

Food and Agriculture Organization of the United Nations

ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS

30TH SESSION

19–24 May 2024 Kathmandu (Nepal)

SIDE EVENT A: Indonesia Experiences with EO Data

THE USE OF EARTH OBSERVATION ON RICE STATISTICS

Presenter: Wida Widiastuti, M. Habibullah, Kadarmanto

Background Information – Indonesia

BPS – Statistics Indonesia, Lead Ministry/Agency Collaboration with Ministry of Planning Policy mandate Moderenization of agriculture statistics Legislative mandate (if any) Stakeholders involved National Research and Innovation Agency, Ministry of Agriculture Interagency collaborations National Research and Innovation Agency **Privacy legislation**

3 AGENDA ITEM 3 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS (APCAS 30) 19–24 May 2024 (Kathmandu, Nepal)

Privacy considerations

Background Information (cont.)– Indonesia

Satellite imagery source(s)

Type of imagery used (optical, SAR, etc.; including satellite system)

Spatial and Temporal resolution

Ancillary data

Data processing (infrastructure on-site or cloud-based) Area covered by EO data analysis (national/sub-national)

Sentinel - 1

SAR

10m, 12 days

Area Sampling Frame (ASF) survey data as data training

Infrastructure on-site

national

Background Information (cont.) – Indonesia

Crops covered

Statistics produced (ex. Crop type mapping, area estimation) Frequency that statistics are produced

Dissemination of statistics

Size of geospatial team

Roles of geospatial team

Paddy Fields

Area Estimation of Paddy Growth Phase (Phenology)

Monthly

Paddy Production Data

16 people

Development of the Methodology using EO

In-situ data – Indonesia

Data/survey source

Lead agency

Sampling approach

Data collection approach

Variables collected

Frequency of data collection

Area Sampling Frame (ASF) Survey Data

BPS-Statistics Data

Area Sampling Method

On the ground survey

Paddy growth phase on the sample location

Monthly

RICE PRODUCTION CALCULATION Current Method

- Observing rice crops to obtain:
 - Paddy growth phase
 - Predicting the harvest time
 - Estimating the harvest area
- Weighing the weight of rice in a paddy field to estimate the rice productivity value.

Cost in the data collection process

Risk of non-responses data

Can't capture samples in a remote area

METHODOLOGY Area Sampling Frame

Population	Rice field in Indonesia (including wetland and dryland paddy)					
Sampling Frame	Area sampling frame Segment sized 300 m x 300 m with 9 points observation in each segment					
Sampling	Two phased stratified random sampling to choose sample segment					
Number of Sample	25,493 sample segment or about 229.437-point observations					
Data Collection Method	Direct observation of rice growth phase at selected sample observation points using CAPI mode					
Number of surveyor	about 6.000 surveyors					
Frequency of data collection	Monthly					
Output	Harvested area, potential harvested area, area of each growth phase (including area of crop failure)					
Estimation level	District/municipality and provincial level					

8 AGENDA ITEM 3 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS (APCAS 30) 19–24 May 2024 (Kathmandu, Nepal)

Earth Observation Potential

0

Capturing of remote area and filling gap of non-response data

PADDY GROWTH PHASE PREDICTION USING EO

Remote Sensing Potential

Paddy Growth Phase based on EO

10 AGENDA ITEM 3 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS (APCAS 30) 19–24 May 2024 (Kathmandu, Nepal)

GROUND TRUTH SURVEY (ASF) AS TRAINING DATA

Area Sampling Frame Survey (ASF) Data

- The label data used is acquired from the ASF survey and is undergoing 1 modification for modeling purposes (details are **described in the table**).
- The ASF data utilized spans from April 2022 to March 2023. 2
- The selected area is the West Java region, with a specific focus on Indramayu. -3

There are 22,445 ASF points, each labeled for 12 time points within a 4 one-year period.

La	bel obtained from ASF Survey	Label for ML Modeling			
Label	Description	Label	Description		
1	Early Vegetative	1	Early Vegetative		
2	Late Vegetative	2	Late Vegetative		
3	Generative	3	Generative		
4	Harvest	4	Harvest		
5	Land Preparation	5	Land Preparation		
6	Potential for Harvest Failure/Demeged				
7	Farmland Planted with other than rice or unplanted agricultural land	0	Non-Paddy		
8	Non-agricultural Land				

- Sentinel-1 satellite imagery data
- Temporal resolution: Every 12 days
- Spatial resolution: 10 meters

AGENDA ITEM 3 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS (APCAS 30) 19–24 May 2024 (Kathmandu, Nepal) 11

METHODOLOGY

Area Clustering / Regionalization

Objective: to capture the homogenous areas based on the topological, physical terrain, paddy planting patterns, climate, etc.

Expected Output: Area clustering for model separation.

Objective: to classify areas as either paddy fields or non-paddy fields serves as a constraint for a paddy growth phase model.

Expected Output: Potential Paddy Field Map for Paddy Growth Phase Classification Model

Paddy Growth Phase Modeling

Paddy Growth

Objective: classify areas for each paddy growth phase. **Expected Output:** Paddy Growth Phase Classification

Satellite Imagery

Model Description:

o: Variables=[9 Extracted Feature, nth], Spatial Res: 10m 1: Variables=[9 Extracted Feature, nth], Spatial Res: 50m

2: Variables=[31 Series of VH Value, nth], Spatial Res: 10m 3: Variables=[31 Series of VH Value, nth], Spatial Res: 50m

Mode	Pred Time	Fit Time	Mean Accuracy Train (5-fold CV)	Mean Accuracy Test (5-fold CV)	Accuracy Validation Pred		Model	Pred Time	Fit Time	Mean Accuracy Train (5-fold CV)	Mean Accuracy Test (5-fold CV)	Accuracy Validation Pred
0 CatBoost	0.012192	7.301360	0.822599	0.794576	0.823051	0	CatBoost	0.010637	<mark>4.8</mark> 91682	0.834611	0.835540	0.851671
1 CatBoos	0.012807	7.171480	0.799096	0.774915	0.797288	1	CatBoost	0.013360	5.170701	0.808595	0.811847	0.825209
2 CatBoost	0.013085	7.283956	0.856045	0.816949	0 <mark>.861695</mark>	2	CatBoost	0.011519	5. <mark>94</mark> 7832	0.876655	0.860627	0.887883
3 CatBoost	0.013710	7.076196	0.830508	0.789153	0.834576	3	CatBoost	0.012332	6.069428	0.842509	0.829965	0.865599

Model include non-paddy class (class: 0,1,2,3,4,5)

Model for paddy field only (class: 1,2,3,4,5)

Findings

- The modeling results indicate that using the **backscatter** 1 VH time series in modeling produces better accuracy compared to using extracted features (with the differences around 2-3%).
- Modeling results using satellite images with a spatial 2 resolution of 10m yield better accuracy than those with 50m resolution (with the differences around 3-4%).
- The model incorporating the non-paddy class has not 3 been able to predict the non-paddy class optimally, likely due to the limited number of observation samples.
- The non-paddy class (o) tends to be misclassified as the land preparation class (5).

CHALLENGE OF EARTH OBSERVATION FOR PADDY GROWTH PHASE IDENTIFICATION

Challenges

How to capture the heterogeneity of field characteristics in Indonesia

- Paddy fields are not always continuously planted with paddy.
 After the harvest, the land may be planted with non-paddy crops.
- Lands in Indonesia tend to be small in size, giving rise to issues related to mixed pixels.
- I land that is located in mountainous areas, which also presents a similar mixed pixels problem
- The diverse characteristics of fields such as irrigated fields, swampy fields, and dryland fields require specific models.

Ground Checking to ensure the model reflects real-world conditions,

Identify the potential regions for remote sensing implementation

>>>

Recommendations

- The use of national-scale Earth Observation (EO) requires robust infrastructure, as numerous satellite images need to be processed for modeling. Therefore, Data Cube is considered as one of the recommendations to facilitate the data preparation process.
- Due to the diverse characteristics of land, a single model may not suffice, necessitating pre-processing steps like regional clustering to identify areas with similar characteristics.
- In model development, it is not sufficient to solely pursue accuracy but also to consider how the model can be applicable when used on a large scale area.
- Model evaluation with ground truth to ensure the robustness of the model.

Thank you for your attention!

Contact: Geospatial Team Wida Widiastuti wida_w@bps.go.id Achmad Fauzi achmad.firmansyah@bps.go.id Novia Permatasari novia.permatasari@bps.go.id Nasiya Alifah Utami nasiya.alifah@bps.go.id

