# **Bacterial Diseases of Tilapia**

#### **Ha Thanh Dong**

Faculty of Science and Technology, Suan Sunandha Rajabhat University Fish Health Platform, CENTEX Shrimp, BIOTEC/Mahidol University



## **Bacterial Diseases in Farmed Tilapia**

- Streptococcosis
- Columnaris
- Francisellosis
- Edwardsiellosis
- Hemorrhagic septicemia caused by motile aeromonads
- Hahellosis (red egg disease)
- Epitheliocystis
- Miscellaneous disease

#### Causative agents

- Streptococcus agalactiae
- Streptococcus iniae
- Streptococcus dysagalactiae
- Lactococcus garviae
- Aerococcus viridans (?)
- Gram positive bacteria
- GBS have been classified to 10 serotypes (Ia, Ib, II–IX)
- In aquatic animals: 4 serotypes la, lb,
   II and III
- Serotype IX is newly reported in tilapia (China)



Streptococcus agalactiae

#### Causative agents

Intracellular living style of S. agalactiae



Liver Brain

#### ❖ Clinical signs (Level 1)

- erratic swimming
- pop eyes (exophthalmia)
- darkening
- lost of appetite











- swollen gallbladder
- brown/dark areas in the liver
- ascites

#### **Diagnostics** (Level 2)

• Rapid Gram staining of smeared tissue e.g. blood, kidney, liver, brain





Gram staining of smeared kidney

7

#### **Diagnostics** (Level 2)

histopathology



Liver, Nile tilapia infected with *S. agalactiae* showing hyperactivation of melanomacrophage centers with overloaded melanophores in the pancreas, severe hepatocyte degeneration and accumulation of melanophores.

#### **Diagnostics** (Level 2)

- Bacterial culture + biochemical tests
  - culture: e.g. TSA, NA, blood agar
  - incubate at 28-33 °C for 24-48 hrs. → pinpoint colonies
  - Gram positive, oval/round shape, catalase (-) → Streptococcus
  - API 20 strep kit







- Specific PCR (either tissue or pure culture)
- Bacterial culture + sequencing of 16S rRNA gene (>1.3 kb)



Duplex PCR for detection of *S. agalactiae* & *S. iniae* (Rodkhum et al. 2012)



Aeromonas veronii bv. sobria HS120920/KF543779 Aeromonas veronii bv. veronii ATCC 35624/NR118947

- ❖ Mortality: variable, up to 90%
- ❖ Geographical distribution: worldwide
- ❖ Risk factors: high temperature (31-33 °C), poor water quality
- Prevention
  - Treat water with disinfectants
  - o Control water temperature (e.g. increased water level in the pond)
  - Supply more oxygen (e.g. increased aeration)
  - o Improve fish immunity (e.g. vitamin C, immulostimulants)
  - Vaccine is available
    - o Injectable vaccine (e.g. MSD, Dr. Nontawith's team at KU, Thailand)
    - Immersion vaccine (China)
    - Vaccine incorporated with feed for oral route (DOF, Malaysia)

#### Causative agent

- Flavobacterium columnare
- Gram negative, long rod-shaped bacterium
- Gliding motility
- Form strong biofilm
- Rhizoid morphotype: pathogenic
- Non-Rz morphotype: non-pathogenic



Gram negative, long rod-shape bacterium



Rhizoid morphotype

Non-Rhizoid morphotype

Biofilm formation

### Clinical signs (Level 1)

- fin rot
- necrotic gills
- muscle necrosis
- "saddle back" lesion
- pale skin







"saddle back"



### **Diagnostics** (Level 2)

wet-mount



Wet mount



Wet mount of the saddle-back lesion revealed clumps of long rod-shaped bacteria

#### **Diagnostics** (Level 2)

- Rapid Gram staining of smeared tissue e.g. gills, skin lesion
- Histopathology





Gram staining of smeared tissue

Histopathology of fish gills infected with F. columnare (Declercq et al. Vet Res 2013, 44:27)

#### **Diagnostics** (Level 3)

- Specific PCR (for either fish tissue or pure isolate)
  - ✓ Welker et al. 2005
  - ✓ Triyanto et al. (1999)
  - ✓ Darwish et al. (2004)
- Bacterial culture + sequencing of 16S rRNA
  - Anaker and Ordal's medium (AOA)
  - Modified Shield medium



F. columnare on AOA medium



F. columnare-specific PCR according to Welker et al. 2005



**Mortality**: variable, reached up to 100% in challenge experiments

**Geographical Distribution:** worldwide

#### **Risk factors**

- Disease usually occurs after transportation
- Cage culture is more susceptible than pond culture

#### **Prevention**

- Sodium chloride 10 ppt can prevent/control the disease
- No commercial vaccine available for tilapia



# **Ignore OR Find Answer?**



#### Diversity of Non-F. columnare associated with Columnaris diseased fish



II VI

- ✓ Most bacteria first found in tilapia
- ✓ Experimental challenge (I.M.) showed
   0-20% mortality
- ✓ May serve as opportunistic pathogens

Phylogenetic analysis based on 16S rRNA

# **Francisellosis**

#### Causative agent

- Francisella noatunensis subsp. orientalis (Fno)
- Previously known as Rickettsialike organism, RLO or Piscirickettsia-like organism
- Fastidious intracellular bacterium
- o Gram negative, oval shape
- Require cysteine for growth
- Optimum temperature for Fno (25-28 °C)



Fno, Gram staining (Photo: VV Nguyen)

### Clinical signs (Level 1)

- Pale body
- White spots/white nodules on the spleen, head kidney, trunk kidney, gills
- Lost of appetites





Images by Michael J. Mauel



Photographs were taken in conjunction with the outbreaks described in Nguyen et al. 2015. Aquac Res.

#### **Diagnostics** (Level 2)

- Wet-mount (e.g. spleen, gills)
- Rapid staining





Rapid staining of smeared-head kidney with Giemsa revealed presence of both intra- and extra-cellular bacteria (Nguyen et al. 2015)

#### **Diagnostics** (Level 2)

- Histopathology: presence of granulomas in multiple internal organs
- In situ hybridization (ISH) using Fno-specific proble



Micrographs of H&E stained sections of the spleen showed typical granulomas.

ISH using specific probe revealed location of Fno in the spleen

#### **Diagnostics** (Level 3)

#### Detect Fno from fish tissue

- Genus specific PCR (Forsman et al. 1994)
- Real-time PCR (Duodu et al. 2012)
- ISH, genus-specific (Hsieh et al. 2007)
- Immunohistochemistry (Soto et al. 2012)
- Duplex PCR and ISH (Dong et al. 2016)
- Colorimetric LAMP (Pradeep et al. 2016)
- Recombinase polymerase amplification (RPA) (Shahin et al. 2018)



Genus-specific PCR (Forsman et al. 1994)



Duplex PCR (Dong et al. 2016)

#### **Diagnostics** (Level 3)

- Culture + specific PCR
- Culture + sequencing of 16S rRNA



Fno on Cysteine heart agar (CHA) (Photo: VV Nguyen)



Nguyen et al. 2015. Aquac Res.

#### Geographical distribution



**Mortality:** 40-50%

#### **Risk factors:**

- Disease outbreaks were associated with cool season (<28°C)</li>
- Very chronic, disease outbreaks depend on environmental factors

#### Prevention/treatment

- Use Fno-free fish
- Antibiotics have been used for treatment
- ❖ Temperature >30° C, no mortality occur
- Commercial vaccine is NOT available

#### Causative agent:

- Edwardsiella ictaluri
- Edwardsiella tarda
- Edwardsiella anguillarum
- Edwardsiella piscicida (?)
- ☐ Pinpoint colonies on culture media
- □ Rod-shaped Gram negative
- □ Oxidase negative



Rod-shaped Gram negative

#### Edwardsiellosis caused by *E. ictaluri*

- Common in catfish
- Not common in non-catfish
- Does not kill tilapia in striped catfish ponds (personal observation)
- 2012: first report of E. ictaluri in Nile tilapia in Western Hemisphere (Soto et al. 2012)

#### **Recent cases in Southeast Asia**

- Red tilapia juveniles
- Killed 40-50% fish in the first month after stocking
- Presence of white spots in multiple internal organs

- Presumptive diagnosis based on clinical sign (Level 1): Francisellosis
- PCR negative for Fno



#### **Presumptive diagnosis**

#### (Level 2)

Gram stained tissue smear revealed numerous Gram negative, rod-shaped bacteria





Gram staining of tissue smear

- ❖ Bacterial isolation: pure pinpoint colonies on TSA or NA
- Gram negative, rod-shaped bacteria





### Confirmed diagnosis (Level 3)



Phylogenetic tree based on 16S rRNA (a) and gyB (b)

#### Challenged experiments fulfilled Koch's postulates

- Fish reproduce the same clinical signs
- 95-100% mortality in 3-9 days (dose-dependent)



Experimental fish



Histopathological features of edwardsiellosis in the experimental fish

## Edwardsiellosis of tilapia

#### **Comments**

- E. ictaluri is an emerging pathogen of tilapia aquaculture in Southeast Asia
- E. ictaluri infections in tilapia may have been overlooked due to similar clinical signs between Francisellosis & Edwardsiellosis
- Should be put on disease watchlist in tilapia farming countries





#### Causative agent

- Aeromonas hydrophila
- Aeromonas veronii
- Aeromonas jandaei
- Aeromonas shuberti
- Aeromonas dhakensis
- ☐ Gram negative bacteria
- □ Rod or oval shaped
- Non-spore forming
- ☐ Oxidase (+), catalase (+)



Aeromonas sp. (Gram stain)

### Clinical signs (Level 1)





#### **Diagnostics** (Level 2)

- Histopathology
- Bacterial culture + biochemical tests







API 20E kit

#### **Diagnostics** (Level 3)

- Specific PCR (for either fish tissue or pure isolate)
  - Misidentification is common in Aeromonas group
  - Bacterial culture + sequencing of 16S rRNA or MLST is highly recommended



# Hahellosis (red egg disease)

#### **Causative agent**

- ☐ Hahella chejuensis
- ☐ Gram negative, rod-shaped, red pigmented bacteria
- Marine bacterium

### **Diagnostics** (Level 1)



### **Diagnostics (Level 2)**

- Histology
- Bacterial isolation



Bacterial isolation using TSA



Semi-thin section (1 µm), stained with toluidine blue

#### **Diagnostics** (Level 3)

- ✓ Sequencing of 16S rRNA
- ✓ Genus & species specific PCR (Senapin et al. 2016)





Specific PCR methods were developed targeting 16S rRNA

Red pigmented bacteria was identified using 16S rRNA

#### **Geographical Distribution**

- √ Tilapia hatcheries in Thailand since 2010
- ✓ Recently found in rabbitfish in Vietnam (unreported)

Mortality: 10-50%

#### **Risk factors:**

- ✓ Occur during cold season (<24 °C)
- ✓ Occurred in hatcheries using 7 ppt NaCl water

#### Disease control

- ✓ Reduce salinity from 7 ppt to 4 ppt
- ✓ Expose sand from the filter system to sunlight
- ✓ Wrap the hatcheries with plastic to increase temperature (30 °C)





- Reduction of loss: ~ \$ 600,000 /year
- Calculation based on 30% mortality (range from 10-50%)

### **Epitheliocystis Disease**

- Causative agent: Chlamydia-like organisms (CLOs)
- Affect mainly gills
- Sometime associated with mortality in tilapia fry and fingerlings
- Diagnostics: wet-mount of gills filaments or histology





Fresh mount showing heavy infection of CLOs

## **Epitheliocystis Disease**

Diagnostics: histopathology



Red tilapia, Thailand (HT Dong)



Single infection vs. Multiple infections

## Miscellaneous Disease in Tilapia







- ✓ Concurrent infections of 5 bacteria and a virus in cultured tilapia farms
- ✓ Each fish was infected with 2-4 pathogens
- ✓ A. veronii and F. columnare were most dominant and exhibited high virulence

## Miscellaneous Disease in Tilapia

## JOURNAL OF FISH DISEASES

Original Article

Natural coinfection by *Streptococcus agalactiae* and *Francisella noatunensis* subsp. *orientalis* in farmed Nile tilapia (*Oreochromis niloticus* L.)

G B N Assis, G C Tavares, F L Pereira, H C P Figueiredo, C A G Leal ≥

First published: 04 May 2016 | https://doi.org/10.1111/jfd.12493 | Cited by: 9



#### Aquaculture

Volume 485, 2 February 2018, Pages 12-16



Short communication

A case of natural co-infection of Tilapia Lake Virus and
Aeromonas veronii in a Malaysian red hybrid tilapia
(Oreochromis niloticus × O. mossambicus) farm experiencing
high mortality

M.N.A. Amal <sup>a, f</sup>  $\nearrow$   $\bowtie$ , C.B. Koh <sup>b</sup>, M. Nurliyana <sup>a</sup>, M. Suhaiba <sup>a</sup>, Z. Nor-Amalina <sup>c</sup>, S. Santha <sup>c</sup>, K.P. Diyana-Nadhirah <sup>c</sup>, M.T. Yusof <sup>d</sup>, M.Y. Ina-Salwany <sup>c, f</sup>, M. Zamri-Saad <sup>e, f</sup>

**⊞ Show more** 

## Miscellaneous Disease in Tilapia



Coinfections of *Flavobacterium columnare* and *Francisella noatunensis* subsp. *orientalis* 



F. columnare and Saprolegnia sp.

## Thank you for your kind attention