

Fisheries Data Interoperability

Geographic Information (Meta)data standards

Emmanuel Blondel (FAO) emmanuel.blondel@fao.org

1

Technical workshop on global harmonization of Tuna fisheries statistics

Background – Research Data Alliance, FDI working group
(Meta)data information standards
FAIR (meta)data principles
Methodology for cross-domain geo-referenced statistics dissemination & visualization
Use Case 1: Global Tuna Atlas
Use Case 2: Regional database – WECAFC-FIRMS Fisheries

• RDA – Research Data Alliance

- "Research Data Without barriers" <u>https://www.rd-alliance.org/about-rda</u>
- **Vision**: "Researchers and innovators openly sharing data across technologies, disciplines, and countries to address the grand challenges of society"
- **Community**: 6600 members from 135 countries
- General findings
 - Data is fragmented worldwide, within and across disciplines and domains
 - Need of building blocks and data bridges to foster data discovery, access, exploitation including cross-disciplinary approaches

• Fisheries Data Interoperability Working Group

- <u>https://rd-alliance.org/group/fisheries-data-interoperability-wg/</u>
- Participation of FAO and IRD under EC BlueBridge project
- Synergy with Coordinating Working Party on Fishery Statistics
 - Adhoc task group of reference data harmonization
 - GIS working group
- Activities
 - Inventory of (meta)data standards in support to fisheries data
 - Statistical (meta)data exchange standards
 - Geo-referenced (meta)data exchange standards
 - Discuss a **draft standard vocabulary for defining data structures & variables**, **categorizing datasets**. Notion of "building blocks"
 - Draft a generic methodology for geo-referenced cross-domain statistical data dissemination & visualization using open standards
 - Knowledge exchange with/from other RDA interest & working groups

• (Meta)data standards for fisheries data interoperability?

- Statistics-oriented standards
 - SDMX Information Model; https://sdmx.org/
 - UN-CEFACT FLUX
- Geospatial-enabled standards
 - ISO/TC211 Geographic information Standards
 - OGC (Open Geospatial Consortium) Format & Service Standards
- Generic Standards: <u>Dublin Core</u>
- But also standards in specific domains: e.g. <u>EML Ecological Metadata Language</u>
- (Meta)data standards are part of policy frameworks

Examples:

- Statistics: Commission Recommendation of 23 June 2009 on reference metadata for the European Statistical System 3 (2009/498/EC)
- Geospatial: EC INSPIRE Directive 2007/2/CE

Trends noticed through RDA

- Common pathway towards adoption of FAIR Data Principles (Findable, Accessible, Interoperable, Re-usable)
- Convergence of data domains in using:
 - Common Data & Metadata standards
 - Data standards:
 - Geospatial OGC formats, Unidata NetCDF
 - Metadata standards:
 - Generic: DublinCore
 - Geospatial: ISO/OGC 19115/19139, Catalogue Service for the Web (CSW),
 - Domain specific:
 - CF-Conventions, EML
 - Few mention of SDMX. Mentioned with a need of mapping from/to ISO/OGC Geospatial "world" (e.g. European Statistical framework vs. INSPIRE)
 - Common Data access & sharing Methodologies
 - Common Technologies (but technology is NOT the focus here)

FAIR Principles

Data needs to have a <u>structured description</u> (not only a data structure definition)

METADATA

Technical workshop on global harmonization of Tuna fisheries statistics

Technical workshop on global harmonization of Tuna fisheries statistics

• FAIR Principles

FINDABLE	 F1. (meta)data are assigned a globally unique and eternally persistent identifier. F2. data are described with rich metadata. F3. (meta)data are registered or indexed in a searchable resource. F4. metadata specify the data identifier.
ACCESSIBLE	 A1 (meta)data are <u>retrievable by identifier</u> using <u>a standardized communications</u> <u>protocol</u>. A1.1 the <u>protocol</u> is open, free, and universally implementable. A1.2 the <u>protocol</u> allows for an authentication and authorization procedure, where necessary. A2 <u>metadata are accessible</u>, even when the data are no longer available.
INTER OPERABLE	 I1. (meta)data use a <u>formal, accessible, shared, and broadly applicable language</u> for knowledge representation. I2. (meta)data use <u>vocabularies that follow FAIR principles.</u> I3. (meta)data include <u>qualified references</u> to other (meta)data.
RE-USABLE	 R1. meta(data) have a <u>plurality of accurate and relevant attributes</u>. R1.1. (meta)data are released with a <u>clear and accessible data usage license</u>. R1.2. (meta)data are associated with their <u>provenance</u>. R1.3. (meta)data <u>meet domain-relevant community standards</u>.
	https://www.force11.org/group/fairgroup/fairprinciples

- Methodology for cross-domain, geo-referenced statistics dissemination & visualization Principles
 - FAIR data principles
 - Standards
 - Use of internationally recognized and widely adopted open standards for data, metadata, processes and services.
 - Primary choice oriented on geospatial-oriented standards: ISO/TC211 and OGC, rather than statistics-oriented standards (SDMX):
 - Wider user community and support
 - Tools availability and reliability
 - Better fitting with cross-domain / integrated vision (enabling confrontation with other data products such as stock assessment model outputs, scientific fishery surveys, vessel trajectories – VMS and AIS, etc.)
 - Tools used to promote the approach
 - Free and Open Source Software (FOSS)
 - Simple, Affordable and Flexible tools, ie that can be easily adopted and fine-tuned in autonomy by a wide data managers community (and not only a pure IT community)
 - Main programming language used:

Technical workshop on global harmonization of Tuna fisheries statistics

(META) DATA CATALOGUE

METADATA SERVICES OGC Catalogue Service for the Web (CSW) DATA SERVICES OGC Data services (WMS / WFS)

Technical workshop on global harmonization of Tuna fisheries statistics

- a Data Structure Definition file is not only useful for data exchanging...
- But also for data dissemination & exploitation (query, map, graphs, download)

Global Tuna Atlas

Technical workshop on global harmonization of Tuna fisheries statistics

• WECAFC-FIRMS Regional Database

• Establish mappings between (meta)data standards

- Some objectives
 - Fulfill legal (meta)data exchange obligations
 - Foster cross-disciplinary approach
- (Meta)data standards Mappings
 - Between ISO/OGC and Statistics/SDMX

e.g. Provide reference metadata for the European Statistical System (2009/498/EC)

• From NetCDF-CF

NetCDF / CF-Conventions, initially for Climate / Weather sciences Now widely used in fields of marine sciences, oceanography & stocks assessment

• From/To Ecological Metadata Language Ecological Metadata Language (EML) used in ecology / biodiversity data communities

• ...

• Strengthen the data extraction & visualization tools

- Contextualization to Regional areas/RFMOs or other criteria: already available
- Need to fine-tune map visualization tools.
 - Additional map types: proportional maps, charts-embedded maps
 - Enable Cross-disciplines analyses
- Capacity to interact further with statistical maps & add graphs
- Enable visualization of confidential data, depending on use cases
- Fine-tune data export / sharing facilities

• Work papers

- Paper in preparation to describe the (meta)data publication & exploitation methodology and how to apply it using R software for statistical computing.
- Related use case communications:
 - Barde J., E. Blondel, E. Chassot, T. Imzilen, A-E Nieblas, P. Taconet, 2017. <u>Collaboration between fisheries and computer scientists for improved</u> <u>data description: The case of IOTC data sets.</u>
 - Nieblas A-E, S. Bonhommeau, T. Imzilen, D. Fu, F. Fiorellato, J. Barde, 2017. <u>Standardization of data formats, metadata, access protocols and</u> <u>statistical visualization of SS3 stock assessment outputs.</u>
 - Barde J., E. Blondel, P. Taconet, 2018. Using R to manage a Spatial Data Infrastructure (SDI) in the South West Indian Ocean (SWIO). Submitted to FOSS4G 2018 Conference <u>http://2018.foss4g.org</u>

Thank you for your attention

Technical workshop on global harmonization of Tuna fisheries statistics