

NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 – “Semantic-based knowledge and content systems”

D7.5.1 Software architecture for the ontology-based Fisheries Stock
Depletion Assessment System (FSDAS)

Deliverable Co-ordinator: Claudio Baldassarre

Deliverable Co-ordinating Institution: Open University

Other Authors: Yves Jaques (FAO), Alejandro Lopez Perez (ATOS)

This document describes the architecture for the ontology-driven Fisheries Stock
Depletion Assessment System (FSDAS). The goal is to provide with technical details to
support T7.6 implementing activity.

Document Identifier: NEON/2007/D7.5.1/v1.0 Date due: August 31, 2007
Class Deliverable: NEON EU-IST-2005-027595 Submission date: August 31, 2007
Project start date: March 1, 2006 Version: v1.0
Project duration: 4 years State: Final
 Distribution: Restricted

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 2 of 119 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is a part of the NeOn research project funded by the IST Programme of the
Commission of the European Communities by the grant number IST-2005-027595. The following
partners are involved in the project:

Open University (OU) – Coordinator
Knowledge Media Institute – KMi
Berrill Building, Walton Hall
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Martin Dzbor, Enrico Motta
E-mail address: {m.dzbor, e.motta} @open.ac.uk

Universität Karlsruhe – TH (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren – AIFB
Englerstrasse 28
D-76128 Karlsruhe, Germany
Contact person: Peter Haase
E-mail address: pha@aifb.uni-karlsruhe.de

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

Software AG (SAG)
Uhlandstrasse 12
64297 Darmstadt
Germany
Contact person: Walter Waterfeld
E-mail address: walter.waterfeld@softwareag.com

Intelligent Software Components S.A. (ISOCO)
Calle de Pedro de Valdivia 10
28006 Madrid
Spain
Contact person: Jesús Contreras
E-mail address: jcontreras@isoco.com

Institut ‘Jožef Stefan’ (JSI)
Jamova 39
SI-1000 Ljubljana
Slovenia
Contact person: Marko Grobelnik
E-mail address: marko.grobelnik@ijs.si

Institut National de Recherche en Informatique
et en Automatique (INRIA)
ZIRST – 655 avenue de l'Europe
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: jerome.euzenat@inrialpes.fr

University of Sheffield (USFD)
Dept. of Computer Science
Regent Court
211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

Universität Koblenz-Landau (UKO-LD)
Universitätsstrasse 1
56070 Koblenz
Germany
Contact person: Steffen Staab
E-mail address: staab@uni-koblenz.de

Consiglio Nazionale delle Ricerche (CNR)
Institute of cognitive sciences and technologies
Via S. Martino della Battaglia,
44 - 00185 Roma-Lazio, Italy
Contact person: Aldo Gangemi
E-mail address: aldo.gangemi@istc.cnr.it

Ontoprise GmbH. (ONTO)
Amalienbadstr. 36
(Raumfabrik 29)
76227 Karlsruhe
Germany
Contact person: Jürgen Angele
E-mail address: angele@ontoprise.de

Food and Agriculture Organization
of the United Nations (FAO)
Viale delle Terme di Caracalla 1
00100 Rome
Italy
Contact person: Marta Iglesias
E-mail address: marta.iglesias@fao.org

Atos Origin S.A. (ATOS)
Calle de Albarracín, 25
28037 Madrid
Spain
Contact person: Tomás Pariente Lobo
E-mail address: tomas.parientelobo@atosorigin.com

Laboratorios KIN, S.A. (KIN)
C/Ciudad de Granada, 123
08018 Barcelona
Spain
Contact person: Antonio López
E-mail address: alopez@kin.es

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 3 of 119

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to the writing of this document or its
parts:

FAO

ONTOPRISE

ATOS

Change Log

Version Date Amended by Changes

0.1 12-07-2007 Claudio Baldassarre, Yves Jaques Deliverable structure and first draft chapters

0.6 10-08-2007 Claudio Baldassarre, Yves Jaques Rearrangements of Chapters; Completion of
documents sections; Figures attachments;

Spelling check

0.7 18-08-2007 Claudio Baldassarre, Yves Jaques Minor documents addition, Document
layout, Spelling check

0.8 10-09-2007 Claudio Baldassarre, Yves Jaques Architecture components final revision,
Spelling check

0.9 20-09-2007 Claudio Baldassarre, Yves Jaques QA comments addressed, Spelling Check

1.0 09-10-2007 Aneta Tumilowicz Final QA

Executive Summary

This document describes the architecture for the ontology-driven Fisheries Stock Depletion
Assessment System (FSDAS) knowledge base. It will be a stand-alone Java Web Start (JWS)
application that communicates via web services with a separate server instance of the NeOn core
toolkit and an RDF triple store for unstructured data sources.

Users will experience FSDAS as a browsable and queryable application that returns organized,
quality-rated, linked results that can be used to make decisions about the state and trends of
various fish stocks. Fisheries information resources will be exploited using ontologies to return
time-series statistics on capture, production, commodities and fleets by stock, together with direct
links to related documents, web pages, news items, images and multi-media.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 4 of 119 NeOn Integrated Project EU-IST-027595

The document uses a variety of Kruchten's 4+1 views architecture to depict logical, process,
deployment, implementation, data and use case views that serve as a blueprint for implementation
work on FSDAS by NeOn partners.

The audience for this document are both the NeOn technical work packages that are or may be
supplying components, as well as NeOn partner Atos Origin S.A. (ATOS). It is expected that
partners will be able to use this document in order to understand which properties and operations
their components shall be expected to provide in order to interface with FSDAS. For task T7.61,
this document provides an architectural design blueprint from which both class-level design can
take place and against which the possible use of GNU General Public License components-off-the-
shelf (COTS2) can be evaluated.

1 Task T7.6 will be lead by ATOS and other NeOn partners will participate in the implementation
2 Throughout this document the term COTS refers to GNU General Public License (or similar) components that are

distributed freely or are open source due to FAO software distribution policy.

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 5 of 119

 Table of Contents

NeOn Consortium ..2
Work package participants ...3
Change Log ..3
Executive Summary...3
Table of Contents...5
List of figures ...9
1. Introduction ..11

1.1 Purpose..11
1.2 Scope...11
1.3 Overview ..12

2. Architectural Representation..13
2.1 Design architecture overview ...13

2.1.1 Modularity: ... 15
2.1.2 Symmetry:.. 15
2.1.3 FSDAS iterative design.. 15

2.2 Final design description ...16
2.2.1 Ontology related set... 16
2.2.1.1 Ontology Repository (CT) ..16
2.2.1.2 Ontology Repository Access Service (OP) ..16
2.2.1.3 Reasoner (CT) ...16
2.2.1.4 Query Composition Manager (FSDAS)..17
2.2.1.5 Ontological Resource Query Manager (OP) ..17
2.2.1.6 Data Model Mapping Manager (CT) ..17
2.2.2 Data Source related set ... 17
2.2.2.1 Query Composition Manager (CT) ...17
2.2.2.2 Data Source Query Manager (FSDAS)..17
2.2.2.3 Data Source Repository (FSDAS) ...18
2.2.2.4 Data Source Repository Access Service (FSDAS) ..18
2.2.2.5 Trend Composer Service (FSDAS)..18
2.2.2.6 Query Wrapping Service (FSDAS) ..18
2.2.2.7 DLOs Indexer (FSDAS) ...18
2.2.2.8 Summariser Manager (FSDAS) ...18
2.2.2.9 Web Site Indexer (FSDAS) ..18
2.2.2.10 Crawler (FSDAS) ...18
2.2.2.11 Quality Manager (FSDAS) ...19
2.2.2.12 Result Pre-processor (FSDAS)..19
2.2.2.13 Ranking Manager (FSDAS) ...19
2.2.2.14 Sorting Manager (FSDAS) ...19
2.2.3 Visualization components set .. 19
2.2.3.1 Browser (OP) ...19

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 6 of 119 NeOn Integrated Project EU-IST-027595

2.2.3.2 Display Manager (OP) ...20
2.2.3.3 Multilinguality Manager (OP)..20
2.2.3.4 Ontological Resource Display Manager (OP) ..20
2.2.3.5 Data Source Display Manager (FSDAS)..20
2.2.4 Integration support set ... 20
2.2.4.1 User management related components (OP) ..21
2.2.4.2 User Account Manager (OP)..21
2.2.4.3 User Profile Manager (OP) ..21
2.2.4.4 User Group Manager (OP)...21
2.2.4.5 User Session Manager (OP)..21
2.2.4.6 Legacy Data Import Manager (OP)..22
2.2.4.7 User Right Manager (OP) ..22
2.2.5 Resource annotation set.. 22
2.2.5.1 Metadata Manager (FSDAS) ...22
2.2.5.2 Annotation Manager (FSDAS) ...22
2.2.6 User communication set .. 22
2.2.6.1 Communication Manager (FSDAS)..23

2.3 Overlap with Ontology Life Cycle Management System..23
2.3.1 Mapping #1 .. 23
2.3.2 Mapping #2 .. 23
2.3.3 Mapping #3 .. 24
2.3.4 Mapping #4 .. 24

2.4 Added requirements...24
2.4.1 Indexing ... 24
2.4.2 External system querying .. 25
2.4.3 Result set interpretation... 25

3. Architectural Goals and Constraints ...27
3.1 Architecturally significant non-functional software requirements27

3.1.1 Functionality... 27
3.1.2 Reliability.. 27
3.1.3 Usability ... 28
3.1.4 Efficiency.. 28
3.1.5 Maintainability .. 28
3.1.6 Portability ... 29

3.2 Design and implementation strategy..29
3.2.1 Design strategy.. 30
3.2.1.1 Verify components with project partners ...30
3.2.1.2 COTS analysis...30
3.2.1.3 Class design ..30
3.2.2 Implementation strategy .. 30

4. Use-Case View ...31
4.1 Architecturally significant use cases ..31
4.2 Use-Case Realizations...32
4.3 User Interface mock-ups ..36

5. Logical View ...43

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 7 of 119

5.1 Overview ..43
5.2 First iteration design main principles..43
5.3 First iteration design partition ...45
5.4 Architecturally Significant Design Packages ..45

5.4.1 Visual Components.. 46
5.4.1.1 Display Manager..46
5.4.1.2 Ontological Resource Display Manager...47
5.4.1.3 Data Source Display Manager ...48
5.4.2 User Components.. 49
5.4.2.1 User Account Manager ..49
5.4.2.2 User Profile Manager ...50
5.4.3 Integration Support Components... 51
5.4.3.1 Metadata Manager...52
5.4.3.2 Annotation Manager...52
5.4.3.3 Communication Manager...53
5.4.4 Query Components.. 54
5.4.4.1 Query Composition Manager ...54
5.4.5 Rank Components ... 54
5.4.5.1 Ranking Manager ..54
5.4.5.2 Sorting Manager ..55
5.4.6 Indexing Components.. 55
5.4.6.1 DLOs indexer...56
5.4.6.2 Summarizer Manager ..56

5.5 Interfaces Description ..57
5.5.1 User Environment Variables Interface... 57
5.5.2 Metadata Interface... 58
5.5.3 Query Interface .. 58
5.5.4 Query Result Interface... 59
5.5.5 Ranked Query Result Interface ... 60
5.5.6 Ontology Model Interface... 61
5.5.7 Document Instance Interface... 62
5.5.8 Message Content Interface.. 62
5.5.9 User Contact Detail Interface... 63
5.5.10 Terminology ... 63
5.5.11 Data Source Interface.. 64
5.5.12 Index Interface ... 65
5.5.13 Profile... 65

5.6 First iteration design concise aspects ..66
6. Process View..68

6.1 Account context..68
6.2 Search context ...68
6.3 Display context...68
6.4 Interaction context..69

7. Deployment View ...74

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 8 of 119 NeOn Integrated Project EU-IST-027595

7.1 Overview ..74
7.2 Configuration description ...74

7.2.1 User downloads FSDAS application from Fishery portal .. 75
7.2.2 User runs FSDAS application .. 75
7.2.3 User Loads Ontologies .. 75
7.2.4 User performs a query: .. 76
7.2.5 User communicates with other users .. 76

8. Implementation View ...78
8.1 Overview ..78

9. Data View ..80
9.1 RDBMS systems..80

9.1.1 Aquatic Sciences Fisheries Abstracts (ASFA)... 80
9.1.2 Electronic Information Management System (EIMS)... 80
9.1.3 FishBase .. 80
9.1.4 FIGIS RDBMS fact sheets ... 81
9.1.5 Fishery Resources Monitoring System (FIRMS) ... 81

9.2 Flat file systems ...81
9.2.1 FIGIS flat-file fact sheets ... 81
9.2.2 RFB's document repositories... 81
9.2.3 Globefish document repository .. 81

9.3 ISIS systems ..82
9.3.1 FAOLex.. 82

9.4 Time-series systems ..82
9.4.1 FIES commodity, capture, production and fleets databases ... 82

9.5 GIS systems...82
9.5.1 Species distribution maps.. 82

9.6 Ontologies..83
10. Size and Performance ...84

10.1 Operating Environment ..84
10.2 Implementation Constraints ...84
10.3 Assumptions and Dependencies..84

Annex A – Updated use cases from Requirements D7.1.1 ..85
Summary Table of Use Cases and Priorities ...115

Annex B - List of Acronyms used in this deliverable ...116
References..118

maurelli
Sticky Note

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 9 of 119

List of figures

Figure 1 - FSDAS application design based on D7.1.1 user requirements..................................... 14
Figure 2 - Conceptual partition of FSDAS application design... 15
Figure 3 - User diagram .. 32
Figure 4 - Search context.. 33
Figure 5 - Display context ... 34
Figure 6 - Interaction context .. 35
Figure 7 - Rubber band view... 37
Figure 8 - Text view .. 38
Figure 9 - Toolbar detail .. 39
Figure 10 - File menu.. 40
Figure 11 - Edit menu ... 40
Figure 12 - View menu.. 41
Figure 13 - Annotate menu ... 41
Figure 14 - Bookmarks menu.. 42
Figure 15 - Help menu .. 42
Figure 16: FSDAS application first iteration design .. 44
Figure 17 - Collaboration diagram of account context components.. 70
Figure 18 - Collaboration diagram of search context components ... 71
Figure 19 - Collaboration diagram of display context components ... 72
Figure 20 - Collaboration diagram of interaction context components.. 73
Figure 21 - Deployment view of the FSDAS application main activities.. 74
Figure 22 - Layered vision of FSDAS application design.. 78
Figure 23 - FSDAS design conceptual partition against NeOn architecture layered vision 79
Figure 24 - Use case priorities .. 115

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 10 of 119 NeOn Integrated Project EU-IST-027595

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 11 of 119

1. Introduction

The ontology-driven Fisheries Stock Depletion Assessment System (FSDAS) knowledge base will
be a stand-alone Java Web Start (JWS) application that communicates via web services with a
separate application instance of the NeOn core toolkit.

Users will experience FSDAS as a browsable and queryable application that returns organized,
quality-rated, linked results that can be used to make decisions about the state and trends of
various fish stocks. Fisheries information resources will be exploited using ontologies to return
time-series statistics on capture, production, commodities and fleets by stock, together with direct
links to related documents, web pages, news items, images and multi-media.

The user interface will support query refinement, assistance on query formulation (e.g. to avoid
spelling errors) and multiple languages (e.g. Food and Agriculture Organization of the United
Nations (FAO) languages: Arabic, Chinese, English, French and Spanish).

Users will be able to perform ontology browse-based and query-based searches using a single
ontology or the union, intersection or complement of various ontologies. They will also be able to
navigate associated data instances.

To the extent possible, the FSDAS will directly introduce and/or combine resources in the web
page to create dynamic and synthetic views of the state of fish stocks. Users will be able to query
and filter results based on their user profile.

1.1 Purpose

This document provides a comprehensive architectural overview of FSDAS. Using a variety of
Kruchten's 4+1 views architecture (1995)3 to depict different aspects of the system it captures and
conveys the significant architectural decisions which have been made. It is intended to serve as a
blueprint for implementation work on FSDAS by NeOn partners, and as such can be placed in
relation to several other deliverables. Specifically this document is to be viewed in relation to WP7
requirements document D7.1.1, User requirements specifications for the Fisheries ontology,
knowledge tools and alert system, which describes the requirements both for FSDAS as well as for
the entire supporting ontology lifecycle management upon which FSDAS depends. This document
shall also be considered in relation to ongoing deliverable D7.4.1.a, Software architecture for
managing the fishery ontologies lifecycle.

The audience for this document are both the NeOn technical work packages that are or may be
supplying components, as well as NeOn partner Atos Origin S.A. (ATOS). It is expected that
partners will be able to use this document in order to understand which properties and operations
their components shall be expected to provide in order to interface with FSDAS. For task T7.6, this
document shall provide an architectural design blueprint from which both class-level design can
take place and against which the possible use of GNU General Public License components-off-the-
shelf (COTS) can be evaluated.

1.2 Scope

The document applies to the entire expected development cycle of the FSDAS. It represents an
architectural view of the requirements defined in Chapter 5, Requirements for the Fisheries Stock

3 http://www.inf.ed.ac.uk/teaching/courses/seoc/2006_2007/resources/Mod_5ViewModel.pdf

2006–2007 © Copyright lies with the respective authors and their institutions.

http://www.neon-project.org/web-content/index.php?option=com_weblinks&task=view&catid=17&id=25
http://www.neon-project.org/web-content/index.php?option=com_weblinks&task=view&catid=17&id=25
http://www.neon-project.org/wiki/index.php?title=D7.4.1&action=edit
http://www.neon-project.org/wiki/index.php?title=D7.4.1&action=edit
http://www.inf.ed.ac.uk/teaching/courses/seoc/2006_2007/resources/Mod_5ViewModel.pdf

Page 12 of 119 NeOn Integrated Project EU-IST-027595

Depletion Assessment System found in D7.1.1, User requirements specifications for the Fisheries
ontology, knowledge tools and alert system.

The document focuses with greater detail on those aspects of the architecture which will be
implemented by T7.6, or for which GNU General Public License COTS may be available but have
not been identified or selected. A number of components described at high-level are not further
described as they are part of the NeOn core toolkit. They will be provided by other NeOn technical
work packages and they are described in the deliverables provided by those work packages.
References to these documents can be found in References.

The document considers in greater detail a subset of the overall architecture that will be
implemented in the first iteration. As the second iteration will primarily involve the introduction of
new components provided by partner technical work packages that have at this point not been
clearly specified it was considered better to describe those components at high level only.

1.3 Overview

The document is organised by views. Following the introductory section, there is an architectural
overview that gives a high-level view of the system. Goals and constraints are then described.
Architecturally important use-cases are considered. The document then goes into greater detail
covering main component properties and operations. This section also describes other work
packages component properties and operations where these are known. This is followed by a
deployment view that considers hardware and network. The implementation view then considers
the components from a layered perspective. A data view looks at the persistent storage needs,
before passing to non-functional descriptions of size and performance.

http://www.neon-project.org/web-content/index.php?option=com_weblinks&task=view&catid=17&id=25
http://www.neon-project.org/web-content/index.php?option=com_weblinks&task=view&catid=17&id=25
http://www.neon-project.org/web-content/index.php?option=com_weblinks&catid=17&Itemid=35

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 13 of 11

Architecture design for FSDAS application is based on the requirements described in deliverable
D7.1.1 chapter 5 and Figure 1 which shows the components identified to map the required
functionalities. In Figure 2 one can see how the components are grouped together by function into
similarly shaded areas:

Each of these supervises a functional area and has a communication point with the others in order
to create the overall design; the picture also highlights those points of interest useful to a better
understanding of the design decisions.

2.1 Design architecture overview

2. Architectural Representation

• Integration support related.

• Data Source related and,

• Ontology related,

• Visualization,

2006–2007 © Copyright lies with the respective authors and their institutions.

9

http://www.neon-project.org/web-content/index.php?option=com_weblinks&task=view&catid=17&id=25
http://www.neon-project.org/web-content/index.php?option=com_weblinks&task=view&catid=17&id=25
http://www.neon-project.org/web-content/index.php?option=com_weblinks&task=view&catid=17&id=25

4 of 119 NeOn Integrated Project EU-IST-027595

Figure 1 - FSDAS application design based on D7.1.1 user requirements

Page 1

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 15 of 119

Visualization

Ontology

Related

Data Source

Related

Integration Support

Figure 2 - Conceptual partition of FSDAS application design

2.1.1 Modularity:

As noted above the design is composed of four main sections: the visualization section serves
display functionalities, the ontology and data source sections provide critical features related to the
final goal of the application, finally, there is a section of components dedicated to integrating new
user-generated content.

2.1.2 Symmetry:

There is symmetry in the design for components dealing with ontological resources and those
handling data source resources. Both sides require a repository component, query functionality
with query services and finally a ranking mechanism. Although functionally these components are
the same, there is a deep difference in the type of resources they handle: on one side ontological
resources, and on the other data resources that are outside the scope of the ontology. This
inevitably affects the set of protocols, languages and formats of communication for the retrieval
procedure, as well as for the infrastructure systems hosting the resources. The constraints listed in
3. Architectural Goals are enough to motivate keeping the two wings of the design independent.

The interaction between these components is in the ontological support provided to the data
source in the indexing (design time) and retrieval process (run time).

2.1.3 FSDAS iterative design

FSDAS design has gone through several reviews in light of the development point of other WP's
contributing to the NeOn architecture in order to arrive at a first iteration design fulfilling what is
actually realizable by the due date of the first implementation at month 26. In the following section
there is the high-level description of all components belonging to the final design, while in section 5
there is a detailed technical view of just those components belonging to the first iteration design
and not part of the general NeOn architecture.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 16 of 119 NeOn Integrated Project EU-IST-027595

2.2 Final design description

This section presents the description that takes in to consideration the design partition introduced
previously and pictured in Figure 2; from a high-level components set view, it then goes in to
further detail describing the single components in each set.

It is useful to remember that at the level of architecture design, once a functionality is envisaged as
necessary because it satisfies a requirement, its deployment and accessibility are up to the
responsible work package to define; it is out of the scope of this document to indicate the final
shape of the realization. Functionality needs to be thought of in terms of simple function rather than
tightly or loosely coupled components performed by an embedded or remote service.

In the following presentation, a convention will be use to recall from Figure 1 which components
are core for the NeOn Toolkit (CT), which ones fulfil a functionality provided by partners other than
WP6 (OP) and finally which are developed ad-hoc for the FSDAS application (FSDAS).

Components which are part of the first iteration design link to references in Chapter 5 for further
technical description.

2.2.1 Ontology related set

This set of components supervises all the functionalities strictly handling ontologies: storage,
reasoning and querying. All these functionalities rely on NeOn infrastructure components, are
developed in the responsible WP’s and communicate with proprietary FSDAS components through
defined interfaces. As FSDAS is a client/server application, some functionality like reasoning will
be deployed as a stand-alone web service, together with other second iteration components that
will sit on the server.

The following components are part of the ontology component set. They are part of the NeOn
toolkit and are included in the FSDAS design for completeness, but they are more deeply
described in other proprietary deliverables.

The list of components follows:

2.2.1.1 Ontology Repository (CT)
An infrastructure component that realizes the repository requirement for storing ontologies, this will
be installed on a server within the FAO server/network infrastructure. Detailed descriptions of these
components are found in D6.1.1.

2.2.1.2 Ontology Repository Access Service (OP)
This component is conceptually representative of the embedded capabilities of the Ontological
Resource Query Manager to access the repository of ontologies. It is represented as external to
the query manager to highlight the requirements expressed in D7.1 and to leave the design open
for future enhancement following the plug-in paradigm.

2.2.1.3 Reasoner (CT)
This is an infrastructure component that realizes reasoning services for ontologies. This feature is
deployed as a web service accessible by the application. Detailed description of this component is
in D6.1.1.

http://www.neon-project.org/web-content/index.php?option=com_weblinks&catid=17&Itemid=35
http://www.neon-project.org/web-content/index.php?option=com_weblinks&catid=17&Itemid=35

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 17 of 119

2.2.1.4 Query Composition Manager (FSDAS)
This is a component that manages the way a user can compose a query which may be the result of
either text editing, drag 'n drop action of concepts and/or properties, or natural language
description.

The query composed will be a meta-query containing the query itself and added information from
the user about preferences, where to search and what format. Based on this the query is
addressed to the ontological and/or data source query manager.

Although more then a single way to compose a query is envisaged it is expected that for the first
iteration the simpler text editing technique will be implemented.

Technical details for this component are in section 5.

2.2.1.5 Ontological Resource Query Manager (OP)
This component is a query manager specialized in querying ontological resources; it embeds the
protocols and query languages necessary to retrieve these kinds of resources. It also is provided
with access services to the repository for query execution. For the first iteration, support is
expected for keyword search and SPARQL queries.

2.2.1.6 Data Model Mapping Manager (CT)
This component realizes the mapping process of a structured data model repository (relational DB
or XML serialized) into an ontology structure such that any stored document is retrieved via an
ontological query mechanism. We achieve uniformity of query language and uniformity of retrieved
result format since the mapper also embeds languages and protocol interfaces for a number of well
known data models.

The tool identified as the ontology mapper is OntoMap running on the server and available as a
web service. See D6.2.1 for a detailed description of OntoMap.

2.2.2 Data Source related set

This set of components is strictly related with data source resources, a generic name to identify
any source of information contained in a system that consists of an unstructured Fishery document
repository. These documents are heterogeneous in format, hosting repository and in their handling
of I/O operations.

Two categories of documents are distinguished according to the way they can be processed: DLOs
(document-like objects), which are text-based documents for which it is possible to perform text
processing like natural language parsing and keyword indexing, and other sources of information
such as time-series statistics, GIS maps and hydrographic data. These sources are equally
relevant to the FSDAS final goal. To manage both these retrieval scenarios ad-hoc components
have been designed to fulfil the requirements.

List of components follows:

2.2.2.1 Query Composition Manager (CT)
See description at 2.2.2.4.

2.2.2.2 Data Source Query Manager (FSDAS)
This component is a query manager specialized for querying data source resources. It embeds the
protocols and query languages necessary to retrieve these kinds of resources. It also
communicates with services used to access these resources and execute queries to the

2006–2007 © Copyright lies with the respective authors and their institutions.

http://www.neon-project.org/web-content/index.php?option=com_weblinks&catid=17&Itemid=35

Page 18 of 119 NeOn Integrated Project EU-IST-027595

repositories containing them, e.g. the query wrapping service and trend composer (used to format
data series into a document suitable for human interpretation).

2.2.2.3 Data Source Repository (FSDAS)
This component is representative of all the data repositories in which documents relevant to the
retrieval process are contained. These repositories are internal and external to FAO network
domain and are heterogeneous in their format, protocols and languages of communication.

2.2.2.4 Data Source Repository Access Service (FSDAS)
This component is conceptually representative of the embedded capabilities of the Data Source
Query Manager. This is represented as external to the query manager to highlight the
requirements in this context and to supply it with a future way of introducing new features following
the plug-in paradigm.

2.2.2.5 Trend Composer Service (FSDAS)
Component for charting numeric data, e.g. Eclipse-based BIRT (Business Intelligence and
Reporting Tools) retrieved against a user query over a numeric data store. The trend will be the
result of a query composed and executed specifically over numeric data stores and in a second
step the query result is interpreted to produce a curve showing the trend.

2.2.2.6 Query Wrapping Service (FSDAS)
This component provides a service of query wrapping for different queried systems. It is invoked
each time the Data Source Query Manger receives a meta-query from the Query Composition
Manger with the information about the data to retrieve.

2.2.2.7 DLOs Indexer (FSDAS)
This component provides the mechanism by which given relevant domain ontology (ies) and an
unstructured container of documents (system folders), an index is created taking the ontology
terminology as the one source of indexing terms. In so doing we assure that the process creates
indexes aligned with the domain ontology (ies) covering the document subjects.

The index created is stored as a file containing RDF triples that bind document URI's to ontological
concept URI’s.

2.2.2.8 Summariser Manager (FSDAS)
This component produces an abstract of the text documents contextually with the index generation.

2.2.2.9 Web Site Indexer (FSDAS)
This component manages indexing process of web pages composing the HTML source of
information of fishery department portal and other linked sites. The indexing process works as
described for the DLOs indexer, where an entry in the index file is represented as an RDF triple
binding the document to the term URI which is an ontological concept belonging to feed
terminologies.

2.2.2.10 Crawler (FSDAS)
This component performs crawling activity on the server hosting HTML content to discover if new
data sources are available for the index process. It collects references (URL) to those possible new
contents in order to feed the Web Site Indexer.

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 19 of 119

2.2.2.11 Quality Manager (FSDAS)
This is a component for assessing the quality of retrieved Data Sources. The assessing
functionality can be realized in different ways according to the user’s favourite perspective.

2.2.2.12 Result Pre-processor (FSDAS)
This is a component that manages the result set elements conversion from a proprietary format
particular to a queried system into a uniform format available for easier visualization inside the
application.

2.2.2.13 Ranking Manager (FSDAS)
This component supervises the ranking strategy for presenting results to the user. The rank
mechanism takes into account the rank of the document either as an overall value, a local user
value or both in combination. Semantic distance between the query and the returned result may be
used as an alternative ranking approach.

2.2.2.14 Sorting Manager (FSDAS)
Component for managing rearrangement of the result set according to any aspect but the one
considered for ranking. The aspects envisaged could be timestamp, alphabetical order, concept
clustering, or role in the RDF triple (Subject, Object) when SPARQL is used to formalize the query.

2.2.3 Visualization components set

FSDAS application is heavily dependent on the graphic interface to facilitate user exploitation of its
functionalities. In the original requirements it was asked that FSDAS be a browser-based
application, since many of the existing systems actually used by Fishery department have content
distributed trough a web interface. The interface is mainly divided in:

• General purpose part consisting of all the panels needed for classical input such as login
activity, user details update or content annotation;

• Ontological resource display panels specialized for visualising ontological elements and

• Data source display panels specialized for visualizing document instances.

In the review process of the full architecture design it has been agreed with FAO that the FSDAS
application will not be a web application, due partly to complex visualisation requirements and
partly because the technology used by contributor WP's to develop their components does not well
integrate with thin-client technologies suitable for web browser environments. Java Web Start
technology has been chosen since it offers the strength and flexibility of Java, easier reuse of work
provided by contributor WP’s and a simple distribution mechanism for end users.

List of components follows:

2.2.3.1 Browser4 (OP)
The Browser component is representative of the web environment and encapsulates all those
graphic panels that provide input and display functionalities useful for the user to interact with the
application.

4 Although this component is included in order to map the architecture to the initial requirements, it will not be part of the

final system architecture as following the review process it has been determined to be of low utility.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 20 of 119 NeOn Integrated Project EU-IST-027595

Since after review of the final design it has been agreed that FSDAS will not be a web application
anymore, this component is excluded because it does not fulfil the requirement.

2.2.3.2 Display Manager (OP)
This component encapsulates the graphical object formerly embedded in the web browser.

Since the agreement to use Java as the implementation language, this component is
representative of the main window of the application maintaining the characteristic of encapsulating
all the panels providing input and display functionalities useful for the user to interact with the
application.

Technical details for this component are in section 5.

2.2.3.3 Multilinguality Manager4 (OP)
This component manages multilingual descriptions of the ontological resources and metadata
associated with ontological and data source resources.

In the review process it has been clarified that the functionality to have natural language
descriptions in the other five FAO official languages is not related to a run time translator but is
realized by the attempt to map a description expressed in a certain language with the same
expressed in another available translation. This is out of the scope of FSDAS application hence
this component is not included in the design.

2.2.3.4 Ontological Resource Display Manager (OP)
This component displays ontological resources. Ontological resources can be entire ontology (ies)
gathered by the user from the repository, a piece of the ontology model, or a single ontology
element given the focus by navigating or performing queries.

Panels to display single ontological elements (Class, Property, and Individual) and their attributes
directly or their inferences are also part of the functionalities provided by this component.

Technical details for this component are in section 5.

2.2.3.5 Data Source Display Manager (FSDAS)
This component displays document instances gathered in response to navigating the focused
ontology or by performing queries. Document instances are those text documents, web pages,
news items considered.

Technical details for this component are in section 5.

2.2.4 Integration support set

This set of components provides functionalities not strictly related to the FSDAS final version, but
at the same time integrates necessary services an interactive, multi-user application must have.
Further subdividing this set, 3 main groups are identifiable by topic activity:

• User management related components;

• Resources annotation related components and

• User communication related components.

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 21 of 119

List of components follows:

2.2.4.1 User management related components (OP)
As in any multi-user application, managing registered users at different levels is a mandatory
requirement. For this purpose FSDAS design considers generation of a semi-blank profile
contextually with the creation of a new user account, and then associates the profile with existing
user groups.

The possibility to manage account details at three different levels is achieved by adopting:

• Account level: cancellation, enabling/disabling user, rights assignation;

• Profile level: environment customization, preferred resources assignation;

• Group level: group policies (execute the same action on a group of profiles connected with
single users), group rights.

2.2.4.2 User Account Manager (OP)
This component fulfils the need of managing a single user registered to the application to gain
access to the resources. A user creates his own account by filling in most common personal
details, at the same time a general profile is generated that can be customized at a later stage.

Each user must have an account for reasons related to the requirements and to the application
environment: an identified user is tracked during his normal activity and the information is fed to the
profile manager to enrich its content. The user identity is necessary when he produces new
contents about the resources he handles. The user’s right to view retrieved resources are strictly
related to his identity. Finally, the account is needed for any eventual communication by other
users.

Technical details for this component are in section 5.

2.2.4.3 User Profile Manager (OP)
This component manages a single user in terms of environment adjustment to usual activities in
the application;

The user profile is built by collecting a few pieces of general information during the registration
process and then by tracking user actions and saved preferences.

The general details collected at registration time to fill in the user profile can be: expertise, area of
interest, resources of interest and relevant sources of information. Mainly, these variables are
subject to automatic augmentation while the user acts in the application over a reasonably long
period of time.

Technical details for this component are in section 5.

2.2.4.4 User Group Manager (OP)
This component manages groups of registered users who use the application.

As described in the requirements, FSDAS users are fisheries experts within some domain of
interest; therefore managing groups of users to apply group policy is a must within such a scenario.
When we want to modify some domain, it is recommended to do this by acting at group level
instead of at single user level.

2.2.4.5 User Session Manager (OP)
This component manages the session that the user either wants to save or that is automatically
saved by the application. A session is a set of information such as last open documents, used

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 22 of 119 NeOn Integrated Project EU-IST-027595

ontologies, workspace layout, preferences and settings. Saving the session persists this
information to the profile manager as part of its regular activity of user behaviour tracking.

The technical details for this component are included in section 5.

2.2.4.6 Legacy Data Import Manager (OP)
This component manages legacy data in terms of existing users FAO may want to import from
existing systems. The import process is better seen as a mapping process from existing data
model to future data model. Another view of the import process can be interfacing existing storage
with future repositories.

2.2.4.7 User Right Manager (OP)
This component supervises user access to any resources involved in the application. These can be
ontological resources (ontology modules, entire ontology) or data source resources through
ontology access restriction.

2.2.5 Resource annotation set

As an interactive application it is important the user can associate personal annotations to retrieved
resources whether ontological or data instances. The annotation about any resource in the
application will be constructed by declaring an RDF statement over the resource URI and storing in
a local repository. The content produced will be valid only within the scope of the user meaning
that it will be loaded at login time.

The list of components follows:

2.2.5.1 Metadata Manager (FSDAS)
This component realizes the functionality of retrieving all annotation properties declared over the
focused resource and passes them to the graphic interface component (Display Manager) to be
visualized.

Technical details for this component are in section 5.

2.2.5.2 Annotation Manager (FSDAS)
This component realizes annotation functionality over both ontological and data source resources.
Annotation is a general term which can take the form of comments in natural language, tags,
resource ratings or text abstracts. Annotations are created either by the user: comments, resource
ratings, tags or automatically as the result of data source processing: tags or text abstracts. In both
cases annotations are stored on the server-side in the RDF triple store.

Technical details for this component are in section 5.

2.2.6 User communication set

Being a multi-user application it is important to support user communication and object exchange.
FSDAS implements a mechanism providing the users with capabilities of message exchange, with
other registered users, as well as object exchange produced in each individual session e.g. result
data set, annotation, user query and resources exported as RDF syntax, which don’t have global
validity but are proper to each user’s session.

List of components follows:

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 23 of 119

2.2.6.1 Communication Manager (FSDAS)
This component manages communication among users registered to the application.
Communication includes text messages as well as object exchange, e.g. result data set,
annotation, user query and resources exported as RDF format.

Technical details for this component are in section 5.

2.3 Overlap with Ontology Life Cycle Management System

In the process of requirements analysis many functionalities of the FSDAS application have been
discovered to be in common with the Ontology Life Cycle Management System described in D7.1.1
at chapter 4.

As confirmation of overlap between the two systems, use cases showing shared functionality have
been identified across the two applications:

Notes:

The pairing is not ONE to ONE due to a different level of description granularity between the two
deliverables. For these examples the single use case covers multiple finer-grained use case(s).

Although functionally equivalent, components developed for FSDAS cannot be shared with D7.4.1
depending on the different developing and running environment: FSDAS is deployed as JWS
application while D7.4.1 is an architecture deployed in Eclipse platform. FAO distribution
constraints make JWS as the best solution for FSDAS, but anyway a level of functionality sharing
is preserved for all those engineering and infrastructure components deployed as web services
which both the architecture can access remotely.

2.3.1 Mapping #1

UC-6 Search ontological resource in ontology

Maps D7.4.1:

• UC-1.1: Search Using Free Text

• UC-1.2: Search Using Advanced Input

2.3.2 Mapping #2

UC-11 Query composition

Maps D7.4.1:

• UC-2.1: Answer Standard Query (not applicable to subject experts)

• UC-2.2: Answer Domain Expert Query

• UC-2.3: Answer Structural Query

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 24 of 119 NeOn Integrated Project EU-IST-027595

2.3.3 Mapping #3

UC-8 Browse Taxonomy

Maps D7.4.1:

• UC-7.1: Visualize Ontology

• UC-7.2: Visualize Mappings and Relations between Ontologies

• UC-7.3: Browse Ontology

2.3.4 Mapping #4

UC-18 Propose ontology modification

Maps D7.4.1:

• UC-12.6: Send to “To Be Approved”

2.4 Added requirements

In the process of design review some new issues have been raised concerning data source
retrieval techniques. These are deeply affected by the heterogeneity of data sources format,
repository data models and query API’s.

Following the Fisheries Systems Inventory T7.2.1 it is clear that a portion of the information
systems designed to be exploited by FSDAS contain data types that are difficult to index (e.g. time-
series statistics, hydro-graphic data and GIS maps) using standard indexing components such as
Lucene. Thus there is a need for query mechanisms that can exploit both pre-made indexes (more
efficient) and remote system query APIs.

2.4.1 Indexing

Various retrieval strategies have been discussed and a clear need has emerged to be able to index
systems containing document-like objects (DLOs). The case study application when searching for
related data instances should use indexes of these underlying systems instead of the system’s
query API. An example would be: http://www.fao.org/documents/

Such a method carries with it a set of implications for the case study design:

• Components for index building need to be included. These components should be open
source such as Sesame or Lucene.

• These components must be able to index not just web pages but other DLOs such as MS-
Word documents and Acrobat documents.

• A component that manages indexing tasks must also be considered, such that indexes can
be rebuilt periodically, automatically.

• The indexing component needs to be able to use URL’s for indexing and cannot rely on a
pool of documents manually placed in a local folder.

http://www.neon-project.org/ACollab/drafting/revisions.php?id=492
http://www.fao.org/documents/

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 25 of 119

• A crawling component would be desirable for web-site indexing, in order to generate URL’s
for the indexer. An example of such a site would be: http://www.globefish.org/

2.4.2 External system querying

Some of the systems considered for exploitation within the FSDAS do not contain DLOs and
cannot be indexed using available indexing technologies. These systems must be queried and
their response either presented within the application or within an associated application. An
example would be:

http://www.fao.org/figis/servlet/TabLandArea?tb_ds=Capture&tb_mode=TABLE&tb_act=SELECT&
tb_grp=COUNTRY

Again this requirement implies a set of required functionalities:

• A query wrapping component capable of taking a query within the FSDAS and rewriting it
according to the needs of the system being queried.

• The previous point implies a set of properties maintained for each such system describing
the query service and parameters, including the indexing system used for DLOs

• It should be possible to make queries using several methods, such as SQL via JDBC, or via
URL using either standard frameworks such as SOAP, or non-standard URL’s that return
possibly RDF, but more likely XML, HTML or CSV not conformant to any standard data
representation.

• SOAP technology for distributed objects should be the preferred method.

2.4.3 Result set interpretation

Closely related to indexing and querying is the interpretation of the remote system’s response.
Using a remote system’s query API will in many cases imply a non-standard response which may
come in a variety of formats and models. FSDAS will need a component capable of interpreting
and reformatting such responses into a standard result. An example is:

http://www.fao.org/figis/website/SearchActionXML.do?kv[0]=oyster

The component shall:

• Maintain a set of properties for remote systems describing the format and model of the
system.

• Be able to automatically convert the remote system response using the aforementioned
properties into a standard result that can be displayed within the FSDAS application or an
associated application, e.g. Acrobat or Word.

• Be able to merge results from several remote systems into a single result set.

As a solution to these additional requirements the design has been augmented with components
like:

• DLOs Indexer

• Web Site Indexer

• Crawler

2006–2007 © Copyright lies with the respective authors and their institutions.

http://www.globefish.org/
http://www.fao.org/figis/servlet/TabLandArea?tb_ds=Capture&tb_mode=TABLE&tb_act=SELECT&tb_grp=COUNTRY
http://www.fao.org/figis/servlet/TabLandArea?tb_ds=Capture&tb_mode=TABLE&tb_act=SELECT&tb_grp=COUNTRY
http://www.fao.org/figis/website/SearchActionXML.do?kv%5B0%5D=oyster

Page 26 of 119 NeOn Integrated Project EU-IST-027595

• Query Wrapping Service

• Result Pre-processor

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 27 of 119

3. Architectural Goals and Constraints

This section uses a subset of the categories from ISO9126 to describe the non-functional software
requirements and objectives that have some significant impact on the architecture. It also captures
NeOn project-related constraints to the design and implementation strategy and schedule.

3.1 Architecturally significant non-functional software requirements

3.1.1 Functionality

Interoperability

FSDAS shall be interoperable with the NeOn core toolkit or at least with the instance of the NeOn
toolkit installed in FAO customized to the fisheries domain. This implies that all external interfaces
will communicate via web services. This will guarantee a continuous technological support as long
as the NeOn toolkit is maintained.

Due to FAO network security constraints, the server-side of FSDAS must reside within the FAO
firewall in order to be able to connect with local databases.

Compliance

The software code for the application shall be General Public Licence (GPL), Version 2. It is policy
of the FAO to distribute software freely to any member state entity involved in project or common
activities.

Security

Access to the system shall require a user account approved by an administrator of the NeOn toolkit
or at least with the instance of the NeOn toolkit installed in FAO customized to the fisheries
domain, with which the FSDAS communicates. Centralization of identification is a necessary
condition to manage sensible data owned by FAO; any user of the application must provide
minimum identification details for gaining grant to the resources.

3.1.2 Reliability

Maturity

The software shall be subjected to unit, component application and validation testing to insure it is
sufficiently bug free to permit normal operation. It shall not be subject to uncaught errors that cause
it to freeze or be otherwise unusable.

An XUNIT style code-driven testing framework such as JUNIT shall be used for unit testing.

Fault Tolerance

The software shall be designed to recover gracefully from common error situations such as sudden
lack of network connectivity and/or unavailability of component services. The system shall log all
such error situations and provide end users with recovery information.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 28 of 119 NeOn Integrated Project EU-IST-027595

3.1.3 Usability

Learnability

It shall be possible for the end user group identified in the requirements to be able to use the
software as intended with a minimum of effort. E.g. a half day training course shall be able to
suffice for a fisheries scientist to be able to operate the system.

The system shall have at least a simple help system component linked to underlying functionality
such that future expansion of the system can be easily accompanied by expansion of the help
system.

The system shall have at least a simple operation manual.

Understandability

The system shall be structured where possible to avoid too many new ways of working. Menus,
icons and labels shall exploit where possible known paradigms and working practices. Semantic
web jargon and ontological jargon shall be kept to the minimum possible. Areas that are likely to be
unfamiliar to the average audience as defined in the requirements shall present additional help or
clarification to the user to enhance application clarity, and self-descriptiveness.

Users shall be able to navigate intuitively the ontologies and their associated instances without
having more than a very basic understanding of the underlying metamodel.

Operability

The system shall be easily operable using standard computer input devices, e.g. keyboard and
mouse. Users shall not be required to understand the exact meaning of OWL or RDF triples, but
rather be able to navigate ontologies graphically by browsing concepts and following their
associated relations.

3.1.4 Efficiency

Time Behaviour

The system should respond in real time to user ontology navigation and not require a full screen
refresh for changes. Average query return time should be less than five seconds.

Resource Behaviour

The client-side application shall be able to operate on a normal Wintel desktop computer, e.g.
Pentium IV 3 GHz, 1 GB Ram, 128Meg video card.

3.1.5 Maintainability

Stability

As FSDAS is being developed according to an iterative process and given that it needs to interact
with a number of components provided by other partners, stability is an important issue. Object
classes should show low coupling and high cohesion within components. External interfaces in
particular should be considered to be extensible only.

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 29 of 119

Analysability

It should be easy to diagnose deficiencies or causes of failures in the software. Logging design
should be considered as an ongoing activity during class design and implementation, and a logging
library such as Log4J should be considered.

Application programming interface (API) documentation shall be created for all classes, attributes,
variables, constructors and methods using the JavaDoc code documentation tool.

Changeability

Architecture of object classes should follow Model-View-Controller (MVC) and standard object-
oriented design patterns, e.g. observer, decorator, etc. to implement low coupling and high
cohesion within components, allowing for an application that is as changeable as possible,
particularly given the iterative nature of the case study within the NeOn project.

3.1.6 Portability

Installability

The software should be installable via web URL using Java WebStart technology.

Replaceability

New versions should be installable over older versions without the loss of user profile or annotation
data.

Adaptability

The application should be generic enough that it can be used for any domain, not just fisheries.
This implies that all labels, domains, user groups, etc. be easily configurable.

3.2 Design and implementation strategy

This deliverable defines needed components for the vision of FSDAS as defined in the
requirements document D7.1.1. As many of these components are provided by other project
partners and have not been specified, these components have been left necessarily vague.

Described in greater detail are the components needed for a first iteration based on a subset of the
D7.1.1 requirements.
In particular, those components needed for the first iteration that will be provided solely by the T7.6
leader have been described in the greatest detail.

The design remains at component level and does not go to class level. Only external component
interfaces are described. Class-level design and implementation is left to task T7.6, thus allowing
the implementer to select GNU General Public License or similar COTS which they or others may
have available rather than being constrained by a prior specification.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 30 of 119 NeOn Integrated Project EU-IST-027595

3.2.1 Design strategy

3.2.1.1 Verify components with project partners
For toolkit components with which FSDAS interfaces, task T7.6 should investigate with the project
partners creating those components documentation on the external interfaces, i.e. operations,
properties and exceptions that are supported, as well as an indication of the expected delivery
date.

3.2.1.2 COTS analysis
For FSDAS-specific components for which no provider has been identified, task T7.6 should
perform a COTS analysis, both for components they may have in house, as well as components
created by other groups doing ontological applications. A suggested COTS analysis framework is
EPIC, by Carnegie Mellon, though T.7.6 leader may have an in-house method; COTS components
must be distributed following GNU General Public License or similar, i.e. intended for use as free
or open source due to FAO software distribution constraints stated here.

3.2.1.3 Class design
Following COTS analysis it should be possible to create a class-level design for the remaining
components.

3.2.2 Implementation strategy

Implementation should begin by satisfying the most architecturally significant use cases that are a
part of the first iteration. Exact order is left to the implementer.

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 31 of 119

4. Use-Case View

This section lists use cases or scenarios from the use-case model that represent significant,
central functionality of the final system, have a large architectural coverage, or stress or illustrate a
specific, delicate point of the architecture.

4.1 Architecturally significant use cases

NOTE: See Appendix A for full list of use cases.

The following subset of FSDAS use cases together exercise virtually every component of the
system.

• UC1.3 Register

• UC1.6 Search ontological resource in ontology

• UC1.7 Search for related ontological resources

• UC1.8 Browse Taxonomy

• UC1.11 Query Composition

• UC1.12 Query for Data related to individual

• UC1.20 Save session

• UC1.21 Generate RSS feed from current query

• UC1.24 Annotate retrieved document with comments

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 32 of 119 NeOn Integrated Project EU-IST-027595

4.2 Use-Case Realizations

This section illustrates how the software actually works by giving a few selected use-case
realizations, and explains how the various design model elements contribute to their functionality.

Figure 3 - User diagram

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 33 of 119

Figure 4 - Search context

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 34 of 119 NeOn Integrated Project EU-IST-027595

Figure 5 - Display context

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 35 of 11

Figure 6 - Interaction context

2006–2007 © Copyright lies with the respective authors and their institutions.

9

Page 36 of 119 NeOn Integrated Project EU-IST-027595

4.3 User Interface mock-ups

The user interface mock-ups take the requirements and use cases and attempt to express them visually to give some guidance to the software
implementers. They need not be taken as a literal expression of what must be realised, but more as guidance in interpreting the use case
requirements.

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 37 of 119

Figure 7 - Rubber band view

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 38 of 119 NeOn Integrated Project EU-IST-027595

 Figure 8 - Text view

2006–2007 © Copyright lies with the respective authors and their institutions.

ware architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 39 of 119

Figure 9 - Toolbar detail

D7.5.1 Soft

Page 40 of 119 NeOn Integrated Project EU-IST-027595

Figure 10 - File menu

Figure 11 - Edit menu

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 41 of 119

Figure 12 - View menu

Figure 13 - Annotate menu

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 42 of 119 NeOn Integrated Project EU-IST-027595

Figure 14 - Bookmarks menu

Figure 15 - Help menu

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 43 of 119

5. Logical View

5.1 Overview

The Design architecture introduced in chapter 2 is referred to as final design architecture
compared with the first iteration architecture because it covers all the requirements described in
the deliverable D7.1.1.

Because some of the technologies implied by that design are not mature enough to provide the
required functionality (ies), a subset has been prioritized according to the availability at the time of
the writing of this deliverable. With this approach, the first iteration architecture is excerpted and
technically described in this section. This is also the architecture to implement by M26.

5.2 First iteration design main principles

In the first iteration component diagram in Figure 16 only components useful to provide the
functionalities described in the first iteration use cases are depicted. The principles according to
which this prototype design of the FSDAS application has been realized are:

• Focus on retrieving Document-like Objects, i.e. text documents for which it is possible to
perform text processing with the aim of indexing generation and reasoning, as opposed to
processing statistical or GIS data.

• Documents stored in structured data models; i.e. DB model or XML serialized structures;

• Documents stored in file system directory structures; i.e. file system folders.

Adopting these principles gives 3 considerations:

1. We don’t need to consider components treating other then DLO’s.

2. Only the components dealing with ontological resources remain in the design.

3. We need a mechanism to map the above described document repositories into ontological
shape to exploit the query facilities to retrieve the documents as this is the main goal of the
FSDAS application.

The first two considerations lead to the component diagram as pictured in Figure 16 while the third
is achieved by using a mapping tool which maps structured data sources to ontology structures.

Applying this mechanism we can count on the same functionalities designed for querying the pool
of the ontologies composing the fishery background knowledge to also refer to the information
contained in the document repositories.

As concerns the documents stored in a directory structure, the approach considered is to
instantiate existing domain ontologies with these documents by indexing them according to the
same relevant terminologies found in the ontologies.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 44 of 119 NeOn Integrated Project EU-IST-027595

Figure 16: FSDAS application first iteration design

In this scenario, once the structured data model is mapped to an ontology and the directory-like
data model is processed to populate the existing ontology, from the query point of view there will
be no difference concerning heterogeneity of the underlying data models, DB’s or file systems, and
results will be seen as an ontology. Thus the result will be in a single ontological format.

A document instance in this vision is an individual of concept(s) in the queried ontology, and when
the user decides to visualize that document it will be considered as an element of the file system to
be opened.

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 45 of 119

5.3 First iteration design partition

Within this section, even if the terminology between ontological resource and data source is kept it
must be remembered that from the data model point of view there is no difference, queries to
retrieve fisheries division documents are addressed as ontological queries.

The components in the diagram Figure 16 have been grouped into 4 main groups according to the
WP which will work in providing the functionalities:

• Components providing functionalities from the NeOn tool kit (WP6)
These components supply the functional core of the NeOn architecture, especially
from the web service accessible infrastructure layer.

• Components providing functionalities exclusively designed for FSDAS application
(WP7)

These components supply functionalities designed ad hoc to fulfil FSDAS
requirements as described in D7.1.1 and to reflect use cases description. These are
the component features for which T7.6 will take care of the technical development.

• Components providing functionalities developed by other WP singularly or in joined
effort

These components supply functionalities as a result of single or joined effort of WP’s
involved in development of components that can be used by T7.5. These WP’s are
actually developing strategies and means to achieve their final goal in the project.
Part of these achievements will be used as functional features in FSDAS
application.

• Local Infrastructure components
These components are representative of local databases, structured documents
(fact sheets) or unstructured documents repository (folders of the file system).

Among these 4 groups this document describes those for which FSDAS is explicitly the target
application since the other components will be developed in response to the proprietary WP goals
and interact through interfaces which have yet to be explicitly defined.

5.4 Architecturally Significant Design Packages

The picture in Figure 16 shows conceptual components originating from the conversion of D7.1.1
user requirements for T7.5. Each component is representative of one or a group of functionalities
provided by that component. The fact that they are represented as separate is not a constraint of
separation for the implementation work.

Each component exposes inwards or outwards interface(s) specifying the data type and operations
needed for internal functionalities. The description of these interfaces is in the next sections.

It should be noted that this component diagram is a sub component diagram excerpted for the first
FSDAS iteration from the more complete diagram shown Figure 1.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 46 of 119 NeOn Integrated Project EU-IST-027595

As displayed in Figure 1 there are a number of components which are to be developed only for
FSDAS purposes and hence are out of the NeOn toolkit scope. These are the components
described in more detail in this section.

As in Chapter 2 this section lists the component sets related with the first iteration design
describing them in greater technical detail. The exposure approach analyzes:

• Visual Components;

• User management Components;

• Integration Support Components;

• Query Components;

• Ranking Components;

• Indexing Components.

For each described component a list is given of:

• Associated Use Cases;

• Available operations;

• Inward Interface(s);

• Outward Interface(s).

In the next section technical descriptions of the interfaces are also provided.

5.4.1 Visual Components

This category groups together three components whose aim is to display resources to the user and
to give an interaction point for keyboard input and for all those features that need graphic
elements.

5.4.1.1 Display Manager
This is the highest-level graphic component that behaves as a container in which several graphical
access points to functionalities coexist: Ontological Resource Display Manager, Data Source
Display Manager plus the graphic end point for all the functionalities in the application that need a
graphic element or input from the keyboard. This can be seen as the main window of the FSDAS
application presenting sections of other GUI parts.

Use Cases associated to this component for the first iteration:
Change Language of the Interface;

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 47 of 119

Operations:
Graphic User Interface

• DisplayManager.showLoginPanel();

• DisplayManager.showRegistrationPanel();

• DisplayManager.showUserAccountPanel();

• DisplayManager.showUserSessionPanel();

• DisplayManager.showQueryPanel();

• DisplayManager.showOntologicalDisplayManager();

• DisplayManager.showDataSourceDisplayManager ();

Inwards Interfaces:
N/A

Outwards Interfaces:
User Environment Variables: complex of Environment information about the user: account details,
profile details, session details.

5.4.1.2 Ontological Resource Display Manager
This component displays Ontological resources. Ontological resources can be entire ontology (ies)
gathered by the user from the repository, a part of the ontology model, or can be a single ontology
element (Class, Property, Individual) given the focus by navigating or performing queries.

Use Cases associated to this component for the first iteration:
Browse Taxonomy;

Change Language of the Ontological Resource Shown;

View Ontological Resource Annotation;

Operations:
Visualize ontology (ies) for navigation

• OntologicalDisplayManager.showOntology(ontologyModel);

• OntologicalDisplayManager.showOntologyMetadata(ontologyModel);

Visualize ontological resource

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 48 of 119 NeOn Integrated Project EU-IST-027595

• OntologicalDisplayManager.showOntologicalResourceMetadata(resource);

• OntologicalDisplayManager.showListSuperClass (classResource);

• OntologicalDisplayManager.showListSubClass (classResource);

• OntologicalDisplayManager.showListSuperProperty(propertyResource);

• OntologicalDisplayManager.showListSubProperty(propertyResource);

• OntologicalDisplayManager.showPropertyRange(propertyResource);

• OntologicalDisplayManager.showPropertyDomain(propertyResource);

• OntologicalDisplayManager.showIndividualClass(individualResource);

• OntologicalDisplayManager.showSameAsIndividual(individualResource);

Visualize query result

• OntologicalDisplayManager.showQueryResult(rankedResultSet);

Inwards Interfaces:
Metadata: Information generated about the ontological or data resource loaded in the application
environment. This is the equivalent of annotation as named in previous chapters.

Ranked Query Result Set: set of ontological resources returned from a user query execution after
the ranking mechanism has been performed.

Ontology Model: one or more ontologies gathered from the repository and loaded in the application
environment.

Outwards Interfaces:
Document Instance: an instance of an ontology concept representing a data source element.

5.4.1.3 Data Source Display Manager
This component displays document instances gathered in response to navigation of the focused
ontology or by performing queries. Document instances are those text documents, web pages,
news items considered an instance of the ontological concept selected by the user.

Use Cases associated to this component for the first iteration:
Visualize Data Source related to individual;

View Data Source Annotation;

Visually compare data by Reporter;

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 49 of 119

Operations:
Visualize the object document.

• DataSourceDisplayManager.openDocument(documentInstance);

Visualize metadata if available about the document object.

• DataSourceDisplayManager.showDocumentMetadata(documentInstance);

Visualize more then a document at a time to visually compare them.

Inwards Interfaces:
Metadata: Information generated about the ontological or data resource loaded in the application
environment. This is the equivalent of annotation as named in previous chapters.

Document Instance: an instance of an ontological concept representing a data source element.

Outwards Interfaces:
N/A

5.4.2 User Components

This category groups together three components who collaborate with the user in the operations
concerning user account management and application environment customization.

5.4.2.1 User Account Manager
This component fulfils the need to manage a single user registered to the application to gain
access to the resources. A user creates an account by filling in common personal details, at the
same time a general profile is generated that can be customized at a later stage.

Use Cases associated to this component for the first iteration:
Login;

Logout;
Register;
Modify User Account;

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 50 of 119 NeOn Integrated Project EU-IST-027595

Operations:
User registers an account:

• UserAccountManager.registerUser(userInput);

User enter the application

• UserAccountManager.login(userID);

• UserAccountManager.logout(userID);

User modifies details

• UserAccountManager.modifyAccount(userAccountDetails);

• UserAccountManager.modifyProfile(userProfileDetails);

Inwards Interfaces:
N/A

Outwards Interfaces:
User Contact Detail: User contact as declared in the account detail.

Profile: User profile detail as declared in the User Environment Variable.

5.4.2.2 User Profile Manager
This component manages a single user in terms of environment adjustment to his usual activities
in the application. User profile is built by collecting general information from the user during the
registration process and then by tracking his actions and saved preferences.

Use Cases associated to this component for the first iteration:
Modify Profile

Operations:
User modify details in the profile

• UserProfileManager.modifyProfile(userInput);

Inwards Interfaces:
Profile: User profile detail as declared in the User Environment Variable.

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 51 of 119

Outwards Interfaces:
N/A

Session Manager
This component manages a session the user either wants to save or is automatically saved. A
session is a set of information such as last open documents, ontologies, workspace layout,
preferences and settings.

Use Cases associated to this component for the first iteration:
Add to Favourites;
Save Session;

Operations:

User can save session

• SessionManager.saveWorkSpace();

• SessionManager.saveOpenOntologiesList();

• SessionManager.savePreferences();

• SessionManager.saveSettings();

Inwards Interfaces:
N/A

Outwards Interfaces:
N/A

5.4.3 Integration Support Components

This category groups together three components whose aim is to supply the user with the
possibility to manipulate the resources loaded in the application environment. Manipulating a
resource includes annotation, tagging and rating, as well as communicating and sharing with other
FSDAS user.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 52 of 119 NeOn Integrated Project EU-IST-027595

5.4.3.1 Metadata Manager
This component covers the functionalities of retrieving all annotation properties declared over the
focused resource and passing them to the graphic interface component (Display Manager) to be
visualized.

Operations:
Retrieve and aggregate metadata about the focused resource

• List<Metadata> : MetaDataAggregator.listMetaData(resource);

Inwards Interfaces:
N/A

Outwards Interfaces:
Metadata: Information generated about the ontological or data resource loaded in the application
environment. This is the equivalent of annotation as named in previous chapters.

5.4.3.2 Annotation Manager
This component realizes annotation functionality over the resources. Annotation is a general term
that includes forms of natural language comment, tags, ratings or text abstracts. Annotations are
created either by the user and stored in the format of RDF triples in a local file loaded at login time,
e.g. comments, ratings, tags or they are created automatically as part of text processing, e.g. text
abstract, tags. The RDF triple format is well-aligned with NeOn as a format for content exchange
and presentation.

Use Cases associated to this component for the first iteration:
Annotate Retrieved Document with comments;

Annotate Retrieved Document with comments on quality;

Index Enrichment against Ontology (ies) domain model;

Operations:
Annotate Retrieved Document;

• AnnotationManager.setAnnotation(userID, resourceURI, annotationProperty, comment);

• AnnotationManager.setAnnotation(userID, resourceURI, annotationProperty, rate);

• AnnotationManager.setAnnotation(userID, resourceURI, annotationProperty, tag);

• AnnotationManager.setAnnotation(userID, resourceURI, annotationProperty, abstract);

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 53 of 119

Inwards Interfaces:
N/A

Outwards Interfaces:
N/A

5.4.3.3 Communication Manager
This component manages communication among users registered to the application.
Communication includes text messages as well as object exchange, e.g. result data sets,
annotations, user queries and resources exported as RDF format.

The user will use his main mail client application for the realization of the communication
functionality; hence the best form of object exchange is the attachment.

Use Cases associated to this component for the first iteration:
Email result

Propose Ontology Modification

Operations:
Send message to other registered user (with other than simple text content.)

• CommunicationManager.sendMessage(textMessage, attachment, List<userContact>);

Propose a modification of ontological resource (particular communication instantiation between the
user and the ontology expert)

• CommunicationManager.sendModificationProposal(textMessage,resourceURI,List<expertC
ontact>);

Inwards Interfaces:
Message Content: Content of the message.

User Contact Detail: Users contact as declared in the account detail.

Outwards Interfaces:
N/A

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 54 of 119 NeOn Integrated Project EU-IST-027595

5.4.4 Query Components

This category includes 1 component whose aim is to support the user in query composition.

5.4.4.1 Query Composition Manager
This component manages the way a user can compose a query which can be the result of either
text editing, drag 'n drop action of resources or natural language description.

The query composed will be a meta-query containing the query itself and added information from
the user about preferences, where to search and in what format. Based on this the query is
addressed to the ontological or data source query manager.

Although more then a single way to compose a query is envisaged, it is expected that for the first
iteration the text editing technique will be implemented.

Use Cases associated to this component for the first iteration:
Query Composition

Operations:
Provide input functionality for composing a user query

• QueryCompositionManager.KeywordQuery(List<Keyword>);

• QueryCompositionManager.sprqlQuery(Subject, Predicate, Object);

Inwards Interfaces:
N/A

Outwards Interfaces:
Query: user query formatted according to supported keywords and SPARQL syntax.

5.4.5 Rank Components

This category groups together 2 components whose aim is to order results returned from a user
query execution.

5.4.5.1 Ranking Manager
This component supervises the ranking strategy for presenting results to the user. The ranking
mechanism takes into account the rate of the document either as an overall value, local value or a
combination of the two. Semantic distance between the query and the returned result can be used
as an alternative ranking approach.

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 55 of 119

Operations:

Apply a mechanism to rank the result of a user query

• RankingManager.ontologicalDistanceRank(resultSet);

• RankingManager.profileBasedRank(resultSet);

Inwards Interfaces:
Query result: Unranked result set.

Outwards Interfaces:
Ranked Query result: Ranked result set.

5.4.5.2 Sorting Manager
This component manages the rearrangement of a result set according to any aspect but the one
considered for ranking. The aspect envisaged for this process can be timestamp, alphabetical
order, concept clustering or role in the RDF triple (Subject, Object) when SPARQL is used to
formalize the query.

Operations:
Arrange the ranked result set according to the aspect upon which the user decides to focus

• SortingManager.sortAlphabetically(resultSet);

• SortingManager.sortByTime(resultSet);

• SortingManager.sortByConcept(resultSet);

• SortingManager.sortBySubject(resultSet);

• SortingManager.sortByObject(resultSet);

Inwards Interfaces:
N/A

Outwards Interfaces:
N/A

5.4.6 Indexing Components

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 56 of 119 NeOn Integrated Project EU-IST-027595

This category groups together 2 components whose aim is to create the index for text documents
stored in a file system directory structure according to relevant terminologies of the domain fishery
ontologies. The purpose of the indexes will be to later instantiate the correspondent ontologies with
the indexed documents.

5.4.6.1 DLOs indexer
This component provides the mechanism according to which given relevant domain ontology (ies)
and an unstructured container of documents (system folders), an index is created taking the
ontology terminology as the only source of allowable indexing terms. In so doing we assure that
the process creates indexes aligned with the domain ontology (ies) covering the document
subjects.

An index entry is an RDF triple binding the document URI to the ontological concept URI. We thus
achieve a direct connection between ontologies covering the document content, a set of tagging
terms related within the ontologies and an easy way to relate concepts of different ontologies
through the documents.

More generally, producing RDF triples is highly compatible with all the techniques and technologies
within NeON.

The realization of the mechanism can be done by using tools such as Sesame or Lucene.

Operations:
Produces index terms according to selected terminology (ies) that are part of the fisheries
background knowledge

• DLOsIndexer.indexDocument(List<Terminology>, dataSource);

Inwards Interfaces:
Terminology: ontology (ies) set of named concepts relevant to the documents according to which
the index terms will be generated.

Data source: document contained in the directory structure.

Outwards Interfaces:
Index: representation of document corpora through terms of domain fishery terminology.

5.4.6.2 Summarizer Manager
This component produces an abstract of the text documents contextually with the index generation.
The realization of this feature can be done by exploiting the indexing functionality of tools such as
Lucene.

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 57 of 119

Operations:
Produces text abstract of the processed document

• SummarizerManager.produceAbstract(dataSource);

Inwards Interfaces:

• N/A

Outwards Interfaces:

• N/A

5.5 Interfaces Description

5.5.1 User Environment Variables Interface

User Environment Variables Description:

• Complex of Environment information about the user: account details, profile details, session
details.

User Environment Variables Attributes:

• Account_Details;

• Profile_Details;

• Session_Details;

User Environment Variables Operations:

• void : setAccountDetails(accountDetails);

• void : setProfileDetails(profileDetails);

• void: setSessionDetails(sessionDetails);

• Account_Details : getAccountDetails();

• Profile_Details : getProfileDetails();

• Session_Details : getSessionDetails();

User Environment Variables Exceptions:

• DetailsNotFoundException() : thrown if details are not found.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 58 of 119 NeOn Integrated Project EU-IST-027595

5.5.2 Metadata Interface

Metadata Description:

• Metadata: Information generated about the ontological or data resource loaded in the
application environment. This is the equivalent of annotation as named in previous
chapters.

Metadata Attributes:

• Authority;

• Resource_URI;

• Annotation_Property;

• Meta_Data_Value;

Metadata Operations:

• void : setMetaDataAuthor(authorID);

• void: setMetadataSubject(resourceURI);

• void: setMetaDataProperty(property);

• void: setMetaDataObject(value);

• Author_ID : getMetaDataAuthor();

• Resource_URI : getMetadataSubject();

• Annotation_Property : getMetaDataProperty();

• Meta_Data_Value : getMetaDataObject();

Metadata Exceptions:

• InvalidAuthorException() : thrown when the user identifier is not declared or not valid.

5.5.3 Query Interface

Query Result Description:

• Result set of a user query before the ranking mechanism is applied

Query Result Attributes:

• User_ID;

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 59 of 119

• List<Keywords>;

• SPRQL_Triple;

• Query_Syntax;

Ranked Query Result Set Operations:

• void : setUserID(user_ID);

• void : setKeywords(List<Keywords>);

• void : setSPRQLtriple(SPRQL_Triple);

• void : setQuerySyntax (Query_Syntax);

• UserID : getUserID();

• List<Keywords>: listKeywords();

• SPRQL_Triple : getSPRQLtriple();

• Query_Syntax : getQuerySyntax ();

Query Result Set Exceptions:

• InvalidAuthorException() : thrown when the user identifier is not declared or not valid.

5.5.4 Query Result Interface

Query Result Description:

• Result set of a user query before the ranking mechanism is applied

Query Result Attributes:

• UserID;

• User_Query;

• List<Ontology>;

• List<Class>;

• List<Property>;

• List<Individual>;

Ranked Query Result Set Operations:

• void : setUserID(userID);

• void : setUserQuery();

• void : setOntologies(List<Ontology>);

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 60 of 119 NeOn Integrated Project EU-IST-027595

• void : setClasses(List<Class>);

• void : setProperties(List<Property>);

• void : setIndividuals(List<Individual>);

• UserID : getUserID();

• User_Query : getUserQuery();

• List<Ontology>: listOntologies();

• List<Class>: listClasses();

• List<Property>: listProperties();

• List<Individual: listIndividuals();

Query Result Set Exceptions:

• InvalidAuthorException() : thrown when the user identifier is not declared or not valid.

5.5.5 Ranked Query Result Interface

Ranked Query Result Description:

• Set of ontological resources returned from a user query execution after the ranking
mechanism has been performed

Ranked Query Result Attributes:

• UserID;

• User_Query;

• List<Ontology>;

• List<Class>;

• List<Property>;

• List<Individual>;

• Resource_Rank;

Ranked Query Result Set Operations:

• void : setUserID(userID);

• void :setUserQuery();

• void :setOntologies(List<Ontology>);

• void : listClasses(List<Class>);

• void :listProperties(List<Property>);

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 61 of 119

• void : listIndividuals(List<Individual>);

• UserID : getUserID();

• User_Query :getUserQuery();

• List<Ontology>:listOntologies();

• List<Class>: listClasses();

• List<Property> :listProperties();

• List<Individual. : listIndividuals();

• Resource_Rank : getResourceRank(resource)

Ranked Query Result Set Exceptions:

• InvalidAuthorException() : thrown when the user identifier is not declared or not valid.

5.5.6 Ontology Model Interface

Ontology Model Description:

• Ontology gathered from the repository and loaded in the application environment.

Ontology Model Attributes:

• List<Metadata>;

• Repository_Provenance;

Ontology Model Operations:

• void : setMetaData(List<MetaData>);

• void : setProvenance(Repository_Provenance);

• List<MetaData> : listMetaData();

• Repository_Provenance : getProvenance();

Ontology Model Exceptions:

• NullProvenanceException() : thrown when the provenance is not retrievable.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 62 of 119 NeOn Integrated Project EU-IST-027595

5.5.7 Document Instance Interface

Document Instance Description:

• An instance of an ontological concept representing a data source element.

Document Instance Attributes:

• List<MetaData>;

• Repository_Provenance;

Document Instance Operations:

• void : setMetaData(List<MetaData>);

• void : setProvenance(Repository_Provenance);

• List<MetaData> : listMetaData();

• Repository_Provenance : getProvenance();

Document Instance Exceptions:

• NullProvenanceException() : thrown when the provenance is not retrievable.

5.5.8 Message Content Interface

Message Content Description:

• Content of the message

Message Contact Attributes:

• Message_body;

• Attachment;

• List<User_Recepient_Contact>;

Message Content Operations:

• void : setMessageBody (messageBody);

• void : setAttachment(attachment);

• void : setRecepientsContacts(List<User_Recepient_Contact>);

• Message_body : getMessageBody ();

• Attachment : getAttachment();

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 63 of 119

• List<User_Contact> : listContacts();

Message Content Exception:

• NullRecepientException() : thrown if no recipient has been selected.

5.5.9 User Contact Detail Interface

User Contact Detail Description:

• Users contact as declared in the account detail.

User Contact Detail Attributes:

• Email;

• UserID;

User Contact Detail Operations:

• void : setUserContact(email);

• void : setUserID();

• Email : getUserContact();

• UserID : getUserID();

5.5.10 Terminology

Terminology Description:

• Ontology(ies) set of named concepts relevant to the documents according to which the
index terms will be generated.

Terminology Attributes:

• Ontology_Provenance;

• List<Concepts Names>;

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 64 of 119 NeOn Integrated Project EU-IST-027595

Terminology Operations:

• void : setOntologyProvenance(Ontology_Provenance);

• void : setConceptNames(List<Concepts Names>);

• Ontology_Provenance : getOntologyProvenance();

• List<Concepts Names> : ListConceptNames();

Terminology Exceptions:

• NullProvenanceExceptions();

5.5.11 Data Source Interface

Data source Description:

• Document contained in the directory structure.

Data Source Attributes:

• File;

• Data_Source_Name;

• Data_Source_Path;

Data Source Operations:

• void : setFile(documentIFile);

• void : setDataSourceName(Data_Source_Name);

• void: setDataSourcePath(Data_Source_Path);

• File : getFile();

• Data_Source_Name : getDataSourceName();

• Data_Source_Path : getDataSourcePath();

Data Source Exceptions:

• FileNotFoundException() : thrown when the Data Source is not retrievable.

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 65 of 119

5.5.12 Index Interface

Index Description:

• Generated terms representing the document according to its content expressed in terms of
the selected ontology(ies).

Index Attributes:

• Data_Source_Path;

• List<Terminology>;

• List<Index_Terms>;

Index Operations:

• void : setDataSourcePath(Data_Source_Path);

• void : setTerminolgy(List<Terminology>);

• void : setIndexTerms(List<Index_Terms>);

• Data_Source_Path : getDataSourcePath();

• List<Terminology> : listTerminolgy();

• List<Index_Terms> : listIndexTerms();

5.5.13 Profile

Profile Description:

• User profile detail as declared in the User Environment Variable.

Profile Attributes:

• User_ID;

• Expertise;

• List<LastUsedResources>;

• Session;

Profile Operations:

• void : setUserID(userID);

• void : setExprtise(expertise);

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 66 of 119 NeOn Integrated Project EU-IST-027595

• void : setLastUsedResources(List<LastUsedResources>);

• void : setSession(session);

• User_ID : getUserID();

• Expertise : getExprtise();

• List<LastUsedResources> : listLastUsedResources();

• Session : getSession();

Profie Exception:

• NullUserIDException: thrown when the user identifier is not declared or not valid.

5.6 First iteration design concise aspects

Adopts Structured Data Model Mapper:
 Structured Data Model and Directory-like repository of data sources are mapped to

ontologies.

Indexes Documents:
 Directory-like structures are navigated and contained documents are indexed from the set

of terms composing the taxonomies of identified ontologies covering the domain to which
the documents are related. Uses Lucene or other open source tool to this purpose.

Everything is an ontological resource:
 Once Structured Data Models are mapped to ontologies and documents in the directories

have populated the indexing ontologies, the system only deals with ontological resources
as far as querying features are concerned.

Uses RDF statements:
 Since all the resources in the application can be referenced by URI, every time the user

adds an annotation, tag, abstract or rating, a new statement about a URI resource is added
to a local RDF document loaded in the system at login time.

Networked Oriented:
 All users will have their local files of statements kept separate from official fisheries

ontologies but interlinked by semantic mechanisms.

Web 2.0 oriented
 Producing information in interchangeable format, e.g. RDF/XML, to be compliant with Web

2.0 spread technologies such as mashing up different context results to obtain an optimized
answer to complex user queries. Using RDF syntax provides a uniform means for
producing new content and at the same time allows storing it independently from the
location of the axiomatized resources. It also means that exchanging objects among users

D7.5.1 Software architecture for the ontology-based Fisheries Stock Depletion Assessment System (FSDAS)Page 67 of 119

can be realized by sharing/passing the same set of axioms about targeted resources; RDF
is also a good fit for the visualization mechanisms envisaged for FSDAS, the application in
fact embeds a mechanism to process RDF data and applies different visualization
paradigms.

2006–2007 © Copyright lies with the respective authors and their institutions.

