

	Purse seines: minimum dimensio	ns, mesh sizes, twine s	sizes	
EINES	Minimum length and depth of the purse seine, size of the bunt*	Some examples		
IRSE SI	— Minimum length depends on the length of seiner : length of purse seine \geq 15 x length of seiner	Species small anchovy, n'dagala,	Stretched meshsize (mm) 12	Size of twine (Rtex) 75-100
PL	- Minimum depth : 10% of the length of seine	kapenta (East Africa) anchovies, small sardine	16	75-150
	- Minimum length and depth of bunt =	sardine, sardinella	18-20	100-150
	 In the second sec	large sardinella, bonga, flying fish, small mackerel and Spanish	25-30	150-300
	target species. It is necessary to avoid enmeshing or gilling the fish (with respect for regulations on minimum mesh size].	mackerel mackerel, mullet, tilapia, Spanish mackerel, small	50-70	300-390
	$OM = \frac{2}{3} \times \frac{L}{\kappa} \frac{(fish)}{\kappa}$	Bonito, tuna, wahoo, Scorn beromorus sp.	50-70 (min)	450-550
	where:	Relationship between and mesh size in differen	the diameter of t parts of the pu	the twine rse seine :
	L = length (mm) of target species	diameter of twine (mm) stretched mesh size (mm)		
	K = coefficient, a function of the	Some examples		
	target species	Boo	by of the se seine	Bunt of the ourse seine
2-2-2	K = 5 for fish that are long and narrow	Small Pelagic Fish 0.0	1 to 0.04	0.01 to 0.05
MAXXXXX	K = 3.5 for average shaped fish			North Sea
	K = 2.5 for flat, deep-bodied, or wide fish	Large Pelagic Fish 0.00	05 to 0.03	0.01 to 0.06
		* In purse seines, as in mar 'bunt' refers to the section the section in which the ca	ny types of fishing of net which is l atch may be con	g gear, the hauied last or centrated

	Hanging, leadline, tow line, purse lin performance	e, depth, volume on board,
PURSE SEINES	 The leadline of a purse seine is usually longer than the floatline by up to 10%; however in some types, the two lines are equal in length. The hanging ratio (E), is usually greater on the leadline than on the floatline. Hanging ratios generally range from 0.50 to 0.90, depending on the type of net. The hanging ratio may also vary along the floatline or leadline, usually being lower 	AD = SD x 0.5 = SD/2 extremities AD = SD x 0.6 centre of net Sinking speed of a purse seine — for different seines, sinking speed has been measured in a range from 2.4 to 16.0 m/min, with an average of 9.0 m/min.
	in the bunt. For more on hanging ratios and methods of hanging, see pages 38, 39, and 42. The tow line is normally about 25% of the length of the purse seine.	
	The purse line is generally 1.1 to 1.75 times the length of the leadline, usually about 1.5 times the length of the purse seine. The purse line must have good resistance to abrasion and good breaking strength. As a general guideline, the breaking strength (R) of the purse line should be as follows :	
	$\begin{array}{l} R > 3 \ x \ (combined \ weight \ of \ netting, \ leadline, \\ leads \ and \ purserings) \\ R \ (tons) \ \simeq \ \sqrt{tonnage \ of \ vessel} \end{array}$	
	Volume (on board) occupied by the seine when rigged	
	$V(m^3) = 5 x$ weight (tons) of the seine (in air)	
	Depth in water of the seine (see also pages 39 and 40). As an approximation, the actual depth or height (AD) can be considered equal to roughly 50% of the stretched depth (SD, or stretched meshsize x number of meshes) of the seine at its extremities, and 60% near the centre of the net.	

Beach seines: materials and hanging

Mesh size and twine thickness

In the wings, the mesh size and twine thickness may be the same as, or different from, those of the central section or bunt.

Examples of specifications for bunts of beach seines

target species	stretched mesh (mm)	twine thickness (R tex)
sardine	5-12	150-250
sardinella	30	800-1200
tilapia	25	100
tropical shrimp/prawn	18	450
diverse large species	40-50	150-300

The headrope and footrope (float line and lead line) are usually of the same material (PA or PE) and diameter.

Hanging ratios (E) are usually the same on headrope and footrope. For central sections, E = 0.5 or slightly greater (0.5-0.7). In the wings the hanging ratio is usually the same as in the bunt, but it is sometimes slightly greater (E = 0.7-0.9).

Floats on the headrope

The number of floats required increases with the height of the seine. The following are examples of buoyancy observed in the central part of seines :

height (m)	Buoyancy
of seine	(g/m of hung net)
3-4	50
7	150
10	350-400
15	500-600
20	1000

The floats are either evenly spaced along the headrope, or placed closer together in the bunt, and spaced increasingly farther apart toward the ends of the seine.

Sinkers on the footrope

The quantity and type of sinkers varies according to the intended use (to 'dig' more, or 'dig' less). Sinkers may be spaced evenly along the footrope, or concentrated more near the bunt.

Ratio of buoyancy/weight

In the bunt, the ratio of buoyancy/ weight of sinkers is around 1.5-2.0, but sometimes, to make the net 'dig' more, a net is rigged with more weight than buoyancy. In the wings, the ratio of buoyancy/weight of sinkers is equal to, or slightly less than, 1.

BEACH SEINES

Bottom seines: dimensions and properties of net

Bottom seines: ropes

Durability, resistance to abrasion, and weight are essential qualities of seine ropes.	<i>Length</i> is e length usua	expressed in coils of 200-22 ally 1000-3000 m.	0 m, total	SEINES
Materials	Method	Fishing grounds	Rope length	MO
\sim	Scottish technique	shallow waters (50-70 m) or small areas of soft bottom surrounded by rocky areas medium depths (80-260 m) or large smooth bottom areas	less than 2000 m 3000 m or longer	BOTTO
3-strands, PP with lead cores (combination rope)	Japanese technique	for depths as great as 300-500 m or soft, regular bottom	8 to 15 times depth of water	
Anchor seining (Danish seining): Ø18-20 Fly dragging (Scottish seining): 32 (3 strands with lead core in each strand) Fly dragging (Japan, Korea): manila mid-sized boats : PVA				
Rope				
Ø Weight (kg/100 m) PP 20 35 24 43				2.2
26 55 28 61 30 69				
Often the diameter changes along a single rope, from 24-36 mm (for mid-sized boats). Weights are often attached along the rope.				

Bottom Tra	wls	Shrimp trawls type, semi-ball	s, American oon	∎ High-open trawls	ing bottom
Power 3	80 to 100hp*	try-net (se	ee pg. 84)	Power 75	to 150 hp*
Stretched rnesh (mm)	Size of twine(Rtex)	Stretched mesh (mm)	Size of twine(Rtex)	Stretched mesh (mmW)	Size of twine (Rtex)
100	950-1 170	39.6	645	120	950
80	650- 950			80	650-950
60	650			60	650-950
40	650			40	650-950
		Power 150	to 300 hp*		
Power 10	00 to 300 hp*	Stretched mesh (mm)	Size of twine(Rtex)	Power 150) to 300 hp*
Stretched mesh (mm)	Size of twine(Rtex)	44 39.6	940-1190 1 190	Stretched mesh (mm)	Size of twine (Rtex)
200	1 660-2 500			200	1 660-2 500
160	1 300			160	1 300-1 550
120	1 300-2 000			120	1 300-2 000
80	950-1 550	Power 300	to 600 hp*	80	950-1 550
60	850-1 190	Stretched	Size of twipe(Rtex)	60	850-1 190
40	850-1 190	47.6	1 190	40	850-1 020
		39.6	1 540		1
Power 30	00 to 600 hp*			Power 300) to 800 hp*
Stretched mesh (mm)	Size of twine(Rtex)			Stretched mesh (mm)	Size of twine(Rtex)
200	2 500-3 570			800	5 550
160	1 230-2 000	m/kg = ¹	000000 Btox	400	3 570
120	1 230-2 000		пвх	200	2 500-3 030
80	1 660	* brake horsepo	ver (BHP) or	160	1 660-2 500
60	950-1 190	Apparent Nomin	al Power (ANP),	120	1 550-2 500
40	950-1 190	see pg. 95 Powe	er in HP = 1.36 x	80	1 300-2 500
				60	1 190-1 540
		1		40	040 4 200

	 Midwater trawls (for single vessel) 		■ Midwater	pair trawls
	Power 150	to 200 hp*	Power 2 x 10	00-300 hp*
	Stretched mesh (mm)	Size of twine(Rtex)	Stretched mesh (mm)	Size of twine(Rtex)
	400	2 500	800	3 030-4 000
	200	1 190-1 310	400	1 190-2 280
	160	950-1 190	200	1 190-1 540
	120	650-950	120	950
	80	650-950	80	650-950
	40	450	40	450-950
	40	950-1 310		
			Power 2 x 30	00-500 hp*
	Power 400	to 500 hp*	Stretched mesh	Size of
			(mm)	twine(Rtex)
	Stretched mesh	Size of	800	5 550
	800	3 700	400	2 280
	400	2 500	200	1 540
	200	1 310-1 660	120	950-1 190
	160	1 190-1 310	80	950-1 190
and the second second	120	950	40	950-1 190
	80	650-950		
X.	40	650-950		
V.W.	40	1 660		
		,	m/kg = $\frac{1000}{RT_{\rm c}}$	000 9x
	Power 7	700 hp*		
	Stretched mesh	Size of		
	(mm) 800	twine(Rtex)		
	400	2 700 5 550		
	400	3700-3300		
	200	2 500-3 700		
	160	2 500		
	120	1 660		
	80	1 660	* Brake horsepower (Bl	HPj or Apparent
	40	1 660	Nominal Power(APNj, s	ee page 95. Power
	40	2 500	Hp = 1.36 X (power in k	(VVJ

Headline buoyancy and groundrope weight recommended for trawls	

TRAWLS

Real horsepower* hp		Bit		B21		831
	B1 (kgf) P (hp)*	W1 (kg air) P (hp)*	B2 (kgf) P (hp)*	W2 (kg air) P (hp)*	B3 (kgf) P (hp)*	W3 (kg air) P (hp)*
50	B1=Px	W1=Px	B2=P x	W2=P x	B3=P x	W3=P x
100	0.20	0.28	0.27	0.29	0.28	0.33
200	0.20	0.25	0.24	0.27	0.25	0.31
400	0.20	0.22	0.22	0.24	0.22	0.28
600	0.20	0.22	0.21	0.23	0.21	0.27
800	0.18	0.20	0.19	0.22	0.19	0.26

- For buoyancy, the indicated values correspond to nets made of poly-amide (nylon), a synthetic fibre with negative buoyancy (it sinks). For nets made of floating materials, the floats may be decreased by 10-15%.

- The weights presented are estimated, with a 5-10% margin of error. They may vary according to the trawling speed, type of bottom, buoyancy of the net and floats, target species, etc. These weights have been calculated assuming that steel chain will be used for ballast. If another material is used, its density must be taken into account. For example, in order to get the same sinking force in water, a length of chain weighing 1 kg in air must be replaced by a quantity of rubber rollers which weighs 3-3.5 kg in air.

* Brake horsepower (BHP) or Apparent Nominal Power (ANPj, see page 95 Power in (HP) = 1.36 x Power in (kW)

Examples of groundropes

Midwater trawls
 (maximum vertical opening) joining
 lines of braided PP. Groundrope of
 leaded rope

■ High-opening bottom trawls : Joining lines of braided PP. Groundrope of chain

■ Shrimp trawls, smooth bottom Grassrope with lead rings (chain ground-rope is also common)

 High-opening bottom trawl with 2 bridles : groundrope of rubber rings

For use on rougher bottom : groundrope of rubber bobbins or rollers with rubber disc spacers and chain joining lines

■ Fish or shrimp trawls, hard bottom :

groundrope of rubber rings and hard plastic spheres

■ Fish or shrimp trawls for soft or muddy bottom : split wooden rollers which can be added or removed without running groundrope through centre

TRAWLS

Otter boards: properties of the principal types, choice depending on the trawler's power

Rectangular and oval curved

The weights indicated below (for single board) are the maximum values used. For a given horsepower, the surface area listed below is often used, but with a lighter material which may make a board as much as 50% lighter.

Power*		Rectangula otter boar	r flat ds		Oval Cu Otter bo	rved ards	Weight
(hp)	Dimer	nsions	Surface	Dime	nsions	Surface	(Kg)
	L(m)	h(m)	m2	L(m)	h(m)	m2	
50-75	1.30	0.65	0.85				45
100	1.50	0.75	1.12	1.40	0.85	0.93	100-120
200	2.00	1.00	2.00	1.75	1.05	1.45	190-220
300	2.20	1.10	2.42	1.90	1.10	1.65	300-320
400	2.40	1.20	2.88	2.20	1.25	2.15	400-420
500	2.50	1.25	3.12	2.40	1.40	2.65	500-520
600	2.60	1.30	3.38	2.60	1.50	3.05	600-620
700-800	2.80	1.40	3.92	2.90	1.60	3.65	800-900

V otter boards

Power*	Surface	Weight
(hp)	m²	kg
100	1.40	240
200	2.10	400
300	2.50	580
400	2.90	720
500	3.30	890
600	3.60	1 000
700 800	3.90 4.20	1 100 1 200

Shrimp otter boards (double rig)

Power (hp)*	Dimensions m	Weight kg
100-150	1.8 x 0.8-2.4 x0.9	60-90
150-200	2 x 0.9 - 2.45 x 1 2.4	90-100
200-250	x 1 - 2.45 x 1	120
250-300	2.5 x 1 -2.7 x 1.1 3	160
300-450	x 1.1 -3 x 1.2 3.3 x	220
450-600	1.1 -3.3 x 1.3	300

Midwater, Suberkrub

Power*	Dime	nsions	Surface	Weight	
(hp)	(hp) H(m) L(m)		(m²)	(kg)	
150 200 250	1.88 2.05 2.12	0.80 0.87 0.94	1.50 1.80 2.00	90-100 110-120 150-160	
300 350 400	2.28 2.32 2.42	0.97 1.03 1.07	2.20 2.40 2.60	170-180 220-240 240-260	
450 500 600 700-800	2.51 2.68 2.86 3.00	1.12 1.14 1.22 1.33	2.80 3.00 3.50 4.00	260-280 280-300 320-350 400-430	

Example of the relationship between the twine surface *area* (see page 37) of a pelagic trawl (S_f in m^2) and the surface area of a Suberkrub otter board used by the boat (S_p in m^2)

Sp = (0.0152 x S_f) + 1.23

* Brake horsepower (BHP) or Apparent Nominal Power (ANP), see page 95 Power in HP = 1.36 X Power in (kW)

Warps: diameter and length

Characteristics of steel trawl warps, according to power of trawler						
	hp*	0 (mm)	kg/m	R kgf		
	100	10.5	0.410	5 400		
	200	12.0	0.530	7 000		
	300	13.5	0.670	8 800		
	400	15.0	0.830	11 000		
	500	16,5	1.000	13 200		
	700	18.0	1.200	15 800		
	900	19.5	1.400	18 400		
	1 200	22.5	1.870	24 500		

R= breaking strength

■ Length of warps according to depth of water (for bottom trawling)

(for shallow water less than 20 m, the length should not be less than 120 m)

This curve gives only estimates; the captain should decide warp length according to the type of bottom, sea conditions, current, etc.

TRAWLS

* Brake horsepower (BHP) or Apparent Nominal Power (ANP), see page 95 Power in (HP) = 1.36 x Power in (kW

Trawling speed

TRAWLS

Main species groups	Average trawling speed (knots)
shrimp, small bottom species, flat fish	
very small trawlers	1.5-2
mid-sized and large trawlers	2.5-3.5
mid-sized bottom species, small pelagic fish small trawlers mid-sized to large trawlers	3-4 4-5
cephalopods (squid, cuttlefish)	3.5-4.5
mid-sized pelagic fish	>5

Power of trawlers

The choice of fishing gear depends on	type of propelle	r and engine	k	A A
the power of the trawler For trawlers with a fixed propeller,	fixed propeller	high RPM engine slow turning engine	0.20	TR
reduction gear between 2 : 1 and 4 : 1,		- 3 -	0.25 - 0.28	
intended for use with the Brake Horsepower (BHP). This is the figure given most often by manufacturers as the horsepower or rated power of an engine. It is expressed in horsepower (HP) or in kilowatts (kW).	variable pitch pr	opeller er, p is reduced by 1/3.	0.28 - 0.30	
1 HP = 0.74 kW 1 kW= 1.36 HP				
If a trawler has a variable pitch propeller and/or a nozzle, Apparent Nominal Power (ANP), should be used in the tables of this book. It may be calculated as follows :				
ANP = bollard pull (kg) x 0.09				
<i>Example</i> : A trawler, with a variable pitch propeller and a nozzle, has an engine rated at 400 BHP, and the bollard pull is 6000 kg				3-3-2
$ANP = 6000 \ge 0.09 = 540 HP$				XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Thus, the fishing gear should be chosen from the tables according to an Apparent Nominal Power of 540 HP, and not 400 HP.				
Power available for trawling (p), is usually 15 to 20% of the BHP or ANP. This power is used to pull the gear, and may be calculated as follows :				
In calm waters, p = 0.75 x k x (BHP or ANP)				
			-	

	Pulling power of trawlers			
TRAWLS	 Bollard pull BP₀ of a trawler at fixed point (speed = 0) BP₀(kg) = 10 to 12 kg per BHP* (with fixed propeller) 13 to 16 kg per HP of Apparent Nominal Power* (with a variable pitch propeller or nozzle) Bollard pull BP (when fishing) If you have calculated the engine power (p) available for towing (page 95), BP (ka) = 150 × p (HP) 	The engine RPM noted, for the che operations are re range of normal to	eased until vessel stationary. B Engine in forw of both vessels A psen speed of 2 k speated for other s trawling speeds is	and B are nots. The same speeds until the covered.
	trawling speed (knots) If you have measured the bollard pull BP0 at speed 0 knots, BP(kq) = BP ₀ (kg) $\times \left(1 - \frac{\text{trawling speed (knots)}}{\text{maximum free running}}\right)$	Revs Speed 2 knots 2.5 3 3.5	Vessel A — — — — —	Vessel B — — — —
	Choosing the appropriate engine speeds (RPM) for 2 boats of different characteristics for pair trawling			
	B A 200 m Engine in neutral			

Choosing the meshsize of gillnets*

ENTANGLING NETS

Choice of meshsize according to fish species

There is a ratio between the body girth or length of a fish one wants to catch, and the gillnet meshsize which will be effective for that fish (Fridman formula).

OM = L(fish)/K

where

- OM = mesh opening (mm)
- L(fish) = average length (mm) of fish one wants to catch
- K = coefficient, according to species

and

- K = 5 for long, thin fish
- K = 3.5 for average-shaped fish (neither very thick nor thin)
- K = 2.5 for very thick, wide or high (shaped) fish

A few examples of stretched meshsizes (mm) adapted for particular species

Temperate demersal species			
cod	150-170		
pollack	150-190		
Pacific pollack	90		
sole	110-115		
hake	130-135		
red mullet (Mugilidae)	25		
halibut (Greenland)	250		
turbot, monk, anglerfish	240		

Crustaceans				
shrimp (India)	36			
shrimp (El Salvador)	63-82			
green spiny lobster	160			
red spiny lobster	200-220			
spider crab	320			
king crab	450			

Small pelagic species				
sprat	22-25			
herring	50-60			
anchovy	28			
sardine	30-43			
sardinella	45-60			
shad (Ethmalosa)	60-80			
small mackerel	50			
large mackerel	75			
Spanish mackerel	100-110			

Large pelagic species			
mackerel, bonito,			
skipjack	80-100		
marlin, flying fish	120-160		
bonito, jacks	125		
Atlantic bluefin			
tuna	240		
sharks	170-250		
swordfish	300-330		
salmon	120-200		

Demersal tropical species				
threadfin (Polynemidae)	50			
small catfish	75			
grunt (Pomadasidae)	50			
mullet	110-120			
maigre (Sciaenidae)	120-140			
croaker (Sciaenidae)	160-200			
seabream (Sparidae)	140-160			
barracuda	120			

* For clarification of terms stretched meshsize and mesh opening see page 29

322

Choosing twine type for gillnets

The twine should be **relatively thin,** but not so fine that it damages, entangled fish. **Good breaking strength** is important, especially for bottom set gillnets, taking into account the size of the fish and the meshsize. The twine should have **low visibility**, either clear (mono or multi-monofilament) or of a colour which blends in with the environment. It should also be **flexible**.

Note : A length of twine may stretch 20-40% before breaking

■ Choosing twine diameter for gillnets

Twine diameter should be proporional to meshsize. The ratio

twine diameter (same units of stretched meshsize measurement)

should be between 0.0025, for calm waters and low catches, and 0.01, for rough waters or bottom set. An average ratio is 0.005.

Examples of twine sizes used with certain types of gillnets and meshsizes

stretched meshsize	inland waters, lakes, rivers		coastal waters			pen ocean		
mm	multifil. m/kg	monofil. Ømm	multifil. m/kg	monofil. Ømm	multimono. nxØmm	multifil. m/kg	monofil. Ømm	multimono. nxØmm
30 50 60	20 000 13 400	0.2	20 000 13 400 10 000	0.2 0.2		10 000 6 660 6 660 4 440	0.4	
80 100 120	10 000 6 660 6 660		6 660 4 440 4 440	0.3 0.35-0.40	4x0.15	4 440 3 330 3 330	0.28-0.30 0.5 0.6	6a8x0.15 6x0.15
140 160 200	4 440 3 330 2 220		3 330 3 330 2 220	0.33-0.35 0.35	6x0.15 8a10x0.15	2 220 2 220 1 550	0.6-0.7 0.9	8x0.15 10x0.15
240 500 600	1 550		1 550 3 330			1 100 1 615-2 220 1 615-2 220	0.9	
700			2 660					

Rigging or hanging gillnets

plan and rigging of trammel net

	Trammel nets: mesh sizes and rigging	
ENTANGLING NETS	 Choosing the mesh sizes according to the size of target species* Central panel : The meshsize should be small enough to catch the smallest fish wanted, by bagging. A rough estimate of the required meshsize is given by the Fridman formula for net bags: OM should be smaller than : L × 0.66 Where OM (mm) = mesh opening of the central net L (mm) = length of the smallest fish wanted K = coefficient dependent on the target species K = 5 for long and narrow fish K = 2.5 for flat, thick or large fish K = 2.5 for flat, thick or large fish K = 2.5 for flat, thick or large fish K = 5 for long and narrow fish K = 2.5 for flat, thick or large fish K = 2.5 for flat, thick or large fish K = 2.5 for flat, thick or large fish K = 2.5 for flat, thick or large fish K = 2.5 for flat, thick or large fish K = 2.5 for flat, thick or large fish K = 2.5 for flat, thick or large fish K = 2.5 for flat, thick or large fish K = 2.5 for flat, thick or large fish K = 2.5 for flat, thick or large fish K = 2.5 for flat, thick or large fish K = 2.5 for flat, thick or large fish K = 2.5 for flat, thick or large fish K = 2.5 for flat, thick or large fish 	The stretched height of the central net panel should be 1.5 to 2 times the stretched height of the external netting. The actual height in the water of the trammel net depends on the height of the external netting. The central net panel should be very slack. • Hanging ratios of the net panels The horizontal hanging ratios are often close to the following values: E central netting = 0.4 to 0.5 E external netting = 0.6 to 0.75

ting gillnets a	nd trammel nets	Þ	52	
	(William Street		-W ₂	
B(gf/m)	100-160	B2 = 50-120 B1 = 50 - 80	/m	600 - 1 500
W (g/m)	50-80	W1 = 30-80 W2 = 25-60		300 - 1 000
B/W	2	$\frac{B_2}{W_2} \sim 2-2.5$		1.5-2
	Length of leadline < 1 Length of floatline (smaller or equal)	B1 - Wf + W ₁ Wf = weight of n in water	etting	
om set gillnets	and trammel nets			
		B		B C C C C C C C C C C C C C C C C C C C
B (gf/m)		40-80		100-200
W (g/m)		120-250		250-400
B/W		$\frac{1}{3} \frac{1}{5}$		$.\frac{1}{2}\frac{1}{2.5}$
			length of	fleadline

. <u>___</u> .

Note: These weights do not include anchors, etc.

Dimensions of pots and traps

These gears, which can be used for catching fish, crustaceans, molluscs, and cephalopods (squid, octopus, etc.), are made in a wide variety of shapes and sizes, using many different materials. They may be used on the bottom or in mid-water, with or without bait.

Choosing the size of a pot or trap

If a pot gets too crowded with captured fish inside, it will stop catching. The interior volume of a pot must be large enough to avoid this situation. On the other hand, in some cases an interior volume which is too large may lead to cannibalism (some captives eating others). Some types of pots appear to be effective because their shape and size make them attractive shelters for certain species.

A few examples:

Species	Country	Volume (cubic decimeters - see p. 157)
octopus small shrimp		6 40-70
small crabs	Japan	70-90
crabs	Canada	450
King crab, snow crab	USA	2500-4500
spiny lobster	Europe	60-130
lobster	USA	200
spiny lobster	Caribbean	300-800
spiny lobster	Australia	2500
sea bream	Morocco	150-200
mixed reef fish	Caribbean	500-700 (up to 2000)
torsk, wolf fish	Norway	1300
grouper	India	1400
black cod	USA, Alaska	1800

Making fish traps and pots

Choice of materials must consider such factors as durability, resistance to immersion, corrosion, and fouling by marine growth.

Spacing of bars or laths; or size of meshes has a direct relation to the size of the target species.

Α	few	examples	(measurements	in mm]	:
---	-----	----------	---------------	-------	---	---

Species	bar of mesh (diamond shape)
small shrimp	8-10
(Europe)	
small crabs (Japan)	12
rock crab (Europe)	30
crab (Canada, USA)	50
King crab (Alaska)	127
spiny lobster (France, Morocco)	30-40
lobster	25-35
torsk, wolffish (Norway)	18
sea bream	(see Alternatives)
grouper (India)	40
reef fish (Caribbean)	15-20
black cod (USA)	(see Alternatives)
threadfin (Australia)	(see Alternatives)

Alternatives

- For lobster pots : Triangular meshes

60-80 mm side Rectangular meshes

25 x 50 mm Parallel wooden strips or laths, spaced 25-38 mm apart

- For fish pots : For sea bream,

triangular meshes 35-40 mm on aside For black cod, USA west coast, square meshes $151 \times 51 \text{ mm For}$ threadfin, Australia, hexagonal meshes 25-40 mm across

Ballast in traps is very variable, from 10 to 70 kg per trap, according to the type and size of trap, the type of bottom, and strength of currents.

Entrances: dimensions

The diameter of a pot entrance is directly related to the size and characteristics of the target species.				
A few examples:				
Species	Country	Entrance diameter (mm)		
small shrimp		40-60		
small and medium crabs	Japan, USA	140-170		
snow crab	Canada	360		
King crab	USA Alaska	350-480		
spiny lobster, crayfish	Europe	100-200		
spiny lobster	Australia, Caribbean	230		
lobster	Europe	100-150		
sea bream	Morocco	70-100		
torsk, wolffish	Norway	100		
grouper	India	210		
black cod	USA, W. coast	250		
threadfin	Australia	250-310		
snapper	Caribbean	230		

TRAPS AND POTS

Longline components

A longline consists of a main line, to which a number of branchlines (also called snoods or gangions) are attached. A hook is attached to the end of pnch branchline.

The material and diameter of the mainline will depend on the target species, the type of longline (bottom or mid-water), and gear-handling methods (manual or mechanical hauling). The diameter and breaking strength must take into account not only the weight of the fish, but also the displacement (and therefore, inertia) of the vessel.

As a general rule, one can choose a mainline whose breaking strength (dry, unknotted, in kg) is ;

— both greater than 10 times the tonnage of the vessel, and greater than the square of the vessel's length (in metres).

— at least 10 times the weight of the largest fish one expects to catch.

For example:

What would be the minimum breaking strength for the main line of a longline used by a 9 m, 4 t vessel, catching sea bream and gurnards?

Breaking strength must be greater

than $4 \times 10 = 40 \text{ kg}$

or 9x9 = 81 kg

But, if one expects to catch individual fish weighing 10 kg, it is necessary to calculate

10 kg x 10 = 100 kg

Therefore, the line could be twisted or braided nylon (PA), 2 mm diameter (breaking strength 130-160 kg); or nylon monofilament 170/100 (breaking strength 110 kg); or polyethylene (PE) 3 mm diameter (breaking strength 135 kg).

Branchlines (snoods or gangions) should be as close as possible to invisible in water, but sometimes of steel (for example, in some tuna and shark fisheries).

Breaking strength of branchlines (wet, with knots) should be at least equal to twice the weight of the fish one expects to catch. (The breaking strength of the main line should equal 3 to 10 times that of the branchlines.)

The length of a branchline is usually less than half the distance between branchlines, in order to avoid tangling.

Hooks are usually chosen by experience, according to the size and behaviour of the target species; hooked fish should stay alive (for species which can live when hooked), but should not come unhooked.

