Plant breeding

and farmer participation

Plant breeding and farmer participation

Edited by

S. Ceccarelli

E.P. Guimarães

E. Weltzien

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2009

The conclusions given in this report are considered appropriate at the time of its preparation. They may be modified in the light of further knowledge gained at subsequent stages.

The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.

The views expressed in this information product are those of the authors and do not necessarily reflect the views of the Food and Agriculture Organization of the United Nations.

ISBN 978-92-5-106382-8

All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders.

Applications for such permission should be addressed to the Chief, Electronic Publishing Policy and Support Branch, Communication Division FAO Viale delle Terme di Caracalla, 00153 Rome, Italy or by e-mail to: copyright@fao.org

© FAO 2009

Contents

Foreword	vii
Abbreviations and acronyms	ix
Contributors	xiii
Chapter 1	
Crop domestication and the first plant breeders STAN Cox	1
Chapter 2	
Theory and application of plant breeding for quantitative traits Javier Betrán, Jesús Moreno-González and Ignacio Romagosa	27
Chapter 3	
Main stages of a plant breeding programme Salvatore Ceccarelli	63
Chapter 4 Methodologies for priority setting	75
Eva Weltzien and Anja Christinck	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Chapter 5 Mothe delervice for non-conting verificities Port 1: Use of consti-	
Methodologies for generating variability. Part 1: Use of genetic resources in plant breeding	107
Bettina I.G. Haussmann and Heiko K. Parzies	
Chapter 6 Methodologies for generating variability. Part 2: Selection of parents	
and crossing strategies	129
John R. Witcombe and Daljit S. Virk	
Chapter 7 Methodologies for generating variability. Part 3: The development of	
base populations and their improvement by recurrent selection John R. Witcombe	139
Chapter 8	
Methodologies for generating variability. Part 4: Mutation techniques Miroslaw Maluszynski, Iwona Szarejko, Chittaranjan R. Bhatia,	159
Karin Nichterlein and Pierre J.L. Lagoda	

Chapter 9 Selection methods. Part 1: Organizational aspects of a plant breeding programme Salvatore Ceccarelli	195
Chapter 10 Selection methods. Part 2: Pedigree method FLAVIO CAPETTINI	223
Chapter 11 Selection methods. Part 3: Hybrid breeding Donald N. Duvick	229
Chapter 12 Selection methods. Part 4: Developing open-pollinated varieties using recurrent selection methods Fred Rattunde, Kirsten vom Brocke, Eva Weltzien and Bettina I.G. Haussmann	259
Chapter 13 Selection methods. Part 5: Breeding clonally propagated crops Wolfgang Grüneberg, Robert Mwanga, Maria Andrade and Jorge Espinoza	275
Chapter 14 Breeding for quantitative variables. Part 1: Farmers' and scientists' knowledge and practice in variety choice and plant selection Daniela Soleri and David A. Cleveland	323
Chapter 15 Breeding for quantitative variables. Part 2: Breeding for durable resistance to crop pests and diseases RAOUL A. ROBINSON	367
Chapter 16 Breeding for quantitative variables. Part 3: Breeding for resistance to abiotic stresses Stefania Grando and Salvatore Ceccarelli	391
Chapter 17 Breeding for quantitative variables. Part 4: Breeding for nutritional quality traits Yusuf Genc, Julia M. Humphries, Graham H. Lyons and Robin D. Graham	419

Chapter 18	
Breeding for quantitative variables. Part 5: Breeding for yield potential	449
José L. Araus, Gustavo A. Slafer, Matthew P. Reynolds and Conxita Royo	
Chapter 19	
Marker-assisted selection in theory and practice Andrew R. Barr	479
Chapter 20	
Coping with and exploiting genotype-by-environment interactions PAOLO ANNICCHIARICO	519
Chapter 21	
Variety release and policy options Zewdie Bishaw and Anthony J.G. van Gastel	565
Chapter 22 Participatory seed diffusion: experiences from the field HUMBERTO RÍOS LABRADA	589
Chapter 23	
Towards new roles, responsibilities and rules: the case of	
participatory plant breeding Ronnie Vernooy with Pratap Shrestha, Salvatore Ceccarelli,	613
Humberto Ríos Labrada, Yiching Song and Sally Humphries	
Chapter 24	
Breeders' rights and IPR issues	629
Susanne Somersalo and John Dodds	
Chapter 25	
The impact of participatory plant breeding	649
Jacqueline A. Ashby	

v

Foreword

Participatory Plant Breeding (PPB) originated in the early 1980s as part of a movement promoting the concept of participatory research, in response to criticisms of the failure of post-green-revolution, experiment-station-based research to address the needs of poor farmers in developing countries. Rooted in debate over the social consequences of the narrow focus of the scientific type of research, PPB gained recognition as an activity mostly promoted by social scientists and agronomists based in anti-establishment nongovernmental organizations (NGOs). In consequence, rather than being perceived from the beginning as an additional option available to breeders, PPB for a long time had the image of being one of two contrasting types of plant breeding, with PPB being more "socially correct" than conventional plant breeding.

Even now, nearly thirty years later, this view is still common. Few professional breeders accept that farmers can be full partners in a plant breeding programme, even though everyone agrees that it was farmers that domesticated crops about 10 000 years ago and, in some regions of the world, continued to modify and manipulate them to the present day. Even before the re-discovery of Mendel's laws of inheritance, the work of a number of amateur breeders become an inspiration for Darwin's theories. In several respects, the relationship with farmers on which PPB is based is similar to the ways in which plant breeders worked with producers in North America and Europe in the early twentieth century. At that time it was commonplace for breeders to spend time interacting with producers, and to test new materials collaboratively in farmers' fields in order to understand what producers considered to be desirable traits for an improved variety. However, the combination of industrialization of agriculture and formal training for plant breeders created a gap between breeders and farmers, a gap that was exported to developing countries in the post-war era. As the profession of plant breeding lost the habit of interacting closely with producers, concern for how to address farmers' needs and constraints fell by the wayside. PPB revived this as a central issue, because by the late 1970s it was increasingly evident in developing countries that post-green-revolution "improved" varieties were too often failing to satisfy farmer requirements and were being shunned.

Today there is widespread recognition that the conventional package of new varieties and external inputs, while successful in the more favourable production areas, has often failed to benefit small-scale farmers in marginal areas. As a result, the vital role of PPB as an additional strategy is better understood. Experience has taught that PPB is complementary to conventional plant breeding rather than an alternative type of plant breeding. Demand for a complementary approach has expanded considerably because of pressure to ensure the relevance of research to poor farmers and their diverse agricultural systems, and because PPB allows selection for the specific adaptation required for such a diversity of target environments. Today, about 80 participatory breeding programmes are known worldwide, involving various institutions and various crops. In 2000, an international review of plant breeding research methodologies concluded that PPB should be an "organic" part of every plant breeding programme aimed at benefiting small-scale farmers in difficult, highrisk environments. In fact, traditional farming and low-input systems, including organic agriculture, are a very heterogeneous population of target environments and not easily served by centralized, conventional plant breeding.

The book demonstrates that PPB is in essence no different from conventional plant breeding, being based on the very same principles of Mendelian, quantitative and population genetics, and therefore has complemented the traditional approach to plant breeding with a number of chapters addressing issues specifically related to the participation of farmers in a plant breeding programme.

The authors of the various chapters have been carefully selected to represent three groups of scientists: the first comprises internationally recognized experts in genetics as related to plant breeding, and in the various aspects of plant breeding (from general methodological issues to more specific issues, such as breeding for resistance to biotic and abiotic stresses, high yield potential, molecular breeding and genotype × environment interactions); the second group is represented by professional breeders who have actually practised participatory plant breeding with a number of different crops and in a number of socially and climatically different areas, using the range of methods presented by the first group; and, finally, the third is represented by a group of scientists with specific expertise in areas not usually covered in classical plant breeding books, such as variety release mechanisms, seed diffusion, institutional issues associated with PPB, and intellectual property rights. A chapter documenting the impact that participatory plant breeding has had after about thirty years of practice has been chosen to be the logical conclusion of the book.

The book is aimed at plant breeders, social scientists, students and practitioners, with the hope that they all will find a common ground to discuss ways in which plant breeding can be beneficial to all and can contribute to alleviate poverty.

Finally, we would like to acknowledge everyone who has, directly or indirectly, contributed to the book: the CGIAR Participatory Research and Gender Analysis Program (PRGA) for the initial idea of producing such a book, the contributors of the chapters for sharing their scientific experience and for enduring a number of revisions of their respective chapters, Dr P.G. Rajendran for his help in the initial editorial efforts and the Directors-General of our Institutions for their continuous support. Final editing and preparation for publication was done by Mr Thorgeir Lawrence.

Abbreviations and acronyms

AB-QTL	Advanced Backcross QTL Analysis
AFLP	Amplified fragment length polymorphism
AMMI	Additive main effects and multiplicative interaction
AMOVA	Analysis of molecular variance
ANOVA	Analysis of variance
AOSCA	Association of Official Seed Certifying Agencies
ABS	Accelerated Breeding System [for sweet potato]
ASSINSEL	International Association of Plant Breeders for the Protection of Plant
	Varieties
AVP	Asexually or vegetatively propagated
BC _n	Back-cross generation n
BLUE	Best Linear Unbiased Estimate
BLUP	Best Linear Unbiased Prediction
BPE	Before present era
BSA	Bulked Segregant Analysis
Bt	Bacillus thuringiensis [gene]
BYDV	Barley Yellow Dwarf Virus
CBD	Convention on Biological Diversity
CBP	Centralized breeding programmes
CCN	Cereal cyst nematode
CE	Common era
CGIAR	Consultative Group for International Agricultural Research
CIDA	Canadian International Development Agency
CIE	Commission Internationale l'Eclairage
CIAL	Local agricultural research committees [in Latin America]
CIAT	International Center for Tropical Agriculture
CIMMYT	International Wheat and Maize Improvement Center
CIP	International Potato Center
СРВ	Conventional plant breeding
cv	Cultivar [= cultivated variety]
DArT	Diversity Arrays Technology
DBP	Decentralized breeding programmes
dES	Diethyl sulphate [a mutagen]
DF	Degrees of freedom
DH	Doubled haploid
DHPLC	Denaturating high performance liquid chromatography
DM	Dry matter

ממתת	
DPBP	Decentralized-participatory breeding programmes
DUS	Distinctness, Uniformity, Stability
DW	Dry weight
ELISA	Enzyme-linked immunosorbent assay
EMS	Ethane methyl sulphonate [a mutagen]
EPA	Environmental Protection Agency [United States of America]
F _n	Filial generation <i>n</i>
FAO	Food and Agriculture Organization of the United Nations
FDA	Food and Drug Administration [United States of America]
FFS	Farmer field school
FIPAH	La Fundación para La Investigación Participativa con Agricultores de
	Honduras
FK	Farmer knowledge
FPB	Formal plant breeding
FR	Farmers' Rights
FV	farmer variety [± locally selected]
G×E	Genotype × Environment (Interaction)
GGE	Genotype main effect (G) plus Genotype × Environment (GE) Interaction
GIS	Geographical Information System
GMO	Genetically modified organism
GURT	Genetic Use Restriction Technology
G×L	Genotype × Location
G×Y	Genotype × Year
HPLC	High performance liquid chromatography
IAEA	International Atomic Energy Agency
IARC	International Agricultural Research Center
ICARDA	International Center for Agricultural Research in the Dry Areas
ICP	Inductively coupled plasma [mass spectrometry]
ICPOES	Inductively Coupled Plasma Optical Emission Spectrometer
ICRISAT	International Crops Research Institute for the Semi-Arid Tropics
ID	Inbreeding depression
IDRC	International Development Research Centre [Canada]
IFPRI	International Food Policy Research Institute
IITA	International Institute of Tropical Agriculture
INCA	National Institute for Agricultural Science [Cuba]
IP	Intellectual property
IPGRI	International Plant Genetic Resources Institute [now Bioversity
	International]
IPM	Integrated pest management
IPR	Intellectual Property Rights
IRRI	International Rice Research Institute
ITPGRFA	International Treaty on Plant Genetic Resources for Food and Agriculture
LD	Linkage disequilibrium

LD_{50}	Lethal dose killing 50% of target
LD_{30} LD_{100}	Lethal dose killing 100% of target
MAS	Marker-assisted selection
MCA	Multiple correspondence analysis
MET	Multi-environment Trials
MFN	Most favoured nation
MNU	Methylnitrosourea [a mutagen]
MRRS	Modified reciprocal recurrent selection
MS	Mean square
MTA	Material Transfer Agreement
MV	Modern variety
MVD	[FAO/IAEA] Mutant Varieties Database
NARS	National agricultural research system
NDVI	Normalized Difference Vegetation Index
NERICA	New Rice for Africa
NIL	Near-isogenic line
NIRS	Near Infrared Spectroscopy
NIR	Near-infrared [spectrum]
OECD	Organisation for Economic Co-operation and Development
OFSP	Orange-fleshed sweet potato
OPC	Open-pollinated cultivar
PBK	Plant breeder knowledge
PBR	Plant breeder's rights
РС	Principal components
PCR	Polymerase chain reaction
PGR	Plant genetic resources
PPB	Participatory plant breeding
PRA	Participatory rural appraisal
PRGA	[CGIAR] Participatory Research and Gender Analysis [Program]
PRI	Photochemical reflectance index
PSD	Participatory seed dissemination
PVP	Plant Variety Protection
PVS	Participatory varietal selection
PVX	Potato virus X
PVY	Potato virus Y
QTL	Quantitative trait locus
R&D	Research and development
RAPD	Random amplified polymorphic DNA
RCB	Randomized complete block [experiment design]
REML	Restricted Maximum Likelihood
RFLP	Restriction fragment length polymorphism
RFSRS	Reciprocal full-sib recurrent selection
RIL	Recombinant inbred line

RRS	Reciprocal recurrent selection
S _n	Selfed generation <i>n</i>
SD	Standard deviation
SE	Selection environment
SE	Standard error
SFNB	Spot form of Net blotch
SMTA	Standard Material Transfer Agreement
SNP	Single nucleotide polymorphism
SPCSV	Sweet potato chlorotic stunt virus
SPFMV	Sweet potato feathery mottle virus
SPVD	Sweet potato virus disease
SR	Simple Ratio Vegetation Index
SS	Sum of squares
SSR	Simple sequence repeat
SSTW	Small-scale Third World
TGV	Transgenic crop variety
TILLING	Targeting Induced Local Lesions In Genomes
TLC	Thin-layer chromatography
TPE	Target population of environment
TPS	True potato seed
TRIPs	[Agreement on] Trade-Related Aspects of Intellectual Property Rights
UPOV	International Union for the Protection of New Varieties of Plants
USDA	United States Department of Agriculture
UV	Ultraviolet [radiation]
VCU	Value for Cultivation and Use
VIS	Visible spectrum
WARDA	Africa Rice Centre [formerly the West Africa Rice Development
	Association]
WI	Water index
WIPO	World Intellectual Property Organization
WTO	World Trade Organization
WUE	Water-use efficiency

Contributors

Maria I. ANDRADE International Potato Center (CIP), Avenida das FPLM 2698, PO Box 2100 Maputo, Mozambique

Paolo ANNICCHIARICO CRA - Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie, viale Piacenza 29, I-26900 Lodi, Italy

José Louis ARAUS International Maize and Wheat Improvement Centre (CIMMYT), Apdo. Postal 6-641, 06600 México, D.F., Mexico

Jacqueline A. ASHBY International Potato Centre (CIP), Lima, Peru

Andrew R. BARR Affiliate Professor, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064

Javier BETRÁN Syngenta Seeds, St. Sauveur, France

Chittaranjan R. BHATIA New Bombay 400 703, India Zewdie BISHAW Head, Seed Unit, ICARDA, PO Box 5466, Aleppo, Syrian Arab Republic

Flavio CAPETTINI International Center for Agricultural Research in the Dry Areas (ICARDA), PO Box 5466, Aleppo, Syrian Arab Republic

Salvatore CECCARELLI formerly with The International Center for Agricultural Research in the Dry Areas (ICARDA), PO.Box 5466, Aleppo, Syrian Arab Republic

Anja Christinck Gichenbach 54, D-36129 Gersfeld, Germany

David A. CLEVELAND Environmental Studies Program, University of California, Santa Barbara, CA 93106-4160, United States of America

Stan Cox The Land Institute, 2440 E. Water Well Rd., Salina, Kansas 67401, United States of America

John DODDS Dodds and Associates, 1707 N Street NW, Washington DC 20036, United States of America **Donald N. DUVICK (DECEASED)** formerly with Department of Agronomy, Iowa State University, Ames, Iowa, United States of America

Jorge Espinoza

International Potato Center (CIP) Apartado 1558, Lima 12, Peru

Yusuf Genc

Molecular Plant Breeding Cooperative Research Centre, University of Adelaide, Waite Campus, PMB 1, Glen Osmond SA 5064, Australia

Robin D. GRAHAM

School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB 1, Glen Osmond SA 5064, Australia

Stefania GRANDO

International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 5466, Aleppo, Syrian Arab Republic

Wolfgang GRÜNEBERG

International Potato Center (CIP) Apartado 1558, Lima 12, Peru

Bettina I.G. HAUSSMANN

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), BP 12404, Niamey, Niger

Julia M. HUMPHRIES

Department of Clinical Pharmacology, Flinders Medical Centre, Bedford Park SA 5042, Australia

Sally HUMPHRIES

Department of Sociology and Anthropology, MacKinnon Building, University of Guelph, Guelph, ON, Canada, N1G 2W1

Humberto Ríos Labrada

National Institute of Agricultural Sciences, Havana, Cuba

Pierre J.L. LAGODA

Plant Breeding and Genetics Section, Joint FAO/IAEA Division, Vienna, Austria

Graham H. Lyons School of Agriculture , Food and Wine,

University of Adelaide, Waite Campus, PMB 1, Glen Osmond SA 5064, Australia

Miroslaw MALUSZYNSKI

Department of Genetics, University of Silesia, Katowice, Poland

Jesús Moreno-González

Centro de Investigaciones Agrarias de Mabegondo, Xunta de Galicia, Spain

Robert MWANGA

National Crops Resources Research Institute (NCRRI), Namulonge, Box 7084, Kampala, Uganda

Karin NICHTERLEIN

Food and Agriculture Organization of the United Nations (FAO), Research and Extension Division, 00153 Rome, Italy

Heiko K. PARZIES

University of Hohenheim, Institute of Plant Breeding, Seed Science and Population Genetics, D-70593 Stuttgart, Germany

Fred RATTUNDE

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), BP 320, Bamako, Mali

Matthew P. REYNOLDS

International Maize and Wheat Improvement Centre (CIMMYT), Apdo. Postal 6-641, 06600 México, D.F., Mexico

Raoul A. ROBINSON

Retired Agricultural Botanist 445 Provost Lane, Fergus, Ontario, Canada, N1M 2N3

Ignacio Romagosa

Centre UdL-IRTA, Universitat de Lleida, Lleida, Spain

Conxita Royo

Institut de Recerca i Tecnologia Agroaliment^ries (IRTA), Area de Conreus Extensius, Centre UdL-IRTA, Alcalde Rovira Roure 191, 25198 Lleida, Spain

Pratap K. SHRESTHA

Local Initiatives for Biodiversity, Research and Development (LI-BIRD), P.O. Box 324, Pokhara, Kaski, Nepal

Gustavo A. SLAFER

ICREA (Catalonian Institution for Research and Advanced Studies) and Department of Crop and Forest Sciences, University of Lleida, Centre UdL-IRTA, Av. Rovira Roure 191, 25198 Lleida, Spain

Daniela SOLERI

Department of Geography, University of California, Santa Barbara, CA 93106-4060, United States of America

Susanne Somersalo

Dodds and Associates, 1707 N Street NW, Washington DC 20036, United States of America

Yiching Song

Center for Chinese Agricultural Policy (CCAP), Chinese Academy of Sciences, Institute of Geographical Sciences and Natural Resources Research Jia 11, Datun Road, Anwai, Beijing 100101 China

Iwona Szarejko

Department of Genetics, University of Silesia, Katowice, Poland

Anthony J.G. VAN GASTEL Harspit 10, 8493KB, Terherne, Netherlands

Ronnie VERNOOY

International Development Research Centre (IDRC), 150 Kent Street, PO Box 8500, Ottawa, ON, Canada, K1G 3H9

Daljit S. VIRK

CAZS-Natural Resources, Bangor University, Bangor LL57 2UW, United Kingdom

Kirsten vom Brocke

Centre de Coopération Internationale en Recherche Agronomique pour le Dévelopment (Cirad) c/o ICRISAT, BP 320, Bamako, Mali

Eva Weltzien

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), BP 320, Bamako, Mali

John R. WITCOMBE

CAZS-Natural Resources, Bangor University, Bangor LL57 2UW, United Kingdom