

Fishing with light

Conditions which favour fishing with light					
	Not Average favourable		Favoura ble		
Colour of the Sea	Brown- yellow	Yellow- Green	Green- Blue		
Transparency (visibility m)	0 to 5	5 to 10	10 to 30		
Moon phase	Full	-	New		
Current	Strong to Medium	Medium to Weak	None		

Type of Lamp and utilization

	Petrol (gasoline) or liquified gas	Electric
Advantages	inexpensive easy to maintain and use	effective above the surface or in the water
Disadvantages	fragile used only above the water	expensive heavy bulky batteries or generators

It is better to use several lights of moderate intensity, sufficiently spaced apart, rather than a single light of strong intensity.

When a lamp.is mounted above the surface, only half its light effectively penetrates the water, due to reflection from the surface.

Resistance of electric cables

Running lamps with low voltages (for example, 12-24 V) may involve significant power losses through conducting wires. Therefore, wires used with low voltages should be thicker than those needed for higher voltages.

Resistance to a continuous current (in ohms/km) in a copper conductor is a function of the cross section area of the cable (mm²).

From Ben-Yami, 1976. *Fishing with light.* FAO Fishing Manuals, Fishing News (Books), Oxford.

LIGHT

Characteristics of echo-sounders

ECHO - SOUNDERS

Depth Range Frequency Common frequencies are 30-400 KHz					
	High Frequency Echo-sounders (100 to 400 kHz)	Low Frequency Echo-sounders (50 kHz or less)			
Common use	shallow water	deep water			
Width of Beam	narrow	wide			
Precision	very good	less precise			
Size of transducer	small	large			
Usual Use	fish detection	navigation			

Electric supply required on the vessel (voltage, power)

If the echosounder's power supply is a bit weak, its performance will be poor.

The type of display may be lamp display (flasher), paper (chart recorder), or colour screen.

	Paper display (dry, black and white)	Television type display (colour)
Advantages	paper record may be kept	different colours may indicate very small differences in strengths of
Disadvantages	differentiation of different echo strengths is limited (shades of black and grey) cost of Recording Paper	echoes no memory or limited memory, but note that recording equipment is now available

Other predetermined characteristics

Wavelength (m) = 1500/frequency (Hz) The smaller the wavelength the greater the precision of detection.

Pulse length :

Short 0.1 to 1 millisecond Long more than 2 milliseconds The shorter the pulse length, the greater the precision but, in fact, this is predetermined according to the frequency and the depth of sounding.

Beam-width :

Wide : 20 to 30 degrees Narrow : 4 to 10 degrees

Output power ranges from 100 to 5000 watts. The greater the power, the better will be the strength and precision of detection.

Choice of an echo-sounder according to the application

	Navigation echosounder	Fish-finding echosounder
Depth of Water Limited to 100 m	Frequency 20-100 kHz Beamwidth 10-20 degrees Output Power less than 1 kW	Frequency 100-400 kHz Beamwidth 4-15 degrees Output Power around 1 kW
	Pulse length less than 1 millisecond Flasher display may be sufficient	Pulse length less than 1 millisecond Usually with TVG and whiteline
Deeper Water	Frequency 10-20 kHz Beamwidth 4-10 degrees Output Power 5 -10 Kw depending on depth Pulse length greater than 2 milliseconds	Frequency 30-50 kHz Beamwidth 4-10 degrees Output Power 5-10 kW depending on depth Pulse length 1-2 milliseconds, with TVG and whiteline

ECHO – SOUNDERS

purse seine winches and drums

The pulling force of the purse line winch required for a seine of given weight can be estimated by the following formula :

F = 4/3 (Wn/2 + Wr + Ws)

where :

F = pulling force of the winch (tf, tons force)

Wn = weight in air of the netting (t, tons)

 Wr = weight in air of the footrope and purse rings (†)

Ws = weight in air of the ballast on the footrope (\dagger)

Characteristics of some purse line winches in use (after Brissonneau and Lotz)

		Drum C	Drum Capacity			
Vessel Length (m)	No. Drums	Cable Ø (mm)	Length (m)	Pull (†) (bare drum)	Speed (m/s) (bare drum)	P(HP)*
20	2	15.4	1300	8	0.5	44
20-25	2	15.4	1800	11	0.42	70
25-30	2	17.6	1800	17	0.37	100
30-40	3	17.6	1800	21	0.30	
		17.6	800	21	0.30	100
		17.6	600	21	0.30	
45-60	3	20	2220	27	0.35	
		20	975	27	0.35	150
		20	975	24.5	0.35	
60-75	3	22	2420	27	0.35	
		22	1120	27	0.35	300
		22	1120	24.8	0.35	

Seine drums

some examples

width of drum inside flanges (m)	3.00	3.90
flange diameter (m)	2.45	2.44
drum diameter (m)	0.6	0.45
Seine dimensions: hung length x stretched height (m)	360 x 30	450 x 64
stretched meshsize (mm) (centre section)	32	
twine size (centre section, Rtex)	376	

* Power (HP) = 1.36 x Power (kW)

Trawl winches

DECK EQUIPMENT

Power* of trawler(HP)	Power of winch(HP)	Capacity of drums		hauling speed (m/sec)	Pull at mid-drum (kg) drums combined
		Length(m) Ø of wire(mm)			
50-75	200	6.3	500-750		
100	25	700	10.5	1.00	900
200	40	1000	12.0	1.20	1600
300	60	1250	13.5	1.35	2500
400	80	1350	15.0	1.40	3500
500	120	2100	16.5	1.50	4500
700-800	165	2000	19.5	1.50	6500

* Brake horsepower (BHP) or Apparent Nominal Power (ANP), see page 95 Power in (HP] = 1.36 x Power in (kW)

At constant drum RPM, pull x diameter = constant; thus,

pull at bare drum = pull at mid-drum × Ø at mid-drum

Ø at bare drum

Performance

 Maximum Pull : At the most, equal to 1/3 the breaking strength of the warp.
In order to haul the trawl the winch has to develop more power than tha' which is exerted in towing the trawl.

The pull of the winch at mid-drum should be at least 80% of the maximum bollard pull of the vessel. It is best to use the formula :

Pull of the winch (at mid-drum) = 1.3 x pull of the trawler

Dimensions

Diameter of the bare drum : about 14 to 20 times the diameter of the warp.

Depth of drum<u>(A - B)</u>: at least
2

equal to the diameter of the bare drum

Capacity of a winch drum

 With automatic spooling (levelwind) and drum dimensions given above, If L = length (m) of warp, and 0 = diameter (mm) of warp :

- Manual spooling reduces this capacity by about 10%.

Note : Tolerances must be taken into account when accessories (i.e. chains, shackles) swivels] are hauled on with the warps.

Trawl net drums

Note : The volume of a trawl (V) con be estimated from its weight W: midwater trawl V (cubic m) = $3.5 \times W$ (tonnes) bottom trawl V (cubic m) = $4.0 \times W$ (tonnes)

Note : when sweeps and/or the bridles of combination rope are to be reeled onto the drum with the net, their volume must be taken into account. The same is true for the floats, ballast, sinker chain and bobbins.

Main dimensions

For a given application (requiring a [certain pull, speed and capacity) there may be several alternatives to choose from.

Pull (tonnes)	B average (mm)
<3	240
5-8	300
8-13	450
20-30	600

Thus, A and C will be chosen depending on the type of net, use of the drum (storage and/or hauling) the volume of the net, and deck space available.

Pulling force

In order to maintain the speed of hauling, the pull of the net drum at bare drum should be at least equal to the pull of the winch at full drum.

Hauling speed is generally great

er than or equal to 30 m/min.

A few guidelines:

Note that for a given capacity, the pulling force and speed may vary a great deal, according to the strain on the winch.

Vessel horsep ower	Capac ity (cubic m)	Weig ht of net (kg)	Pull (t) (bare drum)	Speed (m/min)	Weight of Drum (t)
100	0.5	120			
200	1	250			
300	1.5	400			1-1.2
400	2	550	2-4	10	1.5
500	2.5	700			
600	3	800	6-10	13.5	1.7-1.8
700	3.5	1000			
800	4	1100	7-12	17	2-2.5

* Brake horsepower (BHP) or Apparent Nominal Power (ANP), see page 95 Power in (HP) = 1.36 x Power in (kW)

DECK EQUIPMENT

Net haulers: some examples

pot/trap haulers

