) and harvested at 30 days post treatment. Hydroculture-grown cucumbers were treated once at a rate of 53.4 mg ai/plant and sampled with a PHI of 21 days. Samples were extracted using maceration and soxhlet with acidic methanol. Propamocarb residues represented 19.3% TRR in cucumber extracts from the soil treatment and 58.4% TRR in hydroponic treatment. Unextracted residues represented, on average, 6.5% TRR. Polar metabolites represented 59.2 and 32.1% TRR, respectively and the remaining ¹⁴C residues detected were incorporated into natural products.

In one greenhouse study conducted with <u>tomato</u> in UK in 2001, [¹⁴C]-Propamocarb was applied four times to soil at 0.007 (1×) or 0.036 kg ai/ha (5×) and as a single foliar treatment at 2.2 kg ai/ha. Samples were extracted by maceration with methanol and water, with further acid and basic extraction as necessary. Tomato samples from soil treatments harvested at 14 to 35 days PHI showed, on average, 64.3% TRR present in the methanol extract. From 46.5 to 85.7% TRR of the foliar treated samples harvested after 7 to 28 days were found in the methanol extracts. Propamocarb was not detected in the 14 days 1× soil treated sample, but was the major component of the 7 days foliar treated tomato sample (75.2% TRR; 0.065 mg/kg). The appearance of residues in the control plants, an unknown region observed also in chromatograms of treated plants, suggest the incorporation of volatile ¹⁴C into plant natural products.

In summary, in spinach, lettuce and tomato treated with propamocarb as a foliar spray, the parent compound was the main residue (> 70% TRR). Lettuce, cucumber and tomato grown on treated soil showed < 20% TRR as propamocarb, but the majority of the radioactivity found was unidentified polar compounds. The parent propamocarb amounted to 1.9 to 49.6% TRR in potato plants sprayed with propamocarb. In all studies, there was evidence of volatile ¹⁴C incorporation into plant material. Results from the spinach and potato studies showed that metabolites are formed by hydroxylation of the terminal propyl chain, N-demethylation and N-oxidation of the parent molecule. No metabolites were found in the samples in larger amounts than the 5% TRR.

Rotational crops

In a confined rotational crop study, bare soil was treated at approximately 6 kg ai/ha, representing 1.2 times the annual maximum application rate for propamocarb. Leafy lettuce, radish and wheat were planted 30 days, 120 days and 365 days after treatment. In crops planted in the 30 day aged soil, total residues ranged from 0.36 (radish roots) to 2.33 mg/kg (wheat straw), and declined sharply in crops planted in soil aged 120 days and 365 days to a maximum of 0.09 mg/kg propamocarb HCl eq. Propamocarb was found in all acidic methanol sample extracts from the 30 day aged soil and was the major component (15.4% TRR in wheat straw to 67.4% TRR in radish tops), except for wheat grain, where the oxazolidine metabolite (Met VI) represented 19.9% TRR. 2-hydroxy propamocarb, N-oxide (Met IV) and desmethyl propamocarb (wheat only) were not present in any sample at levels < 10% TRR. The remainder residue was a complex mixture of highly polar components. Residues released after acid and base hydrolysis (< 10% TRR) indicated a similar pattern of metabolites.

In rotational field studies conducted in 10 American states (11 trials) in 1997, four applications at 1.68 kg ai/ha of propamocarb were made to soil with a five day interval. Wheat, sugar beets, table beets, dry beans and soybeans were planted 30, 60 or 365 days after the final soil treatment. Samples of wheat grain, forage, hay and straw, soybean seed, forage and hay, beets root and tops, and dry bean were harvested at typical sampling times. Wheat was the only crop grown on 30 days aged soils which contained residues at or above LOQ. Therefore, only wheat samples were analysed from all crops grown on 60 days aged soil.

As samples from the 60 day aged soil were generally < LOQ (0.05 mg/kg), samples from the 365-day were not analysed. Residues were detected only in wheat hay and forage samples from the 30 day aged soil. Residues were in the range of 0.051 to 0.229 mg/kg or both hay and forage.

Environmental fate in soil

In five studies conducted from 1978 to 1986 with [¹⁴C]-propamocarb hydrochloride incubated under <u>aerobic</u> conditions at 15 or 25°C in loamy sand soil containing 200 mg/kg labelled compound, propamocarb degraded very rapidly with a half life (DT₅₀) ranging from 10 to 28 days. In three studies conducted at 10 or 20°C, clay loam, loamy silt, loamy sand and silty sand soils were incubated with propamocarb incorporated at the rates of 0.00361 or 3.61 kg ai/ha, for 120 days. Degradation of the parent compound was slower in a clay loam soil with a higher clay and organic carbon content, reaching 27.1% TRR at the end of the study at 20°C. Half life determined in the soils ranged from 10.9 days in loamy sand to 29.7 days in silty sand soil. Lower incubation temperature decreased the degradation rate of propamocarb in loamy silt soil with half lives of 11.7 and 25.3 days at 20°C and 10°C, respectively. The study using Borstel soil at 10°C indicated that the rate of degradation slowed with depth, with DT₅₀ values ranging from 73.7 days at 20 cm to 267 days at 90 cm, probably due to decreasing microbial activity and organic carbon content in deeper soil layers.

In a study conducted with 4 sandy loam soils and 2 clay loam soils incubated with 250mg/kg and 10 mg/kg [¹⁴C]-propamocarb HCl at 20 and 10 °C for 120 and 365 days, the majority of the radioactivity was assigned to propamocarb, decreasing to a maximum of 22.1% TRR in the soil with the lowest organic carbon and biomass content (sandy loam). This soil also had the highest half life among the soils (87.7 days) while for the others DT_{50} ranged from 14.1 to 42.2 days. Up to ten non-identified metabolites, none of them being present above 10% TRR, were found in the soil extracts from all the studies.

One study conducted in sterilized and non-sterilized German standard soil suggests that soil degradation of propamocarb is mediated by micro-organisms.

Degradation of ¹⁴C-propamocarb hydrochloride under <u>anaerobic</u> conditions was much slower than in an aerobic environment, with a half life in loamy sand soil at 25°C of 459 days. The half life of propamocarb in flooded sandy loam soil treated with 250 mg/kg or 10 mg/kg and kept under anaerobic conditions in the dark at 20°C was 308.2 and 65.7 days respectively. Propamocarb was quickly removed from the water phase (DT_{50} of 14.7 days at 250mg/kg rate). The major degradation product, which was not identified, reached a maximum of 6.6% TRR in the system after 365 days. In one study to investigate the <u>photolysis</u> of propamocarb on soil surface, the estimated half life under irradiated conditions was 35.4 days.

One <u>field dissipation</u> study was conducted in the USA with sandy loam and loamy sandy soils, bare or covered with turf grass, treated four times at 9.35 kg ai/ha rate. DT_{50} in bare soils, thatch and grass ranged from 13.2 to 23.7 days. No propamocarb residues (< 0.002 mg/kg) were detected during the four month period in bare soil layer deeper than 30 cm.

In summary, propamocarb is not expected to accumulate in soil. The compound degrades relatively fast to many unidentified products (each < 10% TRR) under aerobic conditions at 10–25°C, with half life ranging from 10 to 87.7 days, with the longer times occurring in soils with lower organic matter content, possibly due to lower microbial activity. Under anaerobic conditions, propamocarb degradation was very slow in bare or flooded soil ($DT_{50} > 300$ days). The compound is rapidly transferred from the water to the soil in a flooded system.

Analytical methods

The residue methods used to analyse propamocarb were validated using the free base or the hydrochloride. Plant materials can be extracted with 1% acetic acid and the compound quantified by HPLC/MS/MS (electrospray ionization) at m/z 102 and or 144. Avocado extracts requires a partition step with n-hexane to remove the fat before the chromatography. Some methods also include a C18 SPE clean up step of the acid extract before the final determination. These methods were validated in many laboratories, at levels from 0.01 mg/kg to 10 mg/kg, for lettuce, chicory witloof, peppers, potato, processed potato, spinach, leek, onion, cabbage, cauliflower, Brussels sprout, broccoli, cucumber, avocado, melon and wheat grain. In most cases mean recoveries were within the acceptable levels (70–120%) with a maximum CV of 20% (n = 2–9). LOQ was 0.01 mg/kg, as propamocarb (free base) or propamocarb HCl.

In some laboratories, plant materials were extracted with acidified methanol, the extract basified with NaOH solution and cleaned up with a series of extraction procedures with chloroform, acidic water and di-isopropyl ether. The free base formed was quantified by GC/N/FID or GC/MSD. This method was validated for many crops at levels from 0.05 to 10 mg/kg, with mean recovery and CV falling within the acceptable levels (n = 2-8). LOQ was either 0.05 or 0.1 mg/kg, as propamocarb HCl.

Propamocarb can be extracted from <u>animal products</u> with 1.0% HCl in methanol and residues analyzed by HPLC-MS/MS. Validation at fortification levels of 0.01 mg/kg (LOQ) and 0.10 mg/kg, as propamocarb (free base), for animal tissues, milk and eggs gave recoveries from 83 to 101% and CV < 20% (n = 5).

Residues of propamocarb hydrochloride can be extracted from <u>soil</u> using HCl or acidified methanol, followed by a sequence of clean-up steps of the extract (chloroform/1N HCl/di-isopropyl ether) and the free base determined by GC/N/FID or GC/MSD. The method was successfully validated from 0.026 to 50 mg/kg in four different studies. In another method, propamocarb was extracted with HCl, the extract was cleaned-up on a C18 column, the final extract was basified with ammonia solution and the free base was determined by LC-MS/MS. LOQ was 0.02 mg/kg, with a mean recovery of 89% and CV of 8% (n = 5).

Stability of pesticide residues in stored analytical samples

Propamocarb residues are stable under frozen conditions, up to 26 months of storage in tomato samples fortified at 0.5 mg/kg (> 75% remained). At 5 mg/kg level, the average residue was 67% after 14.5 months of storage. Lettuce samples fortified at 0.5 and 5.0 mg/kg and stored for 14 were stable under frozen conditions (over 85% of the residues remained).

Residue definition

Metabolism studies conducted in spinach, lettuce and tomato treated with propamocarb as a foliar spray have shown that the parent compound was the main residue (> 70% TRR). Lettuce, cucumber and tomato grown on treated soil and potato samples after foliar treatment showed < 50% TRR as propamocarb. In these cases, the majority of the radioactivity (> 50% TRR) was present as unidentified polar metabolites, probably from ¹⁴C incorporation into plant material, as d-glucose.

As propamocarb was the major compound present in treated plants, the Meeting agreed that the residue definition in plants for both enforcement and dietary intake purposes is propamocarb (free base).

Propamocarb represented a maximum of 24.6% TRR in cow tissues, while propyl propamocarb N-oxide (Met. IV) was the main compound detected in kidney, liver and muscle (40–49% TRR) and 2-hydroxy propamocarb was the main metabolite in milk (37.5% TRR). No metabolism study on poultry was provided.

Although propamocarb is not the main residue found in animal tissues and milk, no analytical method determining the metabolites is available that would be suitable for enforcement. No residues are expected in feed. The Meeting agreed that the residue definition for animal products for both enforcement and dietary intake purposes is propamocarb.

Propamocarb HCl has a log $P_{OW} < 0$ and animal metabolism studies have shown that it does not concentrate in fat. The Meeting concluded that propamocarb is not fat soluble.

Residues from supervised trials

Formulations containing propamocarb hydrochloride, alone or co-formulated with other active substances were used in the trials. When residues were reported in the studies as propamocarb hydrochloride, the values were multiplied by 0.84 and expressed as propamocarb.

Metabolism studies conducted in lettuce using soil treatment at a rate corresponding to 72.2 kg ai/ha have shown that < 3% TRR represented propamocarb residues in leaves after 38 days. The Meeting agreed that the seedbed drench application is not expected to contribute to final residues in crops treated with additional foliar sprays and or drip irrigation/soil drench. Consequently the trial, in which seedbed drench applications were made at higher or lower than GAP, was considered for MRL estimation.

No residue data was submitted for celery, beetroot, Brussels sprouts and strawberry. The Meeting agreed to withdraw the previous recommendations for these crops

Onion

In Europe, propamocarb is registered for use on onions in Poland (PHI of 7 days), Sweden (PHI of 30 days) and UK (PHI of 133 days). In seven trials conducted in France, Germany, the Netherlands, Spain and UK, propamocarb was applied four times at rates from 0.75–2.9 kg ai/ha and samples collected at 0 and/or 14 days. Residues, as propamocarb, ranged from < 0.008 to 0.29 mg/kg.

As no trials were conducted according to GAP, the Meeting did not recommend a maximum residue level for propamocarb in onions.

Cabbage

Propamocarb is registered to be used in Europe as a foliar application (Germany), as a seedbed or soil drench (Greece, Spain and UK) or both treatments (Italy and Netherlands). In Italy, GAP is 2 applications at 16 kg ai/ha seedbed drench applications and $3 \times 1.1-2.2$ kg ai/ha foliar treatment, with a PHI of 20 days.

Seventeen trials conducted in France, Germany, Italy and Spain in 2000/2001 using 72 and 36 kg ai/ha seedbed drench followed by two applications at 2.2–3.8 kg ai/ha foliar, head cabbage samples were collected from day 30 up to day 138. In one trial, samples harvested within 22 days PHI gave residues of 0.03 mg/kg.

As only one trial was conducted according to GAP, the Meeting could not recommend a maximum residue level for propamocarb in cabbage.

The Meeting also withdrew its previous recommendation for propamocarb in cabbage of 0.1 mg/kg.

Cauliflower

Propamocarb is registered to be used in Europe as a foliar application (e.g. Belgium and Germany), as a seedbed or soil drench (Greece) or both treatments (Italy, the Netherlands and UK). In Italy, GAP is 2×16 kg ai/ha seedbed drench up to $3 \times 1.1-2.2$ kg ai/ha foliar, with a PHI of 20 days. In the Netherlands, GAP is 2×3.61 kg ai/ha seedbed drench and $2 \times 2.2-3.6$ kg ai/ha foliar, with a PHI of 14 days.

Twenty three trials were conducted in France, Germany, Greece, Italy, Spain and UK from 2000 to 2002 using 72.2 and 36.1 kg ai/ha seedbed drench followed by $2 \times 2.2-3.8$ kg ai/ha foliar. In four trials, residues in cauliflower heads at 14 or 21 days PHI were 0.008, <u>0.02</u>, <u>0.05</u> and 0.09 mg/kg. In the other trials samples harvested 30 to 138 days after the last application gave residues ranging from < 0.008 to 0.02 mg/kg.

The Meeting confirms the previous recommendation of a maximum residue level of 0.2 mg/kg for propamocarb in cauliflower and also recommends a STMR of 0.035 mg/kg and a HR of 0.09 mg/kg.

Fruiting vegetables, cucurbits

Cucumber

Thirty seven trials were conducted with propamocarb in cucumber in Europe and the USA from 1991 to 2004. In Europe, propamocarb is registered to be used as a seed treatment, soil treatment, within irrigation and/or foliar treatment.

In Spain, one label allows one seedbed drench treatment at 14.4–21.7 kg ai/ha, two soil drench treatments at 0.15 to 0.50 kg ai/hL, one treatment through dripper equipment at 1.4–2.1 kg ai/ha and two foliar treatments at rates of 0.144–0.22 kg ai/hL with a 3 day PHI (F/GH). Five trials were conducted in France, Greece, Italy and Spain using two seedbed drench applications at 72/36 kg ai/ha, followed by one drip irrigation treatment at 1.7–3 kg ai/ha, two spray applications at 1.7–3 kg ai/ha (0.36–0.6 kg ai/hL) and another drip irrigation treatment at the same previously applied rate. Nine trials were conducted in Germany and Spain using one seedbed drench (29 kg ai/ha), two soil drenches (1.7–2.9 kg ai/ha, up to 1.5 kg ai/hL), two spray applications (1.7–3.2 kg ai/ha, approximately 0.5 kg ai/hL) and two more soil drench application at the same rate as previously applied. Four trials used seedbed drench (16 kg ai/ha) and drip irrigation application (1.5–2.7 kg ai/ha). These 18 trials are within the Spanish GAP giving residues within 3 days PHI of 0.40, 0.54, 0.59, 0.60, 0.70, 0.80 (2), 0.83, 1.0 (4), 1.3, 1.4 (2), 1.7, 1.8 and 4.8 mg/kg.

In Germany, propamocarb can be used as a foliar application at 4×2.2 kg ai/ha. In eight trials conducted in the country in 1991/1992, within GAP, residues at 4 days PHI were 0.60, 0.68, 0.90 (3), 1.0 and 1.3 mg/kg.

Four trials using drench/drip irrigation treatment conducted in Germany, the Netherlands and Spain did not match any European GAP.

In the USA, propamocarb can be used as a foliar application at 5×1.0 kg ai/ha. In seven trials conducted in that country in 1997, according to GAP, residues at 2 days PHI were 0.26, 0.29, 0.32, 0.61, 0.62, 0.69 and 0.75 mg/kg.

In four trials conducted in Japan according to GAP, residues at 21 days were 0.34, 0.37, 0.39 and 0.42 mg/kg. These trials could not be considered by the Meeting as only a summary data was provided.

Residues from 33 trials conducted according to GAP in Europe and USA in cucumber gave residues within the same range and can be combined as 0.26, 0.29, 0.32, 0.40, 0.54 (2), 0.59, 0.60 (2), 0.61, 0.62, 0.68, 0.69, 0.70, 0.75, 0.80 (2), 0.83, 0.90 (3), 1.0 (5), 1.3 (2), 1.4 (2), 1.7, 1.8 and 4.8 mg/kg.

Melons

A total of 48 trials were conducted with propamocarb in melons in Europe, where the compound is registered in many countries. In Spain, the product can be applied up to four times as a seedbed drench at 15.9 kg ai/ha and as a drip irrigation treatment at 1.1-1.6 kg ai/ha with a PHI of 14 days. In nine trials conducted in Germany, Italy, Portugal and Spain from 2001–2004 conforming to Spanish GAP (two seedbed drench application), propamocarb residues in fruit were < 0.008 (3), 0.04, 0.12, 0.21, 0.45, 1.0 and 1.4 mg/kg. In four trials, melon pulp was also analysed, giving residues of 0.06, 0.08, 0.17 and 0.53 mg/kg.

In Italy, the product can be used as a seedbed incorporation after drilling $(2 \times 57.8-86.6 \text{ kg ai/ha})$ and as a foliar treatment $(2 \times 1.1-2.2 \text{ kg ai/ha})$ and a PHI of 20 days. In 13 trials conducted in France, Italy, Greece and Spain in 2000/2001 at $2 \times 20-24$ kg ai/ha (seedbed drench) followed by two foliar applications at 2–2.2 kg ai/ha, residues in fruit 20 days after treatment were 0.04, 0.07, 0.08 (2), 0.17 (3), 0.25, 0.3, 0.59, 0.67 (2) and 2.2 mg/kg. Residues in melon pulp were < 0.01, 0.01 (3), 0.02 (5), 0.03 (2), 0.08 and 0.17 mg/kg. As the seedbed drench application is unlikely to contribute significantly to the final residues after the foliar application, these trials can be considered to be within the Italian GAP. In nine other trials conducted at the same rate, samples harvested up to 14 days after the last application gave residues in the fruit ranging from 0.10 to 0.90 mg/kg.

In Germany, propamocarb can be used up to four times as a foliar application in the field at 2.2 kg ai/ha and a PHI of 4 days. In France, it can be applied up to six times at 1.1 kg ai/ha with a 3 day PHI. Seventeen trials conducted at 3 to 5 applications at 1.1 or 2.2 kg ai/ha can be considered as being within German or French GAP, giving residues in the fruit at a 3 day PHI of 0.10, 0.11, 0.12, 0.14, 0.23, 0.24, 0.28, 0.38 (2), 0.40, 0.44 (2), 0.57, 0.65, 0.92 and 1.1 mg/kg. Melon pulp was analyzed in 15 trials, giving residues of < 0.04 (5), 0.04, < 0.08 (6), 0.07, 0.13 and 0.21 mg/kg.

In seven trials conducted with propamocarb in <u>cantaloupe</u> in the USA in 1997 according to GAP (five foliar applications at 1 kg ai/ha), propamocarb residues at a two day PHI were 0.29 (2), 0.34, <u>0.44</u>, 0.66, 0.77, and 1.4 mg/kg.

Residues in melon fruit from 39 trials conducted in Europe and in seven trials conducted on cantaloupe in the USA according to GAP can be combined as < 0.008 (3), 0.04 (2), 0.07, 0.08 (2), 0.10, 0.11, 0.12 (2), 0.14, 0.17 (3), 0.21, 0.23, 0.24, 0.25, 0.28, 0.29 (2), 0.34 (2), 0.38 (2), 0.40, 0.44 (3), 0.45, 0.49, 0.57, 0.59, 0.65, 0.66, 0.67 (2), 0.77, 0.92, 1.0, 1.1, 1.4, 1.42 and 2.2 mg/kg.

Residues in melon pulp from 32 trials were < 0.01, 0.01 (3), 0.02 (5), 0.03 (2), < 0.04 (5), 0.04, 0.06, 0.07, < 0.08 (6), 0.08 (2), 0.13, 0.17(2), 0.21 and 0.53 mg/kg.

Summer squash

In six trials conducted with propamocarb in summer squash in the USA in 1997 according to GAP (five foliar applications at 1 kg ai/ha), residues of propamocarb at a 2 day PHI were, 0.37, 0.43, 0.49, 0.64, 0.99 and 1.1 mg/kg.

In the USA and in some European countries, GAP for propamocarb is for the crop group cucurbits. The Meeting, therefore, agreed to combine the residue population of cucumber, melons and summer squash from 85 trials conducted in Europe and USA to make recommendations for the crop group of fruiting vegetables, cucurbits. The residues were, in rank order: < 0.008 (3), 0.04 (2), 0.07, 0.08 (2), 0.1, 0.11, 0.12 (2), 0.14, 0.17 (3), 0.21, 0.23, 0.24, 0.25, 0.26, 0.28, 0.29 (3), 0.32, 0.34 (2), 0.37, 0.38 (2), 0.4 (2), 0.43, 0.44 (3), 0.45, 0.49 (2), 0.54 (2), 0.57, 0.59 (2), 0.60 (2), 0.61, 0.62, 0.64, 0.65, 0.66, 0.67 (2), 0.68, 0.69, 0.7, 0.75, 0.77, 0.8 (2), 0.83, 0.90 (3), 0.92, 0.99, 1.0 (6), 1.1 (2), 1.3 (2), 1.4 (3), 1.42, 1.7, 1.8, 2.2 and 4.8 mg/kg.

The Meeting recommends a maximum residue level of 5 mg/kg for propamocarb in fruiting vegetables, cucurbits.

The Meeting recommends a STMR of 0.59 mg/kg and a HR of 4.8 mg/kg for propamocarb in fruiting vegetables, cucurbits, except melons and watermelons.

Based on the residue data on melon pulp, the Meeting recommends a STMR of 0.04 mg/kg and a HR of 0.53 mg/kg for melons and watermelons.

The Meeting withdraws its previous recommendation for propamocarb in cucumber of 2 mg/kg.

Peppers, sweet

Thirty five trials were conducted with propamocarb hydrochloride in sweet pepper in Europe and the USA from 1997 to 2004 using drench, drip irrigation or foliar treatment.

Propamocarb is registered in Europe and the USA for drench, drip and/or foliar treatment. In Spain, the product can be applied twice as a seedbed treatment after sowing (15.9 kg ai/ha) and up to four times as a drip irrigation treatment (1.1–1.6 kg ai/ha) with a 3 day PHI. In the Netherlands, up to three seedbed drench applications at 36.1 kg ai/ha and up to 5 drench/drip applications at 1.0/0.72 kg ai/ha are allowed, with a three day PHI.

In 18 trials conducted in greenhouses in Belgium, Italy, the Netherlands, Spain and Greece, using two seedbed applications followed by four soil drip or drench applications according to Spanish GAP, residues at three days PHI were < 0.008 (8), 0.008 (2), 0.02, 0.03, 0.06, 0.08, 0.10, 0.14, 0.15, 0.16 mg/kg as propamocarb. In three trials conducted at higher rates, residues at three days PHI ranged from < 0.008 to 0.05 mg/kg.

In the USA, propamocarb can be used in peppers as foliar application at 5×1.26 kg ai/ha with a 5 day PHI. In 10 trials conducted in that country according to GAP, residues were 0.07, 0.16, 0.20, 0.23, 0.26, 0.27, 0.32, 0.62, 0.98, 1.8 mg/kg. These trials gave residues at a higher range than trials conducted in Europe using drench/drip applications and the two residue population could not be combined.

The Meeting agreed to recommend a maximum residue level, based on USA trials, of 3 mg/kg, a STMR of 0.265 mg/kg and a HR of 1.8 mg/kg for propamocarb in sweet peppers.

The Meeting withdraws its previous recommendation for propamocarb in sweet peppers of 1 mg/kg.

Eggplant

Propamocarb is not registered for use in eggplant in the USA. In Europe, the compound has the same GAP as for sweet peppers. The Meeting agreed to use the residue trial data for sweet peppers in Europe to recommend a maximum residue level of 0.3 mg/kg, a STMR of 0.008 mg/kg and a HR of 0.16 mg/kg for propamocarb in eggplant.

Tomato

Forty five trials were conducted with propamocarb hydrochloride in tomato in Europe and the USA from 1997 to 2004.

Propamocarb is registered in Europe and USA for drench, drip and/or foliar treatment. In Spain, the product can be applied twice as a seedbed treatment after sowing (15.9 kg ai/ha) and up to four times as a drip irrigation treatment (1.1–1.6 kg ai/ha) with a 3 day PHI. In the Netherlands, up to three seedbed drench applications at 36.1 kg ai/ha and up to five drench/drip applications at 1.0/0.72 kg ai/ha are allowed, with a three day PHI.

In two trials conducted in greenhouses in Spain and Germany using seedbed drench followed by drench or dripping according to Spanish GAP, residues at three days PHI were < 0.008 and 0.08 mg/kg. In 16 trials conducted at higher GAP rates or number of application gave residues from < 0.008 to 0.05 mg/kg three days after the last application. In 9 trials conducted using drench treatment (1 to 2×15.9 –72.2 kg ai/ha) followed by drench/dripping irrigation (2 to 4 treatments at 0.6–4.3 kg ai/ha), residues after three days ranged from < 0.008 to 0.07 mg/kg.

In the USA, propamocarb can be used in tomato as foliar application at 5×1.3 kg ai/ha and 5 days PHI. In 18 trials conducted in the country according to GAP, residues were 0.14, 0.16, 0.23, 0.25, 0.34, 0.37, 0.38, 0.40, 0.51, 0.52 0.60, 0.61 (2), 0.65, 0.68, 0.86, 0.94 and 1.4 mg/kg. Clearly, these trials gave residues at a higher range than the two trials conducted in Europe using drench/drip application and the two residue populations cannot be combined.

The Meeting agreed to recommend maximum residue level based on USA trials of 2 mg/kg, a STMR of 0.515 mg/kg and a HR of 1.4 mg/kg for propamocarb in tomato.

The Meeting withdrew its previous recommendation for propamocarb in tomato of 1 mg/kg.

Lettuce

Propamocarb is registered in lettuce in Europe and the USA. Sixty eight trials were conducted in leaf and head lettuce as a drench and/or foliar spray in France (21), Germany (18), Greece (3), Italy (3), the Netherlands (2), Spain (7) and USA (14) between 1993 and 2002.

GAP in some countries in Europe include two seedbed drench (SD) and two foliar (F) treatments, the rates being 1.6 g ai/m² (16 kg ai/ha) (SD) /1.1–1.6 kg ai/ha (Field, F, and Greenhouse, GH) in Italy, with 14 days PHI. In 12 trials (F or GH) conducted in Germany, Greece, Italy, the Netherlands and Spain at Italian GAP, residues at 14 days PHI were 0.92, 1.8, 3.9, 4.0, 4.5, 7.1, 8.1, 9.4, 9.8, 10, 11 and 13 mg/kg. Thirty two field trials were conducted in France, Germany, Greece, Italy and Spain using 2 seedbed drench applications at 72.2 and 36.1 kg ai/ha and 2 foliar applications at 1.66 kg/kg ai/ha. Residues at 14 days PHI determined in 28 trials were 0.7, 1.0 (2), 1.9, 2.0, 2.8, 3.2, 3.3, 4.2, 4.4, 4.7, 6.0, 6.5, 7.4, 7.9, 8.1, 9.2, 13 (2), 14, 15, 16 (2), 17, 21, 29, 31 and 40, mg/kg. In other four trials samples were harvested only after 21 days.

In Belgium, Germany and UK (F/GH), only foliar treatment is recommended, with three applications at 1.1 to 1.4 kg ai/ha and 21 days PHI. In 10 greenhouse trials conducted in France within UK GAP residues at 21 days PHI were 1.2, 1.7, 4.9, 6.5, 14, 15, 20, 24, 39 and 40 mg/kg; In other six trials with four applications, residues ranged from 14 to 40 mg/kg.

The 50 residue trials conducted with propamocarb in Europe can be combined as 0.7, 0.92, 1.0 (2), 1.2, 1.7, 1.8, 1.9, 2.0, 2.8, 3.2, 3.3, 3.9, 4.0, 4.2, 4.4, 4.5, 4.7, 4.9, 6.0, 6.5 (2), 7.1, 7.4, 7.9, 8.1 (2), 9.2, 9.4, 9.8, 10, 11, 13 (3), 14 (2), 15 (2), 16 (2), 17, 20, 21, 24, 29, 31, 39 and 40 (2) mg/kg.

GAP in the USA is four foliar applications at 1.68 kg ai/ha, two days PHI. In 14 trials conducted in the USA in leafy and head lettuce according to GAP, residues were 8.2, 9.7, 10, 11 (2), 17, 19, 31, 41 (2), 48, 51, 60 and 86 mg/kg. Residues in the head without the wrapper leaves of head lettuce ranged from 0.21 to 8.0 mg/kg.

In four trials conducted in Japan at GAP (3×1.28 kg ai/ha), residues at 14 days PHI were 0.28, 0.60, 1.6 and 1.8 mg/kg. These trials could not be considered by the Meeting as only summary data was provided.

The 64 European and USA trials can be combined to give one residue population as 0.7, 0.92, 1.0 (2), 1.2, 1.7, 1.8, 1.9, 2.0, 2.8, 3.2, 3.3, 3.9, 4.0, 4.2, 4.4, 4.5, 4.7, 4.9, 6.0, 6.5 (2), 7.1, 7.4, 7.9, 8.1 (2), 8.2, 9.2, 9.4, 9.7, <u>9.8</u>, <u>10</u> (2), 11 (3), 13 (3), 14 (2), 15 (2), 16 (2), 17 (2), 19, 20, 21, 24, 29, 31 (2), 39, 40 (2), 41 (2), 48, 51, 60 and 86 mg/kg.

The Meeting recommended a maximum residue level of 100 mg /kg, a STMR of 9.9 mg/kg and a HR of 86 mg/kg for propamocarb in lettuce, head and leaf.

The Meeting withdrew its previous recommendation for propamocarb in lettuce, head of 10 mg/kg.

Spinach

Propamocarb is registered in Italy as seed, soil and foliar treatments. As a foliar treatment, the label recommends up to three applications at 1.1-2.2 kg ai/ha with a 20 day PHI. Seven trials were conducted in Belgium, Germany, Italy and Spain three applications at 1.3-1.6 kg ai/ha. In four trials, samples were analysed at a 21 day PHI, giving residues of propamocarb of 0.41, <u>8.4</u>, <u>14</u> and 29 mg/kg.

The Meeting recommended a maximum residue level of 40 mg /kg, a STMR of 11.2 mg/kg and a HR of 29 mg/kg for propamocarb in spinach.

Potato

Thirty two trials were conducted with propamocarb HCl between 1990 and 2003 using foliar application in Europe and the USA. In one trial conducted in France and in 11 trials conducted in Germany according to German or UK GAP (6×0.94 –0.99 kg ai/ha) at a 7 day PHI the residues, as propamocarb, were < 0.01 (2), < 0.08 (8) and 0.17 (2) mg/kg. In two German trials, residues measured in peeled tuber gave residues of < 0.08 (2) mg/kg. Nineteen trials were conducted in the USA, 18 of those at GAP (5 applications at 1.0 kg ai/ha), giving residues at 14 days PHI of < 0.05 (16) and 0.05 (2) mg/kg, measured as propamocarb. One trial conducted at higher rate gave residues of < 0.05 mg/kg.

In summary, residues according to GAP, were < 0.01 (2), ≤ 0.05 (16), 0.05 (2), < 0.08 (8) and 0.17 (2) mg/kg, as propamocarb. The Meeting recommended a maximum residue level of 0.3 mg/kg, a STMR of 0.05 mg/kg and a HR of 0.17 mg/kg for propamocarb in potato.

Radish

In Europe, propamocarb is registered in radish in Germany and the Netherlands with a 14 day PHI. In six trials conducted in Germany using one seed treatment and one foliar treatment at GAP rate (7.22 g/kg seed/0.722 kg ai/ha), root samples were collected from day 21 to 48 days after the last application, giving residues up to 11 mg/kg as propamocarb. In one trial, samples were collected 14 days after the last application, giving residues of 0.33 mg/kg. In four trials conducted in the Netherlands using two foliar applications within the GAP rate (1.08 kg ai/ha) residues at 14 days were 0.27, 0.30, 0.36, 0.42 mg/kg as propamocarb. Two trials conducted at higher or lower rates gave residues within the same range. Residues from five trials conducted according to GAP were 0.27, 0.30, 0.33, 0.36, 0.42 mg/kg

The Meeting recommended a maximum residue level of 1 mg/kg, a STMR of 0.33 mg/kg and a HR of 0.42 mg/kg for propamocarb in radish.

The Meeting withdrew its previous recommendation for propamocarb in radish of 5 mg/kg.

Chicory

In France, propamocarb is approved for application to chicory by spraying onto roots at the start of forcing at 72.2 kg ai/ha with a PHI of 21 days. In five trials conducted according to GAP in France in

1998, residues in the leaves were 0.46, 0.50, <u>0.60</u>, 0.70 and 0.90 mg/kg as propamocarb. In five trials conducted in France, Germany and Netherlands at 106 kg ai/ha, residues in leaves at 21 days ranged from 0.41 to 3.6 mg/kg.

Propamocarb is also registered in France and Luxembourg to be used via a nutrient solution at 9 g/hL and 21 days PHI. In 10 trials conducted in France, Germany and Netherlands propamocarb was applied using a nutrient solution or irrigation system at 12.2 to 47.1 g/hL rate. Residues in leaves within 21 days PHI ranged from 0.03 to 0.35 mg/kg.

The Meeting recommended a maximum residue level of 2 mg /kg, a STMR of 0.60 mg/kg and a HR of 0.90 mg/kg for propamocarb in chicory.

Ginger

Results from four trials conducted at two sites in Japan with propamocarb HCl in ginger in 1986 were submitted to the Meeting as a summary table. GAP in Japan is up to five drench applications at 0.11-0.16 kg ai/hL with a 30 day PHI. The trials conducted at 3×0.213 kg ai/hL gave residues in the tubers at 30 days ranging from 0.64 to 4.5 mg/kg, as propamocarb.

As no trials were conducted according to GAP, the Meeting could not recommend a maximum residue level for propamocarb in ginger.

Fate of residues in processing

Four field trials were conducted in Germany with <u>cabbage</u> in 2001 with propamocarb hydrochloride applied twice as a drench treatment with a further two foliar applications at approximately double the maximum label rate. Samples of whole head cabbage were taken 27–31 days after the last application and processed to sauerkraut and cooked cabbage according to industrial processing procedures. Residues in cabbage head ranged from 0.05 to 0.84 mg/kg propamocarb hydrochloride. Residues decreased in sauerkraut and sauerkraut juice with mean/median processing factors (PF) of 0.33/0.15 and 0.49/0.33. PFs for the pasteurized products were 0.36/0.18 and 0.41/0.32, respectively. Residues also decreased in cooked cabbage, with a mean/median PF of 0.34/0.17.

In one study conducted with <u>potatoes</u> in the USA propamocarb hydrochloride was applied as a foliar spray at an exaggerated rate $(2.5 \times \text{GAP})$. Potatoes were processed into potato flakes, potato chips, wet peel, and dry peel. Details of the processing procedures were not given. No residues were found in any raw potato or processed product (< 0.05 mg/kg).

In one study conducted in <u>tomato</u> in the USA in 1996, propamocarb was applied five times as a foliar spray at an exaggerated rate ($5 \times GAP$ rate). Tomatoes were harvested at normal maturity three days after the last application and three sub-samples were taken to be processed individually into tomato purée and tomato paste using a procedure that simulates typical commercial practices. Residues in RAC ranged from 10.3 to 11 mg/kg, as propamocarb. Residues concentrated in purée and paste, with a mean/median PF of 1.3/1.4 and 3.1/3, respectively.

Based on the STMR of 0.515 mg/kg for propamocarb in tomato and the median PF, the Meeting recommends a STMR of 0.721 for propamocarb in tomato purée and a STMR of 1.54 for propamocarb in tomato paste.

Residues in animal commodities

Feeding studies

No animal feeding studies were provided to this Meeting. Data from one metabolism study conducted with a lactating cow dosed with propamocarb at 2 mg/kg bw/day for seven days have shown that propyl propamocarb N-oxide (Met. IV) was the main compound detected in kidney, liver and muscle
(40-49% TRR, up to 0.203 mg/kg propamocarb eq. in liver) and 2-hydroxy propamocarb was the main residue in milk (37.5% TRR or 0.022 mg/kg eq.). Propamocarb represented a maximum of 24.6% TRR, present at levels < 0.03 mg/kg.

Dietary burden of farm animals

From all the commodities for which propamocarb uses were considered by the JMPR, potato processed products are the only ones included in the animal diets according to the *FAO Manual* (FAO 2002). In two trials conducted with potato according to GAP, residues in washed peel, were < 0.08 mg/kg. As wet peel represents 75% and 40% of beef cattle and dairy cattle diets respectively, no animal dietary burden is expected from the uses of propamocarb considered by the JMPR.

Residues in animal commodities

The Meeting recommended a maximum residue level of 0.01(*) mg/kg and a STMR of 0 mg/kg for propamocarb in eggs, milks, edible offal (mammalian), poultry edible offal, poultry meat and meat (from mammals other than marine mammals). The Meeting also recommends an HR of 0.01 mg/kg for eggs, edible offal (mammalian), poultry edible offal, poultry meat and meat (from mammals other than marine mammals).

RECOMMENDATIONS

Residue definition for compliance with MRLs and estimation of dietary intake for plant commodities: *propamocarb*

		Recommended MRL (mg/kg)		STMR (P)	HR (P)
CCN	Commodity name	New	Previous	mg/kg	mg/kg
VB 0041	Cabbages, Head	W	0.1		
VB 0404	Cauliflower	0.2	0.2	0.035	0.09
VX 0624	Celery	W	0.2		
VS 0469	Chicory witloof (sprouts)	2		0.60	0.90
VC 0424	Cucumber	W	2		
VR 0574	Beetroot	W	0.2		
VB 0402	Brussels sprouts	W	1		
VC 0045	Fruiting vegetables, cucurbits	5			
	Fruiting vegetables, cucurbits, except melons, and watermelons			0.59	4.8
VL 0482	Lettuce, head	100	10	9.9	86
VL 0483	Lettuce, leaf	100	10	9.9	86
MO 0105	Edible offal (mammalians)	0.01*		0	0.01
VO0440	Eggplant	0.3		0.008	0.16
PE 0012	Eggs	0.01*		0	0.01
MM 0095	Meat (from mammals other that	0.01*		0	0.01

Summary of the recommendation for the MRL, STMR and HR for propamocarb.

Propamocarb

		Recommended MRL (mg/kg)		STMR (P)	HR (P)
CCN	Commodity name	New	Previous	mg/kg	mg/kg
	marine mammals)				
VC 0046	Melons, except watermelon			0.04	0.53
ML 0106	Milks	0.01*		0	
VO 0485	Peppers, sweet	3	1	0.265	1.8
VR 0589	Potato	0.3		0.05	0.17
PM 0111	Poultry, edible offal of	0.01*		0	0.01
PM 0110	Poultry meat	0.01*		0	0.01
VR 0494	Radish	1	5	0.33	0.42
VL 0502	Spinach	40		11.2	29
FB 0275	Strawberry	W	0.1		
VO 0448	Tomato	2	1	0.515	1.4
	Tomato purée			0.721	
	Tomato paste			1.54	
VC 0432	Watermelon			0.04	0.53

DIETARY RISK ASSESSMENT

Long-term intake

The ADI for propamocarb is 0-0.4 mg/kg bw. The International Estimated Daily Intake (IEDI) for propamocarb was estimated for the 13 GEMS/Food cluster diets using the STMR or STMR-P values estimated by the current Meeting for 11 plant commodities. The results are shown in Annex 3 of the 2006 JMPR Report. The IEDI ranged from 0 to 1% ADI. The Meeting concluded that the long-term intake of residues of propamocarb from uses that have been considered by the JMPR is unlikely to present a public health concern.

Short-term intake

The ARfD for propamocarb is 2 mg/kg bw. The International Estimated Short Term Intake (IESTI) for propamocarb was calculated for the plant commodities for which STMRs and HRs were estimated and for which consumption data were available. The results are shown in Annex 4 of the 2006 JMPR Report. The IESTI ranged from 0 to 40% ARfD for the general population and from 0 to 80% ARfD for children. In both populations, the highest intake came from the consumption of lettuce. The Meeting concluded that the short-term intake of residues of propamocarb from uses that have been considered by the JMPR is unlikely to present a public health concern.

REFERENCES

Author, Date, Document No, Title, Institute, Report Reference.

Balluff, M., 2001, C015423, Determination of residues of Propamocarb-HCI after application of AE B066752 00 SL67 A2 (containing 66.5% Propamocarb-HCI) in head winter lettuce at nine greenhouse sites in Northern and Southern Europe, 2000. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Balluff, M., 2001, C015426, Determination of residues of Propamocarb-HCI after application of AE B066752 00 SL67 A2 (containing 66.5% Propamocarb-HCI) in head summer lettuce at five greenhouse sites in Northern Europe, 2000. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Balluff, M., 2001, C015427, Determination of residues of Propamocarb-HCI after application of AE B066752 00 SL67 A2 (containing 66.5% Propamocarb-HCI) in tomato cultivated on rockwool at nine greenhouse sites in Northern and Southern Europe, 2000. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Balluff, M., 2001, C015428, Determination of residues of Propamocarb-HCI after application of AE B066752 00 SL67 A2 (containing 66.5% Propamocarb-HCI) in cauliflower at five field sites in Northern Europe, 2000. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Balluff, M., 2001, C015429, Determination of residues of Propamocarb-HCI after application of AE B066752 00 SL67 A2 (containing 66.5% Propamocarb-HCI) in cauliflower (protected) at five field sites in Southern Europe, 2000. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Balluff, M., 2001, C015430, Determination of residues of propamocarb-HCI after application of AE B066752 00 SL67 A2 (containing 66.5% propamocarb-HCI) in head cabbage at five field sites in Northern Europe, 2000. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Balluff, M., 2001, C015431, Determination of residues of Propamocarb-HCI after application of AE B066752 00 SL67 A2 (containing 66.5% Propamocarb-HCI) in head cabbage (protected) at five field sites in Southern Europe, 2000. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Balluff, M., 2001, C015432, Determination of residues of Propamocarb-HCI after application of AE B066752 00 SL67 A2 (containing 66.5% Propamocarb-HCI) in cucumber cultivated on rockwool at nine greenhouse sites in Northern and Southern Europe, 2000. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Balluff, M., 2001, C015572, Determination of residues of Propamocarb-HCI after application of AE B066752 00 SL67 A2 (containing 66.5% Propamocarb-HCI) in head lettuce at five field sites in Southern Europe, 2000. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Balluff, M., 2001, C015573, Determination of residues of Propamocarb-HCI after application of AE B066752 00 SL67 A2 (containing 66.5% Propamocarb-HCI) in tomatoes cultivated at five greenhouse sites in Southern Europe, 2000. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Balluff, M., 2001, C015577, Determination of residues of propamocarb and fosetyl after application of AE C640195 00 SL75 A1 (containing 74.8% propamocarb-fosetylate) in head lettuce at three field sites in Southern Europe, 2000. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Balluff, M., 2001, C015734, Determination of residues of Propamocarb and Fosetyl after application of AE C640195 00 SL75 A1 (containing 74.8% Propamocarb-fosetylate) in head summer lettuce at three greenhouse sites in Northern Europe, 2000. Aventis CropScience GmbH, Germany. Unpublished

Balluff, M., 2001, C016108, Determination of residues of Propamocarb-HCl after application of AE B066752 00 SL67 A2 (containing 66.5% Propamocarb-HCl) in cucumber cultivated at five greenhouse sites in Southern Europe, 2000. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Balluff, M., 2001, C016109, Determination of residues of Propamocarb-HCl after application of AE B066752 00 SL67 A2 (containing 66.5% Propamocarb-HCl) in honeydew melon at five greenhouse sites in Southern Europe, 2000. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Balluff, M., 2001, C016110, Determination of residues of Propamocarb-HCl after application of AE B066752 00 SL67 A2 (containing 66.5% Propamocarb-HCl) in sweet pepper cultivated at five greenhouse sites in Southern Europe, 2000. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Balluff, M., 2001, C017451, Determination of residues of Propamocarb-HCl after application of AE B066752 00 SL67 A2 (containing 66.5% Propamocarb-HCl) in honeydew melon at eight field sites in Northern and Southern Europe 2000. GAB Biotechnologie GmBH. Unpublished

Bertrand, N., Dang, B., 1999, B002740, At harvest Propamocarb derived residues in lettuce (head and leafy) following sequential applications of Banol (R) at the maximum proposed rate and the shortest proposed PHI, USA, 1997 (Amended report to Report Number AV-97R-01). Xenos Laboratories Inc. USA. Unpublished

Bertrand, N., Dang, B., 1999, B002741, At harvest Propamocarb hydrochloride derived residues in curcurbit vegetables following sequential applications of Tattoo C(R) at the maximum proposed rate and the shortest proposed PHI, USA, 1997 (Amended report to AV-97R-03). Xenos Laboratories Inc. USA. Unpublished

Bittner, P., Rexer, K., 1990, C003480, Determination of density Propamocarb hydrochloride technical concentrate 780 g/L. AE B066752 00 TK72 A112. Hoechst Schering AgrEvo GmbH, Entwicklung Pflanzenschutz Forschung Formulierung, Frankfurt am Main, Germany Unpublished

Brühl, R., 1979, A85471, Degradation of Propamocarb-Hydrochloride in a Californian loamy sand. Schering AG, Pflanzenschutz Entwicklung Rueckstandsanalytik und Stoffwechsel, Berlin, Germany. Unpublished

Brühl, R., 1979, A85478, Degradation of SN 66 752 in a loamy sand under anaerobic conditions. Schering AG, Pflanzenschutz Entwicklung, Rückstandanalytik und Stoffwechsel, Berlin, Germany. Unpublished

Brühl, R., Celorio, J., 1978, A85470, Degradation of SN 66 752 in a loamy sand. Schering AG, Pflanzenschutz Entwicklung, Rückstandanalytik und Stoffwechsel, Berlin, Germany. Unpublished

Brühl, R., Celorio, J., 1980, A85472, Degradation of Propamocarb hydrochloride in German standard soils 2.2 and 2.3 at 15 °C. Schering AG, Pflanzenschutz Entwicklung, Rückstandanalytik und Stoffwechsel, Berlin, Germany. Unpublished

Brühl, R., Celorio, J., 1980, A85473, Degradation of Propamocarb hydrochloride in a loamy sand. Schering AG, Pflanzenschutz Entwicklung, Rückstandanalytik und Stoffwechsel, Berlin, Germany. Unpublished

Brühl, R., Celorio, J., 1986, A85521, Degradation of Propamocarb hydrochloride in a loamy sand after repeated (twofold) application. Schering AG, Pflanzenschutz Environment, Product Safety and Registrations, Berlin, Germany. Unpublished

Cavaille, C., 2005, C047478, Determination of the residues of Fenamidone and Propamocarb hydrochloride in/on onion after spraying of AE B066752 03 SC40 A1 (450 SC) in the field in Germany, France, Netherlands and Great Britain. BCS SA, France. Unpublished

Chambers, J. G., Charter, G. E., Prangley, P. J., 1997, A84070, Propamocarb hydrochloride active ingredient analytical grade AE B066752: Validation of analytical method leeks, onions, brassicae, tomatoes, potatoes and melons; gas chromatography mass selective detection. AgrEvo UK Ltd., England. Unpublished

Charter, G. E., Prangley, P. J., 1997, A83662, Propamocarb hydrochloride; soluble concentrate 722 g/L; AE B066752 00 SL67 A2; melons; ai residues at harvest; France (South); 1995. AgrEvo UK Ltd. Unpublished

Class, T., 2002a, C029655, Residues at harvest in potato flakes, puree, crisp and fries; Chlorothalonil - Fenamidone (RPA407213) and RPA 405862 (metabolite) - Mancozeb and ETU (metabolite) - Propamocarb hydrochloride AE F028211 00 WG70 A101 (EXP10876A), AE B066752 01 SC63 A304, AE F028211 13 WG60 A102 (EXP10810A). PTRL Europe GmbH, Germany. Unpublished

Class, T., 2002b, C042835, Residues at harvest in potatoes European Union (Northern and Southern Zone) 2001, Mancozeb 70% WG, Propamocarb hydrochloride + Chlorothalonil 375 + 375 g/L SC, Fenamidone + Mancozeb 10% + 50% WG Codes: AE F028211 00 WG70 A101 (EXP10876A) AE B066752 01. PTRL Europe GmbH, Germany. Unpublished

Cole, M. G., 1998, A91233, Propamocarb-derived residues in potatoes following five applications of Tattoo C at the maximum proposed rate USA, 1996 Code: AE B066752 01 SC63 A301. AgrEvo USA Company. Unpublished

Daniel, L.E., Rupprecht, K., 2000, B002935, Propamocarb: Ruminant (cow) Metabolism, distribution and nature of the residues in milk and edible tissues (Amended Report Replacing AV97E521, Document A91204). AgrEvo USA Company. Unpublished

Diot R, Rosati, D., 2005, MR087/4, Modification M001 to the analytical method 00880 for the determination of residues of Propamocarb hydrochloride (AE B066752) in/on lettuce, chicory, whitloof, pepper, potato, spinach, leek, onion, cabbage, cauliflower, brussel sprouts, broccoli, cucumber, avocado, and wheat by. LC-MS/MS. BCS SA Lyon, France. Unpublished

Fent, G., Hein, W., 2001a, C012748, Degradation and metabolism of Propamocarb-HCl (AE B066752) in four different soils. Staatliche Lehr- und Forschungsanstalt Neustadt, Germany. Unpublished

Fent, G., Hein, W., 2001b, C012749, Degradation and metabolism of Propamocarb-HCl (AE B066752) in one soil at 10°C. Staatliche Lehr- und Forschungsanstalt Neustadt, Germany. Unpublished

Fent, G., Hein, W., 2001c, C012750, Degradation and metabolism of Propamocarb-HCl (AE B066752) in four Subsoil horizons of one soil. Staatliche Lehr- und Forschungsanstalt Neustadt, Germany. Unpublished

Feyerabend, M., Rupprecht, K.J., 1998, A85149, Metabolism of Propamocarb HCl in cucumber grown in soil and hydroculture. Hoechst Schering AgrEvo GmbH, Ecochemistry, Frankfurt am Main, Germany. Unpublished

Foertsch, A., 1991, A85140., The fate of Propamocarb HCl in potato tubers. Schering AG, Ecochemistry, Berlin, Germany . Unpublished

Foertsch, A., 1994, A85141, The fate of Propamocarb HCl in potato tubers. Addendum to report UPSR 14/91 (Doc. A85140). Schering AG, Ecochemistry, Berlin, Germany. Unpublished

Gateaud, L., Rosati, D., 2005, RA2709/03, Determination of the residues of Propamocarb and Fosetyl in / on chicory, witloof after spraying and apply through irrigation water of AE C640195 00 SL75 A1 (840 SL) in the greenhouse in Northern France and the Netherlands. Bayer CropScience, SA, Lyon, France. Unpublished

Gateaud, L., Rosati, D., 2005, RA2550/04, Determination of the residues of propamocarb and fosetyl in/on chicory, witloof and water after spraying of AE C640195 00 SL75 A1 (840 SL) in the greenhouse in France, Germany and the Netherlands. Bayer CropScience, SA, Lyon, France. Unpublished

Gateaud, L., Rosati, D., 2005, RA2551/04, Determination of the residues of propamocarb and fosetyl in/on chicory, witloof and water after apply through irrigation water of AE C640195 00 SL75 A1 (840 SL) in the greenhouse in Northern France, Netherlands and Germany. Bayer CropScience, SA, Lyon, France. Unpublished

Rosati, D., Gateaud, L., 2005, RA2552/04, Determination of the residues of propamocarb and fosetyl in/on cucumber and water after drench and drip irrigation of AE C640195 00 SL75 A1 (840 SL) in the greenhouse in Netherlands, Germany and Belgium. CropScience, SA, Lyon, France. Unpublished

Gateaud, L., Rosati, D., 2005, RA2560/04, Determination of the residues of propamocarb and fosetyl in/on tomato and water after drench and drip irrigation of AE C640195 00 SL75 A1 (840 SL) in the greenhouse in Germany, Italy, Belgium and Spain. Bayer CropScience, SA, Lyon, France. Unpublished

Gateaud, L., Rosati, D; Taraschewski, I., 2006, RA2554/04, Determination of the residues of propamocarb and fosetyl in/on melon after drench and drip irrigation of AE C640195 00 SL75 A1 (840 SL) in the greenhouse in Spain, Portugal and Italy. Bayer CropScience, AG, Monheim, Germany. Unpublished

Gehl, J., 2001, C024482, Residue behaviour in sweet pepper on rockwool, four sites, indoor, Europe, 2001. Propamocarbfosetylate water soluble concentrate (SL) 840 g/L. Code: AE C640195 00 SL75 A1. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Gehl, J., 2002, C020952, Propamocarb-HCl residue behaviour in melon, four sites, indoor, Europe, 2001 water soluble concentrate (SL) 722 g/L Code: AE B066752 00 SL67 A2. GAB Biotechnologie GmBH. Unpublished

Gehl, J., 2002, C020966, Propamocarb-HCl residue behaviour in melon, four sites, Europe, 2001 water soluble concentrate (SL) 722 g/L Code: AE B066752 00 SL67 A2. GAB Biotechnologie GmBH. Unpublished

Gehl, J., 2002, C021346, Residue behaviour in cucumber on Rockwool, four sites, indoor Europe, 200. Propamocarbfosetylate water soluble concentrate (SL) 840 g/L. Code: AE C640195 00 SL75 A1. GAB Biotechnologie GmBH. Unpublished

Gehl, J., 2002, C021852, Propamocarb-fosetylate residue behaviour in tomato on rockwool, four sites, indoor, Europe, 2001 Propamocarb-fosetylate water soluble concentrate (SL) 840 g/L Code: AE C640195 00 SL75A1. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Gehl, J., 2002, C022939, Propamocarb-HCl residue behaviour in head cabbage, four sites, Northern Europe, 2001 Propamocarb-HCl, water soluble concentrate (SL) 722 g/L Code: AE B066752 00 SL67 A2. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Gehl, J., 2002, C022951, Propamocarb-HCl residue behaviour in lettuce, five sites, Northern Europe, 2001 Propamocarb-HCl water soluble concentrate (SL) 722 g/L Code: AE B066752 00 SL67 A2. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Gehl, J., 2002, C022953, Propamocarb-HCl residue behaviour in head cabbage, four sites, Southern Europe, 2001 Propamocarb-HCl water soluble concentrate (SL) 722 g/L Code: AE B066752 00 SL67 A2. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Gehl, J., 2002, C023895, Propamocarb-HCl residue behaviour in cauliflower four sites, Northern Europe,2001 Propamocarb-HCl water soluble concentrate (SL, 722 g/L) Code: AE B066752 00 SL67 A2. GAB Biotechnologie GmBH. Unpublished

Gehl, J., 2002, C023899, Propamocarb-HCl residue behaviour in tomato five sites, Sourthern Europe,2001 Propamocarb-HCl water soluble concentrate (SL, 722 g/L) Code: AE B066752 00 SL67 A2. GAB Biotechnologie. Unpublished

Gehl, J., 2002, C024157, Propamocarb-HCl residue behaviour in head lettuce, four sites, Southern Europe, 2001 Propamocarb-HCl water soluble concentrate (SL) 722 g/L Code: AE B066752 00 SL67 A2. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Gehl, J., 2002, C024398, Propamocarb-fosetylate residue behaviour in chicory, five sites, Indoor Europe, 2001 Propamocarb-fosetylate water soluble concentrate (SL) 840 g/L. Code: AE C640195 00 SL75 A1. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Gehl, J., 2002, C024417, Residue behaviour in cauliflower, four sites Southern Europe, 2001 Propamocarb-HCl water soluble concentrate (SL, 722 g/L) Code: AE B066752 00 SL67 A2. Arbeitsgemeinsch GAB GmbH & IFU GmbH. Unpublished

Gehl, J., 2002, C024908, Residue behaviour in melon on Rockwool, four sites, indoor, Europe, 2001 Propamocarbfosetylate water soluble concentrate (SL) 840 g/L Code: AE C640195 00 SL75 A1. GAB Biotechnologie GmBH. Unpublished

Goodyear, A., 2001, CLE1669/3-D2149, (¹⁴C)-Propamocarb: Metabolism in tomatoes. Covance Laboratories Ltd. Harrogate, North Yorkshire, UK. Unpublished

Goodyear, A., 20024, CLE1669/6-D2149, (¹⁴C)-Propamocarb: Metabolism in lettuce. Covance Laboratories Ltd. Harrogate, North Yorkshire, UK. Unpublished

Goodyear, A., 2002b, CLE1669/5-D2149, (¹⁴C)-Propamocarb: Metabolism in potatoes. Covance Laboratories Ltd. Harrogate, North Yorkshire, UK. Unpublished

Hees, M., 2001, C016842, Decline of residues in protected sweet pepper on Rockwool, European Union (nothern zone) 2000, Propamocarb hydrochloride water soluble concentrate (SL) 722 g/L. Aventis CropScience GmbH, Germany. Unpublished

Hees, M., 2003, C035997, Residue behaviour in radish, indoor European Union (Northern zone) 2002 water soluble concentrate (SL) 840 g/L. Code: AE C640195 00 SL75 A103. BCS GmbH, Frankfurt, Germany. Unpublished

Howarth, R., Tremain, S.P., Bartlett, A. J., 1995, 722/015, Propamocarb HCl: Determination of vapour pressure. Safepharm Laboratories Ltd., Derby, UK.. Unpublished

Iwan, J., 1979, A85480, Metabolism of Propamocarb hydrochloride by soil microorganisms; Report of progress No. 1. Schering AG, Pflanzenschutz Entwicklung, Rückstandsanalytik und Stoffwechsel, Berlin, Germany. Unpublished

Iwan, J., 1980, A85481, Metabolism of Propamocarb hydrochloride by soil microorganisms. behaviour in sterilized and non-sterilized German standard soil 2.2; Report of progress No. 2. GenSchering AG, Pflanzenschutz Entwicklung, Rückstandsanalytik und Stoffwechsel, Berlin, Germany. Unpublished

Klehr, M., A85466, Photolysis experiments with Propamocarb HCl (SN 66 752) in heat sterilized aqueous solution. Schering AG, Allgemeine Physiko-chemie, Berlin, Germany. Unpublished

Klehr, M., A85564, Photolysis of Propamocarb HCl (SN 66 752) in aqueous solution . Schering AG, Allgemeine Physikochemie, Berlin, Germany. Unpublished

Klein, E.H.-J., 2003, C033717, Residues at harvest in lettuce, European Union (Northern zone) 2002 Propamocarb hydrochloride, AE B066752 watersoluble concentrate (SL) 66.5% w/w (= 722 g/L) Code: AE B066752 00 SL67 A219. BCS GmbH, Frankfurt, Germany. Unpublished

Klein, E.H.-J., 2003, C033812, Decline of residues in cauliflower European Union (Northern zone) 2002 Propamocarb hydrochloride, AE B066752 watersoluble concentrate (SL) 66.5% w/w (= 722 g/L) Code: AE B066752 00 SL67 A219. BCS GmbH, Frankfurt, Germany. Unpublished

Kley, C., 2001a, C012258, Dissipation rates of Propamocarb HCl in soil.Code: AE B066752, (Addendum to Study AGR 20 or Document N° C012748). Aventis CropScience, Environmental Risk Assessment, Frankfurt am Main, Germany. Unpublished

Kley, C., 2001b, C012259, Dissipation rates of Propamocarb HCl in soil .Code: AE B066752 (Addendum to Study AGR 21 or Document N° C012749). Aventis CropScience, Environmental Risk Assessment, Frankfurt am Main, Germany. Unpublished

Kley, C., 2001c, C012260, Code: AE B066752 (Addendum to Study AGR 22 or Document N° C012750). Aventis CropScience; Environmental Risk Assessment, Frankfurt am Main, Germany. Unpublished

Lehne, V., 1990, A89312., Propamocarb hydrochloride - Melting point. Schering AG, Wolfenbüttel, Germany. Unpublished

Leonard, M., Oden, K., 2001, B003424, Validation of an analytical method for the determination of residues of Propamocarb in products of animal origin: milk, egg, beef meat, kidney and liver. AE B039744 00 1C97 0001. Aventis CropScience RTP, NC, USA. Unpublished

Melrose, I, 2004, C042791, Determination of the residues of Fenamidone and Propamocarb in / on potato after spraying of AE B066752 03 SC40 A1 (450 SC) in Great Britain, Germany and France. Bayer SA France. Unpublished

Mende, P., 2001, C015449, Analytical method for determination of residues of Propamocarb free base (AE B039744) in plant material (method validation). Arbeitsgemeinschaft GAB Biotechnologie & IFU Umweltanalytik GmbH, Niefern-Öschelbronn, Germany. Unpublished

Mende, P., 2002, C023560, Validation of an analytical method for the determination of Propamocarb free base in soil. GAB Biotechnologie GmbH. Unpublished

Meyer, B.N., 2000, B002934, Uptake of [¹⁴C]-Propamocarb hydrochloride residues in soil by rotational crops under confined conditions (Amended Report Replacing Report AV96E518, Document A91264). Aventis CropScience, Environmental Chemistry Department, Pikeville, NorthCarolina, USA. Unpublished

Miklautz, H., 1990, A85057, The temperature dependence of the vapor pressure of Propamocarb HCl (ZK 66752). Schering AG, Berlin, Germany. Unpublished

Miklautz, H., 1991, A85060, The acid dissociation constant of ZK 66 752 (Propamocarb HCl).. Schering AG, Berlin, Germany. Unpublished

Moede, J., 1990, A85300, Stability of propamocarb x HCl in tomatoes during deep freeze. Schering AG, Berlin, Germany. Unpublished

Moede, J., 1991, A85563, Analytical Method for the determination of residues of Propamocarb x HCl in soil. Schering AG. Unpublished

Morley, T., Reynolds, C. M. M., J., 1997, A83866/ A84072/ C000632, [¹⁴C] Propamocarb hydrochloride toxicokinetic studies in the rat. Report + two amendments. AE B066752 00 1E72 0001. AgrEvo UK Ltd., Safety Evaluation, Chesterford Park, UK.. Unpublished

Muehlberger, B, 2001, C012642, AE B066752 partition coefficient, n-octanol / water, Propamocarb hydrochloride. AE B066752 00 1B97 0001. Aventis CropScience GmbH, Produktanalytik, Frankfurt am Main, Germany. Unpublished

Muehlberger, B., 2001, C012641, AE B066752 water solubility in the pH - range 1.6 - 9.6, Propamocarb hydrochloride. AE B066752 00 1B97 0001. Aventis CropScience GmbH, Produktanalytik, Frankfurt am Main,, Germany Unpublished

Muehlberger, B., 2004, C042353, Statement to the study PA01/009 - AE B066752 water solubility in the pH - range 1.6 - 9.6. AE B066752 00 1B97 0001 Propamocarb hydrochloride. Bayer CropScience GmbH, Produkt Technology Analytics, Frankfurt am Main, Germany . Unpublished

Muehlberger, B., Lemke, G., 2004, C044109., AE B066752: Propamocarb hydrochloride substance pure: Relative density . AE B066752 00 1B97 0001. Unpublished

Mueller, Th., 1990, A85046, Propamocarb hydrochloride - Solubility in organic solvents. Schering AG, Wolfenbüttel, Germany. Unpublished

Mullee, D.M., Bartlett, A. J., 1995, 722/014, Propamocarb HCI: Determination of photochemical degradation. Safepharm Laboratories Ltd., Derby, UK. Unpublished

O'Boyle, F., 1994, A85146/ A91169., Propamocarb HCl: clearance of a single oral dose from rat tissues + one amendment. Schering Agrochemicals Ltd., Safety Evaluation, Chesterford Park, UK. Unpublished

Perez, R. Perez, S., 2001, B003430, Independent Laboratory Validation of Aventis Method AV/01/01 Propamocarb: Analytical Method for the Determination of AE B039744 Residues in Animal Matrices Using LC/MS/MS. ADPEN Laboratories Inc., Florida, USA. Unpublished

Pigeon, O., 1999, RE11358, Determination of residues of Propamocarb in withoof after treatment with Proplant (Season 1998/99). Dep. De Phytopharmacie, Centre de Recherche Agronomique de Gembloux, France. Unpublished

Poerschke, R., 2001, C014007, The acid dissociation constant of AE B066752: Identity of the dissociated species. Aventis CropScience, Produktanalytik, Frankfurt am Main, Germany. Unpublished

Pollmann, B., 2002, C025591, Residue behaviour in head cabbage after processing of field samples to sauerkraut and cooked cabbage after application of Propamocarb-HCl water soluble concentrate (SL), 722 g/L Code: AE B066752 00 SL67 A2. GAB Biotechnologie GmbH. Unpublished

Renaud, D., 2004, C045318., Propamocarb hydrochloride: Statement on water solubility and its pH variation. AE B06675. Bayer CropScience GmbH, Lyon, France. Unpublished

Renaud, D., 2005, C046819, Propamocarb hydrochloride Henry's law constant calculation. AE B066752. Bayer CropScience, Lyon, France. Unpublished

Reynolds, C. M. M., 1994, A85148/A91170, Metabolism in the rat (according to EPA guidelines) Propamocarb hydrochloride. Report + one amendment. Generated by: AgrEvo UK Ltd., Toxicology, Chesterford Park, UK. Unpublished

Reynolds, C., 1994, A85144., Propamocarb HCl water soluble liquid 722 g/L Code: CP604: Absorption, distribution and elimination in the rat following single and repeated oral dosing and single intravenous dosing. Schering Agrochemicals Ltd., Safety Evaluation, Chesterford Park, UK. Unpublished

Rosati, D., 2005, C048490, Determination of the residues of Propamocarb and Fosetyl in/on pepper after drench application of AE C640195 00 SL75 A1 (840 SL) in the greenhouse in Netherlands, Italy, Spain and Greece. Bayer CropScience, SA, Lyon, France. Unpublished

Rosati, D.; Gateaud, L., 2005, RA2559/04, Determination of the residues of propamocarb and fosetyl in/on peppers and water after drench and drip irrigation of AE C640195 00 SL75 A1 (840 SL) in the greenhouse in Spain, Italy, Netherlands and Belgium. Bayer CropScience, SA, Lyon, France. Unpublished

Rosati, D.; Gateaud, L., 2005, RA2558/04, Determination of the residues of Propamocarb and Fosetyl in/on spinach after spraying of AE C640195 00 SL75 A1 (840 SL) in the field in Belgium and Germany. Unpublished

Rosati, D.; Helfrich, P.; Gateaud, L., 2005, RA2557/04, Determination of the Residues of Propamocarb and Fosetyl in/on Spinach after Spraying of AE C640195 00 SL75 A1 (840 SL) in the Field in Italy and Spain. Unpublished

Rosati, D.; Uceda, L., 2005, RA2619/03, Determination of the residues of propamocarb and fosetyl in / on spinach after spraying of AE C640195 00 SL75 A1 (840 SL) in the field in Germany. Bayer CropScience, SA, Lyon, France. Unpublished

Rosati, D.; Uceda, L., 2005, RA2712/03, Determination of the residues of Propamocarb and Fosetyl in / on lettuce after drench application and spray application of AE C640195 00 SL75 A1 (840 SL) in the greenhouse in the Netherlands, Germany, France and Italy. BCS Lyon, France. Unpublished

Rupprecht, K. J., Daniel, L. E., 2000, B002936, Metabolism of [¹⁴c]-Propamocarb hydrochloride in spinach (Amended Report Replacing AV97E519, Document A89868). Aventis CropScience, Environmental Chemistry Department, Pikeville, NorthCarolina, USA. Unpublished

Ryckel de, B., 2002, 20528, Solubility of Propamocarb HCl in organic solvents. Departement de Phytopharmacie, Gembloux, Belgium. Unpublished

Scheuermann, H.J., 1983, A85513, Analytical method for the determination of residues of Propamocarb-hydrochloride (SN 66 752) by Gas Chromatography in brussels sprouts, celery, cornsalad, cucumber, lettuce, radish, red beet roots, soil, small radish, spinach and water. Schering AG, Berlin, Germany. Unpublished

Schnöder, F., 2002a, 1669-007, (¹⁴C)-Propamocarb hydrochloride: Aerobic route and rate of soil degradation. Covance Laboratories Ltd. Harrogate, North Yorkshire, UK. Unpublished

Schnöder, F., 2002b, 1669-009, (¹⁴C)-Propamocarb hydrochloride: Anaerobic route and rate of soil degradation. Covance Laboratories Ltd. Harrogate, North Yorkshire, UK. Unpublished

Schnöder, F., 2003, 1760-1669-007, (¹⁴C)-Propamocarb hydrochloride: Aerobic route and rate of soil degradation (Addendum: identification of metabolites). Amendment to Report 1669-007. Covance Laboratories Ltd. Harrogate, North Yorkshire, UK. Unpublished

Schreuder, R., 1999, C004255, Determination of ai at a harvest study following 3 foliar applications on melon Netherlands 1997 European Union (Northern Zone) Propamocarb hydrochloride soluble concentrate (SL) 722 g/L Code: AE B066752 00 SL67 A203. Hoechst Schering AgrEvo Netherlands BV. Unpublished

Shepler, K., McKemie, T.H., 2001, B003419, Hydrolysis of Propamocarb at pH 4, 5, 7 and 9. PTRL West, Inc. Hercules, CA, USA.. Unpublished

Singer, G. M., 1999, C002143, Propamocarb-derived residues in tomatoes and processed tomato commodities following five applications of Tattoo C at an exaggerated rate - USA 1996. AgrEvo USA Company. Unpublished

Singer, G., 1999, B003364, Amended Report: At harvest Propamocarb HCl derived residues in peppers (Bell and Non-Bell) following sequential applications of Tattoo® C at the maximum proposed rate and shortest proposed PHI, USA, 1997. AgrEvo USA. Unpublished

Singer, G., 1999, C002417, Propamocarb-derived residues in tomatoes following five applications of Tattoo C at the Maximum Proposed Rate - USA 1996 Propamocarb hydrochloride Code: AE B066752 01 SC63 A3. AgrEvo USA. Unpublished

Singer, S. 1999, C003451, At harvest Propamocarb Hydrochloride derived residues in rotational crops following sequential applications of Banol to bare soil at the maximum proposed rate and the shortest rotational interval, USA 1997. AgrEvo, Residues Chemistry Department, USA. Unpublished

Sixl F., Rexer, K., 1998, C001717, Determination of the physical form Propamocarb hydrochloride technical concentrate 780 g/L. Code: AE B066752 00 TK72 A110. Hoechst Schering AgrEvo GmbH, Frankfurt am Main, Germany. Unpublished

Sixl F., Rexer, K., 1998, C001715, Determination of the colour Propamocarb hydrochloride technical concentrate 780 g/L. AE B066752 00 TK72 A110. Hoechst Schering AgrEvo GmbH, Frankfurt am Main, Germany. Unpublished

Sutton, A. L., Charter, G. E., 1999, C003740, Tomatoes: Stability during deep freeze storage up to 26 months Propamocarb hydrochloride Active substance. AgrEvo UK Ltd., England. Unpublished

Tschampel, M., 1990, A85553, The photodegradation of Propamocarb hydrochloride (Schering Code No. ZK 66752) on soil surfaces. Schering AG, General Physical Chemistry Department, Berlin, Germany. Unpublished

Tschampel, M. 1994, A85554, The photodegradation of Propamocarb HCl (Schering Code No. ZK 66752) on soil surfaces. (Addendum to Report N° A85553). Schering AG, General Physical Chemistry Department, Berlin, Germany. Unpublished

Walker, J. A., Mullee, D.M., Bartlett, A. J., 1995, 722/013, Propamocarb HCl: Determination of general physico-chemical properties. Safepharm Laboratories Ltd., Derby, UK. Unpublished

Wienhold, C., 1984, A85223, Residues of propamocarb hydrochloride in red radish from the Netherlands. Schering AG. Unpublished

Willard, T.R., 2002, AA010716 , Terrestrial field soil dissipation of Propamocarb ydrochloride in turf. American Agricultural Services, USA. Unpublished

Williams, L. E., 1996, A89423, Propamocarb-derived residues in potatoes and processed potato commodities following application of Tattoo C - USA, 1995. AgrEvo USA Company. Unpublished

Wrede-Rucker, A, 2001a, C015527, Validation of the method UPSR 54/91-PA 66752.5/14 for soil by GC; Propamocarb x HCI Code: AE B066752. Aventis CropScience GmbH, Germany. Unpublished

Wrede-Rucker, A., 1988, A85261, Analytical method for the determination of residues of Propamocarb x HCl in vegetables, fruits and tobacco (SN 66752/5) Propamocarb hydrochloride. Schering AG, Berlin, Germany. Unpublished

Wrede-Rucker, A., 1988, A85277, Residues of Propamocarb x HCl in onion following application of Previcur N (722 g ai/L) in Spain 1987. Schering AG. Unpublished

Wrede-Rucker, A., 1990, A85303, Stability of propamocarb x HCl in lettuce during deep freeze storage propamocarb. Schering AG. Unpublished

Wrede-Rucker, A., 1991, A85312, Residues of Propamocarb x HCI in potatoes following foliar application of a Propamocarb x HCI/Mancozeb co-formulation in March 1991. Schering AG. Unpublished

Wrede-Rucker A., 1991, A85320, Analytical method for the determination of residues of Propamocarb x HCI in potatoes. Schering AG, Berlin, Germany. Unpublished

Wrede, A., 1993, A85339, Propamocarb x HCl: SL (Previcur N, CP 604); Residues in Cucumbers, Germany 1992. Schering AG. Unpublished

Wrede, A., 1993, A85341, Propamocarb x HCl: SL (Previcur N); Residues in Cucumbers, Germany 1991. Schering AG. Unpublished

Wrede, A., 1994, A85349, Propamocarb-HCl, Mancozeb and its metabolite ETU: SC (Tattoo, CQ1292): Residues in potatoes; Germany 1992. Hoechst Schering AgrEvo GmbH. Unpublished

Wrede, A., 1995, A83358, Propamocarb x HCl Previcur N SL 722 g ai/L HOE 102791 CP 604 PF-R 94287 residues of Propamocarb x HCl in lettuce France 1994. Hoechst Schering AgrEvo GmbH. Unpublished

Wrede, A., 1995, A85675, Propamocarb x HCl Previcur N SL 723.4 g ai/L HOE 102791 CP 604 PF-R 94283 residues of Propamocarb x HCl in lettuce France 1994. Hoechst Schering AgrEvo GmbH. Unpublished

Wrede, A., 1995, A85676, Propamocarb x HCl Previcur N SL 723.4 g ai/L HOE 102791 CP 604 PF-R 93279 residues of Propamocarb x HCl in lettuce France 1993/1994. Hoechst Schering AgrEvo GmbH. Unpublished

Wrede, A., 1995, A85679, Propamocarb x HCl Previcur N SL 722 g ai/L HOE 102791 CP 604 PF-R 94300 residues of Propamocarb x HCl in lettuce France 1994. Hoechst Schering AgrEvo GmbH. Unpublished

Wrede, A., 1995, A89361, Propamocarb-Hydrochloride: Previcur N (SL, CP 604); Tattoo C (SC, CQ 1418-03); Residues in Melons, France 1993. Hoechst Schering AgrEvo GmbH. Unpublished

Wrede, A., 1995, A89363, Propamocarb HCl soluble concentrate water miscible suspension concentrate 722g/L; 375 + 375 g/L CP 604 CQ 1418 Propamocarb x HCl: Previcur N; Tattoo C; Residues in Melons, France 1994. Hoechst Schering AgrEvo GmbH. Unpublished

Wrede, A., 2001, C015987, Independent laboratory validation (ILV) of the analytical method 20003024/01-RVP "Analytical method for determination of residues of Propamocarb free base (AE B039744) in plant material"-Propamocarb free base. Code: AE B039744. Aventis CropScience GmbH, Germany. Unpublished

CROSS REFERENCES

Author(s)	Document Code	Year
Schnöder, F.	1669-007	2002a
Schnöder, F.	1669-009	2002b
Schnöder, F.	1760-1669-007	2003
Ryckel de, B.	20528	2002
Walker, J. A., Mullee, D.M., Bartlett, A. J.	722/013	1995
Mullee, D.M., Bartlett, A. J.	722/014	1995
Howarth, R., Tremain, S.P., Bartlett, A. J.	722/015	1995
Wrede, A.	A83358	1995
Charter, G. E., Prangley, P. J.	A83662	1997
Morley, T., Reynolds, C. M. M., J.	A83866/ A84072/ C000632	1997
Chambers, J. G., Charter, G. E., Prangley, P. J.	A84070	1997

Author(s)	Document Code	Year
Mueller, Th.	A85046	1990
Miklautz, H.	A85057	1990
Miklautz, H.	A85060	1991
Foertsch, A.	A85140.	1994
Foertsch, A.	A85141	1994
Reynolds, C.	A85144.	1994
O'Boyle, F	A85146/ A91169.	1994
Reynolds, C. M. M.	A85148/A91170	1994
Feyerabend, M., Rupprecht, K.J.	A85149	1998
Wienhold, C.	A85223	1984
Wrede-Rucker, A.	A85261	1988
Wrede-Rucker, A.	A85277	1988
Moede, J.	A85300	1990
Wrede-Rucker, A.	A85303	1990
Wrede-Rucker, A.	A85312	1991
Wrede-Rucker A.	A85320	1991
Wrede, A.	A85339	1993
Wrede, A.	A85341	1993
Wrede, A.	A85349	1994
Klehr, M.	A85466	
Brühl, R., Celorio, J.	A85470	1978
Brühl, R.	A85471	1979
Brühl, R., Celorio, J.	A85472	1980
Brühl, R., Celorio, J.	A85473	1980
Brühl, R.	A85478	1979
Iwan, J.	A85480	1979
Iwan, J.	A85481	1980
Scheuermann, H.J.	A85513	1983
Brühl, R., Celorio, J.	A85521	1986
Tschampel, M.	A85553	1990
Tschampel, M.	A85554	1994
Moede, J.	A85563	1991
Klehr, M.	A85564	
Wrede, A.	A85675	1995
Wrede, A.	A85676	1995
Wrede, A.	A85679	1995
Lehne, V.	A89312.	1990
Wrede, A.	A89361	1995
Wrede, A.	A89363	1995
Williams, L. E.	A89423	1996
Cole, M. G.	A91233	1998
Willard, T.R.	AA010716	2002
Bertrand, N., Dang, B.	B002740	1999
Bertrand, N., Dang, B.	B002741	1999
Meyer, B.N.	B002934	2000
Daniel, L.E., Rupprecht, K.	B002935	2000
Rupprecht, K. J., Daniel, L. E.	B002936	2000
Singer, G.	B003364	1999
Shepler, K., McKemie, T.H.	B003419	2001
Leonard, M., Oden, K.	B003424	2001
Perez, R. Perez, S.	B003430	2001
Sixl F., Rexer, K.	C001715	1998
Sixl F., Rexer, K.	C001717	1998

Author(s)	Document Code	Year
Singer, G. M.	C002143	1999
Singer, G.	C002417	1999
Singer, S.	C003451	1999
Bittner, P., Rexer, K.	C003480	1990
Sutton, A. L., Charter, G. E.	C003740	1999
Schreuder, R.	C004255	1999
Kley, C.	C012258	2001a
Kley, C.	C012259	2001b
Kley, C.	C012260	2001c
Muehlberger, B.	C012641	2001
Muehlberger, B.	C012642	2001
Fent, G., Hein, W.	C012748	2001a
Fent, G., Hein, W.	C012749	2001b
Fent, G., Hein, W.	C012750	2001c
Poerschke.R.	C014007	2001
Balluff. M.	C015423	2001
Balluff, M.	C015426	2001
Balluff. M.	C015427	2001
Balluff M	C015428	2001
Balluff M	C015429	2001
Balluff M	C015430	2001
Balluff M	C015431	2001
Balluff M	C015432	2001
Manda D	C015449	2001
Wrade Pucker A	C015527	2001
Ralluff M	C015572	2001a
Dalluff M	C015572	2001
Balluff M	C015575	2001
Dalluff M	C015774	2001
Wrada A	C015734	2001
Wiede, A.	C016108	2001
	C016108	2001
	C016109	2001
Ballull, M.	C016110	2001
Hees, M.	C017451	2001
Ballull, M.	C01/451	2001
Gehl, J.	C020952	2002
Gehl, J.	C020966	2002
Gehl, J.	C021346	2002
Gehl, J.	C021852	2002
Gehl, J.	C022939	2002
Gehl, J.	C022951	2002
Gehl, J.	022953	2002
Mende, P.	C023560	2002
Gehl, J.	C023895	2002
Gehl, J.	C023899	2002
Gehl, J.	C024157	2002
Gehl, J.	C024398	2002
Gehl, J.	C024417	2002
Gehl, J.	C024482	2001
Gehl, J.	C024908	2002
Pollmann, B.	C025591	2002
Class,T.	C029655	2002a
Klein, E.HJ.	C033717	2003

Author(s)	Document Code	Year
Klein, E.HJ.	C033812	2003
Hees, M.	C035997	2003
Muehlberger, B.	C042353	2004
Melrose, I.	C042791	2004
Class, T.	C042835	2002b
Muehlberger, B., Lemke, G.	C044109.	2004
Renaud, D.	C045318.	2004
Renaud, D.	C046819	2005
Cavaille, C.	C047478	2005
Rosati, D.	C048490	2005
Goodyear, A.	CLE1669/3-D2149	2001
Goodyear, A.	CLE1669/5-D2149	2002b
Goodyear, A.	CLE1669/6-D2149	2002
Diot R, Rosati, D.	MR087/4	2005
Gateaud, L., Rosati, D.	RA2550/04	2005
Gateaud, L., Rosati, D.	RA2551/04	2005
Rosati, D., Gateaud, L.	RA2552/04	2005
Gateaud, L., Rosati, D; Taraschewski, I.	RA2554/04	2006
Rosati, D.; Helfrich, P.; Gateaud, L.	RA2557/04	2005
Rosati, D.; Gateaud, L.	RA2558/04	2005
Rosati, D.; Gateaud, L.	RA2559/04	2005
Gateaud, L., Rosati, D.	RA2560/04	2005
Rosati, D.; Uceda, L.	RA2619/03	2005
Gateaud, L., Rosati, D.	RA2709/03	2005
Rosati, D.; Uceda, L.	RA2712/03	2005
Pigeon, O.	RE11358	1999