

AN IMPROVED COMMON BEAN INOCULANT FOR A SUSTAINABLE AGRICULTURE

Humberto Peralta and Jaime Mora

Center for Genomic Sciences, National University of México

March 2010

The agriculture in the world faces several challenges

Increased food demand

Environmental problems

Degradation of soils

High production costs

How to increase crop yields with a sustainable perspective?

Fertilization vs Inoculation

Fertilization vs Inoculation

Fertilizer:

High cost
Depends on fossil fuels
Hard to transport and store
Applied to soil
Plants acquire only a fraction
Contaminates water, air, soil

Inoculant:

Low cost
Natural resources
Easy transport, storage
Applied to seed
Efficient capture of nutrients
Recovers degraded soils

Microorganisms used as inoculants

Azospirillum, produces indol acetic acid, a hormone which induces root growth

Mycorrhicic fungi, form a secondary root network and enhance nutrient and water capture

Rhizobium, fixes atmospheric nitrogen in the legume roots

The common bean is the most important legume in Mexico and other countries

Nitrogen fixation process

Nitrogen Ammonium

Nitrogenase + Energy

1981 UNAM-Nitrogen Fixation Research Center

Rhizobium-common bean symbiosis as a model

Rhizobium etli, the prevalent species

3 copies of nitrogenase genes

A poor nitrogen fixer

Improvement of nitrogen fixation Modification 1

No fertilized

Wild type Mexico **Rhizobium** Modified 1

With chemical fertilizer

Improvement of nitrogen fixation Modification 2

In symbiosis, Rhizobium accumulates a natural polymer (PHB) as a carbon and reducing power reservoir

We supressed the PHB synthesis pathway to derive more energy to nitrogenase

This was performed on a strain from Colombia

Nutritive value (mg N/g seed)

No fertilized Col., Modif 2 Col., Modif

Col., Modif 1, 2 Chemical fertilizer

Peralta et al., App. Env. Microbiol. 70:3272-80 (2004)

Field assays

15 sites

4 states

5 cultivars

4 growing seasons

1 000 plants sampled for

20 000 nodules

Rain, irrigation by gravity or drip

Field assays

Yield (Ton/Ha)

Site	Cultivar	+Fertilizer	Improved Rhizobium
Zacatepec	Pink	0.46	0.65
Celaya	Pink	4.48	4.34
Celaya	Pink	2.57	2.23
Juchitepec	Black	1.44	1.47
Texcoco	Black	2.83	3.45
Cotaxtla	Mottled	2.34	2.40
Cotaxtla	Black	1.80	1.75
Celaya	Pink	2.69	3.10
Celaya	Pink	3.60	3.40
Zacatepec	Yellow	2.07	2.34
Zacatepec	Yellow	1.81	2.26
Texcoco	Mottled	1.62	2.28
Texcoco	Black	1.77	2.29
Texcoco	Black	3.38	3.28

In 70% of cases yields increased by 35% avg

Field assays

Nutritive value (mg N/g of seed)

Site	Cultivar	no fertilized	Improved Rhizobium
Zacatepec	Pink	26	47
Celaya	Pink	34	56
Celaya	Pink	43	62
Juchitepec	Black	32	63
Texcoco	Black	30	67

Seed produced was 50 to 100% more nutritious

2003-UNAM transfers the improved strains to Biofabrica Siglo XXI

Assays with farmers (% in comparison with non fertilized parcels)

	Fertilized	Improved i	Rhizobium	
2005 Durango, Mottle	d			
Yield	+32	+28		
Benefits/Cost	+27	+44		
2006 Durango, Mottle	d		0.0	00
Yield	+50	+43	9000	200
Benefits/Cost	+57	+64	200	900
2006 Nayarit, Black			200	00
Yield	+25	+62		
Benefits/Cost	+30	+110		-
Profits/hectare	US 97	US 150	Fertilized	Rhizobium
Nutritive value	+20	+32		

2008 Zacatecas, Black, Mottled 20 000 hectares Yield increases of 40% avg

Conclusions

The improved inoculant for common bean represents a valuable tool for sustainable agriculture in Mexico:

- -Increased yields and nutritive value of the seed
- -Reduced costs, more profits for farmers
- -Additional benefits for environment

Perspectives

Current: efficient alfalfa inoculant extending the shelf life of the product

Covered only 1% of crop surface

Official support + Intensive divulgation

Azospirillum UNAM inoculant

on 2.5 million hectares

Acknowledgements

Leader: Jaime Mora

University:

Laboratory Yolanda Mora Victor Bustos Leslie Rincón Maricela Tejeda

Greenhouse Ignacio Alvear José Luis Zitlalpopoca Fundacion Produce: Durango, Michoacán, Zacatecas

Govt. Experimental stations: Texcoco: Jorge Acosta Celaya: Javier Castellanos Zacatepec: Aurelio Barrera Uruapan, Cotaxtla

Biofabrica Siglo XXI company:
Marcel Morales
Nelson Morales
Narciso Vergara
José Cruz
José Alicvaján

