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the assimilative capacity of an ecosystem and this information is necessary to manage 
the overall scale of aquaculture. At present, far-field effects have not been observed 
at the relatively low density of netpen operations in the Pacific Northeast. They are 
therefore a Category IV hazard and a quantitative environmental cost assessment is not 
possible at this time. 

PUTTING THE ENVIRONMENTAL COSTS OF SALMON PRODUCTION IN PERSPECTIVE 
WITH THE COSTS ASSOCIATED WITH OTHER FORMS OF FOOD PRODUCTION 
Assessing the environmental costs of other food producing activities is being undertaken 
by other contributors in these proceedings. However, the following comments are 
provided in an attempt to put the costs of salmon aquaculture into perspective with the 
environmental costs of producing an equivalent amount of beef.

Beef cattle production
Image 1 is a photograph of an old growth forest 
in the Canadian Rockies. These forests and 
their associated wetlands support small, but 
diverse, communities of plants and animals. The 
organic debris created by wind-thrown old-
growth cedar, Douglas fir, true firs, hemlocks 
and birch trees creates a dense detrital food 
web that support marvelous communities of 
fungi, ferns, mosses and lichens. Many of 
the Douglas fir trees are five and six feet in 
diameter. They do not have a limb on them for 
perhaps the first hundred feet of their 200 foot 
heights and they are (by actual tree-ring counts) 
several hundred years old. The creation of such 
a forest takes centuries, if not eons.

Image 2 describes a beef cattle farm on the 
Olympic Peninsula in Washington State, which 
was once home to a similar forest. Its remnants 
are seen in a few mature Douglas fir trees and 
in the eight to twelve foot diameter cedar 
stumps left from the original logging, which 
occurred in the middle of the 
19th century. Today, about half 
of the farm has been replanted 
to Douglas fir and half remains 
as pasture for Angus beef cattle 
(Image 3). The hanging weight 
of a black Angus steer is about 
70 percent of its live weight 
and rendering the carcass into 
edible meat further reduces the 
yield to about 42 percent of the 
animal’s live weight. Gutted and 
bled Atlantic salmon represent 
84 percent of their live weight. 
Assuming that the heads are 
not consumed, the yield of 
salmon filets is approximately 
50 percent of the live weight 

IMAGE 1
Old growth forest on Horsefly Lake in the Canadian 

Rockies

IMAGE 2
Whispering Ridge farm on the Olympic Peninsula in Washington 

State, which was once covered with old growth forests
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(Gary Robinson, Marine Harvest, 
personal communication). Therefore a 
salmon farm producing 2 500 tonnes of 
live salmon would supply 1 250 tonnes of 
edible filets which are equivalent to 5 411 
steers weighing 550 kg each. In the Pacific 
Northwest, one acre of actively managed 
pastureland will support one cow for 
7.5 months (7.5 animal month units or 
AMUs). It takes approximately 30 months 
(30 AMU) to produce a marketable steer 
and the 5 411 steers require 162 338 
AMU or 8 658 acres (3 504 hectares) for 
2.5 years. As noted earlier, the benthos 
under well sited salmon farms chemically 
remediates in six months to a year and 
biologically remediates in another year. 
In contrast, in the Pacific Northwest, it 
will take hundreds or a thousand years 

for the pastures seen in Image 2 to remediate back to the original old growth forest 
seen in Image 1. 

Table 5 compares the near field land use costs associated with raising equivalent 
amounts of edible beef and Atlantic salmon. The table does not assess the possible 
water column eutrophication associated with tonnes of fish and cattle waste that enters 
aquatic environments each year. Nor does it assess the ammonium released to the 
atmosphere, contributing to global warming, or the differences in oxygen resulting 
from photosynthesis of a mature old growth forest in comparison with pastures. A 
meaningful life cycle analysis that considers all of the environmental costs associated 
with both forms of food production would have to be accomplished with the same 
rigor provided herein for near-field effects and it would span volumes. That is beyond 
the scope of this report. However, this limited assessment suggests that the landscape 
directly affected for cattle production is several hundred times greater than it is for 
production of the same amount of food in salmon aquaculture. 

Harvesting of the ocean’s natural bounty 
An accurate assessment of the environmental costs associated with recreational and 
commercial fishing must take into account not only the physical destruction associated 
with bottom trawling and the poorly accounted for bicatch that is discarded. It must 
include, among other factors, an accounting of the costs associated with lost production 
to derelict fishing gear. In 2004, a group of Washington State sport fishermen used 
side-scanning sonar to identify over 2 000 derelict (lost) shrimp and crab pots in three 
embayments on the North Olympic Peninsula (Port Angeles Harbor, Sequim Bay and 
Discovery Bay). They were able to successfully retrieve 292 of these pots. Anecdotal 
evidence suggests that 40 percent of the pots were not equipped with sacrificial closure 
devices designed to deteriorate in relatively short periods to stop long-term entrapment 
of sea-life. Image 4 describes the contents of just one of these pots and many similar 
photographs are available. 

IMAGE 3
Black angus cattle grazing on pasture that was once 

old growth forest, but which was removed in an 
effort to feed Washington State’s growing population 
in the later part of the 19th and early part of the 20th 

centuries

TABLE 5
Comparisons of the physical footprints associated with production of 1,250 tonnes of the 
edible portions of Atlantic salmon or beef cattle 

Type of food Edible portion Live weight Yield Spatial footprint Remediation time

Atlantic salmon 1 250 000 kg 2 500 000 kg 0.50 1.6 hectares 2 years

Angus beef cattle 1 250 000 kg 2 976 190 kg 0.42 6 982 hectares 200 plus years
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 Using grant money from Washington 
State, the fishermen obtained the services 
of a larger vessel and were able to retrieve 
masses of lost trawl and gill nets (Image 5). 
Lost fishing gear is a world-wide problem 
that has not been quantified or effectively 
managed by any jurisdiction that the author 
is aware of. The recreational fishermen 
responsible for the program described here 
commented that the Department of Fish and 
Wildlife estimated that the several thousand 
lost pots were killing approximately 
10 percent of the allowable prawn and crab 
harvests. The same problem occurs in other 
areas. 

The point in this discussion is not to 
decry cattle farming or commercial and 
recreational fishing. The point is to put 
a portion of the environmental costs 
associated with Atlantic salmon production 
in perspective with the environmental costs 
associated with these more traditional ways of 
producing food and to assert that the path to 
sustainability requires fixing the tough problems 
first and then moving down the scale of effects to 
fine-tune food production in an effort to achieve 
true sustainability.

CONCLUSIONS AND RECOMENDATIONS
There are costs associated with every form of 
food production. Certainly the loss of topsoil at 
rates that are 17 to 80 times faster than it is being 
replenished in association with the production 
of grains needed to bake loaves of bread is 
not sustainable. Wild stocks of fish are being 
depleted in an effort to supply humankind’s 
demand for aquatic protein. Almost none of 
these more traditional ways of producing food 
have received the scrutiny that aquaculture has. 
For instance, what are the long-term costs associated with soil loss around the world? 
What are the environmental costs (as defined in this paper) associated with derelict 
(lost) nets and pots? The scrutiny of these issues is so low that no literature was 
found quantifying lost fishing gear, let alone the environmental cost in terms of fish 
and shellfish that dies in these traps each year. In this respect, some of the current 
emphasis on eliminating environmental effects associated with aquaculture is akin to 
Nero playing his fiddle while Rome was burning. The path to sustainability can only 
be achieved through a holistic and scientifically rigorous approach to managing earth’s 
resources. A systematic approach to these assessments requires the following:

• An acknowledgement that there are environmental costs associated with all forms 
of food production;

• Identification of the direct and indirect environmental costs associated with all 
forms of food production;

• Prioritization of the identified costs of food production;

IMAGE 4
One of over 2 000 lost prawn and crab pots identified 
using side-scanning sonar in three embayments along 
the Straits of Juan de Fuca in Washington State. As of 
2004, 292 of these derelict traps had been retrieved

IMAGE 5
Mass of derelict fishing nets retrieved from the 

Straits of Juan de Fuca in Washington State 
containing hundreds of kilograms of dead and 

dying fish
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• Focused research to minimize (not eliminate) costs associated with the least 
sustainable production methods.

Regional nature of costs 
It should be emphasized that environmental responses depend not only on the hazards 
associated with food production, but also on specific environments. For instance, 
adding nutrients to open Northeast Pacific ocean water does result in a significant 
response. Adding the same amount of nutrient in another region or in closed estuaries 
in the Northeast Pacific might result in significant effects.

Identifying real effects versus effects “per se” 
An assessment that allows quantification of actual effects rather than effects per 
se associated with food production is needed. That requires development of an 
understanding of the environmental response to the agricultural activity. For instance, 
the discharge of nutrients in water from shrimp culture ponds is an effect per se. The 
environmental cost of that effect requires an understanding of background nutrient 
concentrations in the receiving water and other conditions (turbidity, light availability, 
etc.) affecting primary productivity. Direct measurement of natural productivity 
is the most direct and sensitive way of measuring environmental costs. Surrogate 
endpoints, such as free sulfides and redox potential are far less time consuming and 
expensive than macrofaunal community assessments. However, these are effects per 
se until quantitative cause and negative affect relationships with valuable resources are 
demonstrated. For instance, the discharge of nutrients can have positive or negative 
effect on primary production and unless the actual response is understood, it is not 
possible to assess the cost with confidence.

Uncertainty associated with environmental cost assessments 
As shown in this paper, several effects associated with Category II hazards are 
reasonably well understood and based on empirical evidence. Other Category II 
hazards, such as the environmental response to exceedances of an ecosystem’s carrying 
capacity are less well understood. The environmental response to many, if not most, 
Category IV hazards are not well understood and cannot be quantified. Development 
of the understanding required to quantify environmental costs typically requires years 
of effort and significant investment of resources. In the absence of empirical data, 
estimates must be made on qualitative determinations, which increase uncertainty in 
cost assessments (Figure 19). The point is that quantifying the costs associated with 
various food producing sectors will take decades and future investments in research. In 
these instances, people and organizations interested in sustainable food production can 
either throw up their hands in frustration or they can make best use of the information 
and experience available to complete the assessments. This is conceptually illustrated 
in Figure 19. The advantage of this approach is that it allows at least a qualitative 
understanding of the costs of food production and it allows us to focus our energy on 
mitigating the most pressing costs. 

Transparency
It is important that the identification and prioritization of environmental costs 
associated with food production be conducted in a transparent manner. That implies 
acknowledging, and where possible quantifying, the uncertainty described inFigure 19. 
Every report assessing the environmental costs associated with food production should 
include an acknowledgement of the costs included in the assessment and those that are 
excluded.

The body of this report has focused on the effects associated with organic 
enrichment from salmon aquaculture to illustrate the level of detail and years of work 
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necessary to understand just one facet of the costs associated with a single hazard. 
Understanding these costs is not a trivial pursuit. However, achieving sustainable 
use of earth’s resources is an important goal that must be undertaken in a systematic 
way if future generations will not look back at the 21st century and condemn us for 
unwise use and management of these resources. A beginning can be made by bringing 
together multidisciplinary teams of scientists to define the scope and context of the 
problem. Such an effort will help guide existing and future work to focus on the most 
pressing problems. This need and approach is frequently cited and often discussed. 
Unfortunately programs to accomplish it are infrequently, if ever, implemented.
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APPENDIX 1

Environmental costs and possible 
hazards associated with salmon 
farming

1. Energy (damming of rivers; hydrocarbon pollution, CO2, nitrous oxides, 
acidification) 

2. Metals (copper and zinc from structures and feed)

3. Aquatic feed stuffs such as fishmeal (FM) and fish oil (FO) (management of 
reduction fisheries; bycatch; modification of wild food-webs; infrastructure costs; 
energy for catching, processing and distributing FM & FO; disposition of waste; 
concentration of persistent organic pollutants (PCBs); 

4. Terrestrial feeds (Land use; loss of biodiversity; wind and water erosion; energy 
costs for production of fertilizers and crops; eutrophication; contamination of 
groundwater and surface waters by pesticides associated with runoff; physical 
disruption of the landscape; surface water depletion; groundwater depletion; CO2, 
N2, and NH4

+ inputs to the atmosphere; 

5. Construction of infrastructure (Human and environmental energy required to 
construct and maintain infrastructure including netpens; vessels; processing plants; 
office buildings).

6. Social costs (Changes in nature of work in rural areas; development of governmental 
bureaucracies needed to manage environmental costs; environmental compliance 
costs; intrusion into areas where jurisdictional authority is in dispute; change from 
small entrepreneurial seafood production associated with a family fishermen owning 
a small capture vessel to multinational corporate production.) 

7. Atlantic salmon production
 Hatchery phase:
 Costs of constructing infrastructure
 Water use
 Introduction of pesticides and pharmaceuticals
 Eutrophication in flow-through systems
 Genetic modification of stocks – loss of vigor
 Electricity use
 Petroleum use
 Feed use

 Juvenile growout to smolting:
 Occupies space in freshwater
 Eutrophication of lakes
 Organic enrichment of sediments
 Pesticides and pharmaceutical inputs to surface and groundwater



179

 All of the factors involved in the production of feed
 Wild animal control and inadvertent loss to nets and etc.

 Saltwater growout to harvest:
 Benthic enrichment effects (loss of diversity and biomass of benthic 
organisms)
 Physical modification of the environment (anchoring and the netpens 
themselves)

 Copper contamination of the water and sediments

 Saltwater growout to harvest continued:
 Zinc contamination of the water and sediments

 Eutrophication in the water column (stimulation of phytoplankton & 
macroalgae)
 Pesticides and pharmaceuticals (pharmaceutical and antibiotics transfer to 
wild fish) 

 Contribution to atmospheric CO2
 associated with energy use

 Depletion of dissolved oxygen
 Accumulation of metabolic waste (NH4)
 Genetic pollution and introduction of exotic species
 Production waste – particularly harvest blood and disposal of mortalities
 Disposal of human waste in remote areas
 Energy and resources required to construct infrastructure

 Ecosystem modification associated with escapee interactions with the 
environment

 Disease transfer between wild and cultured stocks (both ways).

 Processing:
 Land use
 Blood
 Offal
 Electrical power use
 Equipment – infrastructure
 Refrigeration and refrigerants
 Packaging
 Shipping
 Ammonia and CO2 associated with composting
 Waste disposal (landfills)

Appendix 1 - Environmental costs and possible hazards associated with salmon farming
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APPENDIX 2

Hazards associated with various 
types of aquaculture. Hazards 
identified by GESAMP 31 that are 
associated with the coastal culture 
of bivalves, finfish, shrimp and 
macroalgae

Bivalve aquaculture
a. Extractive – carrying capacity becomes a concern as production increases 

(Category 2)
b.  Benthic effects can be significant (Category 2)
c. Nutrient cycling can be affected (Category 4)
d. Potential for genetic interaction is actually higher than for fin-fish 

(Category 4)
e. Potential to change hydrodynamics and sedimentation patterns (Category 

4) 
f. Has a relatively high potential for beneficial effects, eg habitat for eider 

ducks, juvenile fish, etc (Category 2)
g. Habitat modification such as addition of shell to sediments, displacement 

of seagrasses and/or macroalgae (Category 2) 
h. Disease spread associated with intensive culture – particularly 

monocultures. This can pose a hazard to both the cultured and sympatric 
populations of uncultured bivalves (Category 4)

i. Use of pesticides, e.g. carbaryl (Category 3) 
j. Predator control; skate, starfish, eider ducks, crabs (Category 1)
k. Zoonoses – disease transfer to humans PCP, DSP, Vibrio parahaemoliticus, 

Vibrio vulnificus (Category 3)
l. Harvesting (bottom disturbance during oyster dredging; turbidity during 
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mechanical harvesting in intertidal areas) (Category 3) 
m. Navigation hazards (Category 1)
n. Debris associated with Styrofoam, and plastic protective netting and cages 

(Category 1)
o. Aesthetics, visual impacts and/or exclusion of other stakeholders from 

intertidal areas (Category 1)

Finfish aquaculture
a. Sedimentation of waste (Category 2)
b. Dissolved waste – eutrophication (Category 2)
c. Internal effects possible but fairly easily managed – oxygen; metabolites. 

May be different for other cultivation species (Category 3)
d. Susceptible to a number of environmental factors, which may create or 

complicate environmental hazards. Examples include phytoplankton, low 
dissolved oxygen (Category 4) 

e. Disease transmission to and from wild stocks (Category 4)
f. Genetic interactions with wild stocks – escapes – depends on locality 

(Category 4)
g. Pharmaceutical/pesticide use (Category 3)
h. Antifoulant use and net cleaning (Category 3)
i. Biocide use such as in foot-baths (Category 3)
j. Habitat modification associated with presence of structures – fish ponds 

and cages, shore-side developments and jetties (Category 1)
k. Predator control – seals, sea lions, otters, etc. (Category 1)
l. Noise (generators, ADDs, etc.) (Category 1 for generators, Category 4 for 

ADDs)
m. Aesthetics, visual impacts (Category 1)

Shrimp culture
a. Internal risks to the cultured species associated with nutrients and 

metabolites (Category 2)
b. Nutrients can enter adjacent waterways – especially when the shrimp 

are harvested. However, waters in areas of shrimp culture are typically 
eutrophic already in association with rice farming and other activities and 
the added nutrients do not significantly further degrade water quality. 
Nutrients could be a problem in estuaries. However, turbidity generally 
reduces primary productivity mitigating the potential for eutrophication. 
(Category 2)

c. Habitat destruction, such as removal of mangroves, can be a primary 
hazard associated with shrimp production. The effects of this hazard on 
natural production can vary significantly in association with the location 
of the mangroves. (Category 1) 

d. Ponds can become acidic associated with sulfides excavated during pond 
construction. This can result in reduced pH in downstream areas. Effects on 
estuaries – salt marsh, etc. due to the construction of ponds. (Category 1)

e. Disease transmission to and from wild stocks is a hazard that is 
acknowledged but not well studied or understood. (Category 4)

f. Antibiotic use, including uncertainty of fate in the environment. 
(Category 3)

g. Pesticide use in adjacent agriculture may adversely affect the culture. 
Emphasize the need to manage risks to the stocks as well as risks caused 
by the cultured stocks (Category 1 or Category 4).

h. Interactions with wild stocks. Depletion for production of juveniles. This 

Appendix 2 - Hazards associated with various types of aquaculture.  



Comparative assessment of the environmental costs of aquaculture and other food production sector182

may be particularly important with the introduction of new species such 
as Penaeus vannamei which may interact genetically with native species 
and/or which may escape. (Category 4) 

i. Salinisation, salt intrusion (Category 3)
j. Depletion of wild stocks for production of juveniles (harvesting of 

broodstock or larvae). Associated by-catch problems. (Category 3) 
k. Disposal of mud from the bottom of ponds between growing cycles. 

(Category 1) 

Sea weed cultivation
a. Competition for space with other resource users. There can be a very large 

demand for space to attain a commercially viable scale (Category 1) 
b. Changes in hydrodynamics, for example altering sedimentation patterns 

(Category 4)
c.  Competition for nutrients with other primary producers (Category 4) 
d. Losses of product during bad weather leading to nuisance on the sea bed 

and beaches (Category 3). 
 




