MCPA (257)

First draft prepared by Dr. Yibing He,

Department of Science and Education, Ministry of Agriculture, Beijing, China

EXPLANATION

MCPA is an herbicide in the phenoxy or phenoxyacetic acid family that is used post-emergence for selective control of broadleaf weeds and works by concentrating in the actively growing regions of a plant (meristematic tissue) where it interferes with protein synthesis, cell division and the growth of the plant. MCPA is an acid, but it is usually formulated and applied as a salt, an amine salt or an ester. At the 43rd session of the CCPR (2011), it was scheduled for the evaluation as a new compound by 2012 JMPR. The Meeting received information on physical and chemical properties, metabolism, environmental fate, analytical methods and freezer storage stability, national registered use patterns, as well as supervised trials, processing studies and livestock feeding studies.

IDENTITY (Free acid)

ISO Common name	МСРА
Chemical name	
IUPAC name	4-chloro-o-tolyloxyaceic acid
CAS name	(4-chloro-2-methylphenoxy) acetic acid
CAS Registry Number	94-74-6
CIPAC Number	2
Synonyms and trade names	
Manufacturer's codes	
Structural formula	CI-CH ₂ CO ₂ H
Molecular formula	С9Н9СЮ3
Molecular weight	200.6 g/mol
Minimum content of ai	930 g/kg (FAO 1992)

МСРА

Pure active ingredient		Ref
Appearance (purity 99.9%)	Solid, white fine crystalline powder	Turk, 1994, MCPA-R002
Odour	weak intrinsic odour	
Vapour pressure (purity 99.4%):	4× 10 ⁻⁴ Pa at 32 °C 4× 10 ⁻³ Pa at 45 °C	Chakrabart,1985, MCPA-R009
Henry's law constant	$5.5\times~10^{-5} Pa.m^3/mol,$ calculated at 25 °C	Downey, 1987, MCPA-R010
Boiling point (purity 99.9%)	Decomposition is observed	Turk, 1994, MCPA-R002
	at approximately 290 °C	
Melting point (purity 99.9%)	120.0 to 120.8 °C	Turk, 1994, MCPA-R002
Octanol-water partition coefficient	$\log P_{ow} = 2.7 - 2.8$ at pH 1	Bailey and Hopkins, 1987, MCPA-
at 25 °C: (purity 99.4%)	$\log P_{ow} = 0.28 - 0.59$ at pH 5	R012
	log P_{ow} = -0.81–0.71 at pH 7	
	$\log P_{ow} = -1.07 - 0.88$ at pH 9	
Solubility in water at 25 °C (purity	pH 1: 0.395 g/L unbuffered	Hopkins, 1987, MCPA-R011
99.4%):	pH 5: 26.2 g/L buffered	
	pH 7: 293 g/L buffered	
	pH 9: 320 g/L buffered	
Relative density (purity 99.9%)	1.41 g/cm ³ at room temperature	Krohl, 1994, MCPA-R140
Dissociation constant in water	pK _a = 3.73 at 20 °C	Redeker, 1988, MCPA-R013
(purity 99.8%)	$pK_a = 3.73 \text{ at } 25 \text{ °C}$	
Hydrolysis rate	Radiolabelled MCPA acid does not	Lai, 1993, MCPA-R031
¹⁴ C labelled MCPA, (radio- chemical purity 98.5%)	degrade in aqueous solutions buffered at pH 5, 7 and 9.	
Photochemical degradation ¹⁴ C labelled MCPA (radio- chemical purity 99.8%)	The half-life of radiolabelled MCPA acid was calculated to be 25.4 days in sterile buffer solution at pH 7 and 25 °C.	Concha, 1993, MCPA-R037
Surface tension, 20 °C	61.7 mN/m (0.5% w/w in water) 61.4 mN/m (20% w/w in water)	Krohl, 1994, MCPA-R140

PHYSICAL AND CHEMICAL PROPERTIES

Ref

Klopffer, 1991, MCPA-R036

Pure active ingredient	

Quantum yield efficiency (purity ≤ 0.093 > 99.0%)

Technical material (purity 95.0%)

Melting point	115.4 to 116.8 °	С	Roberts, 1993, MCPA-R001
Solubility in organic solvents at	Acetone	487.8 g/L	Roberts, 1993, MCPA-R001
25 °C:	Dichloromethan	e 69.2 g/L	
	Ethyl acetate	289.3 g/L	
	n-Hexane	0.323 g/L	
	Methanol 7	75.6 g/L	
	n-Octanol	218.3 g/L	
	Propanol	425.6 g/L	
	Toluene	26.5 g/L	

IDENTITY (Dimethylamine salt)

ISO Common name	MCPA Dimethylamine salt (DMA salt)
Chemical name	
IUPAC name	-
CAS name	(4-chloro-2-methylphenoxyacetic acid) dimethylamine salt
CAS Registry Number	2039-46-5
CIPAC Number	2
Synonyms and trade names	
Manufacturer's codes	
Structural formula	о сн _а II I
	CI CH3 CH3

Molecular formula Molecular weight Minimum content of ai C₁₁H₁₆ClNO₃ 245.7 g/mol 920 g/kg (FAO 1992) МСРА

PHYSICAL AND CHEMICAL PROPERTIES

Preparation containing 504 g/L MCPA acid equivalent

	Ref
Appearance	Yellow; Munsell colour Bass, 2000, MCPA-R004
Colour	description: Very pale brown 10YR 8/3
Physical state	Liquid
Odour	Amine-like odour
pH undiluted material	9.2
1% dilution	8.4
Dilution stability at 20 °C for 4 hr using CIPAC hard water D	Solution clear and free from precipitation
5% dilution	
2% dilution	
0.5% dilution	
Relative density	1.128 g/cm ³ at 20 °C
Water insolubles	No insoluble material
Free phenol	1.2 g/L as 4-chloro-2-methyl phenol (PCOC)
Viscosity	15.4 mPa
Surface tension	0.0725 N/m
Low temperature stability	No separated material after 48 hr at 0 ± 1 °C or after reaching room temp.
Persistent foaming	After 10 sec—no foam
	After 15 min—no foam

Preparation containing 746 g/L MCPA acid equivalent

				Ref
Appearance	Yellow;	Munsell	colour	Bass, 1999, MCPA-R005
Colour	description: 10YR 8/2	Very pale	brown	
Physical state	Liquid			
Odour	Amine-like of	odour		

	Ref
pH undiluted material	9.5
1% dilution	8.4
Dilution stability at 20 °C for 4 hr using CIPAC hard water D	Solution clear and free from precipitation
5% dilution	
2% dilution	
0.5% dilution	
Dilution stability at 20 °C for 4 hr using CIPAC hard water C 5% dilution	Solution clear and free from precipitate
Relative density, 20 °C	1.179
Water insolubles	0 g/L
Free phenol	4.2 g/L as 4-chloro-2-methyl Bass, 1999, MCPA-R005 phenol (PCOC)
Viscosity at 20 °C	92.6 mPa
Alkalinity	0.1% (as NaOH)
Surface tension at 20 °C	0.0712 N/m
Low temperature stability	No separated material after 48 hr
Persistent foaming at 20 °C	4 mL after 10 sec
	0 mL after 15 min

IDENTITY (Ethylhexyl ester)

ISO Common name	MCPA 2-ethylhexyl ester (MCPA 2-EHE)
Chemical name	
IUPAC name	-
CAS name	2-ethylhexyl (4-chloro-2-methylphenoxy)acetate
CAS Registry Number	29450-45-1
CIPAC Number	2
Synonyms and trade names	
Manufacturer's codes	
Structural formula	CI CH ₂ CH ₃ CH ₃ O CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
Molecular formula	C ₁₇ H ₂₅ ClO ₃
Molecular weight	312.5 g/mol

Molecular weight Minimum content of ai Ref

PHYSICAL AND CHEMICAL PROPERTIES

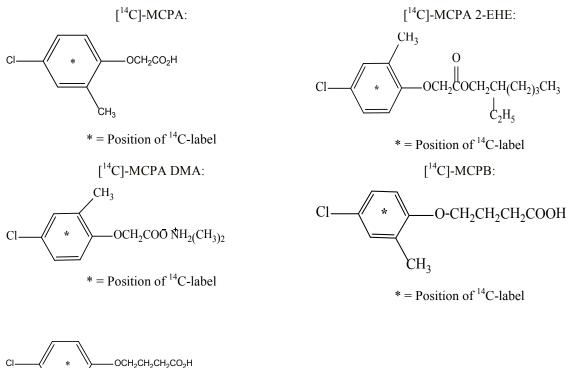
Pure active ingredient (purity \geq 99.1%)

		Ref
Appearance	Clear pale yellow; Munsell colour	Mahmood, 2004, MCPA-R003
Colour	description: Very pale brown 10YR 8/2	
Physical state	Liquid	
Odour	Ester-like odour	
Relative density, $20 \pm 1 \ ^{\circ}C$	1.074	
Partition coefficient	$\text{Log P}_{\text{ow}} = 6.80$	
Water solubility Solubility in organic solvents at	pH 5= $< 1.25 \times 10^{-4}$ g/L pH 7= $< 1.25 \times 10^{-4}$ g/L pH 9= $< 1.25 \times 10^{-4}$ g/L Acetone $> 1000^{a}$ g/L	
25 °C:	Acetone> 1000 g/L1,2-Dichloroethane> 1000 g/LEthyl acetate> 1000 g/L	
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
	p-Xylene > 1000 g/L	
Flash point	138.0 °C	
Viscosity at 20 °C	30.8 mPa	
Surface tension at 20 °C	0.0383 N/m	Mahmood, 2004, MCPA-R003
Rate constant, k, for the gas-phase reaction between MCPA 2-EHE and hydroxyl radicals	$20.5053 \times 10^{-12} \text{ cm}^3/\text{molecule/s}$	
Half-life for the degradation of MCPA 2-EHE by hydroxyl radicals in the troposphere	0.483 days (24-hour day)	
^a indicates the compound is missible wit	h indiantad calcont	

^a indicates the compound is miscible with indicated solvent

FORMULATIONS

MCPA is available in the following formulations:

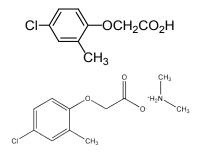

Formulation	MCPA acid equivalent
MCPA DMA salt	280 g ae/L SL, 300 g ae/L SL, 480 g ae/L SL, 500 g ae/L SL, 600 g ae/L SL, 750 g ae/L SL

МСРА

Formulation	MCPA acid equivalent
MCPA 2-EHE	444 g ae/L EC, 480 g ae/L EC, 500 g ae/L EC, 600 g ae/L EC
MCPA sodium salt	300 g ae/L SL, 500 g ae/L SL, 600 g ae/L, 800 g ae/L SL
MCPA potassium salt	400 g ae/L SL

METABOLISM

The Meeting received information on animal metabolism, plant metabolism and environmental fate studies using [¹⁴C]-MCPA, [¹⁴C]-MCPA 2-EHE, [¹⁴C]-MCPA DMA, [¹⁴C]-MCPB and [¹⁴C]-CCPA radiolabelled in the ring.


Structures, names and codes for MCPA and its metabolites in metabolism and environmental fate studies, and MCPB in a plant metabolism study are summarized below.

MCPA

(4-chloro-2-methylphenoxy) acetic acid

MCPA DMA

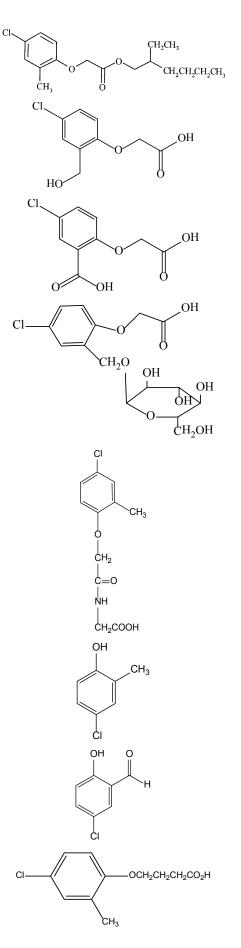
(4-chloro-2-methylphenoxyacetic acid) dimethylamine salt

МСРА

MCPA 2-EHE 2-ethylhexyl (4-chloro-2-methylphenoxy)acetate

HMCPA or CHTA 2-hydroxy-4-chlorophenoxyacetic acid

CCPA 2-carboxy-4-chlorophenoxyacetic acid


HMCPA Glucose conjugate (4-chloro-2-methoxy-β-glucopyranosido phenoxy) acetic acid

MCPA-glycine 4-chloro-2-methylphenoxyacetic acid, glycine conjugate

PCOC or 4-MCP 4-chloro-2-methyl phenol

5-CsAld5-chlorosalicylaldehyde

MCPB 4-(4-chloro-2-methylphenoxy) butanoic acid

Animal metabolism

The Meeting received animal metabolism studies with MCPA in mice, rats, lactating goats and hens, and also received animal metabolism studies with CCPA in lactating goats. Laboratory animals' metabolism studies were evaluated by the WHO Core Assessment Group of the 2012 JMPR.

Rats

Following oral dose of uniformly ring-labelled [14 C]-MCPA, the <u>rats</u> predominantly excreted approximately 90% of the administered dose by urine, with low levels detected in faeces (approximately 5% of the administered dose). MCPA ion was the predominant compound detected in rat and dog excreta followed by HMCPA and glycine-conjugated MCPA. The proportions of MCPA and HMCPA in rat urine ranged from approximately 51–80% and 6–16% of the administered doses, respectively. In rat faeces, MCPA and HMCPA accounted for approximately 1–2% and 1–7% of the administered doses, respectively. Following oral dosing of rats, there was no evidence of accumulation of radioactivity in any tissues, with the concentration in the majority of tissues lower than in blood.

Lactating goats

Two <u>lactating goats</u> were dosed twice daily for 3 consecutive days with 967 mg of [¹⁴C]-MCPA, which was uniformly labelled in the ring (specific activity, 8.56 µCi/mg; radiochemical purity, 98.5%) (Sabourin, PJ and Koebel, DD, 1995, MCPA-R016). At each dosing, the test substance was administered in two gelatine capsules (i.e., 483.5 mg/capsule). During the dosing phase, feed consumption was 2.21 kg/goat/day for goat 29 and 2.79 kg/goat/day for goat 53. Based on the actual administered doses and in-life feed consumption the actual mean daily doses were equivalent to 832 ppm in feed for goat 29 and 694 ppm in feed for goat 53. Goat 29 regurgitated a capsule on the last day of dosing. The capsule was recovered and the [¹⁴C]-MCPA extracted and analysed by liquid scintillation counting. The recorded dose that the animal received from this capsule was the difference between 483.5 mg and the amount left in the regurgitated capsule (391 mg). The dose given goat 29 was still within 93% of the target dose (5411 mg over 3 days). Urine and faeces were collected daily and the cage was rinsed, collecting the rinsate. Milk was collected twice daily (in the morning and evening prior to dosing). Milk collected in the evening was stored at about 4 °C overnight and pooled with the milk collected the following morning prior to the next dosing. The pooled milk samples were stored at ≤ -20 °C.

The goats were sacrificed about 22.5 hours after the last dosing, and the following tissues were collected: liver, kidneys, muscle, fat, bile and gastrointestinal contents. These were collected and analysed along with the excreta and milk for total residues (TRR). Samples were stored at \leq -20 °C until analysis. Milk and tissue samples from Goat 53 were subjected to extraction and/or hydrolysis procedures for residue characterization and identification. During the extraction and fractionation procedures, aliquots of extracts, hydrolysates, and bond residues were analysed for radioactivity by LSC or combustion/LSC.

The post extraction solids of each tissue containing more than 10% of TRR (liver, kidney and muscle) was base hydrolysed in 3N NaOH:methanol (8:2, v:v) at 58 °C overnight. The mixtures were acidified with HCl to pH 2 and filtered. Remaining bond residues were subjected to a second base hydrolysis over 2 nights at 70 °C using 3N NaOH:methanol (1:1, v:v) and centrifuged. Remaining bond residues were rinsed with methanol:water (1:1, v:v) and centrifuged again. The resulting supernatants from these steps were combined, adjusted to pH 2 and diluted with water. The precipitate which formed was removed by filtration and redissolved in methanol. The acidified hydrolysates were cleaned up on a C-18 SPE column eluted with methanol. The methanol eluates were collected, concentrated and set aside for HPLC analysis. For fat, the post-extraction solids (PES) was not hydrolysed but was extracted with hexane. The hexane extract from fat and the remaining pellet contained less than 0.01 mg eq/kg determined by LSC and were not further analysed.

Following oral administration of $[{}^{14}C]$ -MCPA for 3 consecutive days at 694 and 832 ppm, the goats excreted most of the dose (91% for Goat 29 and 108% for Goat 53) within 24 hours of dosing, primarily in the urine as un-metabolized MCPA. The primary $[{}^{14}C]$ component excreted in faeces was also MCPA. The total per cent of the dose excreted in each animal was similar. Despite the slightly different dose to goat 29, residue levels in tissues of both treated goats were similar. Residue levels in tissues and milk of the two goats were similar and < 0.1% of the total radioactive residues. The results are summarized in Table 1.

Table 1 Total radioactive residues in milk and tissues from lactating goats following administration of [¹⁴C]-MCPA for 3 consecutive days (Sabourin, PJ, Koebel, DD, 1995, MCPA-R016)

Matrix	Goat 53 (694 mg/	kg)	Goat 29 (832 mg	g/kg)
	mg eq/kg	% Dose	mg eq/kg	% Dose
Edible tissues and milk	<u>-</u>	<u>L</u>	<u> </u>	<u> </u>
Milk (48–72 hr collection) ^a	0.160	< 0.1 ^b	0.172	< 0.1
Fat	0.140	< 0.1	0.159	< 0.1
Muscle	0.099	< 0.1	0.070	< 0.1
Kidney	0.886	< 0.1	0.899	< 0.1
Liver	0.480	< 0.1	0.455	< 0.1
Non-edible tissues/samples				1
Faeces	79.2 ^a	10.5 ^c	22.2 ^a	2.4 ^c
Urine	757 ^a	93.4 ^c	309 ^a	85.7 ^c
Cage rinse	48.1 ^a	4.4 ^c	13.7 ^a	2.5 ^c
Bile	1.19	< 0.1	0.816	< 0.1
Gastro-intestinal contents	0.558	0.1	0.698	0.1
Total		108.4		90.7

^a 48–72 hr collection (highest individual value)

^b Values of < 0.1 were considered equal to zero for determining total recovery

^c Includes samples collected throughout the dosing period

The small amount of MCPA that is not excreted is metabolized to the glycine conjugate of MCPA in milk and to an unknown metabolite predominantly in liver, kidney, and bile, later identified as composed of three compounds of similar polarity, characterized as triglyceride-like compounds with a dechlorinated MCPA-like structure incorporated by ester or ether linkage (Lawrence, LJ, 1996, MCPA-R017). The release of MCPA and the triglyceride-like structures from bond residues by base hydrolysis indicates that MCPA and metabolites also bind to cell constituents.

Table 2 Characterization and identification of radioactive residues in milk and tissues from a lactating goat dosed with [¹⁴C]-MCPA (Sabourin, PJ, Koebel, DD, 1995, MCPA-R016)

Fraction	Milk	Milk Fat		at Muscle I			Kidney		Liver	
	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg
Identified (ID)										
MCPA	28.5	0.046	30.2	0.042	22.3	0.022	6.7	0.060	4.9	0.024
(MCPA in PES)	-	-	-	-	2.9	0.0023	3.2	0.0069	-	-
MCPA-glycine	53.9	0.086	-		-	_	-	—	-	_
Total ID	82.4	0.132	30.2	0.042	22.3	0.022	6.7	0.060	4.9	0.024
Characterized (C)										

Fraction	Milk		Fat		Muscle		Kidney		Liver	
	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg
Identified (ID)										
Triglycerides	-	—	30.3	0.042	0.2	< 0.001	57.4	0.509	50.5	0.242
Unknown (R ₁)	-	—	0.8	0.001	-	-	-	_	0.3	0.001
Unknown (R ₂)	-	—	-	_	48.4	0.048	-	_	-	-
Unknowns (distinct peaks)	5.7	0.009	1.6	0.002	1.6	0.002	4.5	0.040	3.3	0.015
Total ID + C	88.1	0.141	62.9	0.087	72.5	< 0.073	68.6	0.609	59.0	0.283
Remaining	5.6	0.009	4.8	0.007	N/R	N/R	N/R	N/R	N/R	N/R

 $R_1 = 3-4.5$ min.

 $R_2 = 27 \text{ min.}$

N/R = not reported

- = not analysed by HPLC

Distribution of metabolite CCPA in lactating goat

A <u>lactating goat</u> received a daily oral administration of [¹⁴C]-CCPA, a plant metabolite of MCPA, in gelatine capsules over a period of 3 consecutive days (McLean, CL, 2004, MCPA-R018). The dose was nominally equivalent to dietary levels of 10 ppm. Urine and faeces were collected prior to the first dose and at 24-hour intervals thereafter, until 72 hours after the first dose. Milk was collected pre-dosing and twice daily, with the morning milk collected immediately prior to each dosing. The goat was sacrificed 24 hours after administration of the final dose, and liver, kidney, fat, muscle and blood were collected. Total radioactive residues were measured in all samples of excreta, cage wash, milk, plasma, cell fraction and edible tissues. The overall recovery of the total administered radioactivity was 98.06% (Table 3).

Table 3 Recovery of total radioactivity (McLean,	CL, 2004,	MCPA-R018)
		- , ,)

Matrix	% Recovery
Urine	66.56
Faeces	26.28
Cage wash	5.16
Milk	0.02
Fat	0.00
Kidneys	0.02
Liver	0.01
Muscle	0.00
Blood cell fraction	0.00
Plasma	0.00
Total	98.06

Urinary excretion was the major route of elimination and accounted for 66.6% of the administered doses by the end of the study period. Excretion in faeces accounted for 26.3% of the administered doses. Concentrations of total radioactivity in milk were low, with a maximum of 0.002 mg eq/kg with the exception of a sample collected at 72 hours after the first dose, which was 0.006 mg eq/kg. This was assumed to be contaminated with faeces and urine. The total radioactivity

in milk accounted for 0.02% of the administered doses. The highest concentration of total radioactivity in tissues was observed in kidney (0.072 mg eq/kg). Concentrations of total radioactivity in the liver were 0.006 mg eq/kg. Low concentrations were observed in muscle and fat (0.001 mg eq/kg each). Concentrations of total radioactivity in the plasma and blood cell fraction were 0.027 mg eq/kg and 0.009 mg eq/kg, respectively. The combined recovery of total radioactivity in liver and kidney was 0.03%. The results of radioactivity concentration are summarized in Table 4.

Table 4 Concentration of total radioactivity in tissues from lactating goat dosed with [¹⁴C]-CCPA for 3 days at 10 ppm in diet (McLean, CL, 2004, MCPA-R018)

Matrix	Concentration (mg eq/kg)
Fat	0.001
Kidneys	0.072
Liver	0.006
Muscle	0.001
Blood cell fraction	0.009
Plasma	0.027

In kidney and liver, the amount of $[^{14}C]$ -CCPA was determined to be 0.02% and 0.01% of administered doses. HPLC analysis of the 0–72 h urine and faeces composite samples showed the presence of one major component, co-chromatographed with CCPA. This peak accounted for 64.34% TAR and 22.65% TAR in urine and faeces, respectively. Following oral administration of $[^{14}C]$ -CCPA to the lactating goat, the compound was found to be well absorbed and rapidly excreted predominantly in the urine. There was no evidence for accumulation of radioactivity in milk or edible tissues.

Laying hens

Fifteen laying hens were dosed orally by gelatine capsule with [¹⁴C]-MCPA once daily for 7 consecutive days at the nominal equivalent of 100 ppm in the diet (Sabourin, PJ *et al.*, 1995, MCPA-R019). The test substance was uniformly labelled in the ring (specific activity, 12.8 μ Ci/mg; radiochemical purity, 98.5%). The treatment hens were separated into three cages of five hens each. Five hens were used as a control group.

During the testing period, the hens were allowed water and a commercial feed mixture ad libitum. Eggs were collected once daily, and were pooled by cage and by day. Hens were sacrificed 22 hours after the last dose, and the following samples were collected: breast muscle, thigh muscle, liver, fat, kidneys, skin with adhering fat, gastrointestinal tract and contents, and partially formed eggs. Samples were stored at -20 °C until analysis.

Tissues were homogenized prior to TRR analysis. Eggs were separated into whites and yolks, and sub-samples from each cage were pooled and homogenized. Egg and tissue samples were analysed by LSC following solubilisation (eggs, liver and muscle) or combustion (fat). Table 5 summarizes the TRR found in eggs and tissues of test hens.

Eggs and tissue samples were subjected to extraction and/or hydrolysis procedures for residue characterization and identification. During the extraction and fractionation procedures, aliquots of extracts, hydrolysates, and bound residues were analysed for radioactivity by LSC or combustion/LSC. Samples of kidney, egg yolks and liver were extracted three times with acetonitrile:water (9:1, v:v) and centrifuged. The resulting supernatants for each matrix were pooled. A portion of the extract was purified, followed by concentration and partitioning three times with five volumes of hexane. The hexane fraction following partitioning was evaporated under nitrogen to near dryness and set aside. The acetonitrile:water fraction was concentrated, acidified and applied to a C-18 SPE column; residues were eluted from the column with 1N HC1, 25%, 50% and 75% acetonitrile in 1N HC1, acetonitrile and THF (tetrahudrofuran). The 50% acetonitrile eluate was then concentrated

under nitrogen, and further purified on a C-18 SPE column eluted with 1N HC1, acetonitrile, and THF. The 100% acetonitrile eluate was analysed with HPLC.

Bound residues of kidney, egg yolk and liver were extracted with hexane at 50 °C, centrifuged, and the hexane extracts evaporated under nitrogen. The hexane fractions from the acetonitrile:water partitioning and from extraction of the unextracted residues were suspended in THF, combined, evaporated under nitrogen and incubated with methanol:6N NaOH (10:1, v:v) at 80 °C for 15 hours. After additional 6N NaOH was added to adjust the pH to 13, the fractions were incubated for an additional 21 hours. The methanol was removed under nitrogen, and hexane was added to dissolve any residual solids. The mixture was neutralized with 6N HC1, and partitioned with acetonitrile. Following phase separation, the acetonitrile fraction was extracted twice more with hexane. The hexane layers were combined, concentrated under nitrogen and extracted three times with acetonitrile. The acetonitrile:aqueous fractions were combined, concentrated under nitrogen and set aside for HPLC analysis.

The remaining bound residues following hexane extraction were incubated at 50 °C for 6 days with methanol:aqueous 6N NaOH (1:1, v:v). The mixtures were centrifuged, and the supernatants were concentrated to remove methanol and adjusted to pH 5 with the addition of HC1. The salt which formed was assayed for TRR. The acidified hydrolysates were applied to a C-18 SPE column eluted with three volumes each of acetonitrile and THF. The eluates were combined, concentrated and resuspended in acetonitrile for HPLC analysis.

Table 5 Total radioactive residues in tissues and excreta from laying hens following administration of $[^{14}C]$ -MCPA for 7 consecutive days at 100 ppm of diet consumed (expressed in MCPA-equivalents) (Sabourin, PJ *et al.*, 1995, MCPA-R019)

Matrix	mg eq/kg	% of Dose	
Edible tissues and eggs	•		
Fat	0.033	0.00	
Breast muscle	0.006	0.00	
Thigh muscle	0.017	0.00	
Liver	0.085	0.00	
Egg yolk	0.220	0.02	
Egg white	0.032	0.01	
Skin	0.087	0.00	
Non-edible samples			
Kidney	0.869	0.01	
Gastro-intestinal contents	0.349	0.02	
Excreta	83.1	99.3	
Cage rinse	N/A	0.10	
Total		99.5	

The majority (approximately 99.3%) of the administered radioactivity was eliminated in the excreta after 7 days. The amount of total administered dose excreted each day ranged from 13% to 15%. This indicated that almost all of the MCPA is excreted within 24 hours following each dose. Only up to 0.1% of the administered dose remained in the tissues and eggs, with eggs (at 0.03% administered dose, 0.252 mg eq/kg) the largest single component. Highest residue concentrations were found in the kidney (0.869 mg eq/kg, 0.001% TAR) and the gastrointestinal contents (0.349 mg eq/kg, 0.002% TAR).

Fraction	Egg white		Egg yolk		Fat		Thigh muscle		Breast muscle		Liver	
						-	-					
		mg eq /kg	% TRR	mg eq /kg	% TRR	mg eq/kg	% TRR	mg eq/kg	% TRR	mg eq/kg	% TRR	mg eq/kg
Identified (ID)				-		-			-	_		
MCPA	90.3	0.029	57.4	0.127	12	0.004	35.5	0.006	-	-	78.2	0.0663
hydrolysed combined hexane	_	-	14.7	0.032	_	_	_	-	-	_	2.2	0.0019
hydrolysed PES	_	_	4.5	0.010	_	_	_	-	_	_	40.0	0.034
Characterized (C)												
Unknown (R ₁ = 69–72 min)	_	_	2.4	0.0053	_	_	-	_	5.1	0.0003	1.6	0.0014
Unknown ($R_2 = 73-74$ min) ^a	_	-	10.5	0.023	1.3	0.0005	_	-	16.7	0.001	1.4	0.0012
Unknown (distinct peaks) ^b	_	_	5.4	0.0122	2.8	0.001	_	-	8.3	0.0005	2.5	0.0021
Total ID + C	90.3	0.029	75.7	0.0168	16.1	0.006	35.5	0.006	30.0	0.0018	83.7	0.071
Non-extracted	3.1	0.001	0.9	0.002	2.8	0.001	23.5	0.004	50.0	0.003	5.9	0.005

Table 6 Characterization and identification of radioactive residues in eggs and tissues from hens
orally dosed with [¹⁴ C]-MCPA at 100 ppm for 7 days (Sabourin, PJ et al., 1995, MCPA-R019)

^a Found to consist of 3 components, one of which was identified as MCPA ornithine conjugate.

^b Comprised of 1–13 distinct unknowns, each < 0.003 mg eq/kg.

-: not analysed by HPLC.

Following oral administration of uniformly ring-labelled [14C]-MCPA to 15 egg-laying hens at 100 ppm in the diet for 7 consecutive days, 99.5% of the radioactivity was recovered, primarily as MCPA and acid labile MCPA conjugates in the excreta. The daily recovery of the radioactivity indicated that each daily dose is almost completely eliminated within 24 hours in excreta. The combined in tissues and eggs accounted for only 0.04% of the dose administered over 7 days. MCPA was the major component identified in egg white (90.3% TRR, 0.029 mg/kg), egg yolk (57.4% TRR, 0.127 mg/kg), fat (12.0% TRR, 0.004 mg/kg), thigh muscle (35.5% TRR, 0.006 mg/kg) and liver (78.2% TRR, 0.0663 mg/kg). An unknown detected in egg yolk (10.5% TRR, 0.023 mg/kg), fat (1.3% TRR, 0.0005 mg/kg), breast muscle (16.7% TRR, 0.001 mg/kg) and liver (1.4% TRR, 0.0012 mg/kg) was found to consist of at least three components, one of which was tentatively identified as the di-MCPA ornithine conjugate. This identification fits the known role of ornithine as a known acceptor molecule for xenobiotics in birds. Remaining unknowns, which accounted for 1.6% to 8.2% TRR in eggs and tissues, were characterized as acid-labile conjugates. Other than MCPA and MCPA conjugates there was no radioactive residue in edible tissues or eggs at concentrations exceeding 0.01 mg eq/kg.

Plant metabolism

The Meeting received plant metabolism studies with MCPA on wheat and peas.

Wheat

The metabolism of $[^{14}C]$ -MCPA was investigated in spring <u>wheat</u> using two different test substances, $[^{14}C]$ -MCPA 2-EHE (specific activity, 18.1 µCi/mg MCPA acid eq; radiochemical purity > 98.0%, chemical purity 97.1%) and $[^{14}C]$ -MCPA DMA (specific activity, 24.5 µCi/mg MCPA acid eq; radiochemical purity > 98.0%, chemical purity 99.1%) (Sabourin, PJ, 1995, MCPA-R014).

Wheat (variety: *Triticum aestivum*) was grown under greenhouse conditions and treated with one foliar application of either [¹⁴C]-MCPA 2-EHE or [¹⁴C]-MCPA DMA salt at the stage when the flag leaf was extended but before the wheat head emerged (stage 45 to 47 on Zadoks scale). The target application rate was 1.7 kg of MCPA acid equivalent per hectare. The actual applications were within 3% of these targets. Wheat forage samples were harvested 7 days after treatment and grain and straw samples from mature wheat plants were collected 67 days after treatment. Plants were harvested by cutting at the soil surface. Forage samples were chopped into 1 inch segments and transported in dry ice to the laboratory for analysis. Grain heads were removed from mature wheat plants by hand and were stored at room temperature overnight before threshing. Straw samples were transported on dry ice to the laboratory on the day of threshing. Samples were stored in the laboratory at -20 °C until analysis. In order to determine residues remaining on the surface of plants, whole plant forage samples and straw samples, after removal of grain heads, were rinsed on the day of harvest with acetonitrile. The surface rinse was stored at -20 °C until analysis.

Samples of forage, straw and grain were homogenized in liquid nitrogen, combusted and radio-assayed by liquid scintillation counting (LSC). The LOQ was 0.01 mg/kg. The TRR in samples are summarized in Table 7. For either test substance, the majority of the residues were found in the forage and straw. Less than or equal to 9.1% and 1.5% TRR were recovered in surface rinses with acetonitrile for the forage and straw, respectively, for either treatment group, indicating translocation of the majority of the residues into the plant.

Matrix	TRR, mg/kg [¹⁴ C]-MCPA-equi	TRR, mg/kg [¹⁴ C]-MCPA-equivalents					
	[¹⁴ C]-MCPA 2-EHE	[¹⁴ C]-MCPA DMA salt					
Forage	33.2	52.0					
Straw	82.2	135					
Grain	0.406	0.549					
Surface rinse (forage)	1.06	4.73					
Surface rinse (straw)	0.37	2.08					

Table 7 Total radioactive residues in wheat following a single application at 1.7 kg ai/ha of $[^{14}C]$ -MCPA 2-EHE or $[^{14}C]$ -MCPA DMA salt (Sabourin, PJ, 1995, MCPA-R014)

Forage, straw and grain samples were extracted with methanol: water (9:1, v/v) and centrifuged. The resulting supernatants for each matrix were combined and concentrated. The precipitate formed on concentration was separated and re-suspended in methanol (forage and straw) or tetrahydrofuran (grain). The methanol: water, methanol, and tetrahydrofuran fractions were concentrated and prepared for HPLC analysis. The precipitate from the MCPA 2-EHE treatment was additionally extracted with chloroform.

A portion of the PES from forage and straw samples from either treatment was subjected to alkaline hydrolysis by incubation at 60 °C with 3N sodium hydroxide:methanol (8:2, v/v) solution. The mixtures were then adjusted to pH2 with phosphoric acid and centrifuged. The supernatants were cleaned up on a C-18 solid-phase extraction column (SPE) eluted by phosphoric acid followed by methanol. The eluates were collected, concentrated and analysed by HPLC.

A portion of the PES from straw samples treated with MCPA 2-EHE was subjected to acid hydrolysis by overnight incubation in 1N HCl at 40 °C. The samples were then neutralized with NaOH and filtered. The supernatant was concentrated and analysed with HPLC. Any remaining solid in the filter paper was re-hydrolysed with HCl, incubated at 1-hour periods at 60 °C and 100 °C, neutralized with NaOH and filtered. The remaining PES was extracted with dioxane:2N HCl (9:1, v/v), incubated at 70 °C, filtered, and the filtrate was analysed by LSC.

Portions of the PES from grain samples from each treatment were hydrolysed with 6N HCl, refluxed under nitrogen for 4 hours and centrifuged, decanting the supernatants. The pH was adjusted

to 1.5 to 2 with NaOH and the samples concentrated to half the volume. After eluting with acetonitrile and tetrahydrofuran, the resulting eluates were collected by solvent type and analysed by LSC.

Due to low recoveries of ¹⁴C from the C-18 columns, the extracts were subsequently rinsed with hexane, acetonitrile, HCl and methanol. Eluates were again collected by solvent type and analysed by LSC. The deionized water, acetonitrile and HC1 eluates were pooled and adjusted to pH 7 with 1N NaOH, then concentrated by rotary evaporation and purified on Dowex-1 OH- columns. The Dowex eluates were combined with glacial acetic acid and concentrated to dryness. The salts which precipitated during concentration were rinsed with methanol to extract radioactivity, and the methanol extracts were evaporated to dryness, re-suspended in water, and analysed by HPLC on an Aminex ion exclusion column.

PES from grain from the MCPA 2-EHE and DMA salt treatments were also subjected to enzyme hydrolysis by incubating overnight at 38 °C to 45 °C with cellulase in 50 mM sodium acetate buffer, pH 5; or amylase + amyloglucosidase in 67 mM potassium phosphate buffer, pH 6.8. The samples were centrifuged and analysed for TRR, and in some cases were incubated again with the alternate enzyme. The resulting supernatants were either subjected to further preparative procedures or analysed by HPLC or TLC.

Extracts were analysed by reversed-phase HPLC and TLC. Metabolites were identified by cochromatography with known standards. Summaries of identified [14 C]-residues in wheat treated with [14 C]-MCPA 2-EHE and [14 C]-MCPA DMA salt are presented in Tables 8 and 9.

Component	Forage, %TRR(mg/kg)		Straw, %TRR (n	ng/kg)	Grain, %TRR (mg/kg)		
	Extract	Bound	Extract	Bound	Extract	Bound	
Void Peak	1.7 (0.557)	ND	1.0 (0.806)	ND	2.2 (0.009)	59.4 (0.241)	
ССРА	14.1 (4.68)	0.5 (0.169)	13.7 (11.2)	1.1 (0.92)	8.6 (0.035)	16.7 (0.068)	
HMCPA-gluc	40.4 (13.4)	1.6 (0.525)	23.9 (19.7)	15.1 (12.5)	1.2 (0.005)	ND ()	
НМСРА	2.6 (0.857)	ND	8.6 (7.08)	1.5 (1.27)	0.8 (0.003)	4.2 (0.017)	
МСРА	8.4 (2.77)	1.6 (0.525)	5.6 (4.58)	8.1 (6.68)	0.4 (0.002)	ND	
MCPA/HMCPA Conjugates	10.8 (3.58)	ND	7.3 (5.94)	ND	2.2 (0.009)	ND	
MCPA 2-EHE	4.2 (1.39)	ND	0.5 (0.411)	ND	ND	ND	
16 min Peak(s)	6.4 (2.14)	ND	3.9 (3.19)	ND	ND	ND	
Unidentified Minor	1.1 (0.375)	0.1 (0.030)	0.8 (0.698)	ND	1.0 (0.0036)	1.2 (0.005)	
Distinct Peaks							
Unidentified Minor	2.0 (0.667)	ND	0.5 (0.452)	0.7 (0.572)	1.9 (0.007)	ND	
Non-Distinct Peaks							
Total	91.7 (30.4)	3.8 (1.25)	65.8 (54.1)	26.5 (21.9)	18.3 (0.074)	81.5 (0.331)	
Total % TRR Identified/	88.6 (29.4)	3.7 (1.22)	64.5 (53.0)	25.8 (21.3)	15.4 (0.063)	80.3 (0.326)	
Characterized							
% of Fraction Identified/Characterized	96.6	97.4	98.0	97.4	84.2	98.5	

Table 8 Characterization/identification of [¹⁴C]-residues in wheat treated with [¹⁴C]-MCPA 2-EHE (Sabourin, PJ, 1995, MCPA-R014).

ND = Not detected in extractable fractions released by hydrolysis of bound residues.

Component	Forage, %TRI	R(mg/kg)	Straw, %TR	.R (mg/kg)	Grain, %TRR (mg/kg)		
	Extract	Bound	Extract	Bound	Extract	Bound	
Void Peak	0.6 (0.291)	ND	0.8 (1.16)	ND	2.5 (0.014)	62.0 (0.34)	
ССРА	6.2 (3.20)	0.6 (0.322)	9.9 (13.4)	ND	4.7 (0.026)	11.8 (0.065)	
HMCPA-gluc	21.0 (10.8)	1.9	18.3 (24.7)	7.3 (9.78)	1.4 (0.007)	ND	
НМСРА	2.9 (1.47)	ND	6.5 (8.76)	ND	0.6 (0.003)	4.8 (0.027)	
МСРА	51.6 (26.8)	2.8 (1.48)	18.8 (25.4)	7.8 (10.5)	0.5 (0.003)	ND	
MCPA/HMCPA Conjugates	6.4 (3.35)	ND	4.2 (5.68)	ND	1.6 (0.009)	ND	
16 min Peak(s)	2.4 (1.25)	ND	2.7 (3.58)	ND	0.5 (0.002)	ND	
Unidentified Minor	0.3 (0.161)	0.2	ND	ND	1.0 (0.006)	7.3 (0.040)	
Distinct Peaks							
Unidentified Minor	1.2 (0.161)	ND	0.5 (0.755)	ND	1.2 (0.0058)	ND	
Non-Distinct Peaks							
Total	92.6 (0.586)	5.5	61.7 (83.4)	15.1 (20.3)	14.0 (0.076)	85.9 (0.472)	
Total % TRR Identified/	91.1	5.3	61.2 (82.6)	15.1 (20.3)	11.8 (0.064)	78.6 (0.432)	
Characterized							
% of Fraction Identified/	98.4	96.4	99.2	100	84.3	91.5	
Characterized							

Table 9 Characterization/identification of [¹⁴C]-residues in wheat treated with [¹⁴C]-MCPA DMA salt (Sabourin, PJ, 1995, MCPA-R014)

ND = Not detected in extractable fractions released by hydrolysis of bound residues.

The residue in forage and straw of wheat treated with either form of MCPA was qualitatively similar except for a higher proportion of parent, MCPA, in the forage and straw of [¹⁴C]-MCPA DMA salt treated wheat. The residue profiles in grain were similar for either form of MCPA. Analysis of sample extracts by HPLC and TLC confirmed the presence of MCPA, CCPA and HMCPA, a glucose conjugate of HMCPA, and MCPA/HMCPA conjugates in all samples. PES extracted forage and straw samples were subjected to chemical hydrolysis to free bound residues. Analysis of the hydrolysates of the bound residue in forage and straw demonstrated the presence of conjugated forms of MCPA, HMCPA and CCPA. Remaining residue in grain was subjected to chemical and enzymatic hydrolysis and found HMCPA and CCPA conjugates. A majority of the bound residue of grain was incorporated into cellular endogenous compounds, primarily glucose, which could be further incorporated into starch or cellulose.

The proposed metabolic pathway for MCPA in wheat is shown in Figure 1. MCPA 2-EHE is readily hydrolysed to MCPA as evidenced by similar metabolite profiles with either [¹⁴C]-MCPA 2-EHE or [¹⁴C]-MCPA DMA. MCPA is first oxidized to HMCPA. HMCPA can then either conjugate with glucose or be oxidized further to CCPA. MCPA and its metabolites, HMCPA and CCPA, can react with cellular constituents forming extractable and bound conjugates. Hydrolysis of grain showed that MCPA can be completely degraded and incorporated into natural products, such as glucose and possible macromolecules such as starch and cellulose.

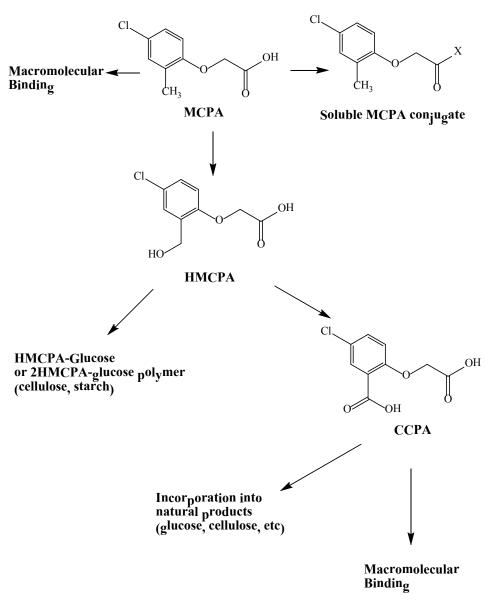


Figure 1 Proposed metabolic pathway of MCPA in wheat

Peas

The metabolism of MCPA and the related compound MCPB in <u>peas</u> was investigated using [¹⁴C]-MCPB (4-(4-chloro-2-methylphenoxy) butanoic acid. Specific activity, 176 μ Ci/mg; radiochemical purity 99%, chemical purity 99.4%) uniformly labelled in the ring position (Goodyear, A, 1993, MCPA-R015). MCPB breaks down into MCPA by the process of β -oxidation. The MCPA is then further oxidized to HMCPA.

Pea seeds (variety: *Orb*) were planted in a mixture of 80% sandy soil and 20% perlite in 20 cm diameter plastic pots. Seven seeds were sown in each of the 40 pots, and the plantings were divided into four groups of 10 each. The plantings were maintained in a greenhouse throughout the study. Temperature and humidity were monitored, and water and fertilizer supplied as required. Three groups of plantings were treated with a foliar spray of [¹⁴C]-MCPB at the rate equivalent to 2.26 kg ai/ha, at the 10× vegetative growth stage, 27 days after planting. The crop in each pot was thinned to four or five plants. Each pot was surrounded by a polyethylene spray chamber, and the test substance was sprayed onto each plant with an air brush. Ten plants and soil samples were immediately analysed to determine the rate of application. Ten immature plants were taken 38 and 42 days after treatment. Another 10 mature samples and 10 control samples were taken 56 and 62 days

after treatment. Plants were separated into roots, vine, pods and seeds. Fresh weights were recorded for combined fractions. Roots were washed.

Immature plant parts (vine, roots and pods) and mature plant parts (roots, pods, vine and seeds) were each extracted sequentially with acetone and acetone/water and centrifuged. The combined acetone extract, the combined acetone/water extract of each part were analysed by LSC. The post-extraction solid (PES) of each part was combusted and analysed by LSC. The PES from mature seed was sequentially hydrolysed with 0.5 M methanolic sodium hydroxide (70 °C, 2 hours), 2 M methanolic sodium hydroxide (90 °C, 4 hours), and 2 M hydrochloric acid (90 °C, 5 hours). The hydrolysate at each step was partitioned against chloroform, and the aqueous and organic fractions were analysed by LSC. The final residual solid was combusted and analysed by LSC. All aqueous and organic hydrolysates were concentrated, combined and analysed by HPLC. The combined concentrate from hydrolyses of the seed PES and the immature vine acetone/water extract were each reacted with 8-glucosidase (37 °C, 24 hours). The product solutions were analysed by HPLC. An aliquot of the immature vine acetone/water concentrate was hydrolysed with 2M hydrochloric acid (80 °C, 5 hours). The product mixture was analysed by HPLC. GC/MS and LC/MS analyses were performed on selected extracts. The total radioactive residues found in the extracts and hydrolysates of various pea plant parts are summarized in Table 10.

Table 10 Total radioactive residues (mg/kg MCPB-equivalents) from a single application of [¹⁴C]-MCPB at 2.26 kg ai/ha (Goodyear, A, 1993, MCPA-R015)

Matrix	Acetone ex	ctract	Acetone/w extract	rater	PES		Total residue
	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg	%TRR	mg eq/kg
Immature vine	2.63	79	0.49	15	0.23	7	3.35
Immature root	0.072	51	0.038	27	0.03	21	0.14
Immature pod	0.011	69	0.0024	15	0.0025	16	0.016
Mature vine	3.88	78	0.69	14	0.40	8	4.97
Mature root	0.11	55	0.035	18	0.054	27	0.20
Mature pod	0.019	76	0.0026	10	0.0033	13	0.025
Mature seed ^a	0.0063	26	0.0029	12	0.0037	15	0.024

^a The 0.05M NaOH hydrolysis released 0.0018 ppm (8%); 2M NaOH hydrolysis released 0.0056 ppm (23%); and 2M HCl hydrolysis released 0.0021 ppm (9%)

Components of the plant matrices were characterized or identified by HPLC, including coinjection with reference standards. Several compounds were isolated from immature plant vines and were identified by GC/MS or LC/MS. The results are summarized in Table 11 and Table 12.

Table 11 Characterization and identification of MCPB in peas treated with [¹⁴C]-MCPB (Goodyear, A, 1993, MCPA-R015)

Component	Matrix	Amount		Method used
		mg eq/kg	% TRR	
МСРВ	Immature vine	2.20	66	HPLC; GC/MS
-	Mature vine	3.59	72	HPLC; GC/MS
	Mature root	0.0021	1	HPLC
	Mature pod	0.01	40	HPLC
	Mature seed	0.0003	1.2	HPLC
MCPB conjugated ^a	Immature vine	0.064	1.9	HPLC; GC/MS

Component	Matrix	Amount		Method used
		mg eq/kg	% TRR	
	Mature seed	ND	-	HPLC
MCPB methyl ester	Immature vine	0.039	1.2	HPLC; LC/MS
(Unknown 2)	Mature seed	ND	-	HPLC
Polar unknowns	Immature vine	0.48	14	HPLC
	Mature vine	0.63	13	HPLC
	Mature root	0.13	65	HPLC
	Mature pod	0.012	48	HPLC
	Mature seed	0.0065	27	HPLC

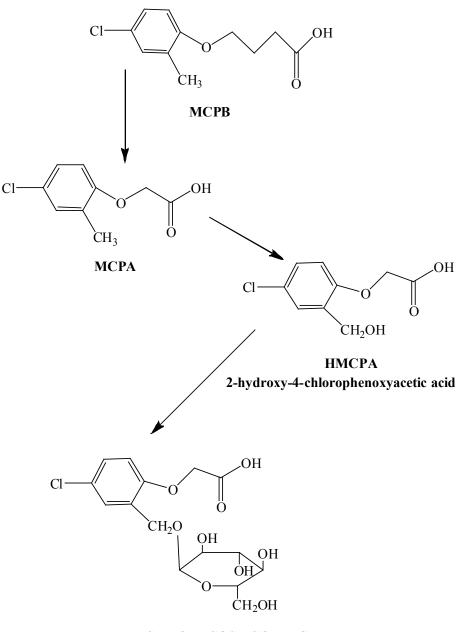
ND = not detected

^a Released by acid hydrolysis of acetone/water extract of vine or by acid hydrolysis of the seed PES

Table 12 Characterization and identification of MCPA and its metabolites in peas treated with [¹⁴C]-MCPB (Goodyear, A, 1993, MCPA-R015)

Component	Matrix	Amount		Method used
		mg eq/kg	% TRR	
МСРА	Immature vine	0.20	6.0	HPLC; GC/MS
	Mature vine	0.29	5.8	HPLC; GC/MS
	Mature root	0.0015	0.8	HPLC
	Mature pod	0.0002	0.8	HPLC
	Mature seed	0.001	4.2	HPLC
MCPA conjugated ^a	Immature vine	ND	-	HPLC
	Mature seed	ND	-	HPLC
НМСРА	Immature vine	0.005	0.15	HPLC; LC/MS
(Unknown 5)	Mature seed	ND	-	HPLC
НМСРА	Immature vine	0.044	1.3	HPLC; LC/MS
Conjugated ^a	Mature seed	ND	-	HPLC
MCPA methyl ester	Immature vine	0.093	2.8	HPLC; LC/MS
(Unknown 3)	Mature seed	0.0017	7.1	HPLC
Glucose conjugate of	Immature vine	0.064	1.9	HPLC; LC/MS
НМСРА	Mature seed	0.003	12.5	HPLC

ND = not detected


^a Released by acid hydrolysis of acetone/water extract of vine or by acid hydrolysis of the seed PES.

^b After acid and base hydrolysis of the PES.

Although the majority of the residues were found in the mature and immature vine, adequate radioactivity was found on mature pods (0.025 mg/kg), seeds (0.024 mg/kg) and foliage (4.97 mg/kg) to permit extraction and identification of major metabolites. A combination of acetone and acetone/water extracted the majority of the radiolabelled residue from mature foliage (92% TRR) and pod (86% TRR). Solvents extracted only 38% TRR from mature seed. Another 40% TRR was recovered by sequential base and acid hydrolysis. Some of the radiolabelled residue was identified in mature forage, pod and seed. Mature vine contained mainly the parent, 72% MCPB, 5.8% MCPA, and

13% polar unknowns. Mature pod contained 40% MCPB, 0.8% MCPA and 48% polar unknowns. Mature seed contained 1.2% MCPB, 11% MCPA/MCPA ester, 12.5% glucose conjugate of HMCPA and about 27% polar unknowns. The seed polar unknowns are distributed 28% in the solvent extract and 18% in the combined hydrolysates. About 29% TRR was unaccounted, including 15% TRR in the residual solid. Based on the study, MCPA and MCPB are the major residues in mature pea vines, pods and seeds after treatment of with [¹⁴C]-MCPB.

Based on radiolabelled compounds identified in the various matrices, a metabolism pathway that involves conversion of MCPB to MCPA, hydroxylation of MCPA, and conjugation of the resulting HMCPA can be proposed. Ring hydroxylation was not reported, but such compounds may have been among the polar unknowns. The pathway is similar to the metabolism pathway in wheat. MCPA undergoes oxidation of the phenyl methyl, and the resulting hydroxymethyl compound forms conjugates, including a glucose conjugate. Figure 2 shows the proposed metabolic pathway in peas.

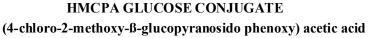


Figure 2 Proposed Metabolic Pathways in Peas

Environmental fate in soil

The Meeting received information on the environmental fate of MCPA in soil, including studies on soil metabolism, and crop rotational studies.

Soil metabolism (aerobic degradation)

The hydrolytic degradation of $[^{14}C]$ -MCPA 2-EHE was determined in soil/water systems (Fernando, TR, 1993, MCPA-R033). Ring-labelled [14C]-MCPA 2-EHE was applied to both a sandy loam (pH 6.9, 1.5%oc) and a silt loam (pH 5.8, 2.1%oc) soil/water system at a nominal concentration of 3 mg/kg. Systems consisted of 7 g soil and 35 mL CaCl2 solution. The systems were tumbled for 12 hours at 25 °C and duplicate samples were removed at 2, 4, 8 and 12 hours for both soils and at 24 hours for the sandy loam soil. Mass balances were 81.9% to 94.3% of applied radioactivity. MCPA 2-EHE was rapidly hydrolysed to MCPA in both systems with 47% hydrolysed in the silt loam system after 2 hours and 84% after 12 hours. In the sandy loam system hydrolysis was slower with 31%, 72% and 88% hydrolysis to MCPA after 2, 12 and 24 hours respectively. Only MCPA was detected in the aqueous phase indicating adsorption of MCPA 2-EHE. Results are presented in Tables 13 and 14.

Table 13 Extraction and recovery of radioactivity from soil/water systems following application of [¹⁴C]-MCPA 2-EHE (% applied radioactivity) (Fernando, TR, 1993, MCPA-R033)

Sample time (hours)	Supernatant	Acetonitrile extract	Unextracted	Tube rinse	Total
Silt loam	•	•	•	•	
2	47.1	N/A	34.7	0.1	81.9
4	62.3	N/A	24.6	0.1	87.0
8	66.0	N/A	18.9	0.1	85.0
12	71.7	16.7	12.0	< 0.1	100.4
Sandy loam	1	I	1	1	
2	31.3	N/A	58.6	0.3	90.2
4	47.5	N/A	46.7	0.1	94.3
8	63.6	N/A	30.4	0.1	94.1
12	67.0	18.9	9.5	0.1	95.5
24	81.5	9.6	10.3	0.1	101.5

Table 14 Detections of MCPA 2-EHE and MCPA at 12 and 24 hours incubation (% applied radioactivity) (Fernando, TR, 1993, MCPA-R033)

Sample time (hours)	MCPA in supernatant	MCPA adsorbed	Total MCPA	MCPA 2-EHE adsorbed		
Silt loam						
12	71.7	12.2	83.9	4.5		
Sandy loam	Sandy loam					
12	67.0	4.5	71.5	14.4		
24	81.5	6.2	87.7	3.4		

In a further study (Lewis, CJ, 2006, MCPA-R142), the primary hydrolysis rate of [¹⁴C]-MCPA 2-Ethylhexyl ester (MCPA 2-EHE) was studied in two US soils; a sandy loam (pH 6.3, OC 1.4%) and a clay loam (pH 6.3, OC 2.3%); and at two moisture contents (50 and 70% of maximum water-holding capacity). Initial concentration of the ester in the soil was 5 mg/kg. Samples of sieved soil (50 g dry weight) were dispensed into individual glass vessels into which moistened air was drawn. The units were maintained in the dark at 25 ± 1 °C for two days to equilibrate. Effluent air was passed through a polyurethane foam bung in the outlet of the incubation vessel followed by a safety trap and two 2M sodium hydroxide solution traps to collect devolved radiolabelled material. Dosing was carried out by drop-wise application of the radiolabelled test substance in acetonitrile to the soil samples. The soil was mixed thoroughly before further incubation in the dark. Duplicate soil samples from each incubation group were taken for analysis of MCPA 2-EHE and radiolabelled metabolites at 0 time and 3, 6, 12, 24 and 48 hours after application. Recovery of applied radioactivity from all samples exceeded 90%. During the 48 hours incubation, levels of MCPA 2-EHE decreased to between 5% and 16% of applied radioactivity (AR), and MCPA increased concomitantly to between 70% and 82%. There were no other significant metabolites present at this time. Specifically, no volatiles were collected in the polyurethane foam. MCPA 2-EHE hydrolysed quickly to MCPA in both soils. Half-life values ranged between 4.5 and 16.6 hours, dependent on the soil type and the moisture content. The most rapid hydrolysis occurred in the sandy loam soil at the lower of the two moisture contents (50%). Following an initial phase during which the majority of the ester was hydrolysed, degradation rates slowed at a greater rate than would be predicted from first order (single phase) kinetics. Computed half-live values using a two-phase model gave a better fit with the data points and were shorter than those calculated by single-phase first order kinetics. The results are presented in Tables 15 and 16.

Soil Name	Moisture (% WHC)	Cmax Computed (% of applied radioactivity)	Half-life (hours)	R ²
Sandy loam	50	95.3	4.5	0.967
Sandy loam	70	93.4	7.5	0.961
Clay loam	50	91.3	10.4	0.978
Clay loam	70	91.9	16.6	0.978

Table 15 Degradation rates calculated assuming first order kinetics (Lewis, CJ, 2006, MCPA-R142)

Table 16 Degradation rates calculated from a two-	phase model (Lewis.	CJ. 2006. MCPA-R142)
	(,	

Soil Name	Moisture (% WHC)	Cmax Computed (% of applied radioactivity)	DT- ₅₀ (hours)	DT- ₉₀ (hours)	R ²
Sandy loam	50	98.7	3.6	28.3	0.998
Sandy loam	70	98.7	5.8	43.7	0.998
Clay loam	50	97.1	8.2	49.2	0.999
Clay loam	70	97.5	14.1	67.9	0.991

The principal metabolite MCPA was positively identified by HPLC and by LC-MS. The aerobic metabolism and degradation of [¹⁴C]-MCPA was studied in a sandy loam soil (1.65% organic matter, pH 8.03) for 209 days (Matt, FJ, 1990, MCPA-R020). [¹⁴C]-MCPA was applied to the soil at a nominal rate of 9.9 mg/kg, equivalent to an application rate of 7425 g ai/ha. The incubation conditions were aerobic, dark, 75% field moisture capacity, a temperature of 23 °C to 26 °C, traps to collect organic volatiles (ethylene glycol) and ¹⁴CO₂ (2-ethoxyethanol:ethanolamine). Soil samples were taken at 0, 1, 3, 6, 12, 19, 28, 61, 91, 154 and 209 days after treatment. Mean recoveries were 89.2% to 104% of applied radioactivity. The results are summarized in Tables 17 and 18. The lower material balance from day 28 onwards was due to a disconnected vacuum hose and subsequent loss of CO₂.

Time	[¹⁴ C]-MCPA						
(days)	Extracts	Cumulative volatiles	Unextracted	Total			
0	98.5	N/A	5.5	104.0			
1	92.3	< 0.1	8.7	101.0			
3	86.7	0.1	14.2	100.9			
6	82.8	1.1	15.4	99.3			
12	72.2	5.5	21.4	99.0			
19	63.2	10.5	28.1	101.8			
28	51.2	10.5	27.5	89.2			
61	17.3	54.9	31.8	91.6			
91	4.1	61.4	34.4	93.3			
154	1.5	64.3	28.3	91.2			
209	1.3	65.6	30.7	96.3			

Table 17 Recovery of radioactivity in soil after application of [¹⁴ C]-MCPA (expressed as % applied
radioactivity) (Matt, FJ, 1990, MCPA-R020)

N/A = Not applicable

Table 18 Decline of [¹⁴C]-MCPA in aerobic sandy loam soil at 23 °C to 26 °C (expressed as % applied radioactivity) (Matt, FJ, 1990, MCPA-R020)

Time	Radioactive component	
(days)	МСРА	Peak 1
0	93.0	ND
1	88.7	ND
3	83.1	ND
6	78.7	ND
12	66.2	ND
19	60.4	ND
28	47.2	ND
61	14.8	0.9
91	2.1	0.5
154	N/A	N/A
209	N/A	N/A

ND = Not detected

N/A = Not analysed

A total of 65.6% of applied radioactivity was evolved as volatile radioactivity over the 209day incubation period. This volatile radioactivity was identified as ¹⁴CO₂. The sole major component was [¹⁴C]-MCPA, which was totally mineralized within the time course of the study, with a minor unidentified peak of < 1% of applied radioactivity occurring on days 61 and 91. The calculated halflife was 24 days under aerobic conditions. Further information on degradation rate was provided in a literature review (Smith, AE, 1989, MCPA-R143). This author presented numerous data on degradation of MCPA in laboratory soils. The degradation rate was strongly influenced by

microorganisms. After a lag phase, which can vary dependent on the characteristics of the soil (moisture, organic matter, pH, temperature) rapid breakdown of the active ingredient occurs. Subsequent investigations confirmed microbial degradation was the major mechanism, resulting in decomposition of MCPA in soils. Table 19 summarizes the degradation of MCPA.

Table 19 Breakdown of MCPA following single applications to laboratory soils (Smith, AE, 1989, MCPA-R143)

Soil type	pH	Org. matter	Moisture	Temperature	Concentr	Half-life
					(mg/kg)	(days)
Sandy loam	7.0	2.0	12.7% FC	23	3.0	~ 8
Sandy loam	7.2	1.9	100% FC	26	2.5	32
Clay loam	7.8	1.8	100% FC	26	2.5	41
Clay loam	6.2	6.8	100% FC	26	2.5	15
Loam	7.6	2.4	100% FC	26	2.5	14
Loam	7.5	2.9	100% FC	26	2.5	22
	7.7	4.2	85% FC	20	2.0	< 7
Clay loam	6.0	11.7	85% FC	20	2.0	< 7
Sandy loam	7.6	4.0	85% FC	20	2.0	< 7
Clay	7.7	4.2	85% FC	20	2.0	13
Clay loam	6.0	11.7	85% FC	20	2.0	14
Sandy loam	7.6	4.0	85% FC	20	2.0	14
Sandy clay	5.2	6.3	100% FC	23	10.0	~ 28
Sandy clay	4.7	8.4	100% FC	25	10.0	~ 40

Soil photolysis

The photolytic degradation of [¹⁴C]-MCPA was studied on a sandy clay loam soil (1.85%oc, pH 6.9) (Obrist, JJ, 1987, MCPA-R021). [¹⁴C]-MCPA was applied separately to thin layers of soil in petri dishes at a concentration of 18 mg/kg (equivalent to an application rate of 137.6 g ai/ha, assuming application of 24.9 μ g to a surface area of 18.1 cm²). The incubation conditions were irradiation from a Chroma 50 lamp (with a spectral energy distribution and wavelength similar to natural sunlight, but a lower intensity [80 μ W/cm² compared to 1200 μ W/cm²) or natural sunlight and a temperature of 25 °C (dark and artificial sunlight samples). Duplicate soil samples were taken at 0, 168, 336, 528 and 768 hours after treatment (dark controls and artificial sunlight) and at 0, 24, 48, 104 and 200 hours after treatment (natural sunlight irradiated). Traps collected volatile organic degradation products and ¹⁴CO₂. Samples from the final sampling period or soils containing > 10% of applied radioactivity were subjected to organic matter fractionation.

Total recoveries of radioactivity for artificially irradiated soils were in the range 100.8% to 112.5% of applied radioactivity, for naturally irradiated soils 83% to 112.5% of applied radioactivity (volatiles not trapped) and for dark controls 99.3% to 112.5% of applied radioactivity. The extraction and recovery of radioactivity from the soil following application of $[^{14}C]$ -MCPA is detailed in Table 20. The detections of $[^{14}C]$ -MCPA in soil are given in Table 21.

Table 20 Extraction and recovery of radioactivity from soil following application of [14C]-MCPA (% applied radioactivity) (Obrist, JJ, 1987, MCPA-R021)

Sample time (hours)	Organosoluble extract	Unextracted	Volatiles	Total
Dark Controls				

Sample time (hours)	Organosoluble extract	Unextracted	Volatiles	Total
0	110.5	2.0	N/A	112.5
168	99.2	5.0	< 0.1	104.2
336	52.6	47.3	ND	99.9
528	55.0	44.3	ND	99.3
768	97.6	5.9	ND	103.5
Artificially irradiated		L	1	
0	110.5	2.0	N/A	112.5
168	91.4	9.5	< 0.1	100.9
336	51.9	51.2	ND	103.1
528	53.5	50.1	ND	103.6
768	88.4	12.4	ND	100.8
Naturally irradiated		l	I	
0	110.5	2.0	N/A	112.5
24	93.3	13.5	N/A	106.8
48	49.3	43.1	N/A	92.4
104	40.8	49.2	N/A	90.0
200	54.2	28.8	N/A	83.0

N/A = Not analysed

ND = Not detected

Table 21 Detections of MCPA in the irradiated soils and dark controls (% applied radioactivity) (Obrist, JJ, 1987, MCPA-R021)

Sample time (hours)	Dark Controls	Artificially irradiated	Naturally irradiated	
	%AR	%AR	Sample time (hours)	%AR
0	107.4	107.4	0	107.4
168	97.0	88.8	24	95.7
336	92.9	87.7	48	74.0
528	92.2	87.8	104	64.2
768	99.6	92.5	200	56.3

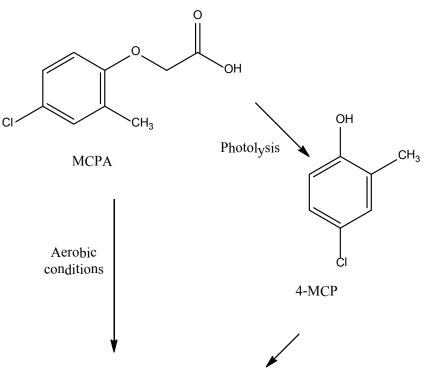
No volatiles were detected in the artificially irradiated and dark control soils. In the artificially irradiated and dark control soils extractable radioactivity declined to 53.5% to 55% of applied radioactivity after 528 hours with a concurrent increase in unextractable radioactivity to 44.3% to 50.1% of applied radioactivity. Extractable radioactivity then increased to 88.4% to 97.6% of applied radioactivity after 768 hours. The majority of unextractable radioactivity was associated with the fulvic acid fraction in all three incubations. Calculated first order half-lives were 4718 hours for artificially irradiated soil and 220 hours for naturally irradiated soil.

The photolytic degradation of $[^{14}C]$ -MCPA was studied on a sandy loam soil (1.15% organic matter, pH 6.1) (Concha, M, and Shepler, K, 1994, MCPA-R022). $[^{14}C]$ -MCPA was applied to 2 mm layers of soil at a concentration of 4.7 mg/kg (equivalent to an application rate of 3525 g ai/ha). The incubation conditions were 75% field moisture capacity and irradiation from natural sunlight at a temperature of 25 °C. Duplicate soil samples were taken at 0, 7, 15, 21 and 30 days after treatment.

Traps collected volatile organic degradation products and ${}^{14}CO_2$. Samples from the final sampling period were subjected to organic matter fractionation.

The mean recovery of radioactivity was 97.2% of applied radioactivity for the irradiated soils and 98.2% of applied radioactivity for the dark controls. The extraction and recovery of radioactivity from the soil following application of $[^{14}C]$ -MCPA is detailed in Table 22. The detections of $[^{14}C]$ -MCPA and its degradation products in soil are given in Table 23.

Table 22 Extraction and recovery of radioactivity in the irradiated soils and dark controls following application of [¹⁴C]-MCPA (% applied radioactivity) (Concha, M, and Shepler, K, 1994, MCPA-R022)


Sample time (days)	Organosoluble extract	Unextracted	Volatiles	Total
Dark Controls	ł	l	I	
0	95.1	3.7	N/A	98.8
3	93.1	6.8	0	99.9
7	83.6	13.3	0	96.9
15	84.8	12.6	0.3	97.6
21	82.8	14.3	0.4	97.5
30	82	15.9	0.5	98.4
Irradiated		1		
0	95.1	3.7	N/A	98.8
3	92.4	6.9	0.1	99.3
7	84.1	9.6	0.4	94.1
15	81.3	14.7	0.9	96.9
21	77.8	17.9	1.4	97.1
30	75.9	19.7	2.7	98.2

N/A = Not analysed

Table 23 Detections of MCPA and its metabolites in the irradiated soils and dark controls (% applied radioactivity) (Concha, M, and Shepler, K, 1994, MCPA-R022)

Sample time (days)	МСРА	PCOC (4-MCP)	Others*	
Dark Control				
0	94.7	0.0	0.4	
3	92.6	0.0	0.5	
7	89.2	0.0	0.6	
15	84.0	0.0	0.8	
21	81.0	0.7	1.1	
30	80.6	0.3	1.1	
Irradiated				
0	94.7	0.0	0.4	
3	90.9	0.6	0.9	
7	85.0	1.8	1.5	
15	76.3	4.5	0.5	

Sample time (days)	MCPA	PCOC (4-MCP)	Others*		
21	70.2	5.1	2.5		
30	70.6	3.9	1.5		
*No individual component exceeded 1.2%					

Unextractable residues and CO₂

Figure 3 Proposed pathway for the degradation of MCPA in soil

Crop rotation studies

Information on the fate of MCPA in follow-on crop studies was made available to the Meeting.

In a confined rotational crop study an application of [¹⁴C]-MCPA at the rate of 0.84 kg ai/ha (Ewing, DD, 1988, MCPA-R040) was made to bare ground. The plot was aged for 30 days, at which time 1/3 of the plot was planted with rotational crops (lettuce, turnips and barley). An additional third was cultivated and rotational crops were planted at 120 days after treatment. The last third was planted with rotational crops at 365 days after treatment. An untreated control plot was planted with rotational crops and harvested on the same schedule as the treated plots. Crops were harvested at maturity except for lettuce, which was harvested at intermediate intervals whenever sufficient leaf material could be obtained. The rotational crops sampled were lettuce leaves, turnip tops and roots, as well as barley grain, forage and straw. Soil samples were taken from each plot prior to treatment, immediately after the application, at each rotational crop planting and at the harvest date of each crop.

 $[^{14}C]$ -residues in the top 0–15 cm of soil were 0.276 mg/kg on the day of application and declined to 0.045 mg/kg by the final barley grain and straw harvest at 582 days after treatment. The decline in soil $[^{14}C]$ residues was biphasic with a rapid initial phase (0 to120 days) having a half-life of 63 days, and a slow secondary phase (120 to 582 days) having a half-life of 511 days. Table 24 summarizes the soil residues after treatment.

Days post-treatment	Total ¹⁴ C-residue, mg/kg	Remarks
0 (1 hr)	0.276	Immediately after treatment
30	0.231	30 day plant-back
114	0.086	30-day lettuce, 1 st harvest
120	0.075	120 day plant-back
140	0.102	30-day lettuce 2 nd harvest
172	0.057	30-day turnips harvest
172	0.064	120-day lettuce, 1 st harvest
185	0.095	30-day lettuce 3 rd harvest
199	0.118	120-day lettuce 2 nd harvest
199	0.091	30-day barley forage harvest
218	0.098	120-day lettuce 3 rd harvest
		barley forage harvest
233	0.121	120-day turnips harvest
233	0.074	30-day barley grain and straw harvest
247	0.063	120-day lettuce 4 th harvest
268	0.043	120-day barley and grain harvest
365	0.088	365-day plant-back
409	0.092	365-day lettuce 1 st harvest
428	0.048	365-day lettuce 2 nd harvest
455	0.056	365-lettuce 3 rd harvest
582	0.045	365-day barley grain and straw harvest

Table 24 Total [¹⁴C]-residue levels in soil treated with MCPA at the rate of 0.84 kg ai/ha (Ewing, DD, 1988, MCPA-R040)

After harvest, crop (lettuce, turnips and barley) samples were frozen at < -20 °C at the field test site for 3 to 43 days prior to shipment on dry ice to the laboratory, where the samples were held at -20 °C for 6 to 77 days prior to radioassay. Duplicate samples were ground with dry ice and assayed by liquid scintillation counting following combustion. The limit of quantification (LOQ) for the radioassays was 0.05 mg/kg, the limit of detection (LOD) was 0.013 mg/kg. The total radioactive residues in rotational crops are summarized below.

Table 25 Total radioactive residues found in lettuce, turnip, and barley grown in sandy loam soil treated with [¹⁴C]-MCPA at 0.84 kg ai/ha, the maximum seasonal rate (Ewing, DD, 1988, MCPA-R040)

Commodity Plant-back interval, days		Harvest period	Sampling interval		Total radioactive residue, mg/kg MCPA-
interval, days	interval, days		Days after treatment	Days after planting	equivalents*
Lettuce	30	1 st	114	84	0.023, 0.029
		2 nd	140	110	0.013, 0.017
		3 rd	185	155	< 0.013, < 0.013
Lettuce	120	1 st	172	52	0.041, 0.044
		2 nd	199	79	0.017, 0.013
		3 rd	218	99	0.013, 0.018

Commodity	Plant-back	Harvest period	Sampling inter	val	Total radioactive
	interval, days		Days after treatment	Days after planting	residue, mg/kg MCPA- equivalents*
		4 th	247	127	0.014, < 0.013
Lettuce	365	1 st	409	44	< 0.013, < 0.013
		2 nd	428	63	< 0.013, < 0.013
		3 rd	455	90	< 0.013, < 0.013
Turnip roots	30		172	142	< 0.013, < 0.013
	120		223	113	< 0.013, < 0.013
	365		455	90	< 0.013, < 0.013
Turnip tops	30		172	142	< 0.013, < 0.013
	120		223	113	< 0.013, < 0.013
	365		455	90	< 0.013, < 0.013
Barley forage	30		199	169	0.017
	120		218	98	< 0.013
	365		409	44	< 0.013, < 0.013
Barley straw	30		233	203	0.021, 0.013
	120		268	148	0.029, 0.021
	365		582	217	< 0.013
Barley grain	30		233	203	< 0.013, < 0.013
	120		268	148	< 0.013, < 0.013
	365		582	217	< 0.013

*All results were extrapolated from the LOD.

Following application of $[{}^{14}C]$ -MCPA at 0.84 kg ai/ha, radioactive residues were generally highest in lettuce (0.044 mg eq/kg) at the first harvest from the 120-day plant back interval and lowest in barley grain, turnip roots and tops (< 0.013 mg eq/kg) at all plant back intervals. For lettuce at the 30-day and 120-day plant-back intervals, residues were greatest at initial sampling (0.029 or 0.044 mg eq/kg), declining to < 0.013 mg eq/kg except one sample with 0.014 mg eq/kg by the final harvest. For turnip tops and roots and barley grain, residues were non-detectable at all plant-back intervals. Residues in barley forage were detectable at the 30-day plant-back interval (0.017 mg eq/kg), while in barley straw, at the 30-day and 120-day plant-back intervals (0.021 and 0.029 mg eq/kg). Residues were all at non-detectable levels at the 365-day plant-back interval. Total MCPA-equivalent residues obtained from rotational crops were below the LOQ at all plant-back intervals. Due to the very low residue levels, metabolites identification was not done further.

RESIDUE ANALYSIS

Analytical methods

The Meeting received descriptions and validation data for analytical methods for residues of MCPA and HMCPA in animal matrices; MCPA, HMCPA and CCPA in plant matrices. MCPA residues can be measured in most matrices to an LOQ of 0.01 to 0.05 mg/kg. The methods effectively measure 'total' MCPA (and 'total' HMCPA in animal products and crops) present as acid, salts, esters and conjugates (esters with natural compounds).

Analyte: MCPA, MCPA 2-EHE and MCPA GC/MSD Method QMAM94008 DMA (as MCPA)

- LOQ: 0.01 mg/kg
- Description Pasture grass is hydrolysed in basic methanol, filtered and adjusted to a known volume. An aliquot of the extract is concentrated, acidified, and partitioned twice with diethylether. The ether extract is partitioned twice with NaHCO₃, evaporated to remove residual ether, acidified and passed through a pre-conditioned C-18 solid phase extraction (SPE) cartridge. The SPE cartridge is dried under vacuum and eluted with a hexane/acetone solution. The eluant is made basic, evaporated to dryness, reconstituted in acidic methanol solution and the MCPA derivatised to its methyl ester with BF₃/methanol. The reactants are quenched with water and partitioned with hexane. The hexane is passed through an acidic alumina column and the MCPA methyl ester is eluted with additional hexane. The eluant is concentrated for determination by GC/MSD.

Internal Validation of a Method for Determining 4-Chloro-2-Methylphenoxyacetic Acid 2-Ethylhexyl Ester (MCPA 2-EHE) and 4-Chloro-2-Methylphenoxyacetic Acid Dimethylamine Salt (MCPA DMAS) as Their Acid Equivalent and 4-Chloro-2-Methylphenoxyacetic Acid (MCPA) in Pasture Grass Samples by Gas Chromatography with Mass Selective Detection. (Sorenson, BA, 1995, MCPA-R042)

Analyte: MCPA, MCPA 2-EHE and MCPA GC/MSD Method QMAM94018 DMA (as MCPA)

- LOQ: 0.01 mg/kg.
- Description Pasture grass is extracted at 70 °C in basic methanol, filtered and adjusted to a known volume. An aliquot of the extract is acidified, partitioned with diethylether and the aqueous layer discarded. The ether extract is back-partitioned with NaHCO₃, acidified and passed through a C-18 solid phase extraction (SPE) cartridge. The MCPA is eluted with an acetone/hexane solution, converted to an ammonium salt, evaporated to dryness and redissolved in acidic methanol. The MCPA is derivatised to MCPA methyl ester, quenched with water and the MCPA methyl ester partitioned into hexane. The hexane fraction is oxidized in the presence of potassium permanganate and reduced with sodium sulphite. The solution is cleaned-up on a micro alumina column. The MCPA methyl ester is eluted with ether/hexane, evaporated to a known volume and an aliquot taken for determination by GC/MSD.

Determination of 4-chloro-2-methylphenoxyacetic acid 2-ethylhexyl ester (MCPA 2-EHE) and 4-chloro-2methylphenoxyacetic acid dimethylamine salt (MCPA DMAS) as their 4-chloro-2-methylphenoxyacetic acid (MCPA) equivalent, MCPA, 4-chloro-2-hydroxymethylphenoxyacetic acid (HMCPA), 4-chloro-2hydroxymethylphenoxyacetic acid glucose conjugate (HMCPA GLU) as its HMCPA equivalent, and 4-chloro-2carboxyphenoxyacetic acid (CCPA) in wheat forage samples by gas chromatography with mass selective detection. (Hughes, 1997, MCPA-R043). (Method updated in Apr 1998 and Nov 1998; Eberhard, JS, et al., 2001, MCPA-R058), (ILV, Covance Laboratories (Morissey, MA, et al., 2000, MCPA-R044)

Analyte:	MCPA, MCPA 2-EHE and MCPA GC/MSD DMA (as MCPA)
	HMCPA, HMPCA glucose conjugate (HMCPA GLU) (as HMCPA)
	ССРА
LOQ:	Forage: 0.25 mg/kg.

Grain: 0.01 mg/kg.

Description Forage samples are extracted with 0.1N sodium hydroxide and hydrolysed overnight at room temperature. The extract is filtered and after adjusting the pH to 5, hydrolysed with - glucosidase for 2 hours at 37 °C. The resulting solution is brought to a known volume and an aliquot partitioned with diethyl ether. The diethyl ether is concentrated to dryness and derivatised with a sulphuric acid/methanol solution. The reactants are partitioned into hexane, and the hexane concentrated to a known volume for quantitation by GC/MSD.

Grain samples are extracted with basic methanol. The extract is filtered and after adjusting the pH to 5, hydrolysed with -glucosidase for 2 hours at 37 °C. The resulting solution is partitioned with diethyl ether, cleaned-up using a silica column, and repartitioned into diethyl ether. The diethyl ether is concentrated to dryness and derivatised with a sulphuric acid/methanol solution. The reactants are partitioned into hexane, and the hexane concentrated to a known volume for quantitation by GC/MSD.

Analytical method for determination of MCPA, HMCPA and MCPB in cereals and grass. (Cumberbatch, DJ, 2000, MCPA-R045)

Analyte: MCPA	A, HMCPA, MCPB	GC/MSD
---------------	----------------	--------

LOQ: 0.05 mg/kg.

Description Samples are extracted with alkaline methanol (0.1M KOH/methanol, 20:80 v/v). After filtration, the extract is cleaned-up by liquid/liquid partition with 0.1M KOH, saturated NaCl and dichloromethane. The lower organic layer is discarded, and the aqueous phase is adjusted to pH < 2 and partitioned three times against dichloromethane. The combined dichloromethane fraction is then partitioned three times against 0.1M KOH, and the combined aqueous fraction adjusted to pH < 2, diluted with water and applied to a C-18 solid phase extraction (SPE) column. The aqueous eluant is discarded, the column dried and then eluted with MTBE. The MTBE eluant is evaporated to dryness, methylated with methanol/sulphuric acid and the methylated sample extracted with hexane. The methylated solutions are analysed by GC/MSD.

Method 6698-107

Method ATM 592

Validation of analysis for MCPA, MCPB and HMCPA residues in peas (Wasser, C, 2001, MCPA-R046)

Analyte: MCPA, HMCPA, MCPB GC/MSD Method ATM 592

LOQ: 0.05 mg/kg.

Description Samples are extracted with alkaline methanol (0.1M KOH/methanol, 20:80 v/v). After filtration, the extract is cleaned-up by liquid/liquid partition with 0.1M KOH, saturated NaCl and dichloromethane. The lower organic layer is discarded, and the aqueous phase is adjusted to pH < 1 and partitioned three times against dichloromethane. The combined dichloromethane fraction is then partitioned three times against 0.1M KOH, and the combined aqueous fraction adjusted to pH < 1, diluted with water and applied to a C-18 solid phase extraction (SPE) column. The aqueous eluant is discarded, the column dried and then eluted with MTBE. The MTBE eluant is evaporated to dryness, methylated with methanol/sulphuric acid and the methylated sample extracted with hexane. The methylated solutions are analysed by GC/MSD.

Validation of analysis for MCPA, MCPB and HMCPA residues in maize (Wasser, C, 2001, MCPA-R047)

Analyte:	МСРА, НМСРА, МСРВ	GC/MSD	Method ATM 592
----------	-------------------	--------	----------------

LOQ: 0.05 mg/kg.

Description Samples are extracted with alkaline methanol (0.1M KOH/methanol, 20:80 v/v). After filtration, the extract is cleaned-up by liquid/liquid partition with 0.1M KOH, saturated NaCl and dichloromethane. The lower organic layer is discarded, and the aqueous phase is adjusted to pH 0.5 to 0.8 and partitioned three times against dichloromethane. The combined dichloromethane fraction is then partitioned three times against 0.1M KOH and the combined aqueous fraction adjusted to pH 0.5 to 0.8, diluted with water and applied to a C-18 solid phase extraction (SPE) column. The aqueous eluant is discarded, the column dried and then eluted with MTBE. The MTBE eluant is evaporated to dryness, methylated with methanol/sulphuric acid and the methylated sample extracted with hexane. The methylated solutions are analysed by GC/MSD.

Validation of analysis for MCPA, MCPB and HMCPA residues in cereals (green plant, grain, straw) (Wasser, C, 2000, MCPA-R048)

Analyte: MCPA, HMCPA, MCPB GC/MSD

Method ATM 592

- LOQ: 0.05 mg/kg.
- Description Samples are extracted with alkaline methanol (0.1M KOH/methanol, 20:80 v/v). After filtration, the extract is cleaned-up by liquid/liquid partition with 0.1M KOH, saturated NaCl and dichloromethane. The lower organic layer is discarded, and the aqueous phase is adjusted to pH < 1 and partitioned three times against dichloromethane. The combined dichloromethane fraction is then partitioned three times against 0.1M KOH, and the combined aqueous fraction adjusted to pH < 1, diluted with water and applied to a C-18 solid phase extraction (SPE) column. The aqueous eluant is discarded, the column dried and then eluted with MTBE. The MTBE eluant is evaporated to dryness, methylated with methanol/sulphuric acid and the methylated sample extracted with hexane. The methylated solutions are analysed by GC/MSD.

Validation of analysis for MCPA, MCPB and HMCPA residues in grass (Wasser, C., 2001, MCPA-R049)

Analyte: MCPA, HMCPA, MCPB GC/MSD Method ATM 592

LOQ: 0.05 mg/kg.

Description Samples are extracted with alkaline methanol (0.1M KOH/methanol, 20:80 v/v). After filtration, the extract is cleaned-up by liquid/liquid partition with 0.1M KOH, saturated NaCl and dichloromethane. The lower organic layer is discarded, and the aqueous phase is adjusted to pH < 1 and partitioned three times against dichloromethane. The combined dichloromethane fraction is then partitioned three times against 0.1M KOH, and the combined aqueous fraction adjusted to pH < 1, diluted with water and applied to a C-18 solid phase extraction (SPE) column. The aqueous eluant is discarded, the column dried and then eluted with MTBE. The MTBE eluant is evaporated to dryness, methylated with methanol/sulphuric acid and the methylated sample extracted with hexane. The methylated solutions are analysed by GC/MSD.

Validation of a GC/MS Method of Analysis of 2,4-D, MCPA, and 2,4-D ethylhexyl ester in Cereal Grain and Straw. (Rawle, NW, 2001, MCPA-R050)

Analyte:	МСРА	GC/MSD	Method 1172
	2,4-D and 2,4-D 2-ethylhexyl ester (as 2,4-D)		
LOQ:	0.05 mg/kg.		
Description	Samples are extracted with aqueous methanol. After filtration, an aliquot of the extract is reacted with sulphuric acid and the methanol removed by rotary evaporation. Water is added to the extract and the residues extracted into cyclohexane/ethyl acetate (50:50 v/v) prior to clean-up by GPC. After GPC, the extract is evaporated to dryness and methylated with acidic		

Validation of an Analytical Method for Determination of Residues of MCPA in Cereals and Grass. (Pfarl, DIC,

methanol. Water is added and the residue extracted into isooctane. The isooctane extract is partitioned with saturated sodium sulphate and then shaken with saturated sodium chloride

1994, MCPA-R051)

solution, prior to analysis by GC-MSD.

Analyte: MCPA GC/MSD Method 1172a

LOQ: 0.05 mg/kg.

Description Samples are extracted with methanol/water (80:20 v/v). After filtration, an aliquot of the extract is basified and rotary evaporated to dryness. The residue is redissolved in sulphuric acid and extracted into cyclohexane/ethyl acetate (1:1 v/v) prior to clean-up by GPC. After GPC, the extract is evaporated to dryness and methylated with acidic methanol. Water is added and the residue extracted into isooctane. The isooctane extract is partitioned with sodium hydrogen carbonate solution and then shaken with anhydrous sodium sulphate, prior to analysis by GC-MSD.

MCPA—*Validation of methodology for the determination of residues of MCPA in rape seed (Harper, H, 2005, MCPA-R052)*

Analyte: MCPA

GC/MSD

Method ATM 592

LOQ: 0.05 mg/kg.

Description Samples are extracted with alkaline methanol (0.1M KOH/methanol, 20:80 v/v). After filtration, the diluted extract is cleaned-up by liquid/liquid partition with 0.1M KOH, saturated sodium chloride and hexane. The upper hexane layer is discarded, and the partition with hexane repeated. The aqueous layer is then partitioned with dichloromethane, the lower organic layer is discarded, and the aqueous phase is adjusted to pH < 2 and partitioned three times against dichloromethane. The combined dichloromethane fraction is then partitioned three times against 0.1M KOH, and the combined aqueous fraction adjusted to pH < 2, diluted with water and applied to a C-18 solid phase extraction (SPE) column. The aqueous eluant is discarded, the column dried and then eluted with MTBE. The MTBE eluant is evaporated to dryness, methylated with methanol/sulphuric acid and the methylated sample extracted with hexane. The methylated solution is analysed for MCPA methyl ester by GC/MSD.

MCPA—Independent Laboratory Validation of Methodology for the determination of MCPA in Grain and Straw and Validation of the Methodology for the Determination of MCPA in Apples. (Harper, H, 2005, MCPA-R053)

Analyte:	MCPA	GC/MSD	Method ATM 592

LOQ: 0.05 mg/kg.

Description Samples are extracted with alkaline methanol (0.1M KOH/methanol, 20:80 v/v). After filtration, the extract is cleaned-up by liquid/liquid partition with 0.1M KOH, saturated NaCl and dichloromethane. The lower organic layer is discarded, and the aqueous phase is adjusted to pH < 2 and partitioned three times against dichloromethane. The combined dichloromethane fraction is then partitioned three times against 0.1M KOH, and the combined aqueous fraction adjusted to pH < 2, diluted with water and applied to a C-18 solid phase extraction (SPE) column. The aqueous eluant is discarded, the column dried and then eluted with MTBE. The MTBE eluant is evaporated to dryness, methylated with methanol/sulphuric acid and the methylated sample extracted with hexane. The methylated solution is analysed for MCPA methyl ester by GC/MSD.

Magnitude and Decline of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt and MCPA 2-Ethylhexyl Ester to Flax in Canada. (Jones, GL, 2007, MCPA-R128;)

Analyte	MCPA	GC/MSD	Method 6698-107, modified

LOQ 0.01 mg/kg

Description: The sample is extracted with basic methanol at room temperature. The extract is filtered, the methanol removed and after adjusting the pH to 5, hydrolysed with β-glucosidase for 2 hours at 37 °C. The resulting solution was acidified and partitioned with diethyl ether. The diethyl ether was concentrated to a low volume, dried, cleaned on a silica column, and repartitioned back into diethyl ether. The diethyl ether was concentrated to incipient dryness and derivatised with a sulphuric/methanol solution. Derivatives were partitioned into hexane, concentrated to a known volume and injected using gas chromatography with mass selective detection (GC/MSD) for quantitation.

Magnitude of Residues of MCPA in Dairy Cow Milk and Tissues. (Koch, DA, 2007, MCPA-R137)

Analyte: MCPA, HMCPA, CCPA GC/MSD Method PTRL 1905, modified

LOQ 0.05 mg/kg for tissues; 0.01 mg/kg for milk

Description Residues of MCPA are extracted from beef muscle tissue by blending with acidified acetonitrile. The centrifuged and filtered homogenate is then diluted with water and partitioned into diethyl ether then back-extracted into 0.1% NaOH solution. After removing the residual organic solvent in the basic extract, the extract is acidified and loaded onto C-8 and C-18 solid phase extraction (SPE) columns placed in series. Methyl-t-butyl ether (MTBE) is used to elute the columns. After concentration, MCPA is methylated using boron trifluoride in methanol (BFa/MeOH).

Beef fat tissue is extracted by blending in hexane and extracting the MCPA into 0.1% NaOH. After acidification, diethyl ether is used to partition the analyte from the aqueous phase. The diethyl ether is then back-extracted into 0.1% NaOH and then further processed as described above for the muscle method.

Milk is refluxed with concentrated HC1 for 1 hour. After cooling, the aqueous hydrolysate is diluted with acetonitrile and sodium chloride added to effect a phase separation. The acetonitrile layer is percolated through Florisil and further processed as described below for the beef kidney and liver. The derivatised extracts are analysed for MCPA by GC/MSD, comparing against external MCPA methyl ester standards prepared from the neat material.

MCPA

 Analyte:
 MCPA and MCPA glycine conjugate LC/MS
 Method PTRL Report no. 2117

 (as MCPA)
 HMCPA and HMCPA glucose conjugate (as HMCPA MME)
 HMCPA MME)

- LOQ: MCPA and conjugate: beef muscle, fat, liver, kidney, and cream 0.05 mg/kg; milk 0.01 mg/kg. HMCPA and conjugate: beef muscle, fat, liver, kidney, cream 0.05 mg/kg; milk 0.01 mg/kg
- Description Beef muscle, liver and kidney or milk is hydrolysed with 2N HCl. Beef fat and cream are homogenized with hexane and partitioned with 1% NaOH, and the resulting aqueous phase is then hydrolysed with 2N HCl. The HCl hydrolysate is partitioned with acetonitrile. The organic phase is subjected to solid-phase extraction (SPE) on Florisil. The SPE eluant is concentrated by rotary evaporation and partitioned with ethyl acetate and cyclohexane. A portion of the aqueous phase is subjected to C-18 SPE clean-up. Following elution with tertbutyl methyl ether (MTBE), the sample is evaporated to dryness and methylated with 1:1 v/v H₂SO₄/methanol. The methyl ester and methyl ether derivatives are diluted in water and partitioned with hexane. The products in the hexane phase are then hydrolysed with 10% NaOH to produce the sodium salts of each compound. Following removal of hexane, the compounds are dissolved in saturated NaCl solution and HCl. The hydrolysed product, MCPA free acid and HMCPA monomethyl ether (HMCPA MME) are then partitioned into acetonitrile, concentrated and quantified by LC/MS in selected ion mode utilising internal standards of [¹³C]-MCPA and [¹³C]-HMCPA.

MCPA—Independent Laboratory Validation of Methodology for the Determination of Residues of MCPA in Two Soil Types. (Harper, H, 2005, MCPA-R055)

Analyte:	MCPA	GC/MSD	BASF Method 173 and
			supplement 173/2

LOQ: 0.01 mg/kg.

Description Soil is extracted with methanol/water (80:20 v/v). After filtration, an aliquot of the extract is basified with 10M NaOH to convert the MCPA esters to the free acid, and then rotary evaporated. The residue is diluted with water, partitioned twice with dichloromethane and the dichloromethane layers discarded. The aqueous layer is acidified with 6N sulphuric acid and partitioned three times with dichloromethane. The combined dichloromethane extracts are filtered through sodium sulphate and rotary evaporated to dryness. The residue is mixed with acidic methanol to derivatise the MCPA to the methyl ester. The solution is partitioned with water and hexane. The hexane layer is washed with saturated sodium hydrogen carbonate, dried with sodium sulphate, evaporated to dryness and reconstituted in hexane/ethyl acetate (9:1 v/v). Further clean-up is by solid phase extraction (SPE) using Si cartridges; the eluate is evaporated to dryness and redissolved in hexane for quantitation by GC/MSD.

A summary of analytical method and procedural recoveries are presented in Table 26.

Commodity	Compound fortified	Fortification, mg/kg	n	Mean recov %	Range recov %	Method	Ref
Bovine muscle	МСРА	0.05-5.0	17	99%	81-118%	2117	MCPA-R054
Bovine muscle	НМСРА	0.05-5.0	17	106%	89–117%	2117	MCPA-R054
Bovine muscle	МСРА	0.05-0.5	9	104%	75–120%	PTRL 1905	MCPA-R137
Bovine liver	МСРА	0.05-0.5	10	106%	91–118%	PTRL 1905	MCPA-R137
Bovine liver	МСРА	0.05–75	17	97%	76–116%	2117	MCPA-R054
Bovine liver	НМСРА	0.05-7.5	17	99%	77–118%	2117	MCPA-R054
Bovine kidney	МСРА	0.05-0.5	10	95%	81–108%	PTRL 1905	MCPA-R137
Bovine kidney	МСРА	0.05-75	17	94%	78–110%	2117	MCPA-R054
Bovine kidney	НМСРА	0.05-7.5	17	105%	74–116%	2117	MCPA-R054
Bovine fat	МСРА	0.05-0.5	9	88%	75–100%	PTRL 1905	MCPA-R137
Bovine fat	МСРА	0.05-5.0	17	83%	70–94%	2117	MCPA-R054
Bovine fat	НМСРА	0.05-5.0	17	103%	79–119%	2117	MCPA-R054
Bovine milk	МСРА	0.01-0.10	10	85%	63–107%	PTRL 1905	MCPA-R137
Bovine milk	МСРА	0.01-1.0	17	98%	77–119%	2117	MCPA-R054
Bovine milk	НМСРА	0.01-1.0	17	109%	93–117%	2117	MCPA-R054
Bovine cream	МСРА	0.05-5.0	17	85%	72–114%	2117	MCPA-R054
Bovine cream	НМСРА	0.05-5.0	17	105%	81–119%	2117	MCPA-R054
Pasture grass	МСРА	0.01-1.0	13	86%	72–96%	QMAM94008	MCPA-R041
Pasture grass	МСРА	0.01-1.0	18	80%	64–93%	QMAM94018	MCPA-R042
Wheat forage	МСРА	0.25–25	7	86%	74–97%	6698-107	MCPA-R043

Table 26 Analytical recoveries for spiked MCPA, HMCPA and CCPA in various substrates

Commodity	Compound fortified	Fortification, mg/kg	n	Mean recov %	Range recov %	Method	Ref
Wheat forage	НМСРА	0.25–25	7	83%	66–98%	6698-107	MCPA-R043
Wheat forage	ССРА	0.25–25	7	91%	68–112%	6698-107	MCPA-R043
Wheat forage	2-EHE	2.5	2	75%	73–76%	6698-107	MCPA-R043
Wheat grain	МСРА	0.01-1.0	10	89%	77–99%	6698-107	MCPA-R058
Wheat grain	НМСРА	0.01-1.0	10	82%	72–96%	6698-107	MCPA-R058
Wheat grain	ССРА	0.01-1.0	10	82%	66–100%	6698-107	MCPA-R058
Pea green plant	МСРА	0.05-250	15	97%	84–108%	ATM 592	MCPA-R046
Pea green plant	НМСРА	0.05–2.5	9	41%	32-47%	ATM 592	MCPA-R046
Pea green plant	HMCPA ^a	0.05-50	6	86%	_	ATM 592	MCPA-R046
Pea grain	МСРА	0.05-0.5	9	94%	71–119%	ATM 592	MCPA-R046
Pea grain	НМСРА	0.05-0.5	9	33%	8-61%	ATM 592	MCPA-R046
Pea grain	HMCPA ^a	0.05-1.0	6	86%	_	ATM 592	MCPA-R046
Pea haulm	МСРА	0.05-2.5	9	100%	85-108%	ATM 592	MCPA-R046
Pea haulm	НМСРА	0.05-2.5	9	33%	7–116%	ATM 592	MCPA-R046
Pea haulm	HMCPA ^a	0.05-0.5	6	92%	_	ATM 592	MCPA-R046
Maize green plants	МСРА	0.05-250	14	95%	72–112%	ATM 592	MCPA-R047
Maize green plants	HMCPA ^b	0.05-2.5	9	84%	70–98%	ATM 592	MCPA-R047
Maize cobs	МСРА	0.05-0.5	9	88%	72–109%	ATM 592	MCPA-R047
Maize cobs	HMCPA ^c	0.05-0.5	9	61%	41-86%	ATM 592	MCPA-R047
Maize grain	HMCPA ^d	0.05-0.5	2	84%	_	ATM 592	MCPA-R047
Cereal green plant	МСРА	0.05-250	15	98%	82-128%	ATM 592	MCPA-R048
Cereal green plant	HMCPA ^c	0.05–2.5	9	28%	21-39%	ATM 592	MCPA-R048
Cereal green plant	HMCPA ^e	0.05-250	15	81%	_	ATM 592	MCPA-R048
Cereal grain	МСРА	0.05-0.5	9	85%	62–123%	ATM 592	MCPA-R048
Cereal grain	HMCPA ^b	0.05-0.5	9	86%	60–127%	ATM 592	MCPA-R048
Cereal straw	МСРА	0.05–2.5	9	95%	80-113%	ATM 592	MCPA-R048
Cereal straw	HMCPA ^b	0.05-2.5	9	89%	76–109%	ATM 592	MCPA-R048
Grass	МСРА	0.05-250	15	102%	71–120%	ATM 592	MCPA-R049
Grass	HMCPA ^c	0.05-2.5	9	48%	28-63%	ATM 592	MCPA-R049
Grass	HMCPA ^f	0.05-400	11	88%	74–120%	ATM 592	MCPA-R049
Wheat grain	МСРА	0.05-0.5	8	99%	84–108%	1172	MCPA-R050
Barley grain	МСРА	0.05-0.5	8	98%	89–102%	1172	MCPA-R050
Wheat straw	МСРА	0.05-0.5	8	102%	94–107%	1172	MCPA-R050
Barley straw	МСРА	0.05-0.5	8	84%	71–94%	1172	MCPA-R050
Cereal whole plant	МСРА	0.05-1.0	12	93%	_	1172 a	MCPA-R051
Cereal grain	МСРА	0.05-1.0	12	84%	-	1172 a	MCPA-R051
Grass	МСРА	0.05-1.0	12	87%	-	1172 a	MCPA-R051
Нау	МСРА	0.05-1.0	11	94%	_	1172 a	MCPA-R051
Rape seed	МСРА	0.05-5.0	12	81%	72–99%	ATM 592	MCPA-R052

Commodity	Compound fortified	Fortification, mg/kg	n	Mean recov %	Range recov %	Method	Ref
Cereal grain	МСРА	0.05–0.5	12	83%	71–94%	ATM 592	MCPA-R053
Cereal straw	МСРА	0.05–0.5	12	89%	73–104%	ATM 592	MCPA-R053
Apples	МСРА	0.05–0.5	12	86%	72–101%	ATM 592	MCPA-R053
Soil (high organic)	МСРА	0.05-0.5	12	97%	93–108%	173 and 173/2	MCPA-R055
Soil (low organic)	МСРА	0.05–0.5	12	81%	75–106%	173 and 173/2	MCPA-R055

^a Procedural recovery data for HMCPA from studies 9121 and 9122, after method modification.

^b Procedural recovery data for HMCPA after method modification.

^c Procedural recovery data for HMCPA before method modification.

^d Procedural recovery data for HMCPA from study 9120, after method modification.

^e Procedural recovery data for HMCPA from studies 9114, 9115 and 9116, after method modification.

^fProcedural recovery data for HMCPA from studies 9117, 9118 and 9119, after method modification.

The multi-residue method for acids and phenols designated as Section 402 in the 3rd edition of the Pesticide Analytical Manual, Vol I (PAM I) has been regarded by EPA as an adequate enforcement method for MCPA and other acidic and phenolic compounds. The method can be used to determine MCPA in a variety of fatty and non-fatty commodities, including cereals, animal tissues, dairy products and legumes. The method was originally developed for chlorophenoxy compounds but has been found to be applicable to a larger number of acidic and phenolic compounds. Acidic and phenolic residues are extracted from commodities acidified with sulfuric acid by various techniques dictated by the type of commodity. The extract is cleaned up by gel permeation chromatography (GPC) and residues in the concentrated extract are methylated by ion pair alkylation and further cleaned up by Florisil column chromatography. The resulting methyl esters are determined by GC. Certain residues can be determined only by element-selective GC detectors. Using the above multi-residue method, extraction method E1, GPC clean-up and GC/ECD, recoveries were 78 to 89% for MCPA (PESTDATA, PAM Vol I, Appendix 1).

Stability of residues in stored analytical samples

The Meeting received information on the stability of residues of MCPA DMA, 2-HMCPA, CCPA and MCPA 2-EHE residues in cereals (forage, straw, grain and wheat flour) and pasture grass (hay and forage). In addition to these individual studies, storage stability determinations, together with procedural recovery analyses, were also carried out concurrently with the field trials samples and are reported in the residue trials reports.

A freezer storage stability study was conducted on wheat commodities (forage, straw, grain and flour) and pasture grass (forage and hay) in 1999–2001 (Eberhard, JS, *et al.*, 2001, MCPA-R058). Homogenized untreated samples were obtained from various magnitudes of residue studies. Approximately 5 g (wheat forage, wheat straw, pasture grass and pasture hay) or 10 g (wheat grain and wheat flour) samples were fortified with MCPA DMA, HMCPA and CCPA, at a concentration of 2.5 mg/kg acid equivalents (forage, straw and hay) or 0.1 mg/kg acid equivalents (grain and flour). Similarly, approximately 5 g (wheat forage, wheat straw, pasture grass and pasture hay) or 10 g (wheat grain and wheat flour) samples were separately fortified with MCPA 2-EHE at a concentration of 2.5 mg/kg acid equivalents (forage and straw, hay) or 0.1 mg/kg acid equivalents (grain and flour). The samples were then frozen at nominally -20 ± 10 °C for an interval of up to 1 year or longer. Wheat forage, straw and grain and pasture grass and hay samples were analysed at nominal 0, 45, 89, 174, 265 and 369 day intervals after fortification and freezing. Wheat flour samples were analysed at nominal 0, 56, 118, 188, 279, 406 and 541 day intervals after fortification and freezing.

At each time point, one untreated sample and three treated samples spiked just before analysis with MCPA DMA, HMCPA and CCPA at 2.5 mg/kg acid equivalents (forage, straw and hay) or

0.1 mg/kg acid equivalents (grain and flour) and three samples stored at -20 \pm 10 °C until samples were analysed.

At each time point, one untreated sample and three untreated samples spiked just before analysis with MCPA 2-EHE at 2.5 mg/kg acid equivalents (forage, straw and hay) or 0.1 mg/kg acid equivalents (grain and flour) and three samples stored at -20 ± 10 °C until samples were analysed.

Residues were determined by GC-MSD using method 6698-107 (Hughes, D, *et al*, 1997, MCPA-R043) for forage and hay, which had been previously validated with an LOQ of 0.25 mg/kg acid equivalents for forage and hay, and 0.01 mg/kg acid equivalents for grain.

The results showed that residues of MCPA DMA, HMCPA, CCPA and MCPA 2-EHE were stable for up to 12 months in wheat forage, straw and grain and pasture grass forage and hay following storage at -20 ± 10 °C in Tables 27 to 38. Residues of MCPA DMA, HMCPA, CCPA and MCPA 2-EHE were also stable for up to 17.5 months in wheat flour following storage at -20 ± 10 °C.

Table 27 Stability of residues of MCPA DMA salt in wheat commodities following frozen storage (Eberhard, JS, *et al.*, 2001, MCPA-R058)

Time	Wheat forage	e(n=3)	Time	Wheat straw (n	1 = 3)	Time	Wheat grain $(n = 3)$	
(days)	Procedural recovery (%)	MCPA DMA salt after storage (% remaining)	(days)	Procedural recovery (%)	MCPA DMA salt after storage (% remaining)	(days)	Procedural recovery (%)	MCPA DMA salt after storage (% remaining)
0	105	105	0	89	89	0	88	88
45	107	102	37	86	88	78	93	79
90	105	100	91	90	88	140	101	90
168	101	97	176	89	86	182	99	84
267	109	106	267	94	91	274	93	87
371	108	105	371	88	90	378	96	79

Table 28 Stability of residues of MCPA DMA salt in grass commodities following frozen storage (Eberhard, JS, *et al.*, 2001, MCPA-R058)

Time	Pasture grass hay $(n = 3)$	(n = 3)		Pasture grass forage (n	= 3)
(days)	Procedural recovery (%)	MCPA DMA after storage (% remaining)	(days)	Procedural recovery (%)	MCPA DMA after storage (% remaining)
0	94	94	0	110	110
41	94	88	39	110	109
90	94	86	88	93	94
180	98	96	172	98	99
272	96	97	264	104	106
371	99	99	369	107	109

Table 29 Stability of residues of MCPA DMA salt in wheat flour following frozen storage (Eberhard, JS, *et al.*, 2001, MCPA-R058)

Time (days) Wheat flour $(n = 3)$					
	Procedural recovery (%)	MCPA DMA after storage (% remaining)			

Time (days)	Wheat flour $(n = 3)$	
	Procedural recovery (%)	MCPA DMA after storage (% remaining)
0	79	79
56	94	73
118	91	80
188	88	80
279	89	78
408	77	53
539	111	107

Table 30 Stability of residues of HMCPA in wheat commodities following frozen storage (Eberhard, JS, *et al.*, 2001, MCPA-R058)

Time	Wheat forage	e(n=3)	Time	Wheat straw $(n = 3)$		Time	Wheat grain	(n = 3)
(days)	Procedural recovery	HMCPA after storage	(days)	Procedural recovery	HMCPA after storage	(days)	Procedural recovery	HMCPA after storage
	(%)	(% remaining)		(%)	(% remaining)		(%)	(% remaining)
0	108	108	0	92	92	0	105	105
42	101	98	37	86	88	78	107	87
90	104	97	91	95	94	140	114	101
168	108	82	176	96	94	182	109	90
267	117	115	267	102	97	274	88	84
371	106	104	371	86	87	378	102	81

Table 31 Stability of residues of HMCPA in grass commodities following frozen storage (Eberhard, JS, *et al.*, 2001, MCPA-R058)

Time	Pasture grass hay (n =	3)	Time	TimePasture grass forage (n = 3)			
(days)	Procedural recovery (%)	HMCPA after storage (% remaining)	(days)	Procedural recovery (%)	HMCPA after storage (% remaining)		
0	98	98	0	111	111		
41	90	86	39	106	102		
90	98	89	88	99	94		
180	108	107	172	99	92		
272	106	107	264	113	108		
371	88	91	369	106	99		

Table 32 Stability of residues of HMCPA in wheat flour following frozen storage (Eberhard, JS, *et al.,* 2001, MCPA-R058)

Time (days)	Wheat flour $(n = 3)$					
	Procedural recovery (%)	2-HMCPA after storage (% remaining)				
0	72	72				
56	100	78				

Time (days)	Wheat flour $(n = 3)$					
	Procedural recovery (%)	2-HMCPA after storage (% remaining)				
118	103	83				
188	94	76				
279	93	77				
408	109	86				
539	77	75				

Table 33 Stability of residues of CCPA in wheat commodities following frozen storage (Eberhard, JS, *et al.*, 2001, MCPA-R058)

Time			age $(n = 3)$ Time Wheat straw $(n = 3)$		Time Wheat grain $(n = 3)$		= 3)	
(days)	Procedural recovery	CCPA after storage	(days)	Procedural recovery (%)	CCPA after storage	(days)	Procedural recovery (%)	CCPA after storage
	(%)	(% remaining)			(% remaining)			(% remaining)
0	88	88	0	88	88	0	86	86
42	87	85	37	76	75	78	78	67
90	100	97	91	78	76	140	103	99
168	92	92	176	78	78	182	89	81
267	90	91	267	71	71	274	82	75
371	96	91	371	71	71	378	93	71

Table 34 Stability of residues of CCPA in grass commodities following frozen storage (Eberhard, JS, *et al.*, 2001, MCPA-R058)

Time	Pasture grass hay $(n = 3)$	3)	Time	Pasture grass forage $(n = 3)$		
(days)	Procedural recovery (%)	CCPA after storage (% remaining)	(days)	Procedural recovery (%)	CCPA after storage (% remaining)	
0	106	106	0	94	94	
41	78	79	39	96	97	
90	84	77	88	77	79	
180	82	82	172	94	97	
272	82	81	264	87	94	
371	72	73	369	92	89	

Table 35 Stability of residues of CCPA in wheat flour following frozen storage (Eberhard, JS, *et al.*, 2001, MCPA-R058)

Time (days)	Wheat flour $(n = 3)$				
(days)	Procedural recovery	CCPA after storage			
	(%)	(% remaining)			
0	70	70			
56	87	71			

118	83	71
188	87	68
279	80	67
408	108	78
539	70	53

Table 36 Stability of residues of MCPA 2-EHE in wheat commodities following frozen storage (Eberhard, JS, *et al.*, 2001, MCPA-R058)

Time	Wheat forage $(n = 3)$		Time Wheat stray		(n = 3)	Time	Wheat grain (n	= 3)
(days)	Procedural recovery (%)	MCPA 2-EHE after storage (% remaining)	(days)	Procedural recovery (%)	MCPA 2- EHE after storage (% remaining)	(days)	Procedural recovery (%)	MCPA 2- EHE after storage (% remaining)
0	100	100	0	84	84	0	NA	NA
43	96	94	38	81	87	48	95	82
90	89	90	87	82	81	125	90	71
182	90	94	183	80	82	195	97	79
271	112	94	268	88	87	266	103	79
371	103	103	372	90	92	364	89	73

NA: not applicable.

Table 37 Stability of residues of MCPA 2-EHE in grass commodities following frozen storage (Eberhard, JS, *et al.*, 2001, MCPA-R058)

Time	Pasture grass hay (n =	3)	Time	Pasture grass forage (n	brage $(n = 3)$	
(days)	Procedural recovery (%)	MCPA 2-EHE after storage (% remaining)	(days)	Procedural recovery (%)	MCPA 2-EHE after storage (% remaining)	
0	88	88	0	88	88	
42	87	84	40	95	99	
91	92	88	89	97	108	
182	86	84	173	90	94	
280	88	89	265	103	104	
377	96	96	370	102	102	

Table 38 Stability of residues of MCPA 2-EHE in wheat flour following frozen storage (Eberhard, JS, *et al.*, 2001, MCPA-R058)

Time (days)	Wheat flour $(n = 3)$					
(days)	Procedural recovery MCPA 2-EHE after storage					
	(%)	(% remaining)				
0	91	91				
62	97	97				

125	99	92
189	93	97
280	86	89
406	80	82
532	110	110

Another storage stability study on cereals (green plant, grain and straw) was conducted in 2000–2002 (Wasser, C, 2002, MCPA-R059). In this study samples were fortified with 0.05 mg/kg MCPA or HMCPA, stored at < -18 °C, and analysed after intervals of nominally 0, 90, 180, 465 and 545 days. Concurrent recoveries were conducted at the same level of fortification using freshly spiked samples. At each time point two control samples, three fortified stored samples and one freshly fortified control sample were analysed. Residues of MCPA or HMCPA were determined by GC-MSD, following method ATM 592 (Wasser, C, 2000, MCPA-R048). The LOQ for the method was 0.05 mg/kg. The results (Tables 39, 40 and 41) show that MCPA and HMCPA residues in cereal green plants, grain and straw are stable for up to 18 months when stored frozen at < -18 °C.

Table 39 Stability of residues of MCPA in cereal commodities following frozen storage (Wasser, C, 2002, MCPA-R059)

Time (days)	Cereal green plants (n = 3)		Cereal grain (n = 3)		Cereal straw $(n = 3)$	
	Procedural recovery	MCPA after storage	Procedural recovery	MCPA after storage	Procedural recovery	MCPA after storage
	(%)	(% remaining)	(%)	(% remaining)	(%)	(% remaining)
0	88	88	105	105	82	82
90	109	87	105	86	91	87
180	76	71	90	74	89	84
365	93	97	81	71	78	81
545	101	81	93	81	89	83

Table 40 Stability of residues of HMCPA in cereal commodities following frozen storage (Wasser, C, 2002, MCPA-R059)

Time (daya)	Cereal green plants $(n = 3)$		Cereal grain (n	= 3)	Cereal straw (n = 3)	
(days)	Procedural recovery	HMCPA after storage	Procedural recovery	HMCPA after storage	Procedural recovery	HMCPA after storage
	(%)	(% remaining)	(%)	(% remaining)	(%)	(% remaining)
0	74	74	72	72	72	72
90	85	89	72	88	77	85
180	78	83	70	78	75	82
365	85	95	70	78	70	90
545	86	88	83	91	81	87

Residues in milk and animal tissues

The stability of MCPA residues in <u>milk and animal tissues</u> during frozen storage was investigated as part of the livestock metabolism and feeding studies. In the lactating goat metabolism study (Sabourin, PJ, and Koebel, DD, 1995, MCPA-R016), tissues and milk collected were stored at -20 °C until extraction and analysis. The maximum period of storage from collection of samples to analysis

MCPA

was 198 days (about 28 weeks). To optimize stability the entire tissue samples were not homogenized; rather they were cut into small pieces and only a randomly selected sample was homogenized as needed. The concentrations of MCPA, MCPA-glycine (milk only) and triglycerides (remaining tissues) following frozen storage at about -20 °C for up to about 46 weeks indicated that the metabolite profile in milk and tissues did not change significantly over the storage interval (Table 41).

Table 41 Residues in milk and tissue samples from goats treated with MCPA, following storage at - 20 °C (Sabourin, PJ, and Koebel, DD, 1995, MCPA-R016)

Tissue	Initial mean extractable residue ^a	Extractable residue after 46 weeks	MCPA (mg/kg) ^c		Major metabolites (mg/kg) ^c		
	(% TRR)	storage ^b (% TRR)	Initial	After storage	Initial	After storage	
Milk	84.6	100.1	0.046	0.036	0.086	0.080 ^d	
Muscle	76.2	87.6	0.020	0.023	0.048	0.035 ^e	
Fat	94.4	119.1	0.042	0.085	0.042	0.040 ^e	
Liver	63.4	75.0	0.011	0.016	0.239	0.316 ^e	
Kidney	83.7	80.8	0.053	0.059	0.497	0.440 ^e	

^a Mean % TRR in methanol/water extract of tissue.

^b Value from single extraction.

^c Value from a single HPLC determination

^d Glycine conjugate of MCPA

^e Metabolite with retention time approximately 26 minutes

Stability of MCPA in milk and edible tissues was also determined as part of the cattle feeding study (Koch, DA, 2007, MCPA-R137). Cattle tissues were stored at -20 °C for about 73 days from collection to analysis.

For storage stability tests at least five sets of samples were prepared for each matrix (milk, kidney, liver, fat and muscle). The first set of samples served as the Day 0 set of analyses and consisted of one control and three fortifications at $10 \times$ the LOQ for the respective matrix. For milk the $10 \times$ level was approximately 100 ppb, and for the tissues the $10 \times$ level was approximately 500 ppb. Each of the four stability sets consisted of one control, two controls were reserved for fortifying on the day of analysis and 2 fortified at $10 \times$ LOQ on Day 0. Following fortification the samples were placed in frozen storage until removal for analysis. One set per matrix was analysed approximately 1 to 2 months following fortification, and a second set was analysed at an interval which exceeded the maximum elapsed time between sampling and analysis for the treated study samples for that matrix. The remaining two sets functioned as backup samples, as well as reserves to extend the stability time intervals if desired.

MCPA was determined to be stable in storage up to at least 4 months in liver and milk, 5 months in kidney and fat, and 3 months in muscle samples (Table 42).

Table 42 Stability of MCPA in samples of milk and animal tissues store	ed at -20 °C (Koch, DA, 2007,
MCPA-R137)	

Matrix	Storage interval (days)	Fortification (ppb MCPA)	Average recoveryProcedural(%)	AverageRecoveryafter storage(%)
Milk	0	101	95	95
	32	101	113	105

Matrix	Storage interval (days)	Fortification (ppb MCPA)	Average recoveryProcedural(%)	AverageRecoveryafter storage(%)	
	120	101	96	97	
Liver	0	504	111	111	
	37	502	88	91	
	134	507	100	118	
Kidney	0	504	112	112	
	37	504	96	86	
	153	509	110	108	
Muscle	0	505	99	99	
	28	505	108	96	
	112	506	104	116	
Fat	0	505	100	100	
	92	502	89	88	
	172	505	87	105	

Storage stability studies conducted on cereal and grass commodities demonstrated that MCPA DMA, 2-HMCPA, CCPA and MCPA 2-EHE are stable for up to 12 months in wheat forage, straw and grain, and grass forage and hay samples, and up to 17.5 months in wheat flour samples stored frozen at -20 ± 10 °C. Storage stability studies on cereal green plants, grain and straw showed that MCPA and HMCPA are stable in samples for up to 18 months when stored frozen at -18° C.

These crops are representative of the commodities covered in this submission. In most of the trials in this submission, the maximum period of frozen storage of samples prior to analysis falls within the stability period confirmed in these storage stability studies. In all of the field trial reports, recoveries from fortified stored samples, determined concurrently with field trial samples, confirmed stability of the residues of MCPA and the metabolites HMCPA and CCPA at the time of analysis.

In animal commodities the storage stability studies, conducted concurrently with the cattle feeding study, confirmed that residues of MCPA are stable when stored frozen up to at least 4 months in liver and milk, 5 months in kidney and fat, and 3 months in muscle samples. Samples from the metabolism study showed that MCPA, MCPA-glycine (milk only) and triglycerides (remaining tissues) were stable in frozen storage up to about 46 weeks.

USE PATTERN

Labels and English translations were available for all the uses. MCPA, which is applied either as an acid, its sodium, potassium or dimethylamine salts or its 2-ethylhexyl ester, is used for the control of broad-leaved weeds in cereals and grassland, peas and flax, in a number of soluble or emulsifiable concentrate formulations. A summary of the current approved label rates are provided in Table 43.

Crop	Country	Formulation	Applicatio	Application				
		MCPA forr applied	n MCPA acid equiv. (g ae/L or kg) ^a	Method	kg ae/ha"	Water, L/ha (min– max)	No. or max kg ae/ha/ season	Growth stage
CEREAL GRAINS								

Table 43 Summary of registered uses of MCPA

Crop	Country	Formulation		Application	on			[
		MCPA form applied	MCPA acid equiv. (g ae/L or kg) ^a	Method	Max. rate, kg ae/ha ^a	Water, L/ha (min– max)	No. or max kg ae/ha/ season	Growth stage
Oats	Canada	2-EHE	600 EC	Foliar	0.54	50-200	1	3 leaf to early flag stage
Oats	Canada	DMA salt	600 SL	Foliar	0.54	50-150	1	2-leaf to early flag-leaf stage
Wheat,	Canada	2-EHE	500 EC	Foliar	0.35-0.88	50-200	1	3 leaf to early
Barley,			600 EC					flag stage
Rye								
Wheat,	Canada	Sodium salt	300 SL	Foliar	0.45-0.83	50-200	1	2-leaf to early
Barley,								flag leaf
Oats,								
Rye								
Wheat, Barley,	Canada	DMA salt	500 SL	Foliar	0.63-0.88	100-150	1	Early flag leaf
Oats,			600 SL					(shot blade) stage
Rye								U
Wheat,	Spain	DMA salt	400 SL	Foliar	1.2	200	1	Before first
Barley								node detectable
Wheat,	Spain		400 SL	Foliar	1.2	200	1	Before first
Barley		potassium salt						node detectable
Wheat, Barley,	UK	DMA salt	500 SL	Foliar	1.7	100-400	1	Before first
Rye,								node detectable
Oats								
Wheat,	USA	2-EHE	444 EC	Foliar	0.26-0.80	94	1	3-4 leaf up to
Barley,								early boot stage
Oats,								stuge
Rye								
Wheat, Barley,	USA	DMA salt	480 SL	Foliar	0.84	94–1122	1	Early boot
Oats,								stage
Rye								
Cereals under- seeded with alfalfa or trefoil	Canada	DMA salt	500 SL	Foliar	0.28	50-150	1	Early flag leaf (shot blade) stage
Cereals under- seeded with alfalfa or trefoil	Canada	DMA salt	600 SL	Ground	0.28	50-150	1	Early flag- leaf stage
Cereals under- seeded with legumes	Canada	Sodium salt	300 SL	Ground	0.45	50-200	1	Before cereals are at early flag leaf stage
Cereals under- seeded with red clover	UK	DMA salt	500 SL	Ground	0.7	100-400	1	_

Crop	Country	Formulation		Applicatio				
		MCPA form applied	MCPA acid equiv. (g ae/L or kg) ^a	Method	Max. rate, kg ae/ha ^a	I /ho	No. or max kg ae/ha/ season	Growth stage
Cereals under- seeded with grass	UK	DMA salt	500 SL	Ground	1.4	100–400	1	-
Cereals Under- seeded with legumes		DMA salt	400 SL	Foliar	0.28	94	1	Early boot stage
Cereals Under- seeded with legumes		DMA salt	400 SL	Foliar	0.28	94	1	Early boot stage
Corn, field	Canada	DMA salt	500 SL	Ground	0.55	100	1	PHI = 15 days
Corn, field	Canada	DMA salt	600 SL	Ground	0.55	100	1	PHI = 15 days
Corn, field	Canada	Sodium salt	300 SL	Ground	0.6	100-200	1	PHI = 15 days
Corn, field	Spain	DMA salt	400 SL	Ground	0.8	200	1	From 4-leaf stage
Corn, field	Spain	Sodium or potassium salt	400 SL	Ground	0.8	200	1	From 4-leaf stage
LEGUMES		-	-	-	<u>-</u>	-	<u>+</u>	-
Peas	Canada	DMA salt	500 SL	Foliar	0.25	150–200	1	Vines 10– 20 cm but before flower buds formed
Peas	Canada	DMA salt	600 SL	Ground	0.25	150-200	1	Vines 10– 20 cm but before flower buds formed
Peas	Canada	Sodium salt	300 SL	Ground	0.30	250-300		Peas 10– 15 cm high but before flower buds formed
Peas	Spain	DMA salt	400 SL	Ground	1.6	200	1	Before bud forms
Peas	USA	DMA salt	400 SL	Foliar	0.14-0.42	47–280	1-2	3–7 inches but before first flowering
Peas	USA	2-EHE	440 EC	Broadcast	0.40	140	1	3–7 inches but before first flowering
OIL SEEDS	<u>.</u>	<u>+</u>	<u></u>	<u>+</u>	<u>.</u>	<u>+</u>	<u>+</u>	<u>.</u>
Flax	Canada	DMA salt	500 SL	Foliar	0.875	100	1	Just before bud stage
Flax	Canada	DMA salt	600 SL	Ground	0.41	50-150	1	5 cm high to before bud stage
Flax	Canada	DMA salt	600 SL	Ground	0.50	50-150	1	5 cm high to before bud stage

Crop	Country	Formulation		Applicati				
		MCPA form applied	MCPA acid equiv. (g ae/L or kg) ^a	Method	Max. rate, kg ae/ha ^a	Water, L/ha (min– max)	No. or max kg ae/ha/ season	Growth stage
Flax	Canada	2-EHE	600 EC	Ground	0.42	50-150	1	5 cm to bud stage
Flax	Canada	Sodium salt	300 SL	Ground	0.53	100	1	5 cm to bud stage
Flax	Spain	DMA salt	400 SL	Ground	1.2		1	15 cm high
Flax	Spain	Sodium or potassium salt	400 SL	Ground	1.2		1	15 cm high
Flax	UK	DMA salt	500 SL	Ground	0.9	200–400	1	5–15 cm high
Flax	USA	2-EHE	440 EC	Ground	0.26	94	1	2–8 inches high
Flax	USA	DMA salt	480 EC	Ground	0.28	47–187	1	4–9 inches high
GRASSES		<u>+</u>	<u>L</u>	<u>4</u>	-	<u>+</u>	•	ł
Rangeland	Canada	DMA salt	500 SL	Foliar	1.7	50	2 at 90- day interval	Pre- to early bud stage
Pastures	Canada	DMA salt	500 SL	Foliar	1.7	50	2 at 90- day interval	Pre- to early bud stage
Pastures	Canada	DMA salt	600 SL	Ground	1.7	50	2 at 90- day interval	Pre- to early bud stage
Pastures	Canada	2-EHE	440 EC	Ground	1.7	100–300	2 at 90- day intervals	At time of rapid growth of weeds
Grasslands	Spain	DMA salt	400 g/L SL	Foliar	1.2-1.6	200–400	1	Weeds in active growth
Grassland	UK	DMA salt	500 SL	Ground	1.7-3.3	200-400	1–2 at 28 to 42 days interval	Majority of weeds are seedlings up to flower buds start forming
Grassed	UK	DMA salt	500 SL	Foliar	1.7	200–400	1	Grasses begin to tiller
Pastures/ rangeland	USA	DMA salt	480 SL	Foliar	1.7	19–1122	2	Early bud to full bloom
Rangeland/pastures	USA	2-EHE	440 EC	Ground	1.6-2.1	94	2 at least 21-day intervals	Prior to bud stage
Grasses grown for seeds	UK	DMA salt	500 SL	Ground	1.6	200	1	5 weeks before heading
Grasses grown for seeds	USA	DMA salt	480 SL	Foliar	1.7	19–1122	1	Before heads come to boot stage

Crop	Country	Formulation	Applicatio					
		applied	MCPA acid equiv. (g ae/L or kg) ^a	Method	Max. rate, kg ae/ha ^a	L/ha	No. or max kg ae/ha/ season	Growth stage
Grasses grown for seeds	USA	2-EHE	440 EC	Ground	1.0	94		Tiller to early bud stage

^a ae = MCPA acid equivalent

The US label specifies the following additional restrictions:

Cereal grains:

Do not graze dairy animals on treated areas until 7 days after treatment.

Do not forage or graze meat animals on treated areas within 7 days of slaughter.

Peas:

Do not allow livestock to forage or graze treated fields.

Do not feed treated vines to livestock.

Do not allow dairy animals or meat animals being finished for slaughter to forage or graze treated areas within 7 days of application.

RESIDUES RESULTING FROM SUPERVISED TRIALS ON CROPS

The Meeting received information on supervised field trials for MCPA uses on the following crops.

Crop Group	Commodity	Country	Table No.
Cereals	Barley grain	Canada	Table 44
	Barley grain	France, Spain, Austria	Table 45
	Wheat grain	Canada, USA	Table 46
	Wheat grain	France, Spain, Austria	Table 47
	Corn grain	Canada	Table 48
Legume vegetables	Peas	Canada, USA	Table 49
Oilseeds	Flax	Canada, USA	Table 50
Legume animal feed	Pea forage	Canada, USA	Table 51
	forages Barley straw and hay	Canada, USA	Table 52
of cereal grains	Barley straw and forage	e Austria, France, Spain, UK	Table 53
Oilseeds Legume animal feed Straw, fodder and of cereal grains	Wheat forage, straw, hay	and Canada, USA	Table 54
	Wheat forage and straw	Austria, France, Spain, UK	Table 55
	Corn forage and stover	Canada	Table 56
	asture, Grasses	Canada	Table 57
rangeland)	Grasses	Austria, France, Spain, UK	Table 58

MCPA

In addition to the description and details of the field trials, each report includes a summary of the analytical method(s) used, together with the corresponding procedural recoveries, and in most cases, concurrent recoveries in stored frozen samples. In the field trials where multiple analyses are conducted on a single sample or where multiple samples were taken from a single plot, the average residue value is reported. Where results from separate plots with distinguishing characteristics, such as different formulations, varieties or treatment schedules were reported, results are listed for each plot.

In the field trials MCPA was applied as either the 2-EHE, DMA salt or sodium or potassium salt formulations. Metabolism studies demonstrated that 2-EHE and DMA salt formulations dissociated into free MCPA. The sodium or potassium salts dissolved readily to form free MCPA. Analytical methods effectively measure "total" MCPA (and "total" HMCPA in animal products and crops) present as acid, salts, esters and conjugates (esters with natural compounds). Therefore, in all the Tables application rates were expressed as MCPA acid equivalent/ha (ae/ha), regardless of which formulation was applied. Residues from the trials were all reported as mg/kg MCPA-equivalent.

Results have not been corrected for concurrent method recoveries unless indicated. Residues and application rates have generally been rounded to two significant figures or, for residues near the LOQ, to one significant figure. Residue values from the trials conducted according to the maximum GAP have been used for the estimation of maximum residue levels. Those results included in the tables are single underlined. For purposes of MRL estimation and risk assessment in this report, ND values in the reports were considered as < LOQ.

A total of 36 supervised trials on barley were conducted in 12 sites in Canada from 2005 to 2006 (Jones, GL, 2007, MCPA-R072; Belcher, TI, 2008, MCPA-R073). Each trial consisted of one untreated plot and three treated plots. Each treated plot received either of these MCPA formulations: 2-EHE EC (444 g ae/L), DMA salt SL (480 g ae/L) or sodium salt (300 g ae/L). One application was made at the target rate of 0.875 kg ai/ha using either motorized or knap-sack sprayers. The application was made when the first leaf was fully expanded, until just before the first node was detectable. Duplicate samples of grain and straw were collected from each plot at crop maturity. Samples were also collected at 30 days after treatment for the decline trials. Duplicate samples of hay were cut at 28 days after treatment for the control plot and at 1, 3, 7, 14, 28, 42 and 56 days after treatment for the treated plots at the decline sites. All samples were stored frozen at -12 °C to -35 °C until analysis. The maximum period of frozen storage from harvest to analysis was 243, 223 and 200 days for hay, grain and straw. Residues of MCPA in barley grain, hay and straw were analysed by GC/MS, using method 6698-107, which had previously been validated with an LOQ of 0.01 mg/kg for grain and 0.25 mg/kg for hay and straw.

All 36 trials in Canada matched the GAP and resulted in non-detectable residues of MCPA and HMCPA in barley grain. Results of the trials in barley grain are summarized in Table 44, with residues matching the GAP underlined. Results for barley hay and straw are summarized in Table 44.

BARLEY GRA	AIN	Application					PHI	Residues mg/kg,			Reference
								(MCPA acid equiv)			Author, year
country, (variety)	year	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Elm Creek, Canada, 2005 (AC Robust)	MB,	2-EHE 444 g/L EC	0.89	204	Zadoks 35- main shoot and 5 tillers		58	<u>ND</u>	ND	ND	Jones, GL, 2007, MCPA-R072
Elm Creek, Canada, 2005 (AC Robust)	MB,	DMA salt 480 g/L SL	0.79	203	Zadoks 35- main shoot and 5 tillers		58	<u>ND</u>	ND	ND	

Table 44 MCPA acid equivalent residues in treated barley grain resulting from supervised trials in Canada and the USA (Jones, GL, 2007, MCPA-R072; Belcher, TI, 2008, MCPA-R073)

BARLEY GRAIN	Application				PHI	Residue	s mg/kg,		Reference
						(MCPA acid equiv)			Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage no	. days	МСРА	НМСРА	ССРА	Reference No.
Elm Creek, MB, Canada, 2005 (AC Robust)	NA + K salt 300 L SL	0.90	205	Zadoks 35-1 main shoot and 5 tillers	58	<u>ND</u>	ND	ND	
St. Cesaire, QB,	2-EHE	0.84	195	Zadoks 21-1	60	ND	ND	ND	Jones. GL.
Canada, 2005 (Sabrina)	2-EHE 444 g/L EC	0.84	195	and 1 tiller	00	<u>ND</u>	ND	ND	Jones, GL, 2007, MCPA-R072
St. Cesaire, QB, Canada, 2005 (Sabrina)	DMA salt 480 g/L SL	0.88	201	Zadoks 21-1 main shoot and 1 tiller	60	<u>ND</u>	ND	ND	
St. Cesaire, QB, Canada, 2005 (Sabrina)	NA + K salt 300 L SL	0.90	207	Zadoks 21-1 main shoot and 1 tiller	60	ND	ND	ND	_
	2-EHE 444 g/L EC	0.90	203	Zadoks 31-1 1 st node detectable	75	ND	ND	ND	Jones, GL, 2007, MCPA-R072
Vanscoy, SK, Canada, 2005 (Metcalf)	DMA Salt 480 g/L SL	0.90	206	Zadoks 31 1 st 1 node detectable	75	ND	ND	ND	
Vanscoy, SK, Canada, 2005 (Metcalf)	NA + K salt 300 L SL	0.89	203	Zadoks 31-1 1 st node detectable	75	ND	ND	ND	
Innisfail, AB, Canada, 2005 (CDC Bold)	2-EHE 444 g/L EC	0.90	206	Zadoks 32–1 34: 2 nd to 4 th node detectable	30 79	< 0.01 <u>ND</u>	ND ND	0.011 ND	Jones, GL, 2007, MCPA-R072
Innisfail, AB, Canada, 2005 (CDC Bold)	DMA salt 480 g/L SL	0.90	205	Zadoks 32–1 34: 2 nd to 4 th node detectable	30 79	< 0.01 <u>ND</u>	ND ND	ND ND	-
Innisfail, AB, Canada, 2005 (CDC Bold)	NA salt 300 L SL	0.93	212	Zadoks 32–1 34: 2 nd to 4 th node detectable	30 79	< 0.01 <u>ND</u>	ND ND	ND ND	
Rosthern, SK, Canada, 2005 (AC Metcalf)	2-EHE 444 g/L EC	0.90	206	Zadoks 23–1 24: main shoot and 3– 4 tillers	73	<u>ND</u>	ND	ND	Jones, GL, 2007, MCPA-R072
Rosthern, SK, Canada, 2005 (AC Metcalf)	DMA salt 480 g/L SL	0.91	206	Zadoks 23–1 24: main shoot and 3– 4 tillers	73	ND	ND	ND	
Rosthern, SK, Canada, 2005 (AC Metcalf)	NA salt 300 L SL	0.90	205	Zadoks 23–1 24: main shoot and 3– 4 tillers	73	ND	ND	ND	

BARLEY GRA	AIN	Application					PHI	Residue	s mg/kg,		Reference
								(MCPA	acid equiv))	Author, year
country, (variety)	year	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Minto, Canada, 2006	MB,	2-EHE 444 g/L EC	0.91	207	Zadoks 31– 33	1	30 56	ND <u>ND</u>	ND ND	ND ND	Belcher, TI, 2008,
(Conlon)	MD		0.01	200	7 1 1 21	1	20		ND		MCPA-R073
Minto, Canada, 2006	MВ,	DMA salt 480 g/L SL	0.91	208	Zadoks 31– 33	1	30 56	ND	ND ND	ND ND	
(Conlon)							50	<u>ND</u>	ND	ND	
Minto, Canada, 2006 (Conlon)	MB,	NA salt 300 L SL	0.91	207	Zadoks 31– 33	1	30 56	ND <u>ND</u>	ND ND	ND ND	
Boissevain, Canada, 2006 (Newdale)	MB,	2-EHE 444 g/L EC	0.92	209	Zadoks 31	1	64	<u>ND</u>	ND	ND	Belcher, TI, 2008, MCPA-R073
Boissevain, Canada, 2006 (Newdale)	MB,	DMA salt 480 g/L SL	0.91	209	Zadoks 31	1	64	<u>ND</u>	ND	ND	
Boissevain, Canada, 2006 (Newdale)	MB,	NA salt 300 L SL	0.91	209	Zadoks 31	1	64	<u>ND</u>	ND	ND	
Innisfail, Canada, 2005 (CDC Bold)	AB,	2-EHE 444 g/L EC	0.92	211	Zadoks 23– 25: 24– 29 cm	1	79	<u>ND</u>	ND	ND	Belcher, TI, 2008, MCPA-R073
Innisfail, Canada, 2005 (CDC Bold)	AB,	DMA salt 480 g/L SL	0.93	211	Zadoks 23– 25: 24– 29 cm	1	79	<u>ND</u>	ND	ND	
Innisfail, Canada, 2005 (CDC Bold)	AB,	NA salt 300 L SL	0.93	212	Zadoks 23– 25: 24– 29 cm	1	79	<u>ND</u>	ND	ND	
Spruceview, Canada, 2006 (CDC Bold)	AB,	2-EHE 444 g/L EC	0.89	204	Zadoks 34– 35: 37– 40 cm	1	70	ND	ND	ND	Belcher, TI, 2008, MCPA-R073
Spruceview, Canada, 2006 (CDC Bold)	AB,	DMA salt 480 g/L SL	0.91	207	Zadoks 34– 35: 37– 40 cm		70	<u>ND</u>	ND	ND	
Spruceview, Canada, 2006 (CDC Bold)	AB,	NA salt 300 L SL	0.88	202	Zadoks 34– 35: 37– 40 cm	1	70	<u>ND</u>	ND	ND	
Rosthern, Canada, 2006 (AC Metcalf)	SK,	2-EHE 444 g/L EC	0.91	207	Zadoks 22– 23	1	72	<u>ND</u>	ND	ND	Belcher, TI, 2008, MCPA-R073
Rosthern, Canada, 2006 (AC Metcalf)	SK,	DMA salt 480 g/L SL	0.90	206	Zadoks 22– 23	1	72	<u>ND</u>	ND	ND	

BARLEY GRA	IN	Application						PHI	Residues	s mg/kg,		Reference
									(MCPA	acid equiv)		Author, year
country, y (variety)	year	Form.	kg ae/ha	water, L/ha	Growth s	tage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Rosthern, Canada, 2006 (AC Metcalf)		NA salt 300 L SL	0.87	203	Zadoks 23	22–	1	72	<u>ND</u>	ND	ND	
Hepburn, Canada, 2006 (CDC Copeland		2-EHE 444 g/L EC	0.89	202	Zadoks 23	22–	1	68	<u>ND</u>	ND	ND	Belcher, TI, 2008, MCPA-R073
Hepburn, Canada, 2006 (CDC Copeland		DMA salt 480 g/L SL	0.88	202	Zadoks 24	22-	1	68	<u>ND</u>	ND	ND	
Hepburn, Canada, 2006 (CDC Copeland		NA salt 300 L SL	0.89	202	Zadoks 24	22–	1	68	<u>ND</u>	ND	ND	
Spruceview, A Canada, 2006 (Metcalf)	-	2-EHE 444 g/L EC	0.88	201	Zadoks 37	34–	1	78	<u>ND</u>	ND	ND	Belcher, TI, 2008, MCPA-R073
Spruceview, A Canada, 2006 (Metcalf)	-	DMA salt 480 g/L SL	0.88	202	Zadoks 37	34-	1	78	<u>ND</u>	ND	ND	
Spruceview, A Canada, 2006 (Metcalf)	,	NA salt 300 L SL	0.88	202	Zadoks 37	34–	1	78	<u>ND</u>	ND	ND	

LOD = 0.005 mg/kg for grain.

LOQ = 0.01 mg/kg for grain.

A total of six supervised trials were conducted in Northern Europe: two in Austria (Pfarl, DIC, 1994, MCPA-R070), two in France and two in the UK (Old, J and Venuti, J, 2001, MCPA-R062; Wasser, C, 2000, MCPA-R063; Old, J and Duncan, P, 2001, MCPA-R066; Perny, A, 2001, MCPA-R067). Whole barley plants were sampled at maturity. Frozen samples were transferred to the laboratory, where they were maintained frozen at -18 °C until analysis.

Seven additional supervised trials were conducted in Southern Europe (two in Spain and five in France) from 1999 to 2001, using the potassium salt formulation of MCPA at the rate of 1.2 kg ae/ha MCPA, applied at BBCH 30, which matched the GAP in Spain (Old, J, etc., 2001, MCPA-R060; Wasser, C, 2000, MCPA-R061; Old, J, Duncan, P, 2001, MCPA-R064; Perny, A, 2001, MCPA-R065; Wardman, JP, and Mrti, S, 2002, MCPA-R069; Gallais, C, 2002, MCPA-R068). Three 1998 trials in France used the sodium salt formulation of MCPA (Rawle, NW, 2001, MCPA-R071). Whole barley plant samples were taken at maturity, threshed, separating grain from straw, and frozen at -20 °C. The maximum storage period from sampling to analysis was 180 days, which was within the period of stability confirmed by a separate study on stability of grains, which was 369 days. Information on hydrolysis could be found in analytical methods parts. Results of the European trials in barley grain are summarized in Table 45 with residues matching the GAP underlined. Results for barley straw, hay and forage are summarized in Table 53.

Table 45 MCPA acid equivalent residues in treated barley grain resulting from supervised trials in Austria, UK, France and Spain (Pfarl, DIC, 1994, MCPA-R070; Old, J and Venuti, J, 2001, MCPA-

MCPA

R062; Wasser, C, 2000, MCPA-R063; Old, J and Duncan, P, 2001, MCPA-R066; Perny, A, 2001, MCPA-R067; Old, J, etc., 2001, MCPA-R060; Wasser, C, 2000, MCPA-R061; Old, J, Duncan, P, 2001, MCPA-R064; Perny, A, 2001, MCPA-R065; Wardman, JP, and Mrti, S, 2002, MCPA-R069; Gallais, C, 2002, MCPA-R068; Rawle, NW, 2001, MCPA-R071)

BARLEY	Application					PHI	Residues	mg/kg,		Reference
GRAIN							(MCPA a	acid equiv)		Author, year
country, year	Form.	kg ae/ha	water,	Growth	no.	days	МСРА	НМСРА	CCPA	Reference No.
(variety)	(g ae/L)		L/ha	stage						
Ansfelden, Austria	DMA salt	0.58	300	BBCH 31	1	63	< 0.05	_	_	Pfarl, DIC, 1994,
1992	281 g/L SL									MCPA-R070
(Berta)										
Leonding, Austria, 1992	DMA salt	0.58	300	BBCH 31	1	60	< 0.05	_	_	
(Robin)	281 g/L SL									
Chantillon sur	DMA salt	1.79	250	BBCH 30	1	106	ND ^a	ND	_	Old, J and
Loire, France, 1999	750 g/L SL									Venuti, J, 2001, MCPA-R062;
(Sonja)										Wasser, C, 2000, MCPA-
East Lothian, UK, 1999	DMA Salt	1.89	263	BBCH 30	1	116	< 0.05	ND	-	R063
(Regina)	750 g/L SL									
East Lothian, UK, 1999	DMA Salt	1.83	254	BBCH 30-	1	121	<u>ND</u>	ND	_	Old, J and
(Regina)	750 g/L SL			31						Duncan, P, 2001, MCPA- R066; Perny, A,
	DMA Salt	1.86	258	BBCH 30	1	99	ND	ND	_	2001, MCPA- R067
Geverey, France, 1999	750 g/L SL									KU07
(Majestic)										
Janneyrias, France, 1999	K-salt	1.20	251	BBCH 30	1	95	<u>ND</u>	ND	_	Old, J, etc., 2001, MCPA-
(Platine)	400 g/L SL									R060; Wasser, C, 2000,
Menarguens,	K-salt	1.24	254	BBCH 30	1	86	<u>ND</u>	ND	-	MCPA-R061
Spain, 1999 (Graphic)	400 g/L SL									
Janneyrias,	K-salt	1.25	254	BBCH 30	1	92	< 0.05	ND	_	Old, J, Duncan,
France, 2000	400 g/L SL									P, 2001, MCPA-R064;
(Pertine)										Perny, A, 2001, MCPA-R065
Menarguens,	K-salt	1.20	248	BBCH 30-	1	86	0.12	ND ^b	_	Gallais, C,
Spain, 2001 (Graphic)	400 g/L SL			31						2002, MCPA- R068;Wardman,
(Graphic)										JP, and Mrti, S, 2002, MCPA- R069
Corbarieu, France, 1998	Na Salt	1.88	266	BBCH 32- 33	1	77	<u>< 0.05</u>	-	_	Rawle, NW, 2001, MCPA-
(Scarlet)	800 g/L SL									R071
(Sourier)										<u> </u>

BARLEY GRAIN	Application						Residues			Reference
							(MCPA a	icid equiv)		Author, year
	Form.	kg ae/ha	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Growth	no.	days	MCPA	НМСРА	ССРА	Reference No.
(variety)	(g ae/L)		L/ha	stage						
	Na Salt	1.86	265	BBCH 32	1	67	<u>< 0.05</u>	_	_	
France, 1998	800 g/L SL									
(Nevada)	-									
	Na Salt	1.82	259	BBCH 32	1	61	< 0.05	_	_	
Bouloc, France, 1998	800 g/L SL									
(Volga)										

^a LOD = 0.008 mg/kg for other trials. LOQ = 0.05 mg/kg.

^b LOD = 0.012 mg/kg for MCPA-R68 and R69.

A total of 45 supervised trials were conducted on wheat in 15 sites in Canada from 2001 to 2004 (Barney, WP, 2002, MCPA-R085 through MCPA-R089; Jones, GL, 2005, MCPA-R090 through MCPA-R092; and Jones, GL, 2006, MCPA-R098 through MCPA-R104). Another 21 trials in seven sites in the USA were conducted from 1998 to 2006 (Kludas, RS, 2000, MCPA-R081 through MCPA-R084; and Jones, GL, 2006, MCPA-R093 through MCPA-R097). Each trial received either of these MCPA formulations: 2-EHE EC (444 g ae/L), DMA salt SL (480 g ae/L) or sodium salt (300 g ae/L). One application was made at the target rate of 1.68 kg ae/ha.

Duplicate samples of grain and straw were collected from each plot at crop maturity. Samples were also collected at 30 days after treatment for the decline trials. Hay samples were collected 14 days after treatment from control plots and at 7, 14 and 21 days after treatment from treated plots. Forage samples were collected 14 days after harvest for control samples and at 0, 7, 14 and 21 days after treatment for treated samples. All samples were stored frozen at -20 °C until analysis. The maximum period of frozen storage from harvest to analysis was 339 days. A freezer storage stability study for MCPA and metabolites demonstrates that MCPA and 2-HMCPA in selected plant matrices are stable up to 369 days.

Residues of MCPA in wheat grain, forage, hay and straw were analysed by GC/MS, using method 6698-107, which had previously been validated with an LOQ of 0.01 mg/kg for grain and 0.25 mg/kg for forage, straw and hay. Results of the trials in wheat grain are summarized in Table 46. Results on forage, straw and hay are summarized in Table 54.

Table 46 MCPA acid equivalent residues in treated wheat grain resulting from supervised trials in Canada and USA (Barney, WP, 2002, MCPA-R085 through MCPA-R089; Jones, GL, 2005, MCPA-R090 through MCPA-R092; and Jones, GL, 2006, MCPA-R098 through MCPA-R104; Kludas, RS, 2000, MCPA-R081 through MCPA-R084; and Jones, GL, 2006, MCPA-R093 through MCPA-R097)

WHEAT GRAIN	Application						Residues (MCPA a	mg/kg, acid equiv)		Reference Author, year
country, year (variety)	Form.	kg ae/ha		Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
SPRING WH	EAT	I	I	I	1			I	I	<u></u>
Rosthern, SK, Canada, 2001 (Foremost CPS)	2-EHE 444 g/L EC	1.76		Pre-boot Zadoks 37– 38		30 63	0.01 < 0.01	ND ND	< 0.01 ND	Barney, WP, 2002, MCPA-R085

WHEAT GRAIN	Application					PHI	Residues			Reference
							(MCPA)	acid equiv)		Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Rosthern,	DMA salt	1.80	298	Pre-boot	1	30	0.015	ND	< 0.01	
SK, Canada, 2001	480 g/L SL			Zadoks 37		79	ND	ND	< 0.01	
(Foremost CPS)										
Rosthern,	NA salt	1.76	293	Pre-boot	1	30	0.016	ND	< 0.01	
SK, Canada, 2001	300 g/L SL			Zadoks 37		79	ND	ND	ND	
(Foremost CPS)										
	2-EHE	1.65	271	Pre-boot	1	30	0.01	< 0.01	0.022	Barney, WP,
	444 g/L EC			Zadoks 32– 34		63	ND	ND	0.013	2002,
Canada, 2001				5.						MCPA-R086
(Majestic)										
	DMA salt	1.62	268	Pre-boot	1	30	< 0.01	< 0.01	0.016	
	480 g/L SL			Zadoks 32– 34		63	ND	ND	< 0.01	
Canada, 2001										
(Majestic)										
Elm Creek, MB	NA salt	1.64	273	Pre-boot Zadoks 32–	1	30	ND	ND	0.021	
	300 g/L SL			24 34		63	ND	ND	< 0.01	
Canada, 2001										
(Majestic)										
Haywood, MB, Canada,	2-EHE	1.65	282	Pre-boot Zadoks 31	1	30	ND	ND	< 0.01	Barney, WP, 2002,
2001	444 g/L EC					81	ND	ND	< 0.01	MCPA-R087
(AC Cora)										
Haywood, MD Canada	DMA salt	1.70	283	Pre-boot Zadoks 31	1	30	ND	ND	< 0.01	
MB, Canada, 2001	480 g/L SL			Zauoks 51		81	ND	ND	< 0.01	
(AC Cora)										
Haywood,		1.74	285	Pre-boot	1	30	ND	ND	< 0.01	
MB, Canada, 2001	300 g/L SL			Zadoks 31		81	ND	ND	< 0.01	
(AC Cora)										
Barnwell,	2-EHE	1.70	286	Pre-boot	1	30	0.14	0.074	0.064	Barney, WP,
AB	444 g/L EC			Zadoks 36– 37		64	< 0.01	ND	ND	2002, MCPA- R088
Canada, 2001				51						Rooo
(Soft White)										
Barnwell,	DMA salt	1.74	291	Pre-boot	1	30	0.032	< 0.01	0.019]
AB	480 g/L SL			Zadoks 36– 37		64	ND	ND	ND	
Canada, 2001										
(Soft White)										

WHEAT	Application					PHI	Residues	s mg/kg,		Reference
GRAIN							(MCPA	acid equiv)		Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Barnwell, AB Canada, 2001 (Soft White)	NA salt 300 g/L SL	1.74	288	Pre-boot Zadoks 36– 37	1	30 64	ND ND	ND ND	ND ND	
Fairview, AB, Canada, 2001 (Canadian Western White EXP3)	2-EHE 444 g/L EC	1.71	289	Pre-boot Zadoks 36– 37	1	31 93	ND ND	< 0.01 ND	0.050 ND	Barney, WP, 2002, MCPA- R089
Fairview, AB, Canada, 2001 (Canadian Western White EXP3)	DMA Salt 480 g/L SL	1.70	287	Pre-boot Zadoks 36– 37	1	31 93	ND ND	ND ND	0.097 ND	
Fairview, AB, Canada, 2001 (Canadian Western White EXP3)	Na Salt 300 g/L SL	1.76	289	Pre-boot Zadoks 36– 37	1	31 93	ND ND	ND ND	0.09 ND	
Lacombe, AB, Canada, 2003 (CPS)	2-EHE 444 g/L EC	1.84	299	Pre-boot Zadoks 37	1	30 79	ND ND	ND ND	ND ND	Jones, GL, 2005, MCPA-R090
Lacombe, AB, Canada, 2003 (CPS)	DMA Salt 480 g/L SL	1.81	300	Pre-boot Zadoks 37	1	30 79	< 0.01 ND	ND ND	ND ND	
Lacombe, AB, Canada, 2003 (CPS)		1.85	300	Pre-boot Zadoks 37	1	30 79	ND ND	ND ND	ND ND	
Delisle, SK, Canada, 2003 (AC Cadillac)	2-EHE 444 g/L EC	1.79	295	Pre-Boot Zadoks 14– 22	1	30 73	< 0.01 < 0.01	ND ND	ND ND	Jones, GL, 2005, MCPA-R091
Delisle, SK, Canada, 2003 (AC Cadillac)	DMA Salt 480 g/L SL	1.74	293	Pre-Boot Zadoks 14– 22	1	30 73	< 0.01 < 0.01	ND ND	ND ND	
Delisle, SK, Canada, 2003 (AC Cadillac)		1.87	298	Pre-Boot Zadoks 14– 22	1	30 73	0.024 ND	ND ND	ND ND	

	Application					PHI	Residue	s mg/kg,		Reference
GRAIN							(MCPA	acid equiv)		Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Rosetown, SK, Canada, 2003 (AC Barrie)	2-EHE 444 g/L EC	1.77	291	Pre-Boot Zadoks 22– 31	1	30 69	< 0.01 ND	ND ND	ND ND	Jones, GL, 2005, MCPA-R092
Rosetown, SK, Canada, 2003 (AC Barrie)	DMA Salt 480 g/L SL	1.71	287	Pre-Boot Zadoks 22– 31	1	30 69	0.011 ND	ND ND	ND ND	
Rosetown, SK, Canada, 2003 (AC Barrie)		1.83	293	Pre-Boot Zadoks 22– 31	1	30 69	0.013 ND	ND ND	ND ND	-
Vanscoy, SK, Canada, 2004 (Intrepid)	2-EHE 444 g/L EC	1.86	275	Pre-Boot Zadoks 31– 33	1	30 80	0.029 ND	ND ND	ND ND	Jones, GL, 2006, MCPA-R098
Vanscoy, SK, Canada, 2004 (Intrepid)	DMA Salt 480 g/L SL	1.83	277	Pre-Boot Zadoks 31– 33	1	30 80	< 0.01 ND	ND ND	ND ND	-
Vanscoy, SK, Canada, 2004 (Intrepid)		1.87	278	Pre-Boot Zadoks 31– 33	1	30 80	0.013 ND	ND ND	ND ND	
Canada, 2004 (Intrepid)	2-EHE 444 g/L EC	1.99	297	Pre-Boot Zadoks 31– 33	1	33 92	< 0.01 ND	ND ND	ND ND	Jones, GL, 2006, MCPA-R099
Taber, AB, Canada, 2004 (Intrepid)	DMA Salt 480 g/L SL	1.98	295	Pre-Boot Zadoks 31– 33	1	33 92	ND ND	ND ND	ND ND	
Taber, AB, Canada, 2004 (Intrepid)		2.21	293	Pre-Boot Zadoks 31– 33	1	33 92	ND ND	ND ND	ND ND	
Minto, MB, Canada, 2004 (AC Barrie)	2-EHE 444 g/L EC	1.97	292	Pre-Boot Zadoks 34– 37	1	30 85	ND ND	ND ND	ND ND	Jones, GL, 2006, MCPA-R100
Minto, MB, Canada, 2004 (AC Barrie)	DMA Salt 480 g/L SL	2.01	299	Pre-Boot Zadoks 34– 37	1	30 85	0.014 0.011	ND ND	ND < 0.01	
Minto, MB, Canada, 2004 (AC Barrie)	Na Salt 300 g/L SL	1.98	294	Pre-Boot Zadoks 34– 37	1	30 85	0.013 ND	ND ND	0.013 < 0.01	

WHEAT GRAIN	Application					PHI		es mg/kg,		Reference
Old lift							(MCPA	acid equiv)		Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Boissevain, MB, Canada, 2004 (AC Barrie)	2-EHE 444 g/L EC	1.94	288	Pre-boot Zadoks 37	1	30 85	ND ND	ND ND	ND ND	Jones, GL, 2006, MCPA-R101
Boissevain, MB, Canada, 2004 (AC Barrie)	DMA Salt 480 g/L SL	1.95	289	Pre-boot Zadoks 37	1	30 85	< 0.01 ND	ND ND	ND ND	-
Boissevain, MB, Canada, 2004 (AC Barrie)		1.95	290	Pre-boot Zadoks 37	1	30 85	ND ND	ND ND	ND ND	
		1.94	287	Pre-boot Zadoks 37– 39	1	30 80	ND ND	ND ND	0.034 0.012	Jones, GL, 2006, MCPA-R102
· • •	DMA Salt 480 g/L SL	1.93	287	Pre-boot Zadoks 37– 39	1	30 80	ND ND	ND ND	0.025 < 0.01	-
Rosthern, SK, Canada, 2004 (AC Intrepid)		1.94	289	Pre-boot Zadoks 37– 39	1	30 80	< 0.01 ND	< 0.01 ND	0.018 ND	-
Hepburn, SK, Canada, 2004 (AC Barrie)	2-EHE 444 g/L EC	1.94	287	Pre-boot Zadoks 37– 39	1	30 77	< 0.01 ND	ND ND	ND ND	Jones, GL, 2006, MCPA-R103
` ´ ´	DMA Salt 480 g/L SL	1.88	286	Pre-boot Zadoks 37– 39	1	30 77	0.039	< 0.01 ND	ND ND	_
Hepburn, SK, Canada, 2004 (AC Barrie)		1.92	286	Pre-boot Zadoks 37– 39	1	30 77	ND ND	ND ND	< 0.01 ND	
Innisfail, AB, Canada, 2004 (Foremost)	2-EHE 444 g/L EC	2.00	296	Pre-boot Zadoks 35	1	30 98	0.020 ND	ND ND	0.013 ND	Jones, GL, 2006, MCPA-R104
Innisfail, AB, Canada, 2004 (Foremost)	DMA Salt 480 g/L SL	1.94	288	Pre-boot Zadoks 35	1	30 98	ND ND	ND ND	0.011 ND	
Innisfail, AB, Canada, 2004 (Foremost)		1.96	292	Pre-boot Zadoks 35	1	30 98	ND ND	ND ND	< 0.01 ND	

WHEAT GRAIN	Application					PHI		s mg/kg, acid equiv)		Reference Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Dakota	2-EHE 480 g/L EC	1.83	282	Pre-boot Zadoks 37– 39	1	30 54	0.030 < 0.01	0.11 0.01	0.13 0.03	Kludas, RS, 2000, MCPA-R084
	DMA Salt 480 g/L SL	1.79	281	Pre-boot Zadoks 37– 39	1	30 54	0.04 < 0.01	0.06 0.01	0.14 0.06	Kludas, RS, 2000, MCPA-R083
WINTER WH	БАТ									
Kansas, USA		1.66	263	Pre-boot Zadoks 37	1	30 59	0.026	- 0.015	0.035 < 0.01	Kludas, RS, 2000, MCPA-R081
USA	DMA Salt 480 g/L SL	1.74	247	Pre-boot Zadoks 37	1	30 54	0.018 < 0.01	0.36 < 0.01	0.07 0.01	
Kansas, USA	2-EHE 480 g/L EC	1.76	278	Pre-boot Zadoks 37	1	30 59	< 0.01 0.015	< 0.01 0.015	0.020 0.010	Kludas, RS, 2000, MCPA-R082
	2-EHE 480 g/L EC	1.75	248	Pre-boot Zadoks 37	1	30 54	< 0.01 0.014	0.020 0.015	0.055 0.020	
Holland OH	2-EHE 444 g/L EC	1.71	220	Pre-boot Zadoks 37	1	30 56	0.011 ND	ND ND	0.014 < 0.01	Jones, GJ, 2006, MCPA-R093
Holland OH	DMA Salt 480 g/L SL	1.71	220	Pre-boot Zadoks 37	1	30 56	0.083 < 0.01	< 0.01 < 0.01	0.023 < 0.01	
New Holland, OH, USA, 2004 (SC 1358)		1.75	224	Pre-boot Zadoks 37	1	30 56	0.11 < 0.01	0.011 < 0.01	0.026 0.012	
Redfield, SD, USA, 2004 (Harding)	2-EHE 444 g/L EC	1.65	326	Pre-boot Zadoks 36– 37	1	30 50	0.012 ND	ND ND	< 0.01 ND	Jones, GJ, 2006, MCPA-R094
Redfield, SD, USA, 2004 (Harding)	DMA Salt 480 g/L SL	1.65	326	Pre-boot Zadoks 36– 37	1	30 50	ND ND	ND ND	ND < 0.01	

	Application					PHI	Residue	s mg/kg,		Reference
GRAIN							(MCPA	acid equiv)		Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Redfield, SD,		1.71	325	Pre-boot	1	30	ND	ND	< 0.01	=
	300 g/L SL			Zadoks 36– 37		50	ND	ND	< 0.01	
(Harding)										
,	2-EHE	1.78	285	Pre-boot Zadoks 39	1	30	0.27	0.059	0.120	Jones, GJ, 2006,
	444 g/L EC			Luuono 23		70	< 0.01	ND	0.012	MCPA-R095
(Jagalene)										
	DMA Salt 480 g/L SL	1.80	285	Pre-boot Zadoks 39	1	30	0.075	0.020	0.033	
USA, 2004	400 g/L 5L			Zadoks 57		70	ND	ND	< 0.01	
(Jagalene)										
		1.81	286	Pre-boot	1	30	0.106	0.030	0.051	-
USA, 2004	300 g/L SL			Zadoks 39		70	ND	ND	< 0.01	
(Jagalene)										
Colony, OK	2-EHE	1.63	276	Pre-boot	1	30	< 0.01	ND	0.015	Jones, GJ, 2006,
USA, 2004	444 g/L EC			Zadoks 39		53	0.023	ND	< 0.01	MCPA-R096
(Pioneer 2157)										
		1.65	278	Pre-boot	1	30	0.078	0.013	0.044	-
USA, 2004	480 g/L SL			Zadoks 39		53	< 0.01	ND	0.011	
(Pioneer 2157)										
		1.73	282	Pre-boot	1	30	0.013	ND	0.021	
USA, 2004	300 g/L SL			Zadoks 39		53	< 0.01	ND	ND	
(Pioneer 2157)										
Groom, TX,	2-EHE	1.72	285	Pre-boot	1	30	0.011	< 0.01	ND	Jones, GJ, 2006,
USA, 2004	444 g/L EC			Zadoks 39		43	< 0.01	< 0.01	0.022	MCPA-R097
(Ogallala)										
Groom, TX,	DMA Salt	1.70	286	Pre-boot	1	30	0.013	< 0.01	0.020	1
USA, 2004	480 g/L SL			Zadoks 39		43	0.015	0.011	0.025	
(Ogallala)										
Groom, TX,		1.69	285	Pre-boot	1	30	0.011	< 0.01	0.023	
USA, 2004	300 g/L SL			Zadoks 39		43	0.012	< 0.01	0.023	
(Ogallala)										

LOD = 0.005 mg/kg for grain.

LOQ = 0.01 mg/kg for grain.

- Analysis data for 2-HMCPA did not meet the acceptance criteria and were rejected.

Five supervised trials were conducted from 1998 to 2000 in Northern Europe (three in France and two in the UK) using the DMA salt formulation containing 750 g ae/L (Rawle, NW, 2001, MCPA

R071; Old, J and Venuti, J, 2001, MCPA-R062; Wasser, C, 2000, MCPA-R063; Old, J, and Duncan, P, 2001, MCPA-R066; Perny, A, 2001, MCPA-R067). Treated plots received a single application at growth stage BBCH 30-31 at the rate of 1.8 kg MCPA ae/ha using small plot sprayers. One trial was conducted in Austria (Pfarl, C, 1994, MCPA-R070).

Four additional supervised trials were conducted in Spain and France from 1999 to 2001, using the potassium salt formulation of MCPA at the rate of 1.2 kg ae/ha MCPA, applied at BBCH 30 (Old, J, *et al*, 2001, MCPA-R060; Wasser, C, 2000, MCPA-R061; Old, J, and Duncan, P, 2001, MCPA-R064; Perny, A, 2001, MCPA-R065).

Whole plant samples were taken at maturity, threshed, separating grain from straw, and frozen at -20 °C. Forage samples were also taken at crop maturity and at 0, 7, 14 and 28 days after treatment. Frozen samples were transferred to the laboratory, where they were maintained frozen at -18 °C until analysis. The maximum storage period from sampling to analysis was 342 days, which is within the demonstrated freezer stability of 369 days. Residues of MCPA in wheat matrices were analysed by GC/MS. Results of the European trials in wheat grain are summarized in Table 47 and results on forage and straw are summarized in Table 55.

Table 47 MCPA acid equivalent residues in treated wheat grain resulting from supervised trials in Austria, UK, France and Spain (Pfarl, C, 1994, MCPA-R070; Rawle, NW, 2001, MCPA R071; Old, J and Venuti, J, 2001, MCPA-R062; Wasser, C, 2000, MCPA-R063; Old, J, and Duncan, P, 2001, MCPA-R066; Perny, A, 2001, MCPA-R067; Old, J, *et al*, 2001, MCPA-R060; Wasser, C, 2000, MCPA-R061; Old, J, and Duncan, P, 2001, MCPA-R064; Perny, A, 2001, MCPA-R065)

WHEAT GRAIN	Application					PHI		icid equiv)		Reference Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМРСА	ССРА	Reference No.
WINTER WH	EAT	1						•	<u>.</u>	
Ansfelden, Austria 1992 (Star A3)	DMA salt 281 g/L SL	0.58	200	BBCH 31	1	70	< 0.05	_	_	Pfarl, DIC, 1994, MCPA-R070
Montgaillard, France, 1998 (VIcto)	Na salt 800 g/L SL	1.87	259	BBCH 32- 33	1	86	< 0.05	_	_	Rawle, NW, 2001, MCPA-R071
Lestious, France, 1999 (Isengrain)	DMA salt 750 g/L SL	1.77	248	BBCH 30	1	118	<u>ND</u>	ND	_	Old, J, Venuti, ., 2001, MCPA R062;
Suffolk, UK 1999 (Consort)	DMA salt 750 g/L SL	1.80	251	BBCH 30- 31	1	109	<u>ND</u>	ND	_	Wasser, C, 2000, MCPA-R063
Essex, UK 2000 (Hereward)	DMA salt 750 g/L SL	1.75	244	BBCH 30	1	127	<u>< 0.05</u>	ND	_	Old, J, Duncan, P, 2001, MCPA-R066;
Athon Franco	DMA salt 750 g/L SL	1.84	255	BBCH 31	1	109	<u>0.16</u>	ND	_	Perny, A, 2001, MCPA-R067

WHEAT	Application	n				PHI	Residues	mg/kg,		Reference
GRAIN							(MCPA acid equiv)			Author, year
country, year (variety)	Form.	kg ae/ha	,	Growth stage	no.	days	МСРА	НМРСА	ССРА	Reference No.
Charantonnay, France, 1999 (Soissons)	K-salt 400 g/L SL	1.22	250	BBCH 30	1	111	<u>ND</u>	ND	_	Old J, <i>et. al.</i> , 2001, MCPA-R060;
St, Jordi de Muller, Spain (Soissons)	K-salt 400 g/L SL	1.21	248	BBCH 30	1	98	ND	ND		Wasser, C, 2000, MCPA-R061
	K-salt 400 g/L SL	1.26	258	BBCH 30	1	120	<u>< 0.05</u>	ND	_	Old, J, and Duncan, P, 2001, MCPA-R064; Perny, A., 2001,
	K-salt 400 g/L SL	1.24	252	BBCH 30- 31	1	104	<u>ND</u>	ND	_	MCPA-R065

LOD = 0.008 mg/kg. LOQ = 0.05 mg/kg.

Maize

A total of 24 supervised trials on <u>maize</u> (field) were conducted from 2005 to 2006 in key corngrowing areas in Canada (Jones, GL, 2007, MCPA-R077; Belcher, 2008, MCPA-R078). Each trial received one of the following MCPA formulations: 2-EHE, DMA salt or sodium salt. The target application rate for each treated plot was 0.85 kg ae/ha, at a spray volume of 200 L/ha.

Maize grain and stover were collected in duplicate at crop maturity. The stover samples consisted of dried stalks collected after grain harvest. Maize forage samples were collected when the plants were in the late dough to early dent stage. In addition for the decline trials, forage samples were collected at 14 days after treatment from the control plot and at 0, 1, 3, 7, 14, 28, 45, 60 and 75 days after treatment from treated plots. Samples were immediately frozen and were transferred to the laboratory, where they were maintained frozen at -12 °C to -35 °C until analysis. A maximum of 250, 225 and 167 days elapsed between harvest and residue extraction of samples for forage, grain and stover, respectively. A freezer storage stability study for MCPA and metabolites demonstrated that MCPA and HMCPA in selected plant matrices are stable up to 369 days. The trials on maize grain are summarized in Table 48. Trials on corn forage and stover are summarized in Table 56.

Table 48 MCPA acid equivalent residues in treated maize grain resulting from supervised trials in Canada (Jones, GL, 2007, MCPA-R077; Belcher, 2008, MCPA-R078)

	Application				PHI	Residues	mg/kg,	Reference	
GRAIN						(MCPA ac	cid equiv)		Author, year
country, year (variety)	Form.	0	 Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.

MAIZE GRAIN	Application					PHI	Residues	0 0		Reference
				_			-	acid equiv)		Author, year
country, year (variety)	Form.	kg ae/ha	water L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Elm Creek, MB, Canada, 2005, (Cargill OKC2675)	2-EHE 444 g/L EC	0.89	209	15 cm height	1	114	ND	ND	ND	Jones, GL, 2007, MCPA-R077
Elm Creek, MB, Canada, 2005 , (Cargill OKC2675)	NA + K salt 300 g/L SL	0.87	206	15 cm height	1	114	ND	ND	ND	
Elm Creek, MB, Canada, 2005 , (Cargill OKC2675)	DMA salt 480 g/L SL	0.77	203	15 cm height	1	114	ND	ND	ND	
Carman, MB, Canada, 2005 (Monsanto	2-EHE 444 g/L EC	0.90	211	30 cm height	1	114	<u>ND</u>	ND	ND	Jones, GL, 2007, MCPA-R077
DKC 27-12) Carman, MB, Canada, 2005 (Monsanto		0.89	210	30 cm height	1	114	<u>ND</u>	ND	ND	-
DKC 27-12) Carman, MB, Canada, 2005 (Monsanto	DMA salt 480 g/L SL	0.80	211	30 cm height	1	114	ND	ND	ND	-
DKC 27-12) Paris, ON, Canada, 2005 (DKB 37- 80)	444 g/L EC	0.88	212	10–12 cm height	1	129	ND	ND	ND	Jones, GL, 2007, MCPA-R077
	NA + K salt 300 g/L SL	0.84	203	10–12 cm height	1	129	ND	ND	ND	
Paris, ON, Canada	DMA salt 480 g/L SL	0.88	210	10–12 cm height	1	129	ND	ND	ND	
(DKB 37- 80)										
St. Pie, QC, Canada, 2005 (2555NK)	2-EHE 444 g/L EC	0.90	216	10 cm	1	132	<u>ND</u>	ND	ND	Jones, GL, 2007, MCPA-R077

MAIZE GRAIN	Application					PHI	Residues (MCPA a	mg/kg, cid equiv)		Reference Author, year	
country, year (variety)	Form.	kg ae/ha	water L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.	
	NA + K salt 300 g/L SL	0.92	225	10 cm	1	132	ND	ND	ND		
St. Pie, QC, Canada, 2005	DMA salt 480 g/L SL	0.89	212	10 cm	1	132	<u>ND</u>	ND	ND		
(2555NK) Elm Creek, MB, Canada, 2006 , (6Cargill DKC27-12)	2-EHE 444 g/L EC	0.89	206	8–10 cm height	1	130	ND	ND	ND	Belcher, 2008, MCPA-R078	TI,
Elm Creek, MB, Canada, 2006 , (6Cargill DKC27-12)		0.88	207	8–10 cm height	1	130	<u>ND</u>	ND	ND		
Elm Creek, MB, Canada, 2006 , (6Cargill DKC27-12)		0.88	208	8–10 cm height	1	130	<u>ND</u>	ND	ND		
Thamesford, ON, Canada, 2006 (Pioneer 38A25)	2-EHE 444 g/L EC	0.86	203	10–15 cm height	1	146	<u>ND</u>	ND	ND	Belcher, 2008, MCPA-R078	TI,
Thamesford, ON, Canada, 2006 (Pioneer	NA + K salt 300 g/L SL	0.85	204	10–15 cm height	1	146	<u>ND</u>	ND	ND		
38A25) Thamesford, ON, Canada, 2006 (Pioneer	DMA salt 480 g/L SL	0.87	205	10–15 cm height	1	146	<u>ND</u>	ND	ND	-	
38A25) Ingersoil, ON, Canada, 2006 Maizex 3888)	2-EHE 444 g/L EC	0.86	204	10–15 cm height	1	145	ND	ND	ND	Belcher, 2008, MCPA-R078	TI,
,	NA + K salt 300 g/L SL	0.85	203	10–15 cm height	1	145	<u>ND</u>	ND	ND		

MAIZE GRAIN	Application					PHI	Residues			Reference
ora in t							(MCPA ad	cid equiv)		Author, year
country, year (variety)	Form.	0		Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Ingersoil, ON, Canada, 2006 Maizex 3888)	DMA salt 480 g/L SL	0.86	203	10–15 cm height	1	145	ND	ND	ND	
St. Pie, QB, Canada, 2006 (N22-T8)	2-EHE 444 g/L EC	0.90		8 cm height	1	135	<u>ND</u>	ND		Belcher, TI, 2008, MCPA-R078
	NA + K salt 300 g/L SL	0.87		8 cm height	1	135	<u>ND</u>	ND	ND	
St. Pie, QB, Canada, 2006 (N22-T8)	DMA salt 480 g/L SL	0.91		8 cm height	1	135	<u>ND</u>	ND	ND	

LOD = 0.005 mg/kg, LOQ = 0.01 mg/kg.

Peas

Eight supervised trials on <u>peas</u> (dry) and two on green peas were conducted in Canada in 2005 using the sodium salt of MCPA (300 g ae/L) at the rate of 0.45 to 0.48 kg ae/ha (Jones, GL, 2007, MCPA-R132). In addition seven supervised trials were conducted on green peas in the US in 1996 (Barney, WP, 2007, MCPA-R130; Weisskopf, CP, 1999, MCPA-R131). Six of the trials used the MCPA DMA salt (380 g ae/L), and one trial used the sodium salt (300 g ae/L). A single post-emergence application was made to the treated plot when the plants were 10 to 15 cm tall.

In the Canadian trials dry pea samples were collected at normal crop maturity. In decline trials dry pea samples were collected when the plants were ready for desiccation, at normal harvest and 7 days after normal harvest. Information on hydrolysis could be found in the analytical methods parts. The results are shown in Table 49. Data on pea forage and hay are in Table 51.

Table 49 MCPA acid equivalent residues in treated peas resulting from supervised trials in Canada and the USA (Barney, WP, 2007, MCPA-R130; Weisskopf, CP, 1999, MCPA-R131; Jones, GL, 2007, MCPA-R132)

PEAS		Application					PHI	Residues	mg/kg,		Reference
								(MCPA acid equiv)			Author, year
country, (variety)	year	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
PEA SEED)										

PEAS	Application					PHI	Residues	s mg/kg,	Reference	
							(MCPA	acid equiv)		Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Trial WA 24	DMA salt	0.44	273	Pre-bloom	1	38	< 0.01	< 0.01	< 0.01	Barney, WP,
Mt. Vernon, WA, USA, 1996	480 g/L SL									2007, MCPA-R130;
(Bolero)										Weisskopf, CP, 1999,
Trial WA 64	DMA salt	0.41	214	Bloom	1	29	< 0.01	0.01	< 0.01	MCPA-R131
Prosser, WA, USA, 1996	480 g/L SL									
(Dual)										
Trial WA 64	DMA salt	0.41	214	Bloom	1	29	< 0.01	< 0.01	< 0.01	
Prosser, WA, USA, 1996	480 g/L SL									
(Dual)										
	DMA salt	0.41	214	Bloom	1	29	< 0.01	< 0.01	< 0.01	
Prosser, WA, USA, 1996	480 g/L SL									
(Dual)										
Trial WA 65	Na salt	0.40	297	Pre-bloom	1	29	< 0.01	< 0.01	< 0.01	
Prosser, WA, USA, 1996	300 g/L SL									
(Dual)										
PODS WITH SE	EEDS									
Trial WA 64	DMA salt	0.41	214	Bloom	1	29	< 0.01	0.02	< 0.01	Barney, WP,
Prosser, WA, USA, 1996	480 g/L SL									2007, MCPA-R130;
(Dual)										Weisskopf, CP, 1999,
Trial WA 64	DMA salt	0.41	214	Bloom	1	29	< 0.01	< 0.01	0.01	MCPA-R131
USA, 1996	480 g/L SL									MCI A-KIJI
(Dual)										
MD Canada	NA salt 300 g/L SL	0.48	297	Pre-bloom	1	34	<u>ND</u>	ND	ND	Jones, GL, 2007,
(Venture)										MCPA-R132
Carmen, MB, Canada, 2005	NA salt 300 g/L SL	0.47	294	Pre-bloom	1	35	ND	ND	ND	
(Venture)	-									
DRY PEAS										
Elm Creek, MB, Canada, 2005	NA salt 300 g/L SL	0.48	297	Pre-bloom	1	62	<u>ND</u>	ND	ND	Jones, GL, 2007,
(Venture)										MCPA-R132

PEAS	Application			PHI	Residues mg/kg,			Reference		
							(MCPA a	cid equiv)		Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Canada 2005	NA salt 300 g/L SL	0.47	294	Pre-bloom	1	63	<u>ND</u>	ND	ND	
Canada 2005	NA salt 300 g/L SL	0.46	289	Pre-bloom	1	60 74 81	<u>ND</u> ND ND	ND ND ND	ND ND ND	
Canada 2005	NA salt 300 g/L SL	0.45	282	Pre-bloom	1	63 73 80	<u>ND</u> ND ND	ND ND ND	ND ND ND	
Canada 2005	NA salt 300 g/L SL	0.45	282	Pre-bloom	1	96	<u>ND</u>	ND	ND	
Canada 2005	NA salt 300 g/L SL	0.46	284	Pre-bloom	1	118	<u>ND</u>	ND	ND	
Canada 2005	NA salt 300 g/L SL	0.46	289	Pre-bloom	1	99	<u>ND</u>	ND	ND	
Fairview, AB, Canada, 2005 (SW Midas)	NA salt 300 g/L SL	0.47	296	Pre-bloom	1	63	<u>ND</u>	ND	ND	

LOD = 0.005 mg/kg, LOQ = 0.01 mg/kg.

Flax

Ten supervised trials with <u>flax</u> were conducted in the US from 1996 to 1997 (Arsenovic, M, and Kunkel, DL, 2004, MCPA-R129). Five trials used the 2-EHE formulation, and the other five used the DMA salt formulation. One of the treated plots received a single foliar application of the test substance at the nominal rate of 0.28 kg ae/ha and the other at the rate of 0.56 kg ae/ha.

Duplicate samples of mature flax seeds (about 1 to 1.4 kg) were collected from each plot. Samples were placed in plastic-lined cloth bags and frozen at about -20 °C until analysis. The maximum storage period from harvest to analysis was 1255 days for seed and 1,241 days for meal. MCPA residues were stable in flax seed and meal up to 1205 and 1121 days, respectively, under frozen storage conditions. HMCPA residues are stable in flax seed up to 1206 days in frozen storage. The results showed HMCPA residues in flax meal degraded more than 30% when stored for 1208 days. Recoveries range for MCPA Ester were 7–83% at 0.025 mg/kg level and 27–68% at 0.10 mg/kg level, for MCPA DMA salt were 60–147% at 0.025 mg/kg level and 45–95% at 0.10 mg/kg level.

Twelve supervised trials were conducted in Canada in 2005, following the GAP in Canada (one application at a maximum rate of 0.875 kg ae/ha applied prior to bud stage) (Jones, GL, 2007, MCPA-R128). A freezer storage stability study was conducted and demonstrated that MCPA and its metabolites are stable in selected plant matrices for at least 369 days. Information on hydrolysis could be found in the analytical methods parts. The results (Table 50) show residues in all trials.

Table 50 MCPA acid equivalent residues in treated flax resulting from supervised trials in Canada and the USA (Arsenovic, M, and Kunkel, DL, 2004, MCPA-R129; Jones, GL, 2007, MCPA-R128)

FLAX SEED	Application					PHI Residues mg/kg,				Reference
							(MCPA	acid equiv)		Author, year
(variety)	Form. (Acid equiv)	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Fargo, North	2-EHE	0.28	72	20 cm	1	100	< 0.025	< 0.025	< 0.025	Arsenovic M,
Dakota, USA, 1996 (Omega)	480 g/L EC	0.57	73		1	100	< 0.025	< 0.025	< 0.025	and Kunkel, DL, 2004, MCPA-R129
	DMA salt	0.28	73	20 cm	1	100	< 0.025	< 0.025	< 0.025	MCI A-K129
Dakota, USA, 1996	480 g/L SL	0.28	72	20 ст	1	100		< 0.025	< 0.025	
(Omega)										
Prosper, North	2-EHE	0.28	72	20 cm	1	71	< 0.025	< 0.025	< 0.025	Arsenovic M,
Dakota, USA 1996	480 g/L EC	0.57	73		1	71	< 0.025	< 0.025	< 0.025	and Kunkel, DL, 2004, MCPA-R129
(Omega)										MCI A-R12)
Prosper, North	DMA salt	0.29	74	20 cm	1	71	< 0.025	< 0.025	< 0.025	
Dakota, USA 1996	480 g/L SL	0.57	73		1	71	< 0.025	< 0.025	< 0.025	
(Omega)										
Fargo, North	2-EHE	0.29	74	23 cm	1	90	< 0.025	< 0.025	< 0.025	Arsenovic M,
Dakota, USA, 1997	480 g/L EC	0.57	73		1	90	< 0.025	< 0.025	< 0.025	and Kunkel, DL, 2004,
(Omega)										MCPA-R129
Fargo, North	DMA salt	0.28	72	23 cm	1	90	< 0.025	< 0.025	< 0.025	-
Dakota, USA, 1997	480 g/L SL	0.57	74		1	90	< 0.025	< 0.025	< 0.025	
(Omega)										
Aurora, South	2-EHE	0.26	149	20–23 cm	1	63	< 0.025	< 0.025	< 0.025	Arsenovic M,
Dakota, USA, 1996	480 g/L EC	0.56	159		1	63	< 0.025	< 0.025	< 0.025	and Kunkel, DL, 2004,
(Prompt)										MCPA-R129
Aurora, South	DMA salt	0.21	121	20–23 cm	1	63	< 0.025	< 0.025	< 0.025	-
Dakota, USA, 1996	480 g/L SL	0.52	159		1	63	< 0.025	< 0.025	< 0.025	
(Prompt)										
Aurora, South	2-EHE	0.28	179	25.4cm	1	58	< 0.025	< 0.025	< 0.025	Arsenovic M,
Deltate LICA	480 g/L EC	0.56	179	23.1011	1	58		< 0.025	< 0.025	and Kunkel, DL, 2004,
(Verne 93)										MCPA-R129
Aurora, South	DMA salt	0.28	179	25.4cm	1	58	< 0.025	< 0.025	< 0.025	
Dakota, USA, 1997	480 g/L SL	0.56	179		1	58	< 0.025	< 0.025	< 0.025	
(Verne 93)										

FLAX SEED	Application					PHI	Residue	s mg/kg,		Reference	
							(MCPA	acid equiv)	Author, year	
country, year (variety)	Form. (Acid equiv)	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.	
	2-EHE	0.90	204	9–12 cm	1	79	ND	ND	ND	Jones, GL,	
	444 g/L EC					86	ND	ND	ND	2007,	
(Norlin)						93	ND	ND	ND	MCPA-R128	
						100	ND	ND	ND		
						107	<u>ND</u>	ND	ND		
		0.90	204	9–12 cm	1	79	ND	ND	ND	-	
	480 g/L SL					86	ND	ND	ND		
(Norlin)						93	ND	ND	ND		
						100	ND	ND	ND		
						107	ND	ND	ND		
	2-EHE	0.90	176	13–18 cm	1	75	ND	ND	ND	Jones, GL,	
Canada, 2005	444 g/L EC					82	ND	ND	ND	2007,	
(Solin 2047)						89	ND	ND	ND	MCPA-R128	
						96	ND	ND	ND		
						103	ND	ND	ND		
		0.93	180	13–18 cm	1	75	ND	ND	ND		
Canada, 2005		ND									
(Solin 2047)						89	ND	ND	ND		
						96	ND	ND	ND		
						103	ND	ND	ND		
MB, Canada, 2005	2-EHE 444 g/L EC	0.90	176	12–15 cm	1	82	<u>ND</u>	ND	ND	Jones, GL, 2007, MCPA-R128	
(Solin 2047)											
	DMA salt 480 g/L SL	0.87	172	12–15 cm	1	82	<u>ND</u>	ND	ND		
(Solin 2047)											
Rosthern, SK, Canada, 2005		0.89	202	8–12 cm	1	111	<u>ND</u>	ND	ND	Jones, GL, 2007,	
(Solin 2047)	444 g/L EC									2007, MCPA-R128	
Rosthern, SK,	DMA salt	0.89	203	8–12 cm	1	111	ND	ND	ND		
Canada, 2005	480 g/L SL			-							
(Solin 2047)											
Hepburn, SK, Canada, 2005 (Solin 2047)	2-EHE 444 g/L EC	0.88	202	7–12 cm	1	106	<u>ND</u>	ND	ND	Jones, GL, 2007, MCPA-R128	
Hepburn, SK,	DMA celt	0.89	203	7–12 cm	1	106	ND	ND	ND		
Canada, 2005	480 g/L SL	0.07	203	/-12 cm	I	100	<u>IND</u>	UND	ND		
(Solin 2047)											

FLAX SEED	Application	blication					Residues mg/kg, (MCPA acid equiv)			Reference Author, year
(variety)	Form. (Acid equiv)	kg ae/ha		Growth stage	no.	days	`	. /	ССРА	Reference No.
Canada 2005	2-EHE 444 g/L EC	0.90	204	6–10 cm	1	107	<u>ND</u>	ND	ND	Jones, GL, 2007, MCPA-R128
, , ,	DMA salt 480 g/L SL	0.91	205	6–10 cm	1	107	<u>ND</u>	ND	ND	

ND = not detected (R-128).

For trials in Canada, LOD = 0.005 mg/kg; LOQ = 0.01 mg/kg (R-128). LOQ = 0.025 mg/kg (R-129)

Table 51 MCPA acid equivalent residues in treated pea forage and hay resulting from supervised trials in Canada and the USA (Barney, WP, 2007, MCPA-R130; Weisskopf, CP, 1999, MCPA-R131; Jones, GL, 2007, MCPA-R132)

PEAS	Application Form. kg ae/ha water, Growth no.						Residues mg/kg, (MCPA acid equiv)			Reference Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
PEA FORAGE				•						•
Elm Creek, MB Canada, 2005 (Venture)	NA salt 300 g/L SL	0.48	297	Pre-bloom	1	17	0.60	ND	ND	Jones, GL, 2007, MCPA-R132
Carmen, MB Canada, 2005 (Venture)	NA salt 300 g/L SL	0.47	294	Pre-bloom	1	18	< 0.25	ND	ND	
Minto, MB Canada, 2005 (Mozart)	NA salt 300 g/L SL	0.46	289	Pre-bloom	1	0 1 3 7 14 28	11.5 4.52 0.77 <u>0.42</u> < 0.25 ND	0.73 1.69 0.59 < 0.25 < 0.25 ND	ND ND ND ND ND	
Rosthern, SK Canada, 2005 (Mozart)	NA salt 300 g/L SL	0.45	282	Pre-bloom	1	0 1 3 7 14 28	10.0 6.71 0.29 < 0.25 < 0.25 ND	0.82 1.09 0.56 < 0.25 ND ND	ND ND ND ND ND	

PEAS	Application					PHI	Residue	s mg/kg,		Reference
							(MCPA	A acid equiv)		Author, year
country, yea (variety)	r Form.	kg ae/ha	u water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Hepburn, SK Canada, 2005 (Eclipse)	, NA salt 300 g/L SL	0.45	282	Pre-bloom	1	27	ND	ND	ND	
Innisfail, AB Canada, 2005 (SW Capri)	, NA salt 300 g/L SL	0.46	284	Pre-bloom	1	33	ND	ND	ND	-
Penhold, AE Canada, 2005 (SW Capri)	3 NA salt 300 g/L SL	0.46	289	Pre-bloom	1	26	ND	ND	ND	
Fairview, AB Canada, 2005 (SW Midas)	, NA salt 300 g/L SL	0.47	296	Pre-bloom	1	21	< 0.25	< 0.25	ND	
PEA HAY (air dry	y)									<u> </u>
Elm Creek, MB Canada, 2005 (Venture)	, NA salt 300 g/L SL	0.48	297	Pre-bloom	1	17	0.27	0.51	ND	Jones, GL, 2007, MCPA-R132
Carmen, MB Canada, 2005 (Venture)	, NA salt 300 g/L SL	0.47	294	Pre-bloom	1	18	< 0.12	< 0.25	ND	
Minto, MB Canada, 2005 (Mozart)	, NA salt 300 g/L SL	0.46	289	Pre-bloom	1	1 3 7 14 28	15.7 3.61 <u>1.97</u> 0.84 < 0.25	15.8 7.15 2.85 0.74 0.36	1.68 1.18 0.43 ND ND	
Rosthern, SK Canada, 2005 (Mozart)	, NA salt 300 g/L SL	0.45	282	Pre-bloom	1	1 3 7 14 28	24.9 1.12 0.74 0.36 ND	7.08 2.68 1.27 1.09 < 0.25	0.47 < 0.25 < 0.25 ND ND	
Hepburn, SK Canada, 2005 (Eclipse)	, NA salt 300 g/L SL	0.45	282	Pre-bloom	1	27	ND	< 0.25	ND	
Innisfail, AB Canada, 2005 (SW Capri)	, NA salt 300 g/L SL	0.46	284	Pre-bloom	1	41	ND	ND	ND	
Penhold, AE Canada, 2005 (SW Capri)	3 NA salt 300 g/L SL	0.46	289	Pre-bloom	1	34	ND	< 0.25	ND	

PEAS	Application					PHI	Residues mg/kg,			Reference
							(MCPA a	acid equiv)		Author, year
country, year (variety)	Form.	kg ae/ha		Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Canada 2005	NA salt 300 g/L SL	0.47	296	Pre-bloom	1	26	< 0.25	0.44	ND	

LOQ = 0.25 mg/kg for straw and hay.

LOD = 0.12 mg/kg for MCPA, 0.11 mg/kg for 2-HMCPA, and 0.10 mg/kg for CCPA.

Table 52 MCPA acid equivalent residues in treated barley straw and hay resulting from supervised trials in Canada and USA (Jones, GL, 2007, MCPA-R072; Belcher, TI, 2008, MCPA-R073)

BARLEY	Application	pplication						mg/kg,		Reference	
							(MCPA a	cid equiv)		Author, year	
Country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.	
BARLEY STR	AW										
Elm Creek, MB, Canada, 2005 (AC Robust)	2-EHE 444 g/L EC	0.89	204	Zadoks 35- main shoot and 5 tillers		58	<u>ND</u>	< 0.25	ND	Jones, GL, 2007, MCPA-R072	
Elm Creek, MB, Canada, 2005 (AC Robust)	DMA salt 480 g/L SL	0.79	203	Zadoks 35- main shoot and 5 tillers	1	58	<u>ND</u>	ND	ND		
Elm Creek, MB, Canada, 2005 (AC Robust)	NA + K salt 300 L SL	0.90	205	Zadoks 35- main shoot and 5 tillers	1	58	<u>ND</u>	ND	ND		
St. Cesaire,	2-EHE 444 g/L EC	0.84	195	Zadoks 21- main shoot and 1 tiller	1	60	ND	ND	ND		
St. Cesaire, QB, Canada, 2005 (Sabrina)	DMA salt 480 g/L SL	0.88	201	Zadoks 21- main shoot and 1 tiller	1	60	<u>ND</u>	ND	ND		
	NA + K salt 300 L SL	0.90	207	Zadoks 21- main shoot and 1 tiller	1	60	<u>ND</u>	ND	ND		
Vanscoy, SK, Canada, 2005 (Metcalf)	2-EHE 444 g/L EC	0.90	203	Zadoks 31–1 st node detectable	1	75	<u>ND</u>	ND	ND		

BARLEY	Application					PHI Residues mg/kg,				Reference
							(MCPA a	acid equiv)		Author, year
Country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Vanscoy, SK, Canada, 2005 (Metcalf)	DMA salt 480 g/L SL	0.90	206	Zadoks 31–1 st node detectable	1	75	<u>ND</u>	ND	ND	
Vanscoy, SK, Canada, 2005 (Metcalf)	NA + K salt 300 L SL	0.89	203	Zadoks 31–1 st node detectable	1	75	<u>ND</u>	ND	ND	
Innisfail, AB, Canada, 2005 (CDC Bold)	2-EHE 444 g/L EC	0.90	206	Zadoks 32– 34: 2 nd to 4 th node detectable	1	30 79	0.95 <u>ND</u>	0.71 ND	0.26 ND	
Innisfail, AB, Canada, 2005 (CDC Bold)	DMA salt 480 g/L SL	0.90	205	Zadoks 32– 34: 2 nd to 4 th node detectable	1	30 79	0.26 <u>ND</u>	0.32 ND	< 0.25 ND	
Innisfail, AB, Canada, 2005 (CDC Bold)	NA + K salt 300 L SL	0.93	212	Zadoks 32– 34: 2 nd to 4 th node detectable	1	30 79	< 0.25 <u>ND</u>	ND ND	ND ND	
Rosthern, SK, Canada, 2005 (AC Metcalf)	2-EHE 444 g/L EC	0.90	206	Zadoks 23– 24: main shoot and 3–4 tillers	1	73	<u>ND</u>	ND	ND	
Rosthern, SK, Canada, 2005 (AC Metcalf)	DMA salt 480 g/L SL	0.91	206	Zadoks 23– 24: main shoot and 3–4 tillers	1	73	<u>ND</u>	ND	ND	
Rosthern, SK, Canada, 2005 (AC Metcalf)	NA + K salt 300 L SL	0.90	205	Zadoks 23– 24: main shoot and 3–4 tillers	1	73	<u>ND</u>	ND	ND	
Minto, MB, Canada, 2006 (Conlon)	2-EHE 444 g/L EC	0.91	207	Zadoks 31– 33	1	30 56	0.34 <u>ND</u>	0.36 ND	< 0.25 ND	Belcher, TI, 2008, MCPA-R073
	DMA salt 480 g/L SL	0.91	208	Zadoks 31– 33	1	30 56	0.31 <u>ND</u>	0.32 ND	< 0.25 ND	
	NA + K salt 300 L SL	0.91	207	Zadoks 31– 33	1	30 56	0.30 <u>0.25</u>	0.27 ND	< 0.25 ND	
MD Canada	2-EHE 444 g/L EC	0.92	209	Zadoks 31	1	64	<u>ND</u>	ND	ND	
Boissevain, MB, Canada, 2006		0.91	209	Zadoks 31	1	64	<u>ND</u>	ND	ND	
(Newdale)										

BARLEY	Application		PHI	Residues			Reference			
							(MCPA a	acid equiv)		Author, year
Country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Boissevain, MB, Canada, 2006 (Newdale)	NA + K salt 300 L SL	0.91	209	Zadoks 31	1	64	<u>ND</u>	ND	ND	
Innisfail, AB, Canada, 2005 (CDC Bold)	2-ЕНЕ 444 g/L EC	0.92	211	Zadoks 23– 25: 24–29 cm	1	79	< <u>0.25</u>	ND	ND	
Innisfail, AB, Canada, 2005 (CDC Bold)	DMA salt 480 g/L SL	0.93	211	Zadoks 23– 25: 24–29 cm	1	79	< <u>0.25</u>	ND	ND	
Innisfail, AB, Canada, 2005 (CDC Bold)	NA + K salt 300 L SL	0.93	212	Zadoks 23– 25: 24–29 cm	1	79	< <u>0.25</u>	ND	ND	
Spruceview, AB, Canada, 2006	2-EHE 444 g/L EC	0.89	204	Zadoks 34– 35: 37–40 cm	1	70	<u>0.29</u>	ND	ND	
(CDC Bold) Spruceview, AB, Canada, 2006 (CDC Bold)	DMA salt 480 g/L SL	0.91	207	Zadoks 34– 35: 37–40 cm	1	70	ND	ND	< 0.25	-
Spruceview, AB, Canada, 2006	NA + K salt 300 L SL	0.88	202	Zadoks 34– 35: 37–40 cm	1	70	< <u>0.25</u>	ND	ND	
(CDC Bold) Rosthern, SK, Canada, 2006 (AC Metcalf)	2-EHE 444 g/L EC	0.91	207	Zadoks 22– 23	1	72	< <u>0.25</u>	ND	ND	
Rosthern, SK, Canada, 2006 (AC Metcalf)	DMA salt 480 g/L SL	0.90	206	Zadoks 22– 23	1	72	<u>ND</u>	ND	ND	
Rosthern, SK, Canada, 2006 (AC Metcalf)	NA + K salt 300 L SL	0.87	203	Zadoks 22– 23	1	72	< <u>0.25</u>	ND	ND	
Hepburn, SK, Canada, 2006 (CDC Copeland)	2-EHE 444 g/L EC	0.89	202	Zadoks 22– 23	1	68	< <u>0.25</u>	ND	ND	
Hepburn, SK, Canada, 2006 (CDC Copeland)	DMA salt 480 g/L SL	0.88	202	Zadoks 22– 24	1	68	< <u>0.25</u>	ND	ND	

BARLEY	Application					PHI	Residues	mg/kg,		Reference
							(MCPA	acid equiv)		Author, year
Country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Hepburn, SK, Canada, 2006 (CDC Copeland)	NA + K salt 300 L SL	0.89	202	Zadoks 22– 24	1	68	< <u>0.25</u>	ND	ND	
Spruceview,	2-EHE 444 g/L EC	0.88	201	Zadoks 34– 37	1	78	<u>ND</u>	ND	ND	
Spruceview,	DMA salt 480 g/L SL	0.88	202	Zadoks 34– 37	1	78	<u>ND</u>	ND	ND	
Spruceview,	NA + K salt 300 L SL	0.88	202	Zadoks 34– 37	1	78	<u>ND</u>	ND	ND	
BARLEY HAY	7									
MB, Canada, 2005		0.89	204	Zadoks 35- main shoot and 5 tillers	1	26	ND	0.57	0.30	Jones, GL, 2007, MCPA-R072
MD Canada		0.79	203	Zadoks 35- main shoot and 5 tillers	1	26	ND	< 0.25	ND	-
Elm Creek,	NA + K salt 300 L SL	0.90	205	Zadoks 35- main shoot and 5 tillers		26	ND	< 0.25	ND	
St. Cesaire, QB, Canada, 2005 (Sabrina)	2-EHE 444 g/L EC	0.84	195	Zadoks 21- main shoot and 1 tiller	1	34	ND	0.36	ND	
St. Cesaire, QB, Canada, 2005 (Sabrina)	DMA salt 480 g/L SL	0.88	201	Zadoks 21- main shoot and 1 tiller	1	34	ND	ND	ND	
· · ·	NA + K salt 300 L SL	0.90	207	Zadoks 21- main shoot and 1 tiller	1	34	ND	0.26	ND	

BARLEY	Application				PHI Residues mg/kg,				Reference
			T	· · · ·		(MCPA	acid equiv)		Author, year
Country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage no	. days	МСРА	НМСРА	ССРА	Reference No.
Vanscoy, SK, Canada, 2005 (Metcalf)	2-EHE 444 g/L EC	0.90	203	Zadoks 31–1 st 1 node detectable	28	0.67	0.84	0.25	=
Vanscoy, SK, Canada, 2005 (Metcalf)	DMA salt 480 g/L SL	0.90	206	Zadoks 31–1 st 1 node detectable	28	< 0.25	0.39	ND	
Vanscoy, SK, Canada, 2005 (Metcalf)	NA + K salt 300 L SL	0.89	203	Zadoks 31–1 st 1 node detectable	28	< 0.25	0.33	ND	
Innisfail, AB, Canada, 2005 (CDC Bold)	2-EHE 444 g/L EC	0.90	206	Zadoks 32–1 34: 2 nd to 4 th node detectable	1 3 7 14	31.1 11.0 <u>6.61</u> 0.34	17.7 23.4 11.9 1.62	8.38 4.84 3.06 0.62	
					28 42 56	0.25 ND 0.46	0.73 ND ND	0.02 0.28 ND < 0.25	
Innisfail, AB, Canada, 2005 (CDC Bold)	DMA salt 480 g/L SL	0.90	205	Zadoks 32–1 34: 2 nd to 4 th node detectable	1 3 7 14 28 42 56	18.2 3.70 1.93 < 0.25 ND ND	7.73 6.84 4.29 0.85 0.26 ND ND	5.04 1.99 1.45 < 0.25 < 0.25 ND ND	
Innisfail, AB, Canada, 2005 (CDC Bold)		0.93	212	Zadoks 32–1 34: 2 nd to 4 th node detectable	1 3 7 14 28 42 56	20.0 3.10 2.21 ND ND ND	6.28 5.93 3.51 0.79 0.34 ND ND	2.94 1.34 0.85 0.29 < 0.25 ND ND	
Rosthern, SK, Canada, 2005 (AC Metcalf)	2-EHE 444 g/L EC	0.90	206	Zadoks 23–1 24: main shoot and 3–4 tillers	30	0.69	0.86	0.28	
Rosthern, SK, Canada, 2005 (AC Metcalf)	DMA salt 480 g/L SL	0.91	206	Zadoks 23–1 24: main shoot and 3–4 tillers	30	0.29	0.50	< 0.25	
Rosthern, SK, Canada, 2005 (AC Metcalf)	NA + K salt 300 L SL	0.90	205	Zadoks 23–1 24: main shoot and 3–4 tillers	30	ND	< 0.25	ND	

BARLEY	Application	Application						mg/kg, acid equiv)		Reference
			1		1		`		1	Author, year
Country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Canada 2006	2-EHE 444 g/L EC	0.91	207	Zadoks 31– 33	1	1 3 7	42.4 8.62 <u>5.18</u>	16.2 10.4 5.02	11.8 8.75 4.94	Belcher, TI, 2008, MCPA-R073
						14 28 42 56	1.89 0.38 ND ND	1.54 1.45 0.26 ND	1.50 0.40 ND ND	
Canada, 2006 (Conlon)	480 g/L SL	0.91	208	Zadoks 31– 33		1 3 7 14 28 42 56	101 6.82 4.43 1.11 0.26 ND ND	11.8 6.60 3.94 1.13 0.66 < 0.25 ND	12.0 5.96 3.70 0.98 < 0.25 ND ND	
	NA + K salt 300 L SL	0.91	207	Zadoks 31– 33	1	1 3 7 14 28 42 56	99.5 4.04 1.56 0.66 0.30 ND ND	12.8 4.52 2.28 0.71 0.68 < 0.25 ND	9.07 4.18 1.90 0.71 0.30 ND ND	
Boissevain, MB, Canada, 2006 (Newdale)	2-EHE 444 g/L EC	0.92	209	Zadoks 31	1	35	< 0.25	0.50	< 0.25	
Boissevain, MB, Canada, 2006 (Newdale)		0.91	209	Zadoks 31	1	35	< 0.25	0.46	< 0.25	
Boissevain, MB, Canada, 2006 (Newdale)	NA + K salt 300 L SL	0.91	209	Zadoks 31	1	35	ND	0.28	ND	
(CDC Bold)	444 g/L EC	0.92	211	Zadoks 23– 25: 24–29 cm		33	ND	< 0.25	< 0.25	
Innisfail, AB, Canada, 2005 (CDC Bold)	DMA salt 480 g/L SL	0.93	211	Zadoks 23– 25: 24–29 cm	1	33	ND	ND	ND	

BARLEY	Application					PHI	Residues	mg/kg,		Reference
							(MCPA a	cid equiv)		Author, year
Country, year	Form.	kg ae/ha	water,	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
(variety)			L/ha							
Innisfail, AB, Canada, 2005	NA + K salt 300 L SL	0.93	212	Zadoks 23– 25: 24–29 cm	1	33	ND	ND	ND	
(CDC Bold)										
AB Canada	2-EHE 444 g/L EC	0.89	204	Zadoks 34– 35: 37–40 cam		40	0.55	0.98	0.46	
(CDC Bold)										
AB, Canada, 2006	DMA salt 480 g/L SL	0.91	207	Zadoks 34– 35: 37–40 cm	1	40	0.35	0.63	< 0.25	
(CDC Bold)					_			0.11		
	NA + K salt 300 L SL	0.88	202	Zadoks 34– 35: 37–40 cm	1	40	< 0.25	0.41	< 0.25	
(CDC Bold)										
Rosthern, SK, Canada, 2006 (AC Metcalf)	2-EHE 444 g/L EC	0.91	207	Zadoks 22– 23	1	38	ND	ND	ND	
Rosthern, SK,	DMA salt	0.90	206	Zadoks 22–	1	38	ND	ND	ND	
Canada 2006	480 g/L SL	0.90	200	23	1	50			ND	
Rosthern, SK, Canada, 2006 (AC Metcalf)	NA + K salt 300 L SL	0.87	203	Zadoks 22– 23	1	38	ND	ND	ND	
Hepburn, SK, Canada, 2006 (CDC Copeland)	2-EHE 444 g/L EC	0.89	202	Zadoks 22– 23	1	36	ND	ND	ND	
	DMA salt 480 g/L SL	0.88	202	Zadoks 22– 24	1	36	ND	ND	ND	
(CDC Copeland)										
Hepburn, SK,	NA + K salt 300 L SL	0.89	202	Zadoks 22– 24	1	36	ND	ND	ND	
(CDC Copeland)										
Spruceview, AB, Canada, 2006	2-EHE 444 g/L EC	0.88	201	Zadoks 34– 37	1	37	ND	ND	ND	
(Metcalf)										
AD Canada	DMA salt 480 g/L SL	0.88	202	Zadoks 34– 37	1	37	< 0.25	< 0.25	ND	
(Metcalf)										

1276	
------	--

BARLEY	Application					PHI	Residues	mg/kg,		Reference
							(MCPA a	cid equiv)		Author, year
Country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
1 /	NA + K salt 300 L SL	0.88	-	Zadoks 34– 37	1	37	< 0.25	< 0.25	ND	

Table 53 MCPA acid equivalent residues in treated barley straw and forage resulting from supervised trials in Austria, UK, France and Spain (Pfarl, DIC, 1994, MCPA-R070; Old, J and Venuti, J, 2001, MCPA-R062; Wasser, C, 2000, MCPA-R063; Old, J and Duncan, P, 2001, MCPA-R066; Perny, A, 2001, MCPA-R067; Old, J, etc., 2001, MCPA-R060; Wasser, C, 2000, MCPA-R061; Old, J, Duncan, P, 2001, MCPA-R064; Perny, A, 2001, MCPA-R065; Wardman, JP, and Mrti, S, 2002, MCPA-R069; Gallais, C, 2002, MCPA-R068; Rawle, NW, 2001, MCPA-R071)

BARLEY	Application					PHI	Residues	s mg/kg,		Reference
							(MCPA a	acid equiv))	Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
BARLEY STRA	W	I	I	1	•				<u> </u>	1
Ansfelden, Austria, 1992 (Berta)	DMA salt 281 g/L SL	0.58	300	BBCH 31	1	63	_	_	_	Pfarl, DIC, 1994, MCPA-R070
Leonding, Austria, 1992 (Robin)	DMA salt 281 g/L SL	0.58	300	BBCH 31	1	60	< 0.05	_	_	
	DMA salt 750 g/L SL	1.79	250	BBCH 30	1	106	<u>ND</u> ^a	0.05	_	Old, J and Venuti, J, 2001, MCPA-R062; Wasser, C, 2000, MCPA-R063
East Lothian, UK, 1999 (Regina)	DMA salt 750 g/L SL	1.89	263	BBCH 30	1	116	0.07	< 0.05	_	
East Lothian, UK, 1999 (Regina)	DMA salt 750 g/L SL	1.83	254	BBCH 30- 31	1	121	ND	ND	_	Old, J and Duncan, P, 2001, MCPA-R066; Perny, A, 2001,
Noiron sous Geverey, France, 1999 (Majestic)	DMA salt 750 g/L SL	1.86	258	BBCH 30	1	99	<u>ND</u>	ND	_	MCPA-R067
Janneyrias, France, 1999 (Platine)	K-salt 400 g/L SL	1.22	251	BBCH 30	1	95	ND	ND	_	Old, J, etc., 2001, MCPA-R060; Wasser, C, 2000,

BARLEY	Application					PHI	Residues	s mg/kg,		Reference
							(MCPA	acid equiv)	Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Spain 1999	K-salt 400 g/L SL	1.24	254	BBCH 30	1	86	ND	ND		MCPA-R061
Erance 2000	K-salt 400 g/L SL	1.25	254	BBCH 30	1	92	ND	ND		Old, J, Duncan, P., 2001, MCPA- R064; Perny, A, 2001, MCPA-
Spain 2000	K-salt 400 g/L SL	1.20	248	BBCH 30- 31	1	NR	ND	ND		R065
Spain 2001	K-salt 400 g/L SL	1.20	248	BBCH 30- 31	1	86	0.24	0.18		Gallais, C, 2002, MCPA- R068;Wardman, JP, and Mrti, S, 2002, MCPA- R069
France 1998	NA salt 800 g/L SL	1.88	266	BBCH 32- 33	1	77	0.22	_	_	Rawle, NW, 2001, MCPA- R071
France 1998	NA salt 800 g/L SL	1.86	265	BBCH 32	1	67	0.28	-	_	
Bouloc, France, 1998	NA salt 800 g/L SL	1.82	259	BBCH 32	1	61	1.04	_	_	
(Volga)	0E									
	DMA salt, 500 SL	1.7	100-400	BBCH 30	1	-	МСРА	НМСРА	ССРА	
Austria	DMA salt 281 g/L SL	0.58	300	BBCH 31	1	0 15 28	12.6 0.17 < 0.05	_	_	Pfarl, DIC, 1994, MCPA-R070
Δ ustria 1992	DMA salt 281 g/L SL	0.58	300	BBCH 31	1	0 13 26	17.5 0.09 < 0.05	-	_	_
Loiro Franco	DMA salt 750 g/L SL	1.79	250	BBCH 30	1	0 7 14 28	53.0 <u>4.20</u> 0.79 0.09	0.51 0.29 0.14 < 0.05		Old, J and Venuti, J, 2001, MCPA-R062; Wasser, C, 2000, MCPA-R063

BARLEY	Application					PHI	Residues (MCPA	s mg/kg, acid equiv)	Reference Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	HMCPA CCPA	
East Lothian, UK, 1999	DMA salt	1.89	263	BBCH 30	1	0	31.0	0.43	
(Regina)	750 g/L SL					14	<u>4.30</u> 1.80	0.24 0.05	
East Lothian, UK, 1999 (Regina)	DMA salt 750 g/L SL	1.83	254	BBCH 30- 31	1	28 0	0.56 69.0	< 0.05	Old, J and Duncan, P, 2001, MCPA-R066; Perny, A, 2001,
Noiron sous Geverey, France, 1999	DMA salt 750 g/L SL	1.86	258	BBCH 30	1	0	46.0	0.26	MCPA-R067
(Majestic) Janneyrias, France, 1999 (Platine)	K-salt 400 g/L SL	1.22	251	BBCH 30	1	0 7	20.0 <u>0.60</u>	0.14 0.05	Old, J, etc., 2001, MCPA-R060; Wasser, C, 2000,
(*******)						14 28	0.09 < 0.05	< 0.05 ND ^b	MCPA-R061
Menarguens, Spain, 1999 (Graphic)	K-salt 400 g/L SL	1.24	254	BBCH 30	1	0 7 14 28	25.0 <u>5.10</u> 0.53 0.21	0.42 0.32 0.06 0.09	
Janneyrias, France, 2000 (Pertine)	K-salt 400 g/L SL	1.25	254	BBCH 30	1	0	19.0	0.14	Old, J, Duncan, P, 2001, MCPA- R064; Perny, A, 2001, MCPA-
Menarguens, Spain, 2000 (Graphic)	K-salt 400 g/L SL	1.20	248	BBCH 30- 31	1	0	19.0	0.11	R065
Menarguens, Spain, 2001 (Graphic)	K-salt 400 g/L SL	1.20	248	BBCH 30- 31	1	0	29.0	0.67 –	Gallais, C, 2002, MCPA- R068;Wardman, JP, and Mrti, S, 2002, MCPA- R069

^a LOD = 0.016 mg/kg for straw.

^b LOD = 0.008 mg/kg for green plants.

Table 54 MCPA acid equivalent residues in treated wheat forage, straw and hay resulting from supervised trials in Canada and USA (Barney, WP, 2002, MCPA-R085 through MCPA-R089; Jones, GL, 2005, MCPA-R090 through MCPA-R092; and Jones, GL, 2006, MCPA-R098 through MCPA-R104; Kludas, RS, 2000, MCPA-R081 through MCPA-R084; and Jones, GL, 2006, MCPA-R093 through MCPA-R097)

WHEAT	Application	1				PHI	Residues	mg/kg,		Reference
							(MCPA a	acid equiv	<i>v</i>)	Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	HMCP A	ССРА	Reference No.
WHEAT FORAGE	•	•	•							
Rosthern, SK, Canada, 2001 (Foremost CPS)	2-EHE 444 g/L EC	1.76	294	Pre-boot Zadoks 37– 38	1	0 7	108 <u>7.73</u>	0.72 1.26	< 0.10 1.56	Barney, WP, 2002, MCPA-R085
						14 21	3.08 3.07	2.21 1.52	0.69 0.61	
Rosthern, SK, Canada, 2001 (Foremost CPS)	DMA salt 480 g/L SL	1.80	298	Pre-boot Zadoks 37	1	0 7 14 21	89 6.27 3.04 2.43	2.23 1.62 0.70 0.46	0.17 1.39 0.75 0.60	
Rosthern, SK, Canada, 2001 (Foremost CPS)	NA salt 300 g/L SL	1.76	293	Pre-boot Zadoks 37	1	0 7 14 21	113 3.90 2.28 1.91	5.51 2.22 0.82 0.95	0.24 1.01 0.58 0.50	
Haywood, MB, Canada, 2001 (AC Cora)	2-EHE 444 g/L EC	1.65	282	Pre-boot Zadoks 31	1	0 7 14 21	89.4 <u>8.3</u> 4.47 0.88	5.85 0.87 2.54 0.82	0.33 0.45 0.26 0.15	Barney, WP, 2002, MCPA-R087
Haywood, MB, Canada, 2001 (AC Cora)	DMA salt 480 g/L SL	1.70	284	Pre-boot Zadoks 31	1	0 7 14 21	83.5 5.34 3.23 0.44	10.5 1.73 1.49 0.63	0.31 0.35 0.19 0.11	
Haywood, MB, Canada, 2001 (AC Cora)	NA salt 300 g/L SL	1.74	285	Pre-boot Zadoks 31	1	0 7 14 21	91.1 6.44 2.12 0.19	6.26 1.22 1.39 0.25	0.24 0.47 0.17 ND	
Elm Creek, MB Canada, 2001 (Majestic)	2-EHE 444 g/L EC	1.65	271	Pre-boot Zadoks 32– 34	1	0 7 14 21	73.1 <u>7.14</u> 4.02 1.59	4.48 1.34 2.46 0.72	0.44 0.95 0.45 < 0.25	Barney, WP, 2002, MCPA- R086
Elm Creek, MB Canada, 2001 (Majestic)	DMA salt 480 g/L SL	1.62	268	Pre-boot Zadoks 32– 34	1	0 7 14 21	75.4 3.92 1.54 0.37	1.95 1.23 0.82 0.27	0.01 0.90 0.34 < 0.25	

WHEAT	Application	1				PHI	Residues	mg/kg,		Reference
							(MCPA a	acid equiv	7)	Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСР А	ССРА	Reference No.
Elm Creek, MB	NA salt	1.64	273	Pre-boot	1	0	65.8	5.34	0.26	
Canada, 2001	300 g/L			Zadoks 32– 34		7	4.61	1.71	0.84	
(Majestic)	SL					14	1.19	0.74	< 0.25	
						21	0.27	< 0.25	ND	
Barnwell, AB	2-EHE	1.70	286	Pre-boot	1	0	51.3	1.76	0.10	Barney, WP,
Canada, 2001	444 g/L			Zadoks 36– 37		7	5.82	1.83	1.36	2002, MCPA- R088
(Soft White)	EC			51		14	5.43	0.54	0.64	1000
						21	3.09	0.49	0.37	
Barnwell, AB	DMA salt	1.74	291	Pre-boot	1	0	112	1.94	ND	
Canada, 2001	480 g/L			Zadoks 36– 37		7	5.53	0.19	0.77	
(Soft White)	SL			57		14	2.52	0.48	0.49	
						21	1.27	0.31	0.33	
Barnwell, AB	NA salt	1.74	288	Pre-boot	1	0	83.1	2.00	ND	
Canada, 2001	300 g/L			Zadoks 36– 37		7	3.95	0.74	0.48	
(Soft White)	SL			51		14	1.39	0.28	< 0.25	
						21	0.90	< 0.25	< 0.25	
	2-EHE	1.71	289	Pre-boot	1	0	76.7	5.45	< 0.25	Barney, WP,
Canada, 2001 (Canadian Western	444 g/L			Zadoks 36– 37		7	7.94	1.19	0.97	2002, MCPA- R089
White EXP3)	EC			51		14	3.59	3.62	0.48	1007
						21	1.70	1.84	< 0.25	
Fairview, AB,	DMA salt	1.70	287	Pre-boot	1	0	87.4	8.74	0.36	
Canada, 2001 (Canadian Western	480 g/L			Zadoks 36– 37		7	5.90	0.89	1.15	
(Canadian Western White EXP3)	SL			57		14	2.65	0.44	0.59	
						21	1.21	0.30	0.38	
Fairview, AB,	NA salt	1.76	289	Pre-boot	1	0	64.6	5.99	< 0.25	-
Canada, 2001	300 g/L			Zadoks 36-		7	5.36	3.03	0.76	
(Canadian Western White EXP3)	SL			37		14	2.02	1.92	0.36	
						21	1.27	0.71	0.25	
	2-EHE	1.84	299	Pre-boot	1	0	104	0.26	< 0.25	Jones, GL, 2005,
Canada, 2003	444 g/L			Zadoks 37		7	12.6	1.79	1.48	MCPA-R090
(CPS)	EC					14	5.32	1.55	0.70	
						21	4.28	0.72	0.55	
Lacombe, AB,	DMA salt	1.81	300	Pre-boot	1	0	94.5	1.04	< 0.25	
Canada, 2003	480 g/L			Zadoks 37		7	6.68	1.45	0.93	
(CPS)	SL					14	4.15	1.08	0.64	
						21	2.69	1.04	0.60	

WHEAT		Application	1				PHI	Residues	mg/kg,		Reference
								(MCPA a	acid equiv	<i>v</i>)	Author, year
	year	Form.	kg ae/ha		Growth	no.	days	МСРА	НМСР	CCPA	Reference No.
(variety)				L/ha	stage				А		
	AB,		1.85	300	Pre-boot	1	0	83.8	0.63	< 0.25	
Canada, 2003		300 g/L SL			Zadoks 37		7	5.96	1.33	0.71	
(CPS)							14	2.73	0.67	0.45	
							21	2.86	1.24	0.77	
Delisle,	SK,	2-EHE	1.79	295	Pre-Boot	1	0	145.5	1.97	ND	Jones, GL, 2005,
Canada, 2003		444 g/L			Zadoks 14– 22		7	3.93	1.63	1.29	MCPA-R091
(AC Cadillac)		EC					14	1.08	0.43	0.29	
							21	0.50	< 0.25	< 0.25	
Delisle,	SK,	DMA salt	1.74	293	Pre-Boot	1	0	175.0	4.10	ND	-
Canada, 2003		480 g/L			Zadoks 14– 22		7	<u>4.13</u>	1.13	0.86	
(AC Cadillac)		SL					14	0.82	0.48	0.28	
							21	0.33	0.26	ND	
Delisle,	SK,	NA salt	1.87	298	Pre-Boot	1	0	158.5	2.23	ND	-
Canada, 2003		300 g/L			Zadoks 14– 22		7	1.92	0.67	0.67	
(AC Cadillac)		SL					14	0.43	< 0.25	< 0.25	
							21	ND	ND	ND	
Rosetown,	SK,	2-EHE	1.77	291	Pre-Boot	1	0	111.5	0.39	ND	Jones, GL, 2005,
Canada, 2003		444 g/L			Zadoks 22– 31		7	10.2	1.47	0.66	MCPA-R092
(AC Barrie)		EC					14	4.43	0.48	0.31	
							21	2.71	0.38	< 0.25	
Rosetown,	SK,	DMA salt	1.71	287	Pre-Boot	1	0	174.5	0.88	ND	
Canada, 2003		480 g/L			Zadoks 22– 31		7	<u>13.6</u>	1.30	1.12	
(AC Barrie)		SL					14	4.50	0.91	0.45	
							21	1.07	0.59	< 0.25	
			1.00		D		<u>_</u>	1.96	0.45		-
Rosetown, Canada, 2003	SK,	NA salt 300 g/L	1.83	293	Pre-Boot Zadoks 22–	1	0	145.5	0.47	ND	
(AC Barrie)		SL			31		7	13.2	2.82	1.46	
							14	6.18	1.25	0.57	
	~~~						21	3.88	0.78	0.37	
Vanscoy, Canada, 2004	-	2-EHE	1.86	275	Pre-Boot Zadoks 31–	1	0	86.7	0.57	ND	Jones, GL, 2006,
(Intrepid)		444 g/L EC			33		7	<u>7.15</u>	0.87	0.53	MCPA-R098
× 1 "/							14	3.64	0.45	0.30	
							21	1.83	< 0.25	0.17	
Vanscoy, Canada, 2004	-	DMA salt	1.83	277	Pre-Boot Zadoks 31–	1	0	78.4	0.86	ND	
(Intrepid)		480 g/L SL			33		7	4.42	0.72	0.44	
(							14	2.10	0.35	< 0.25	
							21	1.54	< 0.25	< 0.25	

WHEAT	Applicat	tion				PHI	Residues	mg/kg,		Reference
							(MCPA a	acid equiv	7)	Author, year
country, ye (variety)	ear Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	HMCP A	ССРА	Reference No.
		salt 1.87	278	Pre-Boot	1	0	82.7	0.57	ND	
Canada, 2004	300 g/L SL			Zadoks 31– 33	-	7	2.77	0.63	0.38	
(Intrepid)						14	1.19	0.26	< 0.25	
						21	0.59	< 0.25	< 0.25	
	B, 2-EHE	1.99	297	Pre-Boot	1	0	128	4.18	0.16	Jones, GL, 2006,
Canada, 2004	444 g/L			Zadoks 31– 33	-	7	<u>5.55</u>	0.67	0.53	MCPA-R099
(Intrepid)	EC					14	0.26	ND	< 0.25	
						21	ND	ND	ND	
	B, DMA sa	lt 1.98	295	Pre-Boot	1	0	109	4.79	< 0.25	-
Canada, 2004	480 g/L			Zadoks 31– 33	-	7	0.63	< 0.25	< 0.25	
(Intrepid)	SL					14	ND	ND	ND	
						21	ND	ND	ND	
,		salt 2.21	293	Pre-Boot	1	0	85.4	1.68	ND	-
Canada, 2004	300 g/L SL			Zadoks 31– 33	-	7	0.78	ND	ND	
(Intrepid)	~ -					14	ND	ND	ND	
						21	ND	ND	ND	
	B, 2-EHE	1.97	292	Pre-Boot	1	0	95.5	4.22	0.20	Jones, GL, 2006,
Canada, 2004	444 g/L			Zadoks 34– 37	-	7	11.0	1.51	0.93	MCPA-R100
(AC Barrie)	EC			5,		14	5.60	0.84	0.53	
						21	3.47	0.71	0.35	
	B, DMA sa	lt 2.01	299	Pre-Boot	1	0	81.6	7.70	0.22	
Canada, 2004	480 g/L			Zadoks 34– 37	-	7	10.7	2.12	1.50	
(AC Barrie)	SL			57		14	6.97	2.07	0.81	
						21	4.24	1.73	0.58	
Minto, M	B, NA salt	1.98	294	Pre-Boot	1	0	71.7	4.90	0.17	-
Canada, 2004	300 g/L			Zadoks 34– 37	-	7	7.31	1.35	1.03	
(AC Barrie)	SL			57		14	4.62	1.03	0.59	
						21	2.21	0.62	0.37	
	B, 2-EHE	1.94	288	Pre-boot	1	0	59.9	1.19	ND	Jones, GL, 2006,
Canada, 2004	444 g/L			Zadoks 37		7	<u>3.46</u>	0.87	0.52	MCPA-R101
(AC Barrie)	EC					14	1.36	0.36	0.26	
						21	0.79	0.27	< 0.25	
	B, DMA sa	lt 1.95	289	Pre-boot	1	0	57.8	1.81	ND	
Canada, 2004	480 g/L			Zadoks 37		7	2.69	0.53	0.41	
(AC Barrie)	SL					14	1.07	0.30	< 0.25	
						21	0.57	< 0.25	< 0.25	

WHEAT	Application	l				PHI	Residues	mg/kg,		Reference
							(MCPA a	acid equiv	r)	Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	HMCP A	ССРА	Reference No.
Boissevain, MB,		1.95	290	Pre-boot	1	0	55.2	2.53	ND	
	300 g/L SL			Zadoks 37		7	1.94	0.34	0.34	
(AC Barrie)						14	0.81	0.30	< 0.25	
						21	0.35	< 0.25	< 0.25	
	2-EHE	1.94	287	Pre-boot	1	0	76.0	0.96	ND	Jones, GL, 2006,
	444 g/L			Zadoks 37– 39		7	<u>6.37</u>	1.09	1.39	MCPA-R102
(AC Intrepid)	EC					14	3.41	0.62	0.68	
						21	3.09	0.52	0.61	
	DMA salt	1.93	287	Pre-boot	1	0	69.8	1.59	ND	1
	480 g/L			Zadoks 37– 39		7	4.33	1.03	0.99	
(AC Intrepid)	SL			57		14	2.55	0.59	0.63	
						21	2.42	0.59	0.61	
	NA salt	1.94	289	Pre-boot	1	0	62.3	1.84	ND	
Canada, 2004	300 g/L			Zadoks 37– 39		7	3.10	0.81	0.69	
(AC Intrepid)	SL					14	1.72	0.44	0.44	
						21	1.40	0.47	0.35	
	2-EHE	1.94	287	Pre-boot	1	0	54.0	1.20	ND	Jones, GL, 2006,
	444 g/L			Zadoks 37– 39		7	7.86	1.13	0.70	MCPA-R103
(AC Barrie)	EC					14	6.75	1.27	0.73	
						21	4.89	0.98	0.56	
	DMA salt	1.88	286	Pre-boot	1	0	50.5	3.26	ND	
	480 g/L			Zadoks 37– 39		7	<u>8.74</u>	1.64	0.74	
(AC Barrie)	SL					14	5.14	1.10	0.58	
						21	3.43	0.78	0.45	
Hepburn, SK,		1.92	286	Pre-boot	1	0	52.4	1.95	ND	
	300 g/L SL			Zadoks 37– 39		7	5.53	0.87	0.66	
(AC Barrie)						14	2.74	0.49	0.39	
						21	2.22	0.43	0.30	
	2-EHE	2.00	296	Pre-boot	1	0	89.2	1.60	ND	Jones, GL, 2006,
	444 g/L			Zadoks 35		7	12.0	2.88	1.26	MCPA-R104
(Foremost)	EC					14	4.20	1.22	0.42	
						21	3.82	1.10	0.51	
	DMA salt	1.94	288	Pre-boot	1	0	77.2	3.98	< 0.25	
	480 g/L			Zadoks 35		7	14.5	2.24	0.90	
(Foremost)	SL					14	4.40	1.46	0.47	
` ´										

WHEAT	Application	1				PHI	Residues	mg/kg,		Reference
							(MCPA a	acid equiv	7)	Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСР А	ССРА	Reference No.
Innisfail, AB,		1.96	292	Pre-boot	1	0	93.2	2.97	ND	
	300 g/L SL			Zadoks 35		7	<u>21.2</u>	3.46	1.42	
(Foremost)						14	3.64	0.88	0.67	
						21	2.26	0.52	0.45	
New Holland, OH,	2-EHE	1.71	220	Pre-boot	1	0	57.3	1.02	ND	Jones, GL, 2006,
USA, 2004	444 g/L			Zadoks 37		2	11.4	1.14	0.78	MCPA-R093
(SC 1358)	EC					14	10.0	1.43	0.72	
						22	10.1	1.31	0.79	
New Holland, OH,	DMA salt	1.71	220	Pre-boot	1	0	55.1	2.38	ND	-
USA, 2004	480 g/L			Zadoks 37		2	<u>12.8</u>	0.79	0.70	
(SC 1358)	SL					14	5.29	0.73	0.58	
						22	5.71	0.95	0.62	
New Holland, OH,		1.75	224	Pre-boot	1	0	45.5	1.31	ND	
USA, 2004	300 g/L SL			Zadoks 37		2	6.76	1.10	0.58	
(SC 1358)						14	4.16	0.84	0.52	
						22	3.93	0.71	0.51	
	2-EHE	1.65	326	Pre-boot	1	0	85.6	0.75	ND	Jones, GL, 2006,
USA, 2004	444 g/L			Zadoks 36– 37		7	<u>3.18</u>	1.48	0.64	MCPA-R094
(Harding)	EC					14	1.70	1.00	0.55	
						21	1.51	0.74	0.28	
	DMA salt	1.65	326	Pre-boot	1	0	101.5	1.94	< 0.25	
USA, 2004	480 g/L			Zadoks 36– 37		7	1.49	0.67	0.38	
(Harding)	SL			5,		14	1.11	0.93	0.31	
						21	0.97	0.46	0.27	
Redfield, SD,		1.71	325	Pre-boot	1	0	89.8	1.15	ND	-
USA, 2004	300 g/L SL			Zadoks 36– 37		7	2.16	0.84	0.61	
(Harding)	5E			57		14	1.18	0.40	0.25	
						21	1.13	0.50	0.31	
Larned, KS	2-EHE	1.78	285	Pre-boot	1	0	44.8	1.42	< 0.25	Jones, GL, 2006,
USA, 2004	444 g/L			Zadoks 39		7	<u>5.38</u>	1.83	1.52	MCPA-R095
(Jagalene)	EC					14	3.29	1.52	1.46	
						21	3.11	1.53	1.50	
Larned, KS	DMA salt	1.80	285	Pre-boot	1	0	56.3	2.03	< 0.25	1
USA, 2004	480 g/L SL			Zadoks 39		7	3.57	1.10	0.74	
(Jagalene)	~					14	2.54	0.78	0.61	
						21	2.74	0.77	0.70	
						I	<u> </u>			

WHEAT	Application	l				PHI	Residues	mg/kg,		Reference
							(MCPA a	acid equiv	7)	Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСР А	ССРА	Reference No.
		1.81	286	Pre-boot	1	0	49.4	0.87	ND	
USA, 2004	300 g/L SL			Zadoks 39		7	1.71	0.67	0.64	
(Jagalene)						14	1.13	0.40	0.47	
						21	1.37	0.45	0.50	
Colony, OK	2-EHE	1.63	276	Pre-boot	1	0	49.1	1.45	< 0.25	Jones, GL, 2006,
USA, 2004	444 g/L			Zadoks 39		7	4.93	1.95	2.41	MCPA-R096
(Pioneer 2157)	EC					14	5.18	2.35	2.77	
						21	3.78	3.24	2.55	
	DMA salt	1.65	278	Pre-boot	1	0	62.8	4.20	< 0.25	-
USA, 2004	480 g/L SL			Zadoks 39		7	7.36	1.97	1.90	
(Pioneer 2157)	5L					14	5.68	1.61	1.78	
						21	5.31	1.85	1.52	
Colony, OK	NA salt	1.73	282	Pre-boot	1	0	54.5	2.32	ND	-
	300 g/L SL			Zadoks 39		7	6.90	1.79	2.73	
(Pioneer 2157)	SL					14	5.35	0.96	2.01	
						21	4.33	1.67	1.93	
Groom, TX,	2-EHE	1.72	285	Pre-boot	1	0	28.6	1.16	< 0.25	Jones, GL, 2006,
	444 g/L			Zadoks 39		7	5.27	1.65	1.01	MCPA-R097
(Ogallala)	EC					14	5.21	2.86	1.33	
						21	5.79	4.75	1.50	
Groom, TX,	DMA salt	1.70	286	Pre-boot	1	0	45.3	2.42	ND	-
	480 g/L			Zadoks 39		7	9.12	3.89	1.89	
	SL					14	6.68	1.89	1.05	
(-8)						21	4.87	1.15	0.74	
Groom, TX,	NA salt	1.69	285	Pre-boot	1	0	37.0	2.65	ND	-
USA 2004	300 g/L	1.09		Zadoks 39	-	7	7.15	1.35	1.00	
(Ogallala)	SL					14	7.32	2.72	1.52	
(Ogununu)						21	6.86	3.21	1.55	
Kansas, USA	2-EHE	1.76	278	Pre-boot	1	0	44.8	5.63	0.47	Kludas, R. S.,
	480 g/L	1.70	270	Zadoks 37	1	7	9.02	4.22	0.57	2000, K. 5.,
	EC					, 14	5.42	8.17	0.57	MCPA-R082
reported)						21	4.78	6.49	0.44	
Oklahoma, USA	2-EHE	1.75	248	Pre-boot	1	0	64.8	1.35	< 0.25	
	2-EHE 480 g/L	1.15	270	Zadoks 37	1	7	5.48	6.37	0.41	
	EC					/ 14	3.45	5.63	0.41	
reported)						21				
						21	2.94	0.79	0.33	<u> </u>

WHEAT	Application	1				PHI	Residues	mg/kg,		Reference
							(MCPA a	acid equiv	7)	Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	HMCP A	ССРА	Reference No.
North Dakota,	2-EHE	1.83	282	Pre-boot	1	0	56.0	0.64	ND	Kludas, RS, 2000,
USA, 1998	480 g/L			Zadoks 37– 39		7	<u>9.75</u>	4.30	1.69	MCPA-R084
(2375)	EC					14	6.98	8.80	1.72	
						21	6.85	7.60	1.94	
Kansas, USA	DMA salt	1.66	263	Pre-boot	1	0	51.1	5.92	0.41	Kludas, RS, 2000,
1997	480 g/L			Zadoks 37		7	<u>9.79</u>	6.36	0.63	MCPA-R081
(TAM 105)	SL					14	6.14	3.17	0.47	
						21	4.31	4.43	0.37	
Oklahoma, USA	DMA salt	1.74	247	Pre-boot	1	0	72.3	1.71	< 0.25	-
1997	480 g/L			Zadoks 37		7	3.08	0.76	0.27	
(TAM 200)	SL					14	2.05	0.55	< 0.25	
						21	1.81	0.35	< 0.25	
	DMA salt	1.79	281	Pre-boot	1	0	49.7	2.20	< 0.25	Kludas, RS, 2000,
USA, 1998	480 g/L SL			Zadoks 37– 39		7	6.88	9.72	2.34	MCPA-R083
(2375)	SE			57		14	5.69	8.76	2.25	
						21	4.59	8.02	2.22	
WHEAT STRAW										
	2-EHE	1.65	282	Pre-boot	1	30	< 0.25	< 0.25	ND	Barney, WP,
Canada, 2001	444 g/L			Zadoks 31		81	ND	< 0.25	< 0.25	2002,
(AC Cora)	EC									MCPA-R087
Haywood, MB, Canada, 2001	DMA salt	1.70	283	Pre-boot Zadoks 31	1	30	ND	ND	ND	
(AC Cora)	480 g/L SL					81	ND	< 0.25	< 0.25	
Haywood, MB,		1.74	285	Pre-boot	1	30	ND	ND	ND	
Canada, 2001 (AC Cora)	300 g/L SL			Zadoks 31		81	ND	< 0.25	< 0.25	
Elm Creek, MB	2-EHE	1.65	271	Pre-boot	1	30	1.11	1.76	0.46	Barney, WP,
Canada, 2001	444 g/L EC			Zadoks 32– 34		63	<u>0.37</u>	0.94	0.48	2002, MCPA- R086
(Majestic)										
Elm Creek, MB	DMA salt	1.62	268	Pre-boot Zadoks 32–	1	30	0.46	0.66	0.25	
Canada, 2001	480 g/L SL			24 34		63	0.29	1.06	0.35	
(Majestic)	3L									
Elm Creek, MB	NA salt	1.64	273	Pre-boot	1	30	< 0.25	0.31	< 0.25	
Canada, 2001	300 g/L			Zadoks 32– 34		63	< 0.25	0.64	0.27	
(Majestic)	SL									
Barnwell, AB	2-EHE	1.70	286	Pre-boot	1	30	5.09	0.80	0.52	Barney, WP,
Canada, 2001	444 g/L			Zadoks 36– 37		64	<u>3.98</u>	1.73	0.49	2002, MCPA- R088
(Soft White)	EC									

WHEAT	Application	1				PHI	Residues	mg/kg,		Reference
							(MCPA a	acid equiv	7)	Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСР А	ССРА	Reference No.
Barnwell, AB	DMA salt	1.74	291	Pre-boot	1	30	2.43	0.30	0.39	
Canada, 2001 (Soft White)	480 g/L SL			Zadoks 36– 37		64	1.79	0.95	0.34	
Barnwell, AB	NA salt	1.74	288	Pre-boot	1	30	1.79	< 0.25	< 0.25	
	300 g/L SL			Zadoks 36– 37		64	0.76	0.51	ND	
Fairview, AB, Canada, 2001 (Canadian Western White EXP3)	2-EHE 444 g/L EC	1.71	289	Pre-boot Zadoks 36– 37	1	31 93	0.89 <u>ND</u>	0.42 ND	< 0.25 ND	Barney, WP, 2002, MCPA- R089
Canada, 2001 (Canadian Western	DMA salt 480 g/L SL	1.70	287	Pre-boot Zadoks 36– 37	1	31 93	0.70 ND	0.32 ND	< 0.25 ND	
Canada, 2001 (Canadian Western	NA salt 300 g/L SL	1.76	289	Pre-boot Zadoks 36– 37	1	31 93	0.42 ND	< 0.25 ND	< 0.25 ND	-
Canada, 2001	2-EHE 444 g/L EC	1.76	294	Pre-boot Zadoks 37– 38	1	30 63	6.47 <u>1.62</u>	4.54 2.27	1.28 0.59	Barney, WP, 2002, MCPA-R085
Canada, 2001	DMA salt 480 g/L SL	1.80	298	Pre-boot Zadoks 37	1	30 79	4.51 1.02	3.88 1.68	0.81 0.50	
Canada, 2001	NA salt 300 g/L SL	1.76	293	Pre-boot Zadoks 37	1	30 79	3.21 0.66	2.17 1.32	0.71 0.38	
Canada, 2003	2-EHE 444 g/L EC	1.84	299	Pre-boot Zadoks 37	1	30 79	6.05 <u>2.99</u>	0.96 2.18	0.55 0.27	Jones, GL, 2005, MCPA-R090
Canada, 2003	DMA salt 480 g/L SL	1.81	300	Pre-boot Zadoks 37	1	30 79	4.66 2.45	0.99 1.76	0.69 0.34	
	NA salt 300 g/L SL	1.85	300	Pre-boot Zadoks 37	1	30 79	2.61 1.10	0.62 1.42	048. ND	
Canada, 2003	2-EHE 444 g/L EC	1.79	295	Pre-Boot Zadoks 14– 22	1	30 73	ND <u>ND</u>	ND ND	ND ND	Jones, GL, 2005, MCPA-R091
Canada, 2003	DMA salt 480 g/L SL	1.74	293	Pre-Boot Zadoks 14– 22	1	30 73	ND ND	ND ND	ND ND	

WHEAT		Application	l				PHI	Residues	mg/kg,		Reference
								(MCPA a	cid equiv	<i>i</i> )	Author, year
country, y (variety)	year	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	HMCP A	ССРА	Reference No.
Delisle, Canada, 2003 (AC Cadillac)		NA salt 300 g/L SL	1.87	298	Pre-Boot Zadoks 14– 22	1	30 73	ND ND	ND ND	ND ND	
Rosetown, Canada, 2003 (AC Barrie)		2-EHE 444 g/L EC	1.77	291	Pre-Boot Zadoks 22– 31	1	30 69	2.69 <u>0.31</u>	0.64 ND	0.23 ND	Jones, GL, 2005, MCPA-R092
Rosetown, Canada, 2003 (AC Barrie)		DMA salt 480 g/L SL	1.71	287	Pre-Boot Zadoks 22– 31	1	30 69	2.69 < 0.25	0.86 ND	0.28 < 0.25	
Rosetown, Canada, 2003 (AC Barrie)	SK,	NA salt 300 g/L SL	1.83	293	Pre-Boot Zadoks 22– 31	1	30 69	4.17 0.29	1.06 0.26	0.43 ND	
Canada, 2004 (Intrepid)	-	2-EHE 444 g/L EC	1.86	275	Pre-Boot Zadoks 31– 33	1	31 80		0.37 0.54	0.30 ND	Jones, GL, 2006, MCPA-R098
Vanscoy, Canada, 2004 (Intrepid)		DMA salt 480 g/L SL	1.83	277	Pre-Boot Zadoks 31– 33	1	30 80	2.34 0.26	0.39 0.34	0.32 ND	
Vanscoy, Canada, 2004 (Intrepid)		NA salt 300 g/L SL	1.87	278	Pre-Boot Zadoks 31– 33	1	30 80	0.90 < 0.25	< 0.25 0.26	< 0.25 ND	
Taber, Canada, 2004 (Intrepid)		2-EHE 444 g/L EC	1.99	297	Pre-Boot Zadoks 31– 33	1	40 92	ND <u>ND</u>	ND ND	ND ND	Jones, GL, 2006, MCPA-R099
Taber, Canada, 2004 (Intrepid)		DMA salt 480 g/L SL	1.98	295	Pre-Boot Zadoks 31– 33	1	40 92	ND ND	ND ND	ND ND	
Taber, Canada, 2004 (Intrepid)		NA salt 300 g/L SL	2.21	293	Pre-Boot Zadoks 31– 33		33 92	ND ND	ND ND	ND ND	
Minto, N Canada, 2004 (AC Barrie)		2-EHE 444 g/L EC	1.97	292	Pre-Boot Zadoks 34– 37	1	30 85	3.41 <u>ND</u>	1.53 < 0.25	0.54 < 0.25	Jones, GL, 2006, MCPA-R100
Minto, N Canada, 2004 (AC Barrie)		DMA salt 480 g/L SL	2.01	299	Pre-Boot Zadoks 34– 37	1	30 85	2.65 ND	1.73 0.28	0.45 < 0.25	
Minto, N Canada, 2004 (AC Barrie)	-	NA salt 300 g/L SL	1.98	294	Pre-Boot Zadoks 34– 37	1	30 85	2.22 ND	1.32 0.25	0.44 < 0.25	
Boissevain, M Canada, 2004 (AC Barrie)		2-EHE 444 g/L EC	1.94	288	Pre-boot Zadoks 37	1	30 85	1.05 ND	0.89 ND	0.41 ND	Jones, GL, 2006, MCPA-R101

WHEAT	Application	l				PHI	Residues	mg/kg,		Reference
							(MCPA a	cid equiv	7)	Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	HMCP A	ССРА	Reference No.
· · · ·	DMA salt	1.95	289	Pre-boot	1	30	0.64	0.42	0.36	
Canada, 2004 (AC Barrie)	480 g/L SL			Zadoks 37		85	<u>0.82</u>	ND	ND	
Boissevain, MB,		1.95	290	Pre-boot	1	30	0.49	0.36	0.20	
Canada, 2004 (AC Barrie)	300 g/L SL			Zadoks 37		85	0.41	ND	ND	
· · · · ·	2-EHE	1.94	287	Pre-boot	1	30	3.12	1.17	0.78	Jones, GL, 2006,
Canada, 2004 (AC Intrepid)	444 g/L EC			Zadoks 37– 39		80	<u>0.65</u>	ND	0.26	MCPA-R102
Rosthern, SK,	DMA salt	1.93	287	Pre-boot	1	30	2.08	0.85	0.67	-
	480 g/L SL			Zadoks 37– 39		80	0.35	< 0.25	< 0.25	
	NA salt	1.94	289	Pre-boot	1	30	1.45	0.78	0.50	
Canada, 2004 (AC Intrepid)	300 g/L SL			Zadoks 37– 39		80	< 0.25	< 0.25	0.27	
	2-EHE	1.94	287	Pre-boot	1	30	6.18	1.95	0.63	Jones, GL, 2006,
Canada, 2004 (AC Barrie)	444 g/L EC			Zadoks 37– 39		77	1.09	0.66	< 0.25	MCPA-R103
	DMA salt	1.88	286	Pre-boot	1	30	2.62	1.07	0.34	
	480 g/L SL			Zadoks 37– 39		77	0.49	0.34	< 0.25	
Hepburn, SK,		1.92	286	Pre-boot	1	30	2.11	0.70	0.35	-
Canada, 2004 (AC Barrie)	300 g/L SL			Zadoks 37– 39		77	<u>2.51</u>	< 0.25	ND	
Innisfail, AB, Canada, 2004	2-EHE	2.00	296	Pre-boot Zadoks 35	1	30	3.66	0.70	0.37	Jones, GL, 2006,
-	444 g/L EC					98	<u>0.34</u>	0.36	< 0.25	MCPA-R104
Innisfail, AB, Canada, 2004	DMA salt	1.94	288	Pre-boot Zadoks 35	1	30	1.99	0.51	0.31	
(Foremost)	480 g/L SL					98	ND	< 0.25	< 0.25	
Innisfail, AB, Canada, 2004	NA salt 300 g/L	1.96	292	Pre-boot Zadoks 35	1	30	1.09	0.32	0.28	
(Foremost)	SL					98	ND	< 0.25	< 0.25	
Kansas, USA	DMA salt	1.66	263	Pre-boot Zadoks 37	1	30	12.4	9.53	1.13	Kludas, RS, 2000,
	480 g/L SL					59	<u>11.3</u>	8.91	0.99	MCPA-R081
Oklahoma, USA	DMA salt	1.74	247	Pre-boot	1	30	3.11	4.93	0.44	-
1997	480 g/L			Zadoks 37		54	1.72	4.31	0.44	
(TAM 200)	SL									

WHEAT	Application	l				PHI	Residues	mg/kg,		Reference
							(MCPA a	acid equiv	7)	Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	HMCP A	ССРА	Reference No.
Kansas, USA	2-EHE	1.76	278	Pre-boot	1	30	10.4	13.4	1.18	Kludas, RS, 2000,
	480 g/L			Zadoks 37		59	<u>7.19</u>	9.27	0.93	MCPA-R082
(Variety not reported)	EC									
Oklahoma, USA	2-EHE	1.75	248	Pre-boot	1	30	5.50	10.8	0.84	
	480 g/L			Zadoks 37		54	3.65	9.43	0.90	
(Variety nor reported)	EC									
	DMA salt	1.79	281	Pre-boot	1	30	2.96	3.93	1.42	Kludas, RS, 2000,
	480 g/L SL			Zadoks 37– 39		54	0.68	2.52	1.14	MCPA-R083
North Dakota,	2-EHE	1.83	282	Pre-boot	1	30	5.54	4.03	1.33	Kludas, RS, 2000,
	480 g/L			Zadoks 37– 39		54	<u>1.16</u>	2.67	0.94	MCPA-R084
< , , , , , , , , , , , , , , , , , , ,	EC									
New Holland, OH, USA, 2004		1.71	220	Pre-boot Zadoks 37	1	30	9.07	2.41	1.11	Jones, GL, 2006,
-	444 g/L EC			Zudoks 57		56	<u>1.73</u>	0.96	0.46	MCPA-R093
New Holland, OH,	DMA salt	1.71	220	Pre-boot	1	30	4.22	0.42	0.49	-
	480 g/L			Zadoks 37		56	0.92	0.62	0.35	
(SC 1358)	SL									
New Holland, OH,		1.75	224	Pre-boot	1	30	4.49	0.74	0.56	-
	300 g/L SL			Zadoks 37		56	1.35	0.91	0.32	
(SC 1358)	SL									
	2-EHE	1.65	326	Pre-boot	1	30	ND	ND	ND	Jones, GL, 2006,
	444 g/L			Zadoks 36– 37		50	ND	ND	< 0.25	MCPA-R094
( 6)	EC									
LISA 2004		1.65	326	Pre-boot Zadoks 36–	1	30	0.34	ND	< 0.25	
	480 g/L SL			37		50	ND	ND	< 0.25	
(Thuruning)	51									
Redfield, SD, USA, 2004	NA salt 300 g/L	1.71	325	Pre-boot Zadoks 36–	1	30	< 0.25	ND	< 0.25	
	300 g/L SL			2adoks 36– 37		50	ND	ND	< 0.25	
(maranig)										
Larned, KS	2-EHE	1.78	285	Pre-boot	1	30	3.26	2.74	1.00	Jones, GL, 2006,
	444 g/L			Zadoks 39		70	<u>1.30</u>	0.53	< 0.25	MCPA-R095
(Jagalene)	EC									
	DMA salt	1.80	285	Pre-boot	1	30	3.73	1.28	0.50	1
	480 g/L SL			Zadoks 39		70	1.04	0.41	< 0.25	
(Jagalene)										

WHEAT	Application	1				PHI	Residues	s mg/kg,		Reference
							(MCPA	acid equi	v)	Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	HMCP A	ССРА	Reference No.
Larned, KS		1.81	286	Pre-boot	1	30	1.45	0.82	0.59	=
USA, 2004	300 g/L SL			Zadoks 39		70	0.80	< 0.25	ND	
(Jagalene)	~-									
Colony, OK	2-EHE	1.63	276	Pre-boot	1	30	4.26	5.43	2.00	Jones, GL, 2006,
USA, 2004	444 g/L			Zadoks 39		53	0.28	0.44	ND	MCPA-R096
(Pioneer 2157)	EC									
Colony, OK	DMA salt	1.65	278	Pre-boot	1	30	7.88	4.81	2.17	-
USA, 2004	480 g/L SL			Zadoks 39		53	1.16	0.54	0.28	
(Pioneer 2157)	5L									
Colony, OK		1.73	282	Pre-boot	1	30	5.23	5.27	2.02	-
USA, 2004	300 g/L SL			Zadoks 39		53	0.32	0.54	< 0.25	
(Pioneer 2157)	5L									
Groom, TX,	2-EHE	1.72	285	Pre-boot	1	30	6.44	9.26	1.28	Jones, GL, 2006,
USA, 2004	444 g/L			Zadoks 39		43	4.74	6.52	0.94	MCPA-R097
(Ogallala)	EC									
Groom, TX,	DMA salt	1.70	286	Pre-boot	1	30	5.91	7.29	1.08	_
USA, 2004	480 g/L			Zadoks 39		43	4.93	5.81	0.97	
(Ogallala)	SL									
Groom, TX,	NA salt	1.69	285	Pre-boot	1	30	5.68	5.78	0.96	-
	300 g/L			Zadoks 39		43	4.49	4.82	0.90	
(Ogallala)	SL									
WHEAT HAY										
	2-EHE	1.65	282	Pre-boot	1	7	49.3	39.6	6.76	Barney, WP,
Canada, 2001	2-EITE 444 g/L	1.05	202	Zadoks 31	1	/ 14	<u>49.5</u> 11.1	14.7	3.58	2002, w1,
(AC Cora)	EC					21	1.52	1.51	0.42	MCPA-R087
Haywood, MB,	DMA salt	1.70	283	Pre-boot	1	7	36.2	32.5	3.08	_
Canada, 2001	480 g/L	1.70	203	Zadoks 31	1	/ 14	13.6	52.5 11.5	3.08 3.24	
(AC Cora)	SL					21	1.27	1.76	0.35	
Haywood, MB,	NA colt	1.74	285	Pre-boot	1	7	24.9	19.0	2.86	_
	300 g/L	1./4	283	Zadoks 31	1	/ 14	24.9 6.79	7.27	2.80 3.06	
(AC Cora)	SL					21	0.79	0.78	< 0.25	
Elm Creek, MB	2-EHE	1.65	271	Pre-boot	1	7		8.95	1.33	Barney, WP.
	2-ЕПЕ 444 g/L	1.05	211	Zadoks 32-	-	/ 14	<u>13.5</u> 8.52	8.95 14.8	1.33 2.97	2002, MCPA-
(Majestic)	444 g/L EC			34		14 21	8.52 3.75	14.8 5.60	2.97 1.09	R086
		1.62	260	Dro has t	1					4
Elm Creek, MB		1.62	268	Pre-boot Zadoks 32-	1	7	9.65	10.5	2.34	
-	480 g/L SL			34		14	3.07	6.87	2.22	
(Majestic)						21	1.20	2.49	0.54	

WHEAT	Application	1				PHI	Residues	mg/kg,		Reference
							(MCPA a	icid equiv	r)	Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	HMCP A	ССРА	Reference No.
Elm Creek, MB	NA salt	1.64	273	Pre-boot	1	7	8.24	7.11	1.99	
Canada, 2001	300 g/L			Zadoks 32– 34		14	2.73	4.39	1.93	
(Majestic)	SL			_		21	1.31	2.62	0.30	
Barnwell, AB	2-EHE	1.70	286	Pre-boot	1	7	21.6	2.67	3.31	Barney, WP,
Canada, 2001	444 g/L			Zadoks 36– 37		14	11.1	1.78	1.37	2002, MCPA- R088
(Soft White)	EC			51		21	5.59	0.38	0.61	1000
Barnwell, AB	DMA salt	1.74	291	Pre-boot	1	7	16.0	2.04	2.66	-
Canada, 2001	480 g/L			Zadoks 36– 37		14	5.23	0.35	0.81	
(Soft White)	SL			57		21	2.55	0.25	0.48	
Barnwell, AB	NA salt	1.74	288	Pre-boot	1	7	10.8	1.36	1.54	-
Canada, 2001	300 g/L			Zadoks 36– 37		14	2.52	0.30	0.32	
(Soft White)	SL			57		21	0.81	< 0.25	< 0.25	
· · · · ·	2-EHE	1.71	289	Pre-boot	1	7	10.2	1.94	1.64	Barney, WP,
Canada, 2001 (Canadian Western	444 g/L			Zadoks 36– 37		14	5.32	0.69	0.89	2002, MCPA- R089
White EXP3)	EC			51		21	5.14	1.24	0.92	1009
						31	ND	ND	0.050	
	DMA salt	1.70	287	Pre-boot	1	7	10.5	2.07	2.10	-
Canada, 2001 (Canadian Western	480 g/L			Zadoks 36– 37		14	2.50	0.36	0.57	
White EXP3)	SL			57		21	1.89	0.60	0.69	
						31	ND	ND	0.10	
Fairview, AB,	NA salt	1.76	289	Pre-boot	1	7	14.6	2.28	3.24	-
Canada, 2001 (Canadian Western	300 g/L			Zadoks 36– 37		14	7.18	1.62	1.73	
White EXP3)	SL			57		21	1.34	0.41	0.36	
						31	ND	ND	0.090	
Rosthern, SK,	2-EHE	1.76	294	Pre-boot	1	7	15.7	2.88	4.07	Barney, WP,
Canada, 2001	444 g/L			Zadoks 36– 37		14	8.41	1.75	1.85	2002,
(Foremost CPS)	EC			57		21	3.82	2.13	0.56	MCPA-R085
	DMA salt	1.80	298	Pre-boot	1	7	14.8	2.62	3.62	-
Canada, 2001	480 g/L			Zadoks 37		14	8.75	1.82	2.01	
(Foremost CPS)	SL					21	6.43	2.37	1.30	
Rosthern, SK,	NA salt	1.76	293	Pre-boot	1	7	9.82	1.09	2.16	
Canada, 2001	300 g/L			Zadoks 37		14	5.55	1.09	1.20	
(Foremost CPS)	SL					21	2.24	1.58	0.45	
	2-EHE	1.84	299	Pre-boot	1	7	30.7	8.75	3.63	Jones, GL, 2005,
Canada, 2003	444 g/L			Zadoks 37		14	14.7	3.81	1.76	MCPA-R090
(CPS)	EC					21	8.90	2.08	1.01	

WHEAT	Application	1				PHI	Residues	mg/kg,		Reference
							(MCPA a	acid equiv	r)	Author, year
country, yea (variety)	ır Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	HMCP A	ССРА	Reference No.
	B, DMA salt	1.81	300	Pre-boot	1	7	17.9	3.69	1.87	=
Canada, 2003	480 g/L			Zadoks 37		14	6.02	1.63	1.21	
(CPS)	SL					21	5.54	1.86	1.14	
· · · · ·		1.85	300	Pre-boot	1	7	13.4	2.85	1.94	-
Canada, 2003	300 g/L SL			Zadoks 37		14	6.87	1.97	1.52	
(CPS)						21	3.55	1.11	0.43	
	, <b>2-</b> EHE	1.79	295	Pre-Boot	1	7	11.3	9.18	1.73	Jones, GL, 2005,
Canada, 2003	444 g/L			Zadoks 14– 22		14	3.72	1.48	0.99	MCPA-R091
(AC Cadillac)	EC					21	0.90	0.44	0.32	
	, DMA salt	1.74	293	Pre-Boot	1	7	6.17	5.95	1.43	
Canada, 2003	480 g/L			Zadoks 14– 22		14	2.36	1.15	0.95	
(AC Cadillac)	SL					21	0.67	0.50	0.53	
	, NA salt	1.87	298	Pre-Boot	1	7	3.63	3.45	0.99	-
Canada, 2003	300 g/L			Zadoks 14– 22		14	1.69	0.41	0.41	
(AC Cadillac)	SL					21	0.43	0.26	0.69	
	с <b>, 2-</b> ЕНЕ	1.77	291	Pre-Boot	1	7	32.0	7.01	2.30	Jones, GL, 2005,
Canada, 2003	444 g/L			Zadoks 22– 31		14	10.9	1.07	0.86	MCPA-R092
(AC Barrie)	EC					21	3.64	0.76	0.45	
	, DMA salt	1.71	287	Pre-Boot	1	7	30.4	7.27	2.68	
Canada, 2003	480 g/L			Zadoks 22– 31		14	11.6	2.25	0.93	
(AC Barrie)	SL					21	3.37	0.80	0.49	
		1.83	293	Pre-Boot	1	7	<u>50.5</u>	9.12	4.64	
Canada, 2003	300 g/L SL			Zadoks 22– 31		14	15.3	2.66	1.33	
(AC Barrie)						21	6.68	1.35	0.77	
	С, 2-ЕНЕ	1.86	275	Pre-Boot	1	7	26.5	4.13	2.22	Jones, GL, 2006,
Canada, 2004	444 g/L			Zadoks 31– 33		14	14.3	1.87	1.27	MCPA-R098
(Intrepid)	EC					21	4.20	0.53	0.45	
	, DMA salt	1.83	277	Pre-Boot	1	7	18.8	2.92	1.84	
Canada, 2004 (Intronid)	480 g/L			Zadoks 31– 33		14	7.36	1.18	0.78	
(Intrepid)	SL					21	3.44	0.52	0.37	
		1.87	278	Pre-Boot	1	7	10.4	1.95	1.23	1
Canada, 2004 (Intronid)	300 g/L SL			Zadoks 31– 33		14	3.89	0.87	0.66	
(Intrepid)						21	1.12	< 0.25	0.25	
	8, <b>2-</b> EHE	1.99	297	Pre-Boot	1	7	<u>11.3</u>	10.0	2.53	Jones, GL, 2006,
Canada, 2004	444 g/L			Zadoks 31– 33		14	1.57	1.51	0.44	MCPA-R099
(Intrepid)	EC					21	ND	ND	ND	

WHEAT		Application	l				PHI	Residues	mg/kg,		Reference
								(MCPA a	acid equiv	r)	Author, year
country, y (variety)	year	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	HMCP A	ССРА	Reference No.
Taber, Canada, 2004	· · ·	DMA salt	1.98	295	Pre-Boot Zadoks 31–	1	7	2.14	1.49	0.88	
(Intrepid)		480 g/L SL			33		14	< 0.25	ND	< 0.25	
	A D	NIA self	2.21	202	Dra Da at	1	21	ND	ND	ND	
Taber, Canada, 2004	AB,	NA sait 300 g/L	2.21	293	Pre-Boot Zadoks 31–	1	7 14	2.48 < 0.25	2.29 ND	0.83 ND	
(Intrepid)		SL			33		21	< 0.25 ND	ND	ND	
Minto, N	MB,	2-EHE	1.97	292	Pre-Boot	1	7	54.4	8.23	5.78	Jones, GL, 2006,
Canada, 2004		444 g/L			Zadoks 34– 37		14	25.6	4.57	2.66	MCPA-R100
(AC Barrie)		EC			57		21	11.8	4.22	1.81	
,	MB,	DMA salt	2.01	299	Pre-Boot	1	7	<u>66.0</u>	11.9	7.93	
Canada, 2004		480 g/L			Zadoks 34– 37		14	28.8	6.99	3.88	
(AC Barrie)		SL					21	16.2	8.03	2.23	
Minto, N Canada, 2004		NA salt	1.98	294	Pre-Boot Zadoks 34–	1	7	43.9	8.31	5.35	
(AC Barrie)		300 g/L SL			37		14	15.5	3.90	2.70	
							21	11.6	6.06	2.38	
Boissevain, M Canada, 2004		2-EHE	1.94	288	Pre-boot Zadoks 37	1	7	<u>15.7</u>	8.24	2.89	Jones, GL, 2006,
(AC Barrie)		444 g/L EC					14	5.15	6.28	1.55	MCPA-R101
Deinservin	MD	DMA self	1.05	200	Dee hoot	1	21	3.56	1.00	0.52	
Boissevain, M Canada, 2004		DMA salt 480 g/L	1.95	289	Pre-boot Zadoks 37	1	7 14	11.0 5.07	6.19 3.09	1.91 1.10	
(AC Barrie)		480 g/L SL					21	1.94	0.73	0.41	
Boissevain, M	MB,	NA salt	1.95	290	Pre-boot	1	7	8.79	3.48	1.85	
Canada, 2004	,	300 g/L SL			Zadoks 37		14	3.09		0.78	
(AC Barrie)		SL					21	0.86	0.36	0.28	
	SK,	2-EHE	1.94	287	Pre-boot	1	7	4.38	4.09	1.30	Jones, GL, 2006,
Canada, 2004		444 g/L			Zadoks 37– 39		14	2.93	2.90	0.73	MCPA-R102
(AC Intrepid)		EC					21	1.67	2.08	0.74	
Rosthern, Canada, 2004	SK,	DMA salt	1.93	287	Pre-boot Zadoks 37–	1	7	3.74	3.86	1.08	
(AC Intrepid)		480 g/L SL			Zadoks 37– 39		14	2.60	2.68	0.75	
							21	2.23	2.64	0.89	
Rosthern, Canada, 2004			1.94	289	Pre-boot Zadoks 37–	1	7	<u>6.68</u>	6.21	1.33	
(AC Intrepid)		300 g/L SL			39		14	4.01	5.05	1.24	
· · · ·	CIZ	2 FHF	1.04	207	Due la c	1	21	2.12	2.71	0.73	Less OF 2004
Hepburn, Canada, 2004		2-EHE 444 g/L	1.94	287	Pre-boot Zadoks 37–	1	7 14	<u>35.5</u> 11.0	7.23 14.7	4.64 1.33	Jones, GL, 2006, MCPA-R103
(AC Barrie)		444 g/L EC			39		14 21	5.00	14.7 3.89	0.74	WUCPA-K1U3
							<u> </u>	5.00	5.07	0.74	

WHEAT	Application	1				PHI	Residues	mg/kg,		Reference
							(MCPA a	acid equiv	7)	Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	HMCP A	ССРА	Reference No.
	DMA salt	1.88	286	Pre-boot	1	7	22.5	4.04	2.60	=
	480 g/L			Zadoks 37– 39		14	7.73	8.43	0.91	
(AC Barrie)	SL					21	3.92	2.32	0.65	
Hepburn, SK,		1.92	286	Pre-boot	1	7	12.4	3.02	2.12	-
	300 g/L SL			Zadoks 37– 39		14	4.71	4.94	0.79	
(AC Barrie)						21	1.82	1.50	0.45	
	2-EHE	2.00	296	Pre-boot	1	7	<u>32.7</u>	7.99	3.31	Jones, GL, 2006,
	444 g/L			Zadoks 35		14	15.7	3.72	2.12	MCPA-R104
(Foremost)	EC					21	10.5	2.71	1.48	
	DMA salt	1.94	288	Pre-boot	1	7	32.0	11.2	3.79	
	480 g/L			Zadoks 35		14	9.79	2.06	1.42	
(Foremost)	SL					21	8.11	1.46	1.30	
Innisfail, AB,		1.96	292	Pre-boot	1	7	32.3	25.6	4.77	
	300 g/L SL			16.1Zadoks 35		14	7.67	2.74	1.70	
(Foremost)						21	5.17	1.06	1.38	
New Holland, OH,	2-EHE	1.71	220	Pre-boot	1	7	<u>30.6</u>	6.84	2.83	Jones, GL, 2006,
	444 g/L			Zadoks 37		14	25.1	3.96	2.53	MCPA-R093
(SC 1358)	EC					21	16.1	3.11	1.60	
New Holland, OH,	DMA salt	1.71	220	Pre-boot	1	7	26.8	4.33	2.49	
	480 g/L SL			Zadoks 37		14	14.3	2.73	1.92	
(SC 1358)	SL					21	8.74	2.41	1.42	
New Holland, OH,	NA salt	1.75	224	Pre-boot	1	7	23.3	3.92	2.03	
	300 g/L SL			Zadoks 37		14	10.7	1.98	1.49	
(SC 1358)						21	7.74	1.85	0.98	
Redfield, SD,	2-EHE	1.65	326	Pre-boot	1	7	5.02	4.17	1.29	Jones, GL, 2006,
USA, 2004	444 g/L			Zadoks 36– 37		14	3.12	2.39	1.07	MCPA-R094
(Harding)	EC			51		21	3.56	1.89	0.80	
	DMA salt	1.65	326	Pre-boot	1	7	7.34	4.60	1.79	-
	480 g/L			Zadoks 36– 37		14	1.98	1.50	0.39	
(Harding)	SL					21	2.74	2.36	0.59	
Redfield, SD,		1.71	325	Pre-boot	1	7	6.86	2.93	2.28	-
	300 g/L SL			Zadoks 36– 37		14	2.56	1.11	0.66	
(Harding)						21	2.01	0.72	0.57	
Larned, KS	2-EHE	1.78	285	Pre-boot	1	7	10.9	3.81	3.21	Jones, GL, 2006,
	444 g/L			Zadoks 39		14	5.87	1.71	2.00	MCPA-R095
1	EC	1		1	I	21	6.22	3.44	2.48	1

WHEAT	Application	1				PHI	Residues	mg/kg,		Reference
							(MCPA a	icid equiv	r)	Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	HMCP A	ССРА	Reference No.
Larned, KS	DMA salt	1.80	285	Pre-boot	1	7	6.95	1.92	1.85	
USA, 2004	480 g/L SL			Zadoks 39		14	5.71	1.59	1.78	
(Jagalene)	SE					21	5.84	1.50	1.57	
Larned, KS		1.81	286	Pre-boot	1	7	2.20	0.88	0.87	
USA, 2004	300 g/L SL			Zadoks 39		14	1.66	0.66	0.74	
(Jagalene)	SE					21	1.53	0.75	0.74	
Colony, OK	2-EHE	1.63	276	Pre-boot	1	7	15.6	5.65	6.06	Jones, GL, 2006,
USA, 2004	444 g/L			Zadoks 39		14	11.2	5.61	6.76	MCPA-R096
(Pioneer 2157)	EC					21	9.27	5.52	5.48	
Colony, OK	DMA salt	1.65	278	Pre-boot	1	7	30.9	5.89	8.08	
USA, 2004	480 g/L SL			Zadoks 39		14	17.8	3.78	5.12	
(Pioneer 2157)	SL					21	7.09	2.86	3.20	
Colony, OK	NA salt	1.73	282	Pre-boot	1	7	24.7	7.13	7.70	
USA, 2004	300 g/L SL			Zadoks 39		14	13.1	4.28	4.92	
(Pioneer 2157)	5L					21	11.4	5.52	4.66	
Groom, TX,	2-EHE	1.72	285	Pre-boot	1	7	16.6	4.41	2.63	Jones, GL, 2006,
USA, 2004	444 g/L			Zadoks 39		14	8.73	2.08	1.98	MCPA-R097
(Ogallala)	EC					21	9.01	3.90	2.20	
Groom, TX,	DMA salt	1.70	286	Pre-boot	1	7	20.9	2.58	2.16	
USA, 2004	480 g/L			Zadoks 39		14	14.0	3.73	2.00	
(Ogallala)	SL					21	8.20	2.53	1.40	
Groom, TX,		1.69	285	Pre-boot	1	7	17.9	3.57	2.55	
USA, 2004	300 g/L SL			Zadoks 39		14	13.2	3.92	2.54	
(Ogallala)	5L					21	11.0	6.05	2.31	
Kansas, USA	2-EHE	1.76	278	Pre-boot	1	7	16.7	18.4	1.24	Kludas, RS, 2000,
1998	480 g/L			Zadoks 37		14	7.27	8.98	0.74	MCPA-R082
(Variety not reported)	EC					21	5.85	8.12	0.66	
Oklahoma, USA	2-EHE	1.75	248	Pre-boot	1	7	8.09	10.6	1.04	
1998	480 g/L			Zadoks 37		14	5.30	8.53	0.70	
(Variety nor reported)	EC					21	8.35	13.3	0.84	
North Dakota,	2-EHE	1.83	282	Pre-boot	1	7	23.3	26.7	4.67	Kludas, RS, 2000,
USA, 1998	480 g/L			Zadoks 37– 39		14	11.6	15.1	3.20	MCPA-R084
(2375)	EC					21	9.58	13.6	3.09	
Kansas, USA	DMA salt	1.66	263	Pre-boot	1	7	<u>19.8</u>	14.5	1.64	Kludas, RS, 2000,
1997	480 g/L			Zadoks 37		14	11.7	11.1	1.27	MCPA-R081
(TAM 105)	SL					21	7.22	7.85	0.70	

WHEAT	Application	l				PHI	Residues	mg/kg,		Reference
							(MCPA a	icid equiv	r)	Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	HMCP A	ССРА	Reference No.
Oklahoma, USA 1997	DMA salt 480 g/L	1.74	247	Pre-boot Zadoks 37	1	7 14			0.42 0.40	
(TAM 200)	SL					21			0.48	
North Dakota, USA, 1998 (2375)	DMA salt 480 g/L SL	1.79	281	Pre-boot Zadoks 37– 39		7 14 21	18.7 13.1 9.42	22.0 19.5 15.2		Kludas, RS, 2000, MCPA-R083

LOQ = 0.25 mg/kg for straw and hay.

LOD = 0.12 mg/kg for MCPA, 0.11 mg/kg for 2-HMCPA, and 0.10 mg/kg for CCPA.

Table 55 MCPA acid equivalent residues in treated wheat forage and straw resulting from supervised trials in Austria, the UK, France and Spain (Pfarl, C, 1994, MCPA-R070; Rawle, NW, 2001, MCPA R071; Old, J and Venuti, J, 2001, MCPA-R062; Wasser, C, 2000, MCPA-R063; Old, J, and Duncan, P, 2001, MCPA-R066; Perny, A, 2001, MCPA-R067; Old, J, *et al.*, 2001, MCPA-R060; Wasser, C, 2000, MCPA-R061; Old, J, and Duncan, P, 2001, MCPA-R064; Perny, A, 2001, MCPA-R065)

WHEAT	Application					PHI	Residues	mg/kg,		Reference
							(MCPA a	acid equiv)		Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМРСА	ССРА	Reference No.
WHEAT FOR	AGE					1	1			
Ansfelden, Austria 1992 (Star A3)	DMA salt 281 g/L SL	0.8	200	BBCH 31	1	0 15 28	16.2 0.71 0.09	-	_	Pfarl, DIC, 1994, MCPA-R070
Lestious, France, 1999 (Isengrain)	DMA salt 750 g/L SL	1.77	248	BBCH 30	1	0 7 14 28	89.0 <u>7.50</u> 0.99 0.87	0.82 0.45 0.45 0.10	_	Old, J, Venuti, J, 2001, MCPA R062; Wasser, C, 2000,
Suffolk, UK 1999 (Consort)	DMA salt 750 g/L SL	1.80	251	BBCH 30- 31	1	0 7 14 28	66.0 <u>23.0</u> 5.90 1.40	1.20 1.00 0.43 0.19	_	MCPA-R063
Essex, UK 2000 (Hereward)	DMA salt 750 g/L SL	1.75	244	BBCH 30	1	0	113	0.25		Old, J, Duncan, P, 2001, MCPA-R066; Perny, A, 2001, MCPA-R067

WHEAT	Application				PHI	Residue	s mg/kg,	Reference		
							(MCPA	acid equiv)	Author, year	
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМРСА	ССРА	Reference No.
Poncey les Athee, France, 2000 (Soissons)	DMA salt 750 g/L SL	1.84	255	BBCH 31	1	0	57	ND		
Charantonnay, France, 1999 (Soissons)	K-salt 400 g/L SL	1.22	250	BBCH 30	1	0 7 14 28	37.0 <u>1.10</u> 0.40 0.06	0.99 0.57 ND ND	_	Old J, <i>et. al.</i> , 2001, MCPA-R060; Wasser, C, 2000,
St, Jordi de Muller, Spain (Soissons)	K-salt 400 g/L SL	1.21	248	BBCH 30	1	0 7 14 28	24.0 <u>1.40</u> 0.50 0.13	0.20 0.05 0.07 ND		MCPA-R061
Charantonnay, France, 2000 (Isengrain)	K-salt 400 g/L SL	1.26	258	BBCH 30	1	0	61	0.17		Old, J, and Duncan, P, 2001,
· •	K-salt 400 g/L SL	1.24	252	BBCH 30- 31	1	0	45	0.27		–MCPA-R064; Perny, A, 2001, MCPA-R065
WHEAT STRA	AW		<u> </u>		l					
Austria	DMA salt 281 g/L SL	0.8	200	BBCH 31	1	70	< 0.05	_	_	Pfarl, DIC, 1994 MCPA-R070
Montgaillard, France, 1998 (Victo)	Na Salt 800 g/L SL	1.87	259	BBCH 32- 33	1	86	0.22	-	_	Rawle, NW, 2001 MCPA- R071
Lestious, France, 1999 (Isengrain)	DMA salt 750 g/L SL	1.77	248	BBCH 30	1	118	0.09	ND	_	Old, J, Venuti, J, 2001, MCPA R062;
Suffolk, UK 1999 (Consort)	DMA salt 750 g/L SL	1.80	251	BBCH 30- 31	1	109	0.05	ND		-Wasser, C, 2000, MCPA-R063
Essex, UK 2000 (Hereward)	DMA salt 750 g/L SL	1.75	244	BBCH 30	1	127	ND	ND	_	Old, J, Duncan, P, 2001, MCPA-R066; - Perny, A, 2001,
Poncey les Athee, France, 2000 (Soissons)	DMA salt 750 g/L SL	1.84	255	BBCH 31	1	109	<u>&lt; 0.05</u>	ND	_	–Perny, A, 2001, MCPA-R067

WHEAT	Application						Residues	mg/kg,	Reference	
							(MCPA a	cid equiv)		Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМРСА	ССРА	Reference No.
Charantonnay, France, 1999 (Soissons)	K-salt 400 g/L SL	1.22	250	BBCH 30	1	111	<u>ND</u>	ND	_	Old J, <i>et. al.</i> , 2001, MCPA-R060;
St, Jordi de Muller, Spain (Soissons)	K-salt 400 g/L SL	1.21	248	BBCH 30	1	98	<u>ND</u>	< 0.05		Wasser, C, 2000, MCPA-R061
Charantonnay, France, 2000 (Isengrain)	K-salt 400 g/L SL	1.26	258	BBCH 30	1	120	<u>&lt; 0.05</u>	< 0.05	_	Old, J, and Duncan, P, 2001, MCPA-R064;
Olius, Spain 2000 (Tremier)	K-salt 400 g/L SL	1.24	252	BBCH 30- 31	1	104	<u>&lt; 0.05</u>	ND	_	Perny, A, 2001, MCPA-R065

LOQ = 0.25 mg/kg for straw and hay.

LOD = 0.12 mg/kg for MCPA, 0.11 mg/kg for 2-HMCPA, and 0.10 mg/kg for CCPA.

Table 56 MCPA acid equivalent residues in treated maize forage and stover resulting from supervised trials in Canada and the USA (Jones, GL, 2007, MCPA-R077; Belcher, 2008, MCPA-R078)

MAIZE	Application			PHI Residues mg/kg, (MCPA acid equiv)			)	Reference Author, year		
country, year (variety)	Form.	U	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
CORN FORAC	θE		•	•		•	•	•	•	
MD Canada	444 a/L EC	0.89	209	15 cm height	1	0 1 3 7 14 28 45 60 75	54.9 14.0 6.30 1.81 0.47 ND ND ND	1.04 1.00 0.51 < 0.25 ND ND ND ND ND	ND < 0.25 < 0.25 ND ND ND ND ND ND	Jones, GL, 2007, MCPA-R077

MAIZE	Application				PHI	Residues	mg/kg,	Reference		
						(MCPA	acid equiv	)	Author, year	
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
	DMA salt	0.87	206	15 cm	1	0	60.8	1.26	ND	
MB, Canada, 2005 , (Cargill	480 g/L SL			height		1	34.3	1.75	< 0.25	
OKC2675)						3	8.42	0.53	< 0.25	
						7	1.28	< 0.25	ND	
						14	0.33	ND	ND	
						28	ND	ND	ND	
						45	ND	ND	ND	
						60	ND	ND	ND	
						75	ND	ND	ND	
	NA + K salt	0.77	203	15 cm	1	0	73.1	1.01	ND	
MB, Canada, 2005 , (Cargill	300 g/L SL			height		1	46.8	1.55	< 0.25	
OKC2675)						3	12.7	0.65	< 0.25	
						7	1.86	< 0.25	ND	
						14	0.51	ND	ND	
						28	ND	ND	ND	
						45	ND	ND	ND	
						60	ND	ND	ND	
						75	ND	ND	ND	
	2-EHE 444 g/L EC	0.90	211	30 cm height	1	87	ND	ND	ND	Jones, GL, 2007,
(Monsanto DKC 27-12)										MCPA-R077
Carman, MB, Canada, 2005	DMA salt	0.89	210	30 cm height	1	87	ND	ND	ND	
(Monsanto DKC 27-12)	480 g/L SL			neight						
	NA + K salt 300 g/L SL	0.80	211	30 cm height	1	87	ND	ND	ND	
(Monsanto DKC 27-12)										
Canada 2005	2-EHE 444 g/L EC	0.88	212	10–12 cm height	1	98	ND	ND	ND	Jones, GL, 2007, MCPA–R077
Canada 2005	DMA salt 480 g/L SL	0.84	203	10–12 cm height	1	98	ND	ND	ND	
Paris, ON,	NA + K salt 300 g/L SL	0.88	210	10–12 cm height	1	98	ND	ND	ND	

MAIZE	Application				PHI		s mg/kg, acid equiv	Reference Author, year		
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Canada 2005	2-EHE 444 g/L EC	0.90	216	10 cm	1	90	ND	ND	ND	Jones, GL, 2007, MCPA–R077
St. Pie, QC, Canada, 2005 (2555NK)	DMA salt 480 g/L SL	0.92	225	10 cm	1	90	ND	ND	ND	
St. Pie, QC, Canada, 2005 (2555NK)	NA + K salt 300 g/L SL	0.89	212	10 cm	1	90	ND	ND	ND	
MD Conodo	2-EHE 444 g/L EC	0.89	206	8–10 cm height	1	14 75	0.26 ND	ND ND	ND ND	Belcher, TI, 2008, MCPA-R078
Elm Creek, MB, Canada, 2006 , (Cargill DKC27-12)	DMA salt 480 g/L SL	0.88	207	8–10 cm height	1	14 75	ND ND	ND ND	ND ND	
	NA + K salt 300 g/L SL	0.88	208	8–10 cm height	1	14 75	< 0.25 ND	ND ND	ND ND	
ON Canada		0.86	203	10–15 cm height	1	96	ND	ND	ND	Belcher, TI, 2008, MCPA-R078
Thamesford, ON, Canada, 2006 (Pioneer 38A25)	DMA salt 480 g/L SL	0.85	204	10–15 cm height	1	96	ND	ND	ND	_
	NA + K salt 300 g/L SL	0.87	205	10–15 cm height	1	96	ND	ND	ND	
Ingersoil, ON, Canada, 2006 Maizex 3888)	2-EHE 444 g/L EC	0.86	204	10–15 cm height	1	90	ND	ND	ND	Belcher, TI, 2008, MCPA-R078
Ingersoil, ON, Canada, 2006 Maizex 3888)	DMA salt 480 g/L SL	0.85	203	10–15 cm height	1	96	ND	ND	ND	
Ingersoil, ON, Canada, 2006 Maizex 3888)	NA + K salt 300 g/L SL	0.86	203	10-15 cm height	1	96	ND	ND	ND	

MAIZE	Application				PHI		s mg/kg, acid equiv	Reference Author, year		
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
St. Pie, QC, Canada, 2006 (N22-T8)	2-EHE 444 g/L EC	0.90	214	8 cm height	1	90	ND	ND	ND	Belcher, TI, 2008, MCPA-R078
Canada 2006	DMA salt 480 g/L SL	0.87	209	8 cm height	1	90	ND	ND	ND	_
	NA + K salt 300 g/L SL	0.91	213	8 cm height	1	90	ND	ND	ND	_
CORN STOVE	R									
MB Canada		0.89	209	15 cm height	1	114	ND	ND	ND	Jones, GL, 2007, MCPA–R077
MB Canada	DMA salt 480 g/L SL	0.87	206	15 cm height	1	114	ND	ND	ND	
	NA + K salt 300 g/L SL	0.77	203	15 cm height	1	114	ND	ND	ND	_
Carman, MB, Canada, 2005 (Monsanto DKC 27-12)	2-EHE 444 g/L EC	0.90	211	30 cm height	1	114	ND	ND	ND	Jones, GL, 2007, MCPA-R077
Carman, MB, Canada, 2005 (Monsanto DKC 27-12)	DMA salt 480 g/L SL	0.89	210	30 cm height	1	114	ND	ND	ND	
Carman, MB, Canada, 2005 (Monsanto DKC 27-12)	NA + K salt 300 g/L SL	0.80	211	30 cm height	1	114	ND	ND	ND	
Canada 2005	2-EHE 444 g/L EC	0.88	212	10–12 cm height	1	129	<u>ND</u>	ND	ND	Jones, GL, 2007, MCPA-R077
Canada 2005	DMA salt 480 g/L SL	0.84	203	10–12 cm height	1	129	ND	ND	ND	
	NA + K salt 300 g/L SL	0.88	210	10–12 cm height	1	129	ND	ND	ND	

MAIZE	Application					PHI	Residues	s mg/kg,		Reference
							(MCPA	acid equiv	)	Author, year
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	MCPA	НМСРА	ССРА	Reference No.
Canada 2005	2-EHE 444 g/L EC	0.90	216	10 cm	1	132	ND	ND	ND	Jones, GL, 2007, MCPA-R077
St. Pie, QC, Canada, 2005 (2555NK)	DMA salt 480 g/L SL	0.92	225	10 cm	1	132	ND	ND	ND	
St. Pie, QC, Canada, 2005 (2555NK)	NA + K salt 300 g/L SL	0.89	212	10 cm	1	132	ND	ND	ND	
Elm Creek, MB, Canada, 2006 , (Cargill DKC27-12)		0.89	206	8–10 cm height	1	130	ND	ND	ND	Belcher, TI, 2008, MCPA-R078
MB Canada	DMA salt 480 g/L SL	0.88	207	8–10 cm height	1	130	ND	ND	ND	
	NA + K salt 300 g/L SL	0.88	208	8–10 cm height	1	130	ND	ND	ND	
ON Canada		0.86	203	10–15 cm height	1	146	ND	ND	ND	Belcher, TI, 2008, MCPA-R078
Thamesford, ON, Canada, 2006 (Pioneer	DMA salt 480 g/L SL	0.85	204	10–15 cm height	1	146	ND	ND	ND	
ON, Canada, 2006 (Pioneer	NA + K salt 300 g/L SL	0.87	205	10–15 cm height	1	146	ND	ND	ND	_
38A25) Ingersoil, ON, Canada, 2006 Maizex 3888)	2-EHE 444 g/L EC	0.86	204	10–15 cm height	1	145	ND	ND	< 0.25	Belcher, TI, 2008, MCPA-R078
Ingersoil, ON, Canada, 2006 Maizex 3888)	DMA salt 480 g/L SL	0.85	203	10–15 cm height	1	145	ND	ND	ND	
Ingersoil, ON, Canada, 2006 Maizex 3888)	NA + K salt 300 g/L SL	0.86	203	10–15 cm height	1	145	ND	ND	< 0.25	

MAIZE	Application					Residues (MCPA a			Reference Author, year
country, year (variety)	Form.	kg ae/ha	 Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
St. Pie, QC, Canada, 2006 (N22-T8)	2-EHE 444 g/L EC	0.90	8 cm height	1	135	<u>ND</u>	ND	< 0.25	Belcher, TI, 2008, MCPA-R078
St. Pie, QC, Canada, 2006 (N22-T8)	DMA salt 480 g/L SL	0.87	8 cm height	1	135	ND	ND	< 0.25	
St. Pie, QC, Canada, 2006 (N22-T8)	NA + K salt 300 g/L SL	0.91	8 cm height	1	135	ND	ND	ND	

ND = not detected.

LOQ = 0.25 mg/kg for straw and hay.

LOD = 0.12 mg/kg for MCPA, 0.11 mg/kg for 2-HMCPA, and 0.10 mg/kg for CCPA.

## Grass forage and hay

A total of eight supervised field trials were conducted on pasture and rangeland to determine the residues of MCPA and its metabolites in grass forage and hay following treatment with either the DMA salt or 2-EHE formulation, each containing 480 g/L MCPA acid equivalent (Kludas, RS, 1999, MCPA-R111; Kludas, RS, 2000, MCPA-R112, MCPA-R123 and MCPA-R124). Four trials (two pasture grass and two rangeland) were conducted using the 2-EHE formulation, and another four trials (two pasture grass and two rangeland) were conducted using the DMA salt formulation. Each plot received two applications of either formulation at the rate of 2.24 kg ai/ha at intervals of 90 days. Pasture grass and rangeland forage and hay (air dried in the field) were harvested 7, 14 and 21 days after the first application and 7, 14, 21 and 30 days following the second application.

Samples were frozen and maintained frozen until analysis. Information on hydrolysis could be found in the analytical methods parts. Table 57 summarizes the storage interval conditions. The storage stability study indicates that residues of MCPA and its metabolites are stable for up to 369 days of freezer storage in pasture grass forage or hay. Although the maximum storage intervals for grass hay exceeded the maximum intervals utilized in the storage stability study, it should be noted that the majority of grass hay samples were within the supported storage interval.

Table 57 Summary of storage conditions (Kludas, RS, 1999, MCPA-R111; Kludas, RS, 2000, MCPA-R112, MCPA-R123 and MCPA-R124)

Matrix	Storage temp,	Actual storage duration,	Limit of demonstrated stability
	°C	days	
Pasture grass, forage	-30 °C to -10 °C	126–391 days	Storage stability data indicate that
Pasture grass, hay		152–431 days	residues of MCPA and its metabolites were stable for up to 369 days of
Rangeland grass, forage		70–353 days	freezer storage in pasture grass forage or hay.)
Rangeland grass, hay		195–454 days	or may. )

Results of trials on pasture and rangeland grasses are summarized in Table 58.

## МСРА

# Table 58 MCPA acid equivalent residues in treated pasture and rangeland grasses resulting from supervised trials in Canada and USA (Kludas, RS, 1999, MCPA-R111; Kludas, RS, 2000, MCPA-R112, MCPA-R123 and MCPA-R124)

GRASSES	Application					PHI	Residues (MCPA		Reference Author, year	
country, year (variety)	Form.	kg ae/ha	water, l/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
GRASS FOR	AGE									
USA 1997	2-EHE (480 g/L EC)	2.41	227	4–6" grass/ weeds	1 st	7 14 21	<ul><li>31.6</li><li>38.7</li><li>21.9</li></ul>	3.49 4.88 2.85	0.57 0.64 0.37	Kludas, RS, 2000, MCPA- R112
(Fescue)		2.40	278	6–8" grass/ weeds		7 14 21 30	<u>94.3</u> 31.3 21.7 24.7	10.1 8.82 4.13 5.04	2.91 2.90 1.54 1.18	-
Texas, USA, 1997 (Bermuda)	2-EHE (480 g/L EC)	2.52	291	6" tall grass	1 st	7 14 21	<u>31.0</u> 19.6 10.3	23.2 15.2 7.38	2.44 3.05 1.59	Kludas, RS, 2000, MCPA- R112
		2.54	294	· ···· 8·····	2 nd (After 3 months)	7 14 21 30	<u>16.4</u> 9.94 4.54 3.19	11.6 7.04 3.14 1.88	2.37 1.86 0.85 0.54	
	2-EHE (480 g/L EC)	2.42	279	Before or at seed head (grass)		0 7 14	147 18.3 9.34	1.27 15.5 14.1	0.09 2.08 1.64	Kludas, RS, 2000, MCPA- R124
Brome grass)		2.41	278	No seed heads (grass)		0 7 14 21	208 22.2 10.7 5.50	3.84 19.1 17.9 8.51	0.25 4.66 3.35 1.24	-
Oklahoma, USA, 1997 (Brome	2-EHE (480 g/L EC)	2.44	283	3"tall blades (grass); 8- 12" tall weeds		0 7 14	216 70.2 17.2	2.73 8.23 2.95	0.09 0.09 0.09	Kludas, RS, 2000, MCPA- R124
grass, Fescue, Bermuda native grasses)		2.45	284	grasses	2 nd (After 3 months)	0 7 21 30	234 <u>53.5</u> 22.5 9.98	0.89 8.70 5.44 2.33	0.22 0.37 0.22 0.09	
Missouri, USA, 1997 (Fescue)	DMA salt (480 g/L SL)	2.43	283	4–6" tall grass/weeds	1 st	7 14 21	30.9 <u>40.5</u> 38.8	4.15 5.23 4.37	0.40 0.48 0.43	Kludas, RS, 1999, MCPA-

GRASSES	Application	l				PHI	Residue		Reference	
							(MCPA	acid equiv)		Author, year
country, year (variety)	Form.	kg ae/ha	water, l/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
		2.37	274		2 nd	7	38.5	4.65	0.76	R111
				grass/weeds		14	17.5	3.54	0.53	
					months)	21	12.1	2.02	0.28	
						30	16.0	2.35	0.39	
Texas, USA	DMA salt	2.52	294	6" tall grass	1 st	7	19.9	11.1	3.22	Kludas, RS,
	(480 g/L					14	7.64	4.16	1.61	1999,
(Bermuda)	SL)					21	8.45	5.14	1.65	MCPA- R111
		2.53	296	6" tall grass	2 nd	7	14.7	9.68	1.99	
						14	7.55	5.95	1.60	
					months)	21	2.97	2.49	0.64	
						30	2.57	1.81	0.63	
South	DMA salt	2.35	274	Prior to	1 st	0	195	1.60	0.22	Kludas, RS,
Dakota, USA, 1997	(480 g/L			grass seed head		7	21.0	9.91	1.39	2000,
	SL)			formation		21	6.85	8.72	0.93	MCPA- R123
		2.41	282	Grass,	2 nd	0	327	3.23	0.22	K125
					(After 3	7	31.0	24.8	8.16	
					months	21	18.3	38.7	5.40	
						30	15.8	16.4	3.31	
Oklahoma,	DMA salt	2.42	283	Grass, 3"	1 st	0	267	5.14	0.09	Kludas, RS,
USA, 1997	(480 g/L			tall blades		7	108	9.39	0.39	2000,
(Brome grass,	SL)					21	32.7	4.10	0.16	MCPA- R123
Fescue,		2.43	284	Grass, 6–	2 nd	0	248	1.81	0.09	K125
Bermuda native grass)				10" tall	(After 3	7	49.5	6.04	0.22	
nun (e grubb)					months	21	22.1	3.57	0.22	
						30	18.7	3.81	0.16	
GRASS HAY										
Missouri,	2-EHE	2.41	227	4–6" grass/	1 st	7	102	7.63	2.95	Kludas, RS,
USA	(480 g/L			weeds		14	49.9	4.45	1.27	2000,
	EC)					21	48.8	7.19	1.31	MCPA- R112
(Fescue)		2.40	278	6–8" grass/	2 nd	7	68.0	6.42	2.37	K112
		2.10	270	weeds		/ 14	46.1	4.36	1.32	
					months)	21	51.7	13.3	4.41	
						30	49.7	8.33	1.87	
Texas, USA,	2 EHE	2.52	291	6" tall grass	1 st	30 7	<u>49.7</u> <u>80.7</u>	64.0	13.5	Kludas, RS,
	2-EHE (480 g/L	2.32	291	o tan grass	1	/ 14	<u>80.7</u> 35.5	64.0 22.7	13.5 7.23	Kiudas, KS, 2000,
(Bermuda)	(480 g/L EC)					14 21	35.5 19.9	12.6	3.19	MCPA-
(Berniuda)						21	19.9	12.0	5.19	

Country year of the stage         Description         Carry of the stage         Description         D	RASSES	Application					PHI	Residues (MCPA	s mg/kg, acid equiv)		Referen Author,		
South Dakota, USA, 1997 (Bluegrass, Brome grass)         2-EHE (480 g/L (EC)         2.42 (Af2)         279 (P)         Before or at seed head (grass)         1 ^d (After (grass))         0         14.4 (After (months)         3.14 (After (after (grass))         10.0 (After (after (grass))         11.5 (After (after (grass))         10.0 (After (after (grass))         11.4 (after (after (grass))         10.0 (After (after (grass))         14.4 (after (after (grass))         10.0 (after (after (grass))         14.4 (after (after (grass))         10.0 (after (after (grass))         11.4 (after (after (grass))         10.0 (after (after (grass))         11.4 (after (after (grass))         10.0 (after (grass))         11.4 (after (grass))         11.4 (after (grass))         10.0 (after (grass))         11.4 (after (grass))         11.4 (after (grass))         11.4 (after (grass))         11.4 (after (grass))         11.4 (after (grass))         11.4 (after (grass))         11.4 (after (grass))         11.4 (after (grass))         11.4 (after (grass))         12.4 (after (grass))         12.4 (after (grass)) <th< th=""><th></th><th>Form.</th><th>kg ae/ha</th><th></th><th></th><th>no.</th><th>days</th><th>МСРА</th><th>НМСРА</th><th>ССРА</th><th>Referent No.</th><th>ce</th></th<>		Form.	kg ae/ha			no.	days	МСРА	НМСРА	ССРА	Referent No.	ce	
South Dakota, USA. 1997 (Bluegrass, Brome grass)         2-EHE (480 g/L EC)         2.42 2.41         279 2.41         Before or at seed head (grass)         1 ^d 1 ^d 1 ^d 1 ^d 1 ^d 1 ^d 1 ^d 1 ^d			2.54	294	6" tall grass	2 nd	7	35.1	25.3	4.79	R112		
Image: South Dakota, USA, 1997         2-EHE (480 g/L) (480 g/L) (5.)         2.42         2.42         2.79         Before or at seed head (grass)         1         1.5         9.05         2.35         2.40         2.00         2.22         1.17           South Dakota, USA, 1997         (480 g/L) (5.)         2.42         279         Before or at seed head (grass)         1 ^d 0         190         15.0         0.87         2.42         2000, 17.7         2.42         2000, 17.7         2.42         2000, 17.7         2.42         2000, 17.7         2.42         2000, 17.7         2.42         2000, 17.7         2.42         2000, 17.7         2.42         2000, 17.7         2.42         2000, 17.7         2.42         2000, 17.7         2.42         2000, 17.7         2.42         2000, 17.7         2.42         2000, 17.7         2.42         2000, 17.7         2.42         2000, 17.7         2.42         2.43         2.41         27.8         No seed 2 rd (After 3, 7         14.8         16.8         3.95         30         10.8         8.40         3.16           Oklahoma, USA, 1997         2.44         2.43         284         6-10° tall 2 rd (After 3, 7         9.48         12.7         0.87         7         14.4         34.4         5.93         0					C	(After 3	14	19.0	14.4	3.80			
South Dakota, USA, 1997 (Brome grass)         2-EHE (480 g/L (C)         2.42         279         Before or al seed head (grass)         1 ^{at} 0         190         15.0         0.87         Kluda 2000, MCPA R124           Billegrass, Brome grass)         C         440 g/L         24.2         29.0         2.82         2000, MCPA R124           Oklahoma, USA, 1997         2-EHE (480 g/L         2.41         278         No heads (grass)         Cher (armoths)         0         248         5.51         0.09           Oklahoma, USA, 1997         2-EHE (C)         2.44         283         3'tall blades (grass)         1 ^{at} 0         15.3         4.49         0.87         Kluda 2000, 2000,           1997         EC)         2.45         284         6-10" tall         2 nd 0         176         6.78         0.87         7           (Brome grasses, Bermuda native grasses         DMA salt         2.43         283         4-6" tall         2 nd 0         176         6.78         0.87         7         94.8         12.7         0.87           24.6         DMA salt         2.43         283         4-6" tall         1 ^{at} 7         196         14.9         2.19         14.0         19.9							21	11.5	9.05	2.35			
Dakota, 1997 (Bluegrass, Brome grass)         (480 g/L (C))         480 g/L (A)         (480 g/L)							30	4.22	2.32	1.17			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	outh	2-EHE	2.42	279	Before or at	1 st	0	190	15.0	0.87	Kludas,	RS,	
(Bluegrass, Brome grass)         EC         Image: Comparison of the comparison	akota,	(480 g/L					7	42.5	29.0	2.82	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bluegrass,	EC)			(grass)		14	17.0	27.7	2.42	MCPA- R124		
$ \left( \begin{array}{c} \left( \operatorname{grass} \right) \\ \left( \operatorname{grass} \right) \\ \left( \operatorname{grass} \right) \\ \left( \operatorname{Ater} {}^{3} \right) \\ \left( A$	rome grass)		2.41	278	No seed	2 nd	0	248	5.51	0.09	1(12)		
Oklahoma, USA, 1997         2-EHE (A80 g/L EC)         2.44         283 (grass); EC)         3"tall blades (grass); Bermuda native grasses)         1 st 2.45         0         153 (grass); Bermuda native grasses         0         153 (A49         4.49         0.87 (BTOM (A14)         Kluda 3.16           24.6         DMA salt (ssouri, USA, 1997         2.43         283         4-6" tall grass/weeds         14         34.4         5.93         0.87         Kluda 2000, MCPA R124           24.6         DMA salt (ssouri, USA, 1997         2.43         283         4-6" tall grass/weeds         1 st 14         7         196 (After 30         14.9         2.19         Kluda 1999, 21         0.87           24.6         DMA salt (ssouri, USA, 1997         2.43         283         4-6" tall grass/weeds         1 st 14         7         196 (After 30         14.9         2.19         Kluda 1999, 21         94.7         6.09         0.82           [Fescue)         DMA salt (Su g/L (Bermuda)         2.52         294         6" tall grass         1 st 14         7         54.8         37.6         10.3         Kluda 1999           1997         (480 g/L (Bermuda)         2.53         296         6" tall grass         1 st 14         7         37.4         19.7         4.35           <							7	27.6	21.2	6.03			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					(51033)	months)	21	14.8	16.8	3.95			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							30	10.8	8.40	3.16			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2-EHE	2.44	283		1 st	0	153	4.49	0.87	Kludas,	RS,	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	USA, 1997				0 //		7	97.4	13.8	0.87			
		EC)					14	34.4	5.93	0.87	MCPA- R124		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			2.45	284	6–10" tall	2 nd	0	176	6.78	0.87			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	escue,					grasses		7	94.8	12.7	0.87		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						months)	21	34.2	7.10	0.87			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	rasses)						30	19.0	2.72	0.09			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.6	DMA salt	2.43	283		1 st	7	<u>196</u>	14.9	2.19	Kludas,	RS,	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					grass/weeds		14	86.3	7.20	0.98	-		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		SL)					21	94.7	6.09	0.82			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fescue)		2.37	274		2 nd	7	29.9	3.24	0.85			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					grass/weeds		14	25.1	5.06	1.16			
Texas, USA       DMA salt       2.52       294       6" tall grass       1st       7       54.8       37.6       10.3       Kluda:         1997       (480 g/L       SL)       2.52       294       6" tall grass       1st       7       54.8       37.6       10.3       Kluda:         1997       (480 g/L       SL)       2.1       10.9       7.05       2.14       MCPA         R111       2.53       296       6" tall grass       2 nd 7 <u>37.4</u> 19.7       4.35         (After 3       14       21.4       13.8       3.87						months)	21	39.4	6.27	1.40			
$ \begin{array}{c} 1997 \\ (Bermuda) \end{array} \left( \begin{array}{c} (480 \text{ g/L} \\ \text{SL}) \end{array} \right) \\ \hline \\ 2.53 \\ \end{array} \left( \begin{array}{c} 2.53 \\ 296 \\ \end{array} \right) \left( \begin{array}{c} 0 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$							30	24.8	3.83	1.30			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	exas, USA	DMA salt	2.52	294	6" tall grass	1 st	7	54.8	37.6	10.3	Kludas,	RS,	
$(Bermuda) = \begin{bmatrix} 21 & 10.9 & 7.05 & 2.14 \\ 2.53 & 296 & 6" tall grass & 2^{nd} & 7 & 37.4 & 19.7 & 4.35 \\ (After 3 & 14 & 21.4 & 13.8 & 3.87 \end{bmatrix} R111$		uda) (480 g/L SL)			14	19.9	12.7	5.77					
2.53 296 6" tall grass $2^{nd}$ 7 $37.4$ 19.7 4.35 (After 3 14 21.4 13.8 3.87	Bermuda)				21	10.9	7.05	2.14	MCPA- R111				
(After 3 14 21.4 13.8 3.87	(_ • • • • • • • • • • • • • • • • • • •		2.53	296	6" tall grass	2 nd	7	37.4	19.7	4.35			
months) 21 11.6 7.63 2.29			2.53 296	· ···· 8·····	(After 3	14		13.8	3.87				
				months)	21	11.6	7.63	2.29					
30 4.18 2.70 1.26								4.18	2.70				

GRASSES	Application					PHI	Reference			
							(MCPA	acid equiv)		Author, year
country, year (variety)	Form.	kg ae/ha	water, l/ha	Growth stage	no.	days	МСРА	НМСРА	ССРА	Reference No.
Dakota, USA 1997	DMA salt (480 g/L SL)	2.35	274	Prior to grass seed head formation	1 st	0 7 21	326 31.9 12.4	8.44 14.5 15.8	< 0.87 2.74 2.37	Kludas, RS, 2000, MCPA- R123
Brome grass)		2.41	282	Grass, vegetative	2 nd (After 3 months	0 7 21 30	523 <u>40.3</u> 24.6 12.5	3.51 14.7 12.8 16.5	0.87 13.2 7.81 3.60	
USA, 1997	DMA salt (480 g/L SL)	2.42	283	tall blades	1 st	0 7 21	273 <u>217</u> 79.2	7.82 16.6 5.85	1.08 1.00 0.87	Kludas, RS, 2000, MCPA- R123
Fescue, Bermuda native grass)		2.43	284	Grass, 6– 10" tall	2 nd (After 3 months	0 7 21 30	134 <u>81.0</u> 33.3 25.4	7.11 8.10 3.74 3.76	0.87 0.87 0.87 0.87	

## Grasslands

A total of six supervised trials were conducted on <u>grasslands</u> in Europe (three in Northern France and three in the UK) (Old, J, and Venuti, J, 2001, MCPA-R119; Gallais, C, 2001, MCPA-R120; Old, J, and Duncan, P, 2001, MCPA-R115; Perny, A, 2001, MCPA-R116). An additional four trials were conducted in Southern Europe (two in France and two in Spain) (Old, J, and Orpella, M, 2001, MCPA-R121; Gallais, C, 2001, MCPA-R122; Old, J, *et al.*, 2001, MCPA-R117; Perny, A, 2001, MCPA-R118).

Samples of whole plants were collected from each trial immediately after application and again at 7, 14, 28 and 56 days after the application. Samples were stored frozen (-20 °C). The storage period from collection to analysis ranged from 230 to 434 days. The storage stability study indicates that residues of MCPA and its metabolites are stable for up to 369 days of freezer storage in pasture grass forage or hay. Information on hydrolysis could be found in the analytical methods parts. Results are summarized in Table 59.

Table 59 MCPA acid equivalent residues in treated grasses resulting from supervised trials in Austria, the UK, France and Spain (Old, J, and Venuti, J, 2001, MCPA-R119; Gallais, C, 2001, MCPA-R120; Old, J, and Duncan, P, 2001, MCPA-R115; Perny, A, 2001, MCPA-R116; Old, J, and Orpella, M, 2001, MCPA-R121; Gallais, C, 2001, MCPA-R122; Old, J, *et al*, 2001, MCPA-R117; Perny, A, 2001, MCPA-R118)

GRASSES	Application				PHI	Residues mg/kg,	Reference
country, year (variety)		0	 Growth stage	no.	days		Author, year Reference No.
GRASS FORA	GE						

Application					PHI	Residues	s mg/kg,		Reference
		water,		no.	days	(MCPA	acid equiv)	)	Author, year
	ae/ha	L/ha	stage						Reference No.
	1.01	0.50	DDCIL 41	1	0		1.20	1	
	1.81	253	BBCH 31- 33	1	-			_	Old, J, and Venuti, J, 2001,
750 g/L SL								_	MCPA-R119;
							< 0.05	_	Gallais, C, 2001,
					28	1.40	< 0.05	_	MCPA-R120
					56	0.20	< 0.05	_	MCFA-K120
DMA salt	1.74	242		1	0	98.0	0.05	_	
750 g/L SL			60		7	4.90	< 0.05	_	
					14	<u>1.10</u>	< 0.05	_	
					28	0.76	< 0.05	_	
					56	0.38	< 0.05	_	
DMA salt	1.79	249		1	0	128	0.12	_	Old, J, and
750 g/L SL			26		7	8.10	0.24	_	Duncan, P, 2001,
					14	<u>4.60</u>	0.12	_	MCPA-R115;
					28	0.78	< 0.05	_	Perny, A, 2001,
					56	< 0.05	ND	_	MCPA-R116
DMA salt	1.82	252		1	0	85.0	< 0.05	_	
750 g/L SL			30		7	9.50	0.12	_	
					14	<u>5.10</u>	0.08	_	
					28	0.90	ND	_	
					56	0.08	ND	_	
DMA salt	1.84	256		1	0	59.0	0.31	_	Old, J, and
750 g/L SL			29		7	13.0	0.20	_	Duncan, P, 2001,
					14	<u>5.60</u>	0.16	_	MCPA-R115;
					28	3.20	0.08	_	Perny, A, 2001,
					56	1.40	0.14	_	MCPA-R116
DMA salt	1.80	250		1	0	10.0	0.28	-	-
750 g/L SL			61		7	40.0	0.56	_	
					14	5.60	0.60	_	
					28	1.70	0.36	_	
					55	0.62	0.16	_	
DMA, 400 g/L SL	1.2–1.6	200	active	1	_	МСРА	НМСРА	ССРА	
	Form. Form. DMA salt 750 g/L SL DMA salt 750 g/L SL	Form.       kg ae/ha         DMA salt       1.81         750 g/L SL       1.81         DMA salt       1.74         750 g/L SL       1.74         DMA salt       1.74         750 g/L SL       1.79         DMA salt       1.79         750 g/L SL       1.82         DMA salt       1.82         750 g/L SL       1.82         DMA salt       1.82         750 g/L SL       1.84         DMA salt       1.84         750 g/L SL       1.80         DMA salt       1.80         750 g/L SL       1.80         DMA salt       1.2–1.6	Form.       kg ae/ha       water, L/ha         DMA salt       1.81       253         750 g/L SL       1.81       253         DMA salt       1.74       242         DMA salt       1.74       242         DMA salt       1.79       249         DMA salt       1.79       249         DMA salt       1.82       252         DMA salt       1.82       252         DMA salt       1.84       256         DMA salt       1.84       256         DMA salt       1.80       250         DMA salt       1.80       250         DMA salt       1.80       250         DMA salt       1.80       250         DMA,       1.2–1.6       200	Form.       kg ac/ha       water, L/ha       Growth stage         DMA salt       1.81       253       BBCH 31-         DMA salt       1.74       242       BBCH 24-         DMA salt       1.74       242       BBCH 24-         DMA salt       1.79       249       BBCH 24-         DMA salt       1.79       249       BBCH 24-         DMA salt       1.82       252       BBCH 24-         DMA salt       1.82       256       BBCH 24-         DMA salt       1.84       256       BBCH 24-         DMA salt       1.84       256       BBCH 24-         DMA salt       1.80       250       BBCH 32-         DMA salt       1.80       250       BBCH 32-         DMA,       1.2-1.6       200       Weeds in	Form.         kg ae/ha         water, L/ha         Growth stage         no.           DMA salt         1.81         253         BBCH 31-         1           DMA salt         1.81         242         BBCH 24-         1           DMA salt         1.74         242         BBCH 24-         1           DMA salt         1.79         249         BBCH 24-         1           DMA salt         1.79         249         BBCH 24-         1           DMA salt         1.82         252         BBCH 24-         1           DMA salt         1.82         252         BBCH 24-         1           DMA salt         1.82         252         BBCH 24-         1           DMA salt         1.82         256         BBCH 24-         1           DMA salt         1.84         256         BBCH 24-         1           DMA salt         1.84         256         BBCH 32-         1           DMA salt         1.80         250         BBCH 32-         1           DMA, 400 g/L SL         1.2-1.6         200         Weeds in 1         1	Form.         kg ae/ha         water, L/ha         Growth stage         no.         days           DMA salt         1.81         253         BBCH 31- 33         1         0         7           750 g/L SL         1.81         253         BBCH 24- 60         1         0         7           750 g/L SL         1.74         242         BBCH 24- 60         1         0         7           750 g/L SL         1.79         249         BBCH 24- 26         1         0         7           750 g/L SL         1.79         249         BBCH 24- 26         1         0         7           750 g/L SL         1.82         252         BBCH 24- 26         1         0         7           750 g/L SL         1.82         252         BBCH 25- 30         1         0         7           750 g/L SL         1.84         256         BBCH 24- 29         1         0         7           750 g/L SL         1.84         256         BBCH 32- 1         1         0         7           750 g/L SL         1.80         250         BBCH 32- 1         1         0         7           750 g/L SL         1.80         250         BBCH 32- 1 <t< td=""><td>Form.         kg ae/ha         water, L/ha         Growth stage         no.         days         (MCPA)           DMA salt         1.81         253         BBCH 31- 33         1         0         80.0           750 g/L SL         1.81         253         BBCH 31- 33         1         0         80.0           DMA salt         1.74         242         BBCH 24- 60         1         0         98.0           750 g/L SL         1.74         242         BBCH 24- 1         0         98.0         98.0           DMA salt         1.79         249         BBCH 24- 26         1         0         128           750 g/L SL         1.79         249         BBCH 24- 26         1         0         128           750 g/L SL         1.82         252         BBCH 25- 30         1         0         85.0           70 g/L SL         1.84         256         BBCH 24- 1         0         85.0         14         56         0.08           DMA salt         1.84         256         BBCH 24- 1         1         0         59.0         14         560         28         3.20         56         1.40         28         3.20         56         1.40</td><td>Form.         kg ac/ha         water, L/ha         Growth stage         no.         days         (MCPA acid equiv)           DMA salt         1.81         253         BBCH         31-1         0         80.0         1.30           750 g/L SL         1.81         253         BBCH         31-1         0         80.0         1.30           750 g/L SL         1.74         242         BBCH         24-1         0         98.0         0.05           DMA salt         1.74         242         BBCH         24-1         0         98.0         0.05           DMA salt         1.79         249         BBCH         24-1         0         128         0.12           750 g/L SL         1.79         249         BBCH         24-1         0         128         0.12           750 g/L SL         1.82         252         BBCH         25-1         0         85.0         &lt;0.05</td>           76         0.90         14         <u>1.60</u>         0.12         28         0.78         &lt;0.05</t<>	Form.         kg ae/ha         water, L/ha         Growth stage         no.         days         (MCPA)           DMA salt         1.81         253         BBCH 31- 33         1         0         80.0           750 g/L SL         1.81         253         BBCH 31- 33         1         0         80.0           DMA salt         1.74         242         BBCH 24- 60         1         0         98.0           750 g/L SL         1.74         242         BBCH 24- 1         0         98.0         98.0           DMA salt         1.79         249         BBCH 24- 26         1         0         128           750 g/L SL         1.79         249         BBCH 24- 26         1         0         128           750 g/L SL         1.82         252         BBCH 25- 30         1         0         85.0           70 g/L SL         1.84         256         BBCH 24- 1         0         85.0         14         56         0.08           DMA salt         1.84         256         BBCH 24- 1         1         0         59.0         14         560         28         3.20         56         1.40         28         3.20         56         1.40	Form.         kg ac/ha         water, L/ha         Growth stage         no.         days         (MCPA acid equiv)           DMA salt         1.81         253         BBCH         31-1         0         80.0         1.30           750 g/L SL         1.81         253         BBCH         31-1         0         80.0         1.30           750 g/L SL         1.74         242         BBCH         24-1         0         98.0         0.05           DMA salt         1.74         242         BBCH         24-1         0         98.0         0.05           DMA salt         1.79         249         BBCH         24-1         0         128         0.12           750 g/L SL         1.79         249         BBCH         24-1         0         128         0.12           750 g/L SL         1.82         252         BBCH         25-1         0         85.0         <0.05	Form.         kg ae/ha         water, L/ha         Growth stage         no.         days         (MCPA acid equiv)           DMA salt         1.81         253         BBCH         31-1         0         80.0         1.30         -           750 g/L SL         1.81         253         BBCH         31-1         0         80.0         1.30         -           750 g/L SL         1.74         242         BBCH         24-1         0         98.0         0.05         -           750 g/L SL         1.74         242         BBCH         24-1         0         98.0         0.05         -           750 g/L SL         1.79         249         BBCH         24-1         0         128         0.12         -           750 g/L SL         1.79         249         BBCH         24-1         0         128         0.12         -           750 g/L SL         1.82         252         BBCH         25-1         0         85.0         <0.05

GRASSES	Application					PHI	Residues	mg/kg,		Reference
country, year (variety)	Form.	kg ae/ha	water, L/ha	Growth stage	no.	days	(MCPA acid equiv)			Author, year Reference No.
Velleches, France, 1999 (Fescue)	K-salt 400 g/L SL	1.62	250	BBCH 34- 59	1	0 7 14 28 56	138         19.0 <u>11.0</u> 7.50         3.00	0.27 0.12 0.05 < 0.05 < 0.05	- - -	Old, J, and Orpella, M, 2001, MCPA-R121; Gallais, C, 2001, MCPA-R122
Termens, Spain, 1999 (Rye grass)	K-salt 400 g/L SL	1.66	255	10–15 cm	1	0 7 14 28 56	<u>6.60</u> 3.00	0.39 0.27 0.15 0.16 0.05	- - -	
Cras sur Reyssouze, France, 2000 (Clover mix/RGA)	K-salt 400 g/L SL	1.63	254	BBCH 35	1	0 7 14 28 56		0.10 0.18 0.15 < 0.05 ND	-	Old, J, <i>et al</i> , 2001, MCPA R117; Perny, A, 2001, MCPA-R118
Vila-sana, Spain, 2000 (Lolium spp/Ilerda)	K-salt 400 g/L SL	1.60	250	BBCH 32	1	0 7 14 28 56	208 21.0 <u>3.70</u> 2.00 0.55	0.08 0.15 < 0.05 < 0.05 ND		

ND = not detected.

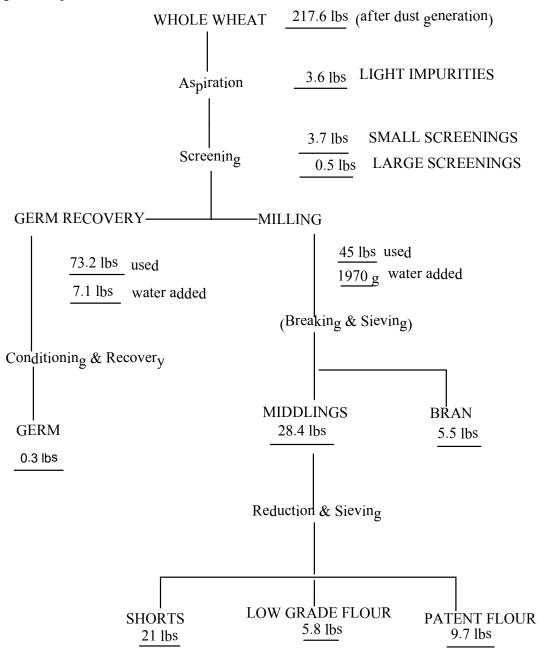
LOD = 0.016 mg/kg.

## FATES OF RESIDUES IN STORAGE AND PROCESSING

## Information and Data from Trials on Stored Products

MCPA is not used in stored products.

## Information and Data from Residues in Processed Commodities


#### Wheat

Two processing studies on <u>wheat</u> were conducted in the US using either the 2-EHE EC formulation or the DMA salt SL formulation (Kludas, RS, 2000, MCPA-R133 and MCPA-R134). Samples of wheat grain that were used for processing were obtained from two field trials conducted during the 1998 growing season in the US. Wheat grain (RAC) were collected 53 days following a single broadcast application of the DMA salt SL formulation containing 480 g ae/L MCPA or the 2-EHE EC formulation containing 480 g ae/L MCPA at the exaggerated rate of 6.9 to 7.0 kg ae/ha in 245 to 246 L of water/ha using ground boom sprayer.

Bulk samples of treated and control wheat grain for processing were collected and stored at the field facility under ambient conditions for 28 days and then shipped to the processing facility,

where the samples were stored frozen prior to processing. Wheat grain was processed using simulated commercial procedures into germ, bran, middlings, shorts and flour within 63 to 94 days of harvest. A brief description of the processing procedure follows.

Wheat grain samples were circulated through a dust-generating apparatus consisting of a bucket conveyor, drag conveyors and holding bins. After the aspirated grain fraction was separated, the wheat grain was cleaned by aspiration. A portion of the cleaned grain was adjusted to 16% moisture, broken into small pieces in a corrugated rolling mill and sieved to separate bran from germ (including endosperm). A second portion of cleaned wheat grain was again adjusted to 16% moisture, broken four times in corrugated roller mills and sieved to produce bran, middlings, low-grade flour and patent flour. Middlings were reduced in a smooth roller mill and sieved to separate shorts, low-grade flour and patent flour. Low-grade and patent flour were combined with the flour from the other break steps. Processing samples were shipped to the laboratory for analysis. The processing flow chart is presented in Figure 2 and represents the procedures used for both the DMA salt and 2-EHE treated grain samples.



## Figure 2 Wheat Processing Flow Chart

Samples were stored frozen (approximately -20 °C) after processing. The maximum storage interval of processing study samples from harvest/processing to analysis was 338 days for wheat grain; 390 to 404 days for flour, germs, middlings, and shorts; and 496 days for bran. Storage stability studies on wheat grain and flour demonstrated that MCPA and HMCPA are stable in wheat grain up to 545 days and in flour up to 541 days under frozen storage conditions. Information on hydrolysis could be found in analytical methods part.

The results (Table 60) indicate that combined residues of MCPA and HMCPA, expressed as acid equivalents, do not concentrate in germ, shorts, middlings and flour but concentrate slightly in bran.

Table 60 Residues of MCPA and HMCPA in wheat processed fractions (Kludas, RS, 200	), MCPA-
R133 and MCPA-R134)	

Processed Fractions	Residues (Avera	age)		Process Factor	Reference
	Mg/kg				
	МСРА	НМСРА	Total		
DMA salt trial	- I	1	<b></b>	- I	•
Wheat (RAC, field)	0.012, 0.018	< 0.01, 0.01	0.025	-	Kludas, RS,
	(0.015)	(0.01)			2000,
Wheat (RAC, pre-process)	0.011, 0.026	< 0.01, < 0.01	0.029	-	MCPA-R133
	(0.019)	(< 0.01)			
Germ	< 0.01, < 0.01	< 0.01, < 0.01	< 0.02	< 0.67	
Bran	< 0.01, < 0.01	0.02, 0.03	0.035	< 0.67	
	(< 0.01)	(0.025)			
Middlings	< 0.01, < 0.01	0.01, 0.02	0.025	< 0.67	
	(< 0.01)	(0.015)			
Shorts	< 0.01, < 0.01	0.01, 0.02	0.025	< 0.67	
	(< 0.01)	(0.015)			
Flour	< 0.01, < 0.01	< 0.01, < 0.01	< 0.02	< 0.67	
2-EHE trial	- I		1	<b>I</b>	
Wheat (RAC, field)	0.030, 0.038	0.02, 0.03	0.059	—	Kludas, RS,
	(0.034)	(0.025)			2000,
Wheat (RAC, pre-process)	0.024, 0.034	< 0.01, 0.02	0.044	-	MCPA-R134
	(0.029)	(0.015)			
Germ	< 0.01, < 0.01	< 0.01, < 0.01	< 0.02	< 0.29	
	(< 0.01)	(< 0.01)			
Bran	0.01, < 0.01	0.02, 0.02	0.03	< 0.29	
	(0.01)	(002)			
Middlings	< 0.01, < 0.01	< 0.01, 0.01	0.02	< 0.29	
	(< 0.01)	(0.01)			
Shorts	< 0.01, < 0.01	0.01, 0.01	0.02	< 0.29	
	(< 0.01)	(0.01)			
Flour	< 0.01, < 0.01	< 0.01, < 0.01	< 0.02	< 0.29	

Processed Fractions	Residues (Average)			Process Factor	Reference
	Mg/kg	Mg/kg			
	(< 0.01)	(< 0.01)			
Average Processing Factors					
Wheat (RAC, field)				-	
Wheat (RAC, pre-process)				-	
Germ				< 0.48	
Bran				< 0.48	
Middlings				< 0.48	
Shorts				< 0.48	
Flour				< 0.48	

## **RESIDUES IN ANIMAL COMMODITIES**

#### Farm animal feeding studies

#### Dairy cows

The Meeting received a lactating <u>dairy cow</u> feeding study, which provided information on likely residues resulting in animal tissues and milk from residues in the animal diet.

A cattle feeding study was conducted to determine the magnitude of residues of MCPA and its metabolites in milk and animal tissues (Koch, DA, 2007, MCPA-R137). Twelve lactating Holstein cows were orally dosed for 28 consecutive days with encapsulated MCPA via a balling gun at three different levels, following a 7-day acclimation period to the test facility. In addition three cows were maintained as controls and received placebo doses. Nominal dose levels were based upon the average body weight of the three cows in each treatment group and a test substance concentration of 50, 150, and 500 mg/kg in feed on a dry weight basis. This corresponds to  $1\times$ ,  $3\times$  and  $10\times$  of the anticipated dietary burden of MCPA residues expected in feedstuff produced from MCPA-treated feeds.

Milk sampling was initiated prior to treatment on Day 0. Milk samples were collected on Days 0, 1, 3, 7, 11, 14, 18, 21, 24 and 27. For the  $10 \times$  depuration group (and two of the controls), milk samples were also collected on Days 29 and 30. The evening samples were stored refrigerated overnight and then composited for each individual cow with the morning samples according to the ratio of PM and AM production. Aliquots of milk samples from day 27 for 3 of the 500 mg/kg treated cows were separated into cream and skim milk samples for the purpose of determining whether MCPA residues would preferentially concentrate into the cream fraction.

With the exception of two control and the three animals in the  $10 \times$  depuration group, all cows were necropsied and tissues (liver, kidney, muscle and fat) were collected at the end of the 28-day dosing period, within 24 hours after the last dose. The composite fat sample was prepared for each individual cow with equal amounts of perirenal, omental and subcutaneous fat. The composite muscle sample was prepared for each individual cow with equal amounts of round, loin and flank muscle. The two control cows and the depuration group animals were necropsied and sampled on Day 35.

All samples were stored frozen at -20 °C until extraction (approximate period of storage was 73 days). The storage stability studies conducted concurrently with this study confirmed that residues of MCPA are stable when stored frozen up to at least 4 months in liver and in milk, 5 months in kidney and fat, and 3 months in muscle samples. Samples from the metabolism study showed that MCPA, MCPA-glycine (milk only) and triglycerides (remaining tissues) were stable in frozen storage up to about 46 weeks. Residues in muscle, liver, kidney and fat after 28 days of dosing and after the

## МСРА

depuration period are summarized in Table 61. MCPA-equivalent residues in milk are summarized in Table 62.

Treatment level	Liver		Kidney		Composite	muscle	Composite	fat
mg/kg	28 days	35 days	28 days	35 days	28 days	35 days	28 days	35 days
0	< 0.05	-	< 0.05	-	< 0.05	-	< 0.05	-
(Control)	-	< 0.05	-	< 0.05	-	< 0.05	-	< 0.05
	-	< 0.05	-	< 0.05	-	< 0.05	-	< 0.05
Average	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
50	< 0.05	-	0.40	-	< 0.05	_	< 0.05	-
(1×)	< 0.05	-	0.28	-	< 0.05	-	< 0.05	-
	< 0.05	-	0.41	-	< 0.05	-	< 0.05	-
Average	< 0.05	-	0.36	-	< 0.05	-	< 0.05	-
150	0.06	-	0.60	-	< 0.05	-	< 0.05	-
(3×)	0.09	-	1.20	-	< 0.05	-	0.17	-
	< 0.05	-	0.63	-	0.08	-	0.12	-
Average	0.07	-	0.81	-	0.06	-	0.11	-
500	0.28	< 0.05	1.66	< 0.05	0.08	_	0.13	-
(10×)	0.25	< 0.05	2.44	0.05	0.05	-	0.12	-
	0.16	< 0.05	1.69	-	< 0.05	-	< 0.05	-
Average	0.23	< 0.05	1.93	< 0.05	0.06	-	0.10	-

Table 61 MCPA-equivalent residues (mg/kg) in edible tissues of cows following dosing for 28 consecutive days and depuration period of 7 days (Koch, DA, 2007, MCPA-R137)

Table 62 MCPA-equivalent residues in milk and cream from dairy cows dosed for 28 days (Koch, DA, 2007, MCPA-R137)

DAY	Treatme	nt, mg/kg							
	50 (1× d	50 (1× dose group)		150 (3×	dose group)	)	$500 (10 \times \text{dose group})$		
							Average from 6–7 cows		
	Milk			•					
1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.018, 0.019, 0.019, 0.020, 0.021, 0.024 (Average = 0.020)		
3							<0.01, 0.012, 0.014, 0.016, 0.018, 0.019 (Average = 0.015)		
7	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.012, 0.015, 0.019, 0.019, 0.022, 0.022, 0.039 (Average = 0.021)		
11							$\begin{array}{cccc} 0.013, & 0.013, & 0.013, & 0.014, & 0.016, & 0.019\\ (Average = 0.015) \end{array}$		
14	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.018, 0.018, 0.018, 0.020, 0.021, 0.028 (Average = 0.020)		
18							0.013, 0.015, 0.016, 0.017, 0.017, 0.019		

DAY	Treatme	nt, mg/kg					
	50 (1× d	ose group)	)	150 (3×	dose group	)	500 (10× dose group)
							Average from 6–7 cows
							(Average = 0.016)
21							0.011, 0.014, 0.016, 0.017, 0.018, 0.020 (Average = 0.016)
24							0.014, 0.017, 0.018, 0.020, 0.022, 0.043 (Average = 0.022)
27	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.013, 0.021, 0.022, 0.023, 0. 26, 0.031 (Average = 0.023)
	Depurat	ion period					
29							< 0.01, < 0.01, < 0.01
							(Average = < 0.01)
30							< 0.01, < 0.01, < 0.01
							(Average = < 0.01)
Cream					1	1	
27							0.015, 0.020, 0.017
							(Average = 0.017)

## **RESIDUES IN FOOD IN COMMERCE OR AT CONSUMPTION**

There are no data on market-basket monitoring studies available for MCPA.

## NATIONAL RESIDUE DEFINITIONS

Information was provided on national residue definitions for MCPA.

Australia

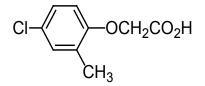
Commodities of plant and animal origin: MCPA.

Canada

Commodities of plant origin: MCPA + HMCPA.

Commodities of animal origin: MCPA.

## APPRAISAL


Residue and analytical aspects of MCPA were considered for the first by the present Meeting. It was scheduled for evaluation by the 2012 JMPR by the Forty-third Session of the CCPR.

MCPA is a herbicide in the phenoxyacetic acid class and works by concentrating in the actively growing regions of a plant (meristematic tissue), where it interferes with protein synthesis, cell division and the growth of the plant. It is used for the selective control of broadleaf weeds. MCPA is an acid, but it is usually formulated and applied as a salt, an amine salt or an ester.

The Meeting received information on physical and chemical properties, metabolism, environmental fate, analytical methods and freezer storage stability, national registered use patterns, as well as supervised trials, processing studies and livestock feeding studies.

The 2012 JMPR established an ADI for MCPA of 0–0.1 mg/kg bw/day and an ARfD of 0.6 mg/kg bw.

MCPA is 4-chloro-o-tolyloxyaceic acid.



СН

СНа

OH

ÇH₂CH₃

OCH₂CH₂CH₂CO₂H

OH

OH

СН,СН,СН,СН,

C1

 $\mathbf{C}$ 

Cl

HC

The following compounds are used for the metabolites discussed below:

MCPA DMA

(4-chloro-2-methylphenoxyacetic acid) dimethylamine salt

MCPA 2-EHE 2-ethylhexyl (4-chloro-2-methylphenoxy)acetate

MCPB 4-(4-chloro-2-methylphenoxy) butanoic acid

HMCPA or CHTA 2-hydroxy-4-chlorophenoxyacetic acid

CCPA 2-carboxy-4-chlorophenoxyacetic acid

#### Animal metabolism

Information was available on metabolism of MCPA in rats, lactating goats and laying hens.

In rats, following oral dose of uniformly ring-labelled [ 14 C]-MCPA, approximately 90% of the administered dose was excreted in urine, with low levels detected in faeces (~5% of the administered dose). MCPA ion was the major compound detected in rat excreta followed by HMCPA and glycine-conjugated MCPA. The proportions of MCPA and HMCPA in rat urine ranged from 51–80% and 6–16% of the administered dose, respectively. In rat faeces, MCPA and HMCPA accounted for approximately 1–2% and 1–7% of the administered dose, respectively. Following oral dosing of rats, there was no evidence of accumulation of radioactivity in any tissues, with the concentration in the majority of tissues lower than in blood.

In a <u>lactating goat</u> study, uniformly ring-labelled  $[^{14}C]$ -MCPA was fed to goats for 3 consecutive days at 694 and 832 ppm in feed. Following oral administration, the goats excreted the majority of the dose (99.3%) within 24 hours of dosing, primarily in the urine as unmetabolized MCPA. The primary  $[^{14}C]$  component excreted in faeces was also MCPA. Milk and tissues each

contained < 0.1% of the total radioactive residues. The small amount of MCPA that is not excreted is metabolized to the glycine conjugate of MCPA in milk and to an unknown metabolite mainly in liver, kidney, and bile, later identified as composed of three compounds of similar polarity, characterized as triglyceride-like compounds with a dechlorinated MCPA-like structure incorporated by ester or ether linkage.

Unchanged parent MCPA was a significant residue in goat fat (30.2% TRR, 0.042 mg/kg), in milk (28.5% TRR, 0.046 mg/kg), in muscle (22.3% TRR, 0.022 mg/kg) and only a small proportion of the residue in goat kidney (6.7% TRR, 0.060 mg/kg) and liver (4.9% TRR, 0.024 mg/kg).

The conjugate MCPA-glycine was a major residue in milk at 53.9% TRR (0.086 mg eq./kg) but wasn't found in fat, muscle, kidney and liver. Triglyceride-like compounds with a dechlorinated MCPA-like structure were identified as a major residue in fat (30.3% TRR, 0.042 mg eq./kg), kidney (57.4% TRR, 0.509 mg eq./kg) and liver (50.5% TRR, 0.242 mg eq./kg) and as a minor residue in muscle (0.2% TRR, <0.001 mg eq./kg).

Fifteen <u>laying hens</u> had uniformly ring-labelled [¹⁴C]-MCPA administered via feed at 100 ppm for 7 consecutive days, 99.5% of the radioactivity was recovered, primarily as MCPA and acid labile MCPA conjugates in the excreta. The tissues and eggs combined accounted for only 0.04% of the dose administered over 7 days. MCPA was the major component identified in egg white (90.3% TRR, 0.029 mg/kg), egg yolk (57.4% TRR, 0.127 mg/kg), fat (12.0% TRR, 0.004 mg/kg), thigh muscle (35.5% TRR, 0.006 mg/kg) and liver (78.2% TRR, 0.0663 mg/kg). The parent compound was a major component in animal muscle, fat, milk and egg. The metabolism of MCPA in rats, lactating goats and laying hens is qualitatively similar.

#### Plant metabolism

The Meeting received plant metabolism studies with MCPA on wheat and MCPB on peas.

Metabolism studies of MCPA in two different crops (wheat and peas) demonstrated that metabolism of MCPA was similar, and that the compound undergoes oxidation of the phenyl methyl, and the resulting hydroxymethyl compound forms conjugates, including a glucose conjugate. Further metabolism to the carboxyl compound (CCPA) is also seen.

A <u>wheat</u> metabolism study was conducted with [¹⁴C]-MCPA 2-EHE and [¹⁴C]-MCPA DMA, labelled with ¹⁴C in the ring position. The residue in forage and straw of wheat treated with either form of MCPA was qualitatively similar. A higher proportion of parent MCPA was found in the forage (54.4% TRR, 28.3 mg/kg) and straw (26.6% TRR, 35.9 mg/kg) of wheat for [¹⁴C]-MCPA DMA salt. A lower proportion of parent MCPA was found in forage (10.0% TRR, 3.30 mg/kg) and straw (13.7% TRR, 11.3 mg/kg) of wheat for [¹⁴C]-MCPA 2-EHE. The residue profiles in grain were similar for either form of MCPA. The main residue in grain was CCPA with a concentration of 25.3% TRR (0.103 mg/kg) for [¹⁴C]-MCPA 2-EHE, and 16.5% TRR (0.091 mg/kg) for [¹⁴C]-MCPA DMA. Analysis of the hydrolysates of the unextracted residue in forage and straw demonstrated the presence of conjugated forms of MCPA, HMCPA and CCPA. Unextractable residue in grain was subjected to chemical and enzymatic hydrolysis. Analysis of the hydrolysates of bound residue from grain demonstrated the presence of HMCPA and CCPA conjugates. A majority of the resident residue in grain was incorporated into cellular endogenous compounds, primarily glucose, which could be further incorporated into starch or cellulose.

MCPB breaks down into MCPA by the process of  $\beta$ -oxidation. MCPB metabolism study in peas could provide relevant information about the residue pattern of MCPA metabolized in plant. The metabolism of MCPB in <u>peas</u> was investigated using [¹⁴C]-MCPB uniformly labelled in the ring position, applied at the rate of 2.26 kg ai/ha. Although the majority of the residues were found in the mature and immature vine, adequate total radioactivity was found in mature pods (0.025 mg eq./kg), seeds (0.024 mg eq./kg) and foliage (4.97 mg eq./kg) to permit extraction and identification of major metabolites. A combination of acetone and acetone/water extracted the majority of the radiolabelled residue from mature vine (92% TRR, 4.57 mg eq./kg) and pod (86% TRR, 0.022 mg eq./kg). Solvents extracted only 38% TRR (0.0092 mg eq./kg) from mature seed. Another 40% TRR (0.0095 mg/kg)

was recovered by sequential base and acid hydrolysis. Some of the radiolabelled residue was identified in mature forage, pod and seed. Mature vine contained mainly the parent, 72% MCPB (3.59 mg/kg), 5.8% MCPA (0.29 mg/kg), and 13% polar unknowns (0.63 mg/kg). Mature pod contained 40% MCPB (0.01 mg/kg), 0.8% MCPA (0.0002 mg/kg) and 48% polar unknowns (0.012 mg/kg). Mature seed contained 1.2% MCPB (0.0003 mg/kg), 11.3% MCPA/MCPA ester (0.0027 mg/kg), 12.5% glucose conjugate of HMCPA (0.003 mg/kg) and about 27% polar unknowns (0.065 mg/kg). About 29% TRR was unaccounted, including 15% TRR in the residual solid. Based on the study, MCPA and MCPB are the major residues in mature pea vines and pods after treatment of with [¹⁴C]-MCPB. The minor residues of MCPB and MCPA were found in grain about 1.2%-4.2% TRR (0.0003-0.001 mg/kg).

## Environmental fate in soil

The Meeting received information on the environmental fate of MCPA in soil, including studies on aerobic soil metabolism, soil photolysis and crop rotational studies.

## Aerobic soil metabolism

The primary hydrolysis rate of ring-labelled [ 14 C]-MCPA 2-EHE was studied in two US soils, a clay loam and a sandy loam. MCPA 2-EHE hydrolysed quickly to MCPA in both soils. Half-life values ranged between 4.5 and 16.6 hours. A further study on aerobic metabolism and degradation of [ 14 C]-MCPA 2-EHE was conducted in a sandy loam soil for 209 days. The calculated half-life was 24 days. A total of 65.6% of applied radioactivity was evolved as volatile radioactivity identified as  14 CO₂ over the 209-day incubation period.

## Soil photolysis

 $[^{14}C]$ -MCPA degraded moderately under sunlight. PCOC which is the major degradate did not exceed 5.1% of applied radioactivity. Calculated first order half-lives were 4,718 hours for artificially irradiated soil and 220 hours for naturally irradiated soil.

## Confined rotational crop

In a confined rotational crop study in the USA, soil was treated directly with  $[^{14}C]$ -MCPA in phenol ring. Crops of lettuce, turnips, and barley were sown into the treated soil at intervals of 30, 120 and 365 days after treatment and were grown to maturity and harvested except for lettuce, which was harvested at intermediate intervals whenever sufficient leaf material could be obtained. [¹⁴C]-residues in the top 0–15 cm of soil were 0.276 mg eq./kg on the day of application and declined to 0.045 mg eq./kg by the final barley grain and straw harvest at 582 days after treatment. The decline in soil  $[^{14}C]$ residues appeared biphasic with a rapid initial phase (0 to 120 days) having a half-life of 63 days, and a slow secondary phase (120 to 582 days) with a half-life of 511 days. Following application of  $[^{14}C]$ -MCPA at 0.84 kg ai/ha, radioactive residues were generally highest in lettuce (0.044 mg eq./kg) at the first harvest from the 120-day plant back interval and lowest in barley grain, turnip roots and tops (< 0.013 mg eq./kg, LOD) at all plant back intervals. For lettuce at the 30-day and 120 day plant-back intervals, residues were greatest at initial sampling (0.029 or 0.044 mg eq./kg), declining to < 0.013mg eq./kg by the final harvest. For turnip tops and roots and barley grain, residues were nondetectable at all plant-back intervals. Residues in barley forage were detectable at the 30 day plantback interval (0.017 mg eq./kg), while in barley straw, they were detectable at the 30-day and 120 day plant-back intervals (0.021 and 0.029 mg eq./kg). Residues were all at non-detectable levels at the 365 day plant-back interval. Total MCPA-equivalent residues obtained from rotational crops were below the LOQ at all plant-back intervals. The results of this study indicated that potential for uptake of MCPA residues from the soil by the succeeding crops is low.

## Methods of analysis

The Meeting received descriptions and validation data for analytical methods for residues of MCPA in raw agricultural commodities, feed commodities and animal commodities.

The crop and animal methods typically use an initial extraction and hydrolysis step, either with acid, base or enzymatic treatment to hydrolyse any esters. After solvent partition and SPE or GPC clean-up, the MCPA, HMCPA and CCPA are methylated ready for GC-MSD analysis or further clean-up before the GC-MSD analysis. After solvent partition and SPE clean-up, reaction with acidic methanol yields the methyl ester and methyl ether derivatives which are analysed by GC/MSD or hydrolysed to MCPA free acid and HMCPA mono-methyl ether for analysis by LC/MS. MCPA residues can be measured in most matrices to an LOQ of 0.01 to 0.05 mg/kg. All methods are considered sufficiently validated for the determination of MCPA, CCPA and HMCPA including conjugates, esters and salts thereof.

The multi-residue method included in the Pesticide Analytical Manual was suitable for enforcement of MCPA residues in a variety of commodities.

#### Stability of residues in stored analytical samples

The Meeting received information on the freezer storage stability of residues of MCPA in plant and animal commodities.

Storage stability studies conducted on cereal and grass commodities demonstrated that MCPA DMA, HMCPA, CCPA and MCPA 2-EHE are stable for up to 12 months in wheat forage, straw and grain, and grass forage and hay samples. MCPA DMA, HMCPA and MCPA 2-EHE are stable up to 17.5 months in wheat flour samples except CCPA stable up to about 14 months. Storage stability studies on cereal green plants, grain and straw showed that MCPA and HMCPA are stable in samples for up to 18 months.

In animal commodities the storage stability studies on MCPA, conducted concurrently with a cattle feeding study, confirmed that residues of MCPA are stable when stored frozen up to at least 4 months in liver and milk, 5 months in kidney and fat, and 3 months in muscle samples. Samples from the metabolism study showed that MCPA and MCPA-glycine (milk only) were stable in frozen storage up to about 46 weeks.

## Definition of the residue

The composition of the residue in the metabolism studies, the available residue data in the supervised trials, the toxicological significance of metabolites, the capabilities of enforcement analytical methods and the national residue definitions already operating all influence the decision on residue definition.

A metabolism study showed unchanged parent MCPA comprised the main residue in animal tissues. The major component of residue in milk was MCPA-glycine and wasn't found in any other animal tissues. The Meeting decided that for animal commodities, parent MCPA is the appropriate residue of concern for MRL enforcement, and parent MCPA and its conjugates is the appropriate residue of concern for dietary risk assessment.

The metabolism of MCPA was investigated in wheat and peas. Unchanged parent compound formed the major part of the residue in these studies except wheat grain. CCPA was the major part of residue in wheat grain, but is 5 times less toxic than parent. A certain percentage of the parent residue was present in conjugated form, as uncleaved MCPA 2-EHE (in forage only) or was only released after hydrolysis (forage 15–60%, straw 40–73%, grain 76–85%). Since unconjugated parent MCPA was found in all plant commodities investigated, the Meeting concluded the parent substance is a suitable marker for enforcement purposes in plant commodities and could easily be implemented in multi-residue methods. For dietary intake assessment MCPA-conjugates and esters are easily cleaved and bioavailable. Therefore the Meeting decided to also include conjugates and esters into the residue definition for intake assessment for plant commodities.

The maximum octanol-water partition coefficient of MCPA (log  $K_{OW} = -0.81-0.71$  at pH 7) implied that MCPA may be not fat-soluble. In the goat metabolism study, TRRs in fat and muscle were at similar levels. Based on the above information, the Meeting agreed that MCPA is not fat-soluble.

Definition of the residue (for compliance with the MRL for plant and animal commodities): *MCPA*.

Definition of the residue (for estimation of dietary intake for plant commodities): Sum of MCPA, its conjugates and esters, expressed as MCPA.

Definition of the residue (for estimation of dietary intake animal commodities): *Sum of MCPA and its conjugates, expressed as MCPA.* 

The residue is considered as not fat-soluble.

## Results of supervised residue trials on crops

The Meeting received supervised trials data for MCPA using 2-EHE, DMA salt, sodium salt and potassium salt formulations for barley, wheat, corn, peas (legume vegetable and pulses), flax and grasses. Although the residue definition for compliance with MRLs is MCPA only, the analytical methods used in the supervised trials include hydrolysis steps that release the conjugates and the esters.

The OECD calculator was used as a tool in the estimation of the maximum residue level from the selected residue data set obtained from the supervised trials. As a first step, the Meeting reviewed all relevant factors related to each data set in arriving at a best estimate of the maximum residue level using expert judgement. Then the OECD calculator was employed. If the statistical calculation spreadsheet suggested a different value from that recommended by the Meeting, a brief explanation of the deviation was supplied.

#### *Peas (legume vegetables)*

The GAP of the USA for the DMA salt and MCPA Sodium salt, SL formulation, is one spray application at 0.13–0.42 kg ae/ha at 3 node stage up to before flowering. Three trials were carried out in USA in 1996. Residues in green peas without pods were: < 0.01 (3) mg/kg. Three trials were carried out in the USA in 1996 and 2005 in which residues in green peas with pods were: < 0.03 (3) mg/kg.

The Meeting considered the residue data for peas with pods and residue data for peas without pods were insufficient upon which to base a recommendation.

## Peas (dry)

The GAP for dry peas in the USA (DMA salt and MCPA Sodium salt, SL formulation) is one spray application at 0.13–0.42 kg ae/ha at the 3 node stage up to before flowering.

In eight trials on peas from Canada matching the US GAP residues in dry peas were: < 0.01(8) mg/kg.

The Meeting estimated a maximum residue level and STMR value for MCPA in dry peas of  $0.01^*$  and 0 mg/kg, respectively.

#### Barley and wheat

The GAP for the UK is for one spray application at 1.7 kg ae/ha at BBCH 30(DMA salt SL formulation). Four barley trials were conducted in France and the UK matching the GAP of the UK. In the trials residues in barley grain were < 0.05 (4) mg/kg.

The GAP in Spain (DMA salt SL formulation), is for one spray application at 1.2 kg ae/ha at BBCH 30. Four barley trials were conducted in France and Spain in line with Spanish GAP. The residues in barley were: < 0.05 (3) and 0.12 mg/kg.

The GAP for the UK is for one spray application at 1.7 kg ae/ha at BBCH 31 (DMA salt SL formulation). Five wheat trials were conducted in France and the UK in line with the UK GAP. The residues in wheat were: < 0.05 (4) and 0.16 mg/kg.

The GAP in Spain consists of one spray application at 1.2 kg ae/ha at BBCH 31 (Sodium or potassium salt SL formulation). Four wheat trials were conducted in France and Spain in line with Spanish GAP. Residues found in wheat grain were: < 0.05 (4) mg/kg.

The Meeting noted that MCPA applied to barley and wheat before flowering results in comparable residues and agreed to combine all data from France and the UK against the UK GAP to support a maximum residue level for grain of barley, oats, rye, triticale and wheat. The residues found, median underlined, were: < 0.05(11) and 0.16 mg/kg.

The Meeting estimated a maximum residue level and an STMR in the cereals grains barley, oats, rye, triticale and wheat of 0.2 and 0.05 mg/kg, respectively.

#### Maize

The GAP of Canada consists of one spray application at 0.55 kg ae/ha (DMA salt SL formulation); one spray application at 0.6 kg ae/ha, at 15 cm height stage (MCPA sodium salt SL formulation). All eight trials in Canada were treated at  $1.5 \times$  the maximum rate and resulted in non-detectable residues in maize grain: < 0.01(8) mg/kg.

The Meeting estimated a maximum residue level and an STMR for MCPA in maize grain of 0.01* and 0 mg/kg, respectively.

#### *Flax seeds*

The GAP of Canada consists of one spray application at 0.41-0.875 kg ae/ha, before bud stage (MCPA 2-EHE EC formulation, DMA salt SL formulation, and MCPA sodium salt SL formulation). In six trials on flax against the Canadian GAP residues in linseeds were: < 0.01(6) mg/kg for MCPA.

The Meeting estimated a maximum residue level and an STMR value for MCPA in flax seeds of 0.01* and 0 mg/kg, respectively.

#### Animal feedstuffs

#### Pea forage

The GAP of the USA (DMA salt and MCPA sodium salt, SL formulation), consists of one spray application at 0.13–0.42 kg ae/ha at the 3 node stage up to before flowering. Two trials on pea were carried out in Canada against the US GAP. The ranked order of residues on pea forage was: < 0.25 and 0.42 mg/kg.

The Meeting considered the residue data for peas forage to be insufficient upon which to base recommendations.

#### Pea hay

The GAP of the USA (DMA salt and MCPA Sodium salt, SL formulation), consists of one spray application at 0.13–0.42 kg ae/ha at 3 node stage up to before flowering. Two trials on pea were carried out in Canada against the US GAP. The residues in pea hay were: 0.74 and 1.97 mg/kg (fresh weight).

The Meeting considered the residue data for pea hay to be insufficient upon which to base a maximum residue level recommendation.

#### Barley, oats, rye, triticale and wheat forage

The GAP of the UK (DMA salt SL formulation), is one spray application at 1.7 kg ae/ha at BBCH 30. Two trials on barley and wheat each were carried out in France and the UK matching UK GAP. The ranked order of concentrations on barley forage (fresh weight) was: 4.2, 4.3, 7.5 and 23 mg/kg.

The GAP of Spain (DMA salt SL formulation), consists of one spray application at 1.2 kg ae/ha; (MCPA sodium or potassium salt SL formulation), one spray application at 1.2 kg ae/ha, at

BBCH 30 stage. Four trials on barley and wheat were carried out in Spain against Spanish GAP. The residues found on barley forage were: 0.6, 1.1, 1.4 and 5.1 mg/kg.

The GAP of Canada (MCPA 2-EHE EC formulation), is one spray application at 0.35–0.88 kg ae/ha; or one spray application at 0.63–0.88 kg ae/ha (DMA salt SL formulation); or one spray application at 0.45–0.83 kg ae/ha (MCPA sodium salt SL formulation), at 15 cm height stage. The GAP of the USA (MCPA 2-EHE EC formulation and DMA salt SL formulation) consists of one spray application at 0.88 kg ae/ha at early boot stage.

In 25 trials on wheat forage from Canada (15 trials) and the USA (10 trials) at about double the maximum rate of the Canadian or US GAP, residues were: 3.08, 3.18, 3.46, 4.13, 5.38, 5.48, 5.55, 5.82, 6.37, 7.14, 7.15, 7.36, 7.73, 7.94, 8.30, 8.74, 9.02, 9.12, 9.75, 9.79, 11.0, 12.6, 12.8, 13.6 and 21.2 mg/kg

The residues were scaled to the application rates authorised by Canada and the USA were calculated by dividing by 2 (1.85 kg ae/ha / 0.88 kg ae/ha) and were (n = 25): 1.56, 1.57, 1.70, 2.09, 2.45, 2.66, 2.76, 2.89, 3.01, 3.38, 3.81, 3.87, 3.93, 4.09(2), 4.43, 4.51, 4.69, 4.72, 4.91, 5.19, 6.03, 6.59, 7.00 and 9.52 mg/kg.

The Meeting considered the residue data for barley and wheat forage from European trials matching the UK GAP to be insufficient, and agreed to base the estimations on the Canadian dataset and to extrapolate the estimated values to oats, rye and triticale.

The Meeting estimated an STMR and a highest residue values for MCPA in barley, oats, rye, triticale and wheat forage of 3.93 and 9.52 mg/kg.

#### Maize forage

The GAP of Canada consists of one spray application at 0.55 kg ae/ha (DMA salt SL formulation), or one spray application at 0.6 kg ae/ha at 15 cm height stage (MCPA sodium salt SL formulation). No trials in Canada complied with the Canadian GAP.

The Meeting considered the residue data for maize forage to be insufficient upon which to base an estimate.

#### Grass forage

The GAP of the USA, consists of either one spray application at 1.6–2.1 kg ae/ha at early bud to full bloom stage (MCPA 2-EHE EC formulation) or, one spray application at 1.7 kg ae/ha when grasses begin to tiller or before heads come to boot stage (MCPA DMA salt, SL formulation). All eight trials on grasses were carried out in the US matched GAP. The residues on grass forage, median underlined, in ranked order were: 16.4, 21.0, 31.0, <u>40.5, 53.5</u>, 70.2, 94.3 and 108 mg/kg.

The GAP in Spain consists of one spray application at 1.2–1.6 kg ae/ha targeting weeds in active growth stage (DMA salt SL formulation). Four trials on grasses were carried out in France and Spain matching Spanish GAP. The residues in forage were: 3.70, 6.60, 11.0 and 19.0 mg/kg.

The Meeting noted that the US trials resulted in higher residues in grass forage and decided to use the US data to estimate a STMR and a highest residue values for MCPA in grass forage of 47 and 108 mg/kg, respectively.

### Grass hay

The GAP of the USA consists of one spray application at 1.6–2.1 kg ae/ha at early bud to full bloom stage (MCPA 2-EHE EC formulation), or one spray application at 1.7 kg ae/ha when grasses begin to tiller or before heads come to boot stage (MCPA DMA salt, SL formulation). Eight trials on grasses were carried out in US matching GAP. The residues on grass hay, median underlined, in ranked order were: 37.4, 40.3, 42.5, <u>68.0</u>, <u>80.7</u>, 94.8, 196 and 217 mg/kg (air dry).

Based on an average dry-mass of 88% residues in grass hay (dry weight) were: 42.5, 45.8, 48.3, 77.3, 91.7, 107.7, 222.7 and 246.6 mg/kg.

The Meeting estimated a maximum residue level, an STMR and a highest residue for MCPA in grass hay of 500 mg/kg (DM based), 74.35 mg/kg and 217 mg/kg (air dry), respectively.

## Straw and fodder of cereal grain (dry)

#### *Barley, oat, rye, triticale and wheat hay*

The GAP of Canada for barley consists of one spray application at 0.35–0.88 kg ae/ha (MCPA 2-EHE EC formulation), or one spray application at 0.63–0.88 kg ae/ha (DMA salt SL formulation), or one spray application at 0.45–0.83 kg ae/ha, at early flag leaf stage (MCPA Sodium salt SL formulation). In two trials in Canada matching the GAP the residues on <u>barley</u> hay were: 5.18 and 6.61 mg/kg.

The GAP in Canada on wheat consists of one spray application at 0.35-0.88 kg ae/ha (MCPA 2-EHE EC formulation); or, one spray application at 0.63-0.88 kg ae/ha (DMA salt SL formulation); or, one spray application at 0.45-0.83 kg ae/ha, at 15 cm height stage (MCPA sodium salt SL formulation). The US GAP on wheat consists of, one spray application at 0.88 kg ae/ha at early boot stage (MCPA 2-EHE EC formulation and DMA salt SL formulation). In 25 wheat trials from Canada (15 trials) and US (10 trials) treated at about 2× the maximum GAP rate of Canadian and the US residues were: 4.25, 6.68, 7.34, 8.09, 10.9, 11.3(2), 13.5, 14.6, 15.7(2), 16.7, 19.8, 20.9, 21.6, 23.3, 26.5, 30.6, 30.7, 30.9, 32.7, 35.5, 49.3, 50.5 and 66.0 mg/kg (air dry).

The residues scaled to the application rates authorised by Canada and the USA were calculated by dividing by 2 (1.85 kg ae/ha / 0.88 kg ae/ha) and were (n = 25): 2.15, 3.03, 3.91, 4.07, 5.00, 5.39, 5.56, 7.12, 7.20, 7.30, 7.85, 8.35, <u>10.5</u>, 10.8, 11.2(2), 12.5, 14.4, 14.7, 15.8, 16.1, 16.5, 24.3, 26.3 and <u>28.9</u> mg/kg.

#### Barley, oat, rye, triticale and wheat straw

The GAP of the UK is one spray application at 1.7 kg ae/ha at BBCH 30 stage (DMA salt SL formulation). In 12 trials on barley and wheat carried out in Austria, France and the UK matching UK GAP. The residues on barley straw were: < 0.05(3), 0.07, 0.22, 0.28 and 1.04 mg/kg. The residues on wheat straw were: < 0.05(2), 0.05, 0.09 and 0.22 mg/kg.

The GAP of Spain consists of one spray application at 1.2 kg ae/ha (DMA salt SL formulation), or one spray application at 1.2 kg ae/ha, at BBCH 30 stage (MCPA sodium or potassium salt SL formulation). Nine trials on barley were carried out in France and Spain matching Spanish GAP. The residues on barley straw were: < 0.05(4) and 0.24 mg/kg. The residues on wheat straw were: < 0.05(4) mg/kg.

The GAP of Canada on barley consists of one spray application at 0.35-0.88 kg ae/ha (MCPA 2-EHE EC formulation); or, one spray application at 0.63-0.88 kg ae/ha (DMA salt SL formulation); or one spray application at 0.45-0.83 kg ae/ha (MCPA sodium salt SL formulation), at early flag leaf stage In 36 trials matching Canadian GAP the residues on <u>barley straw</u>, median underlined, were: < 0.25(34), 0.25 and 0.29 mg/kg.

The GAP of Canada on wheat consists of one spray application at 0.35-0.88 kg ae/ha (MCPA 2-EHE EC formulation); or one spray application at 0.63-0.88 kg ae/ha (DMA salt SL formulation); or one spray application at 0.45-0.83 kg ae/ha (MCPA sodium salt SL formulation), at 15 cm height growth stage. The GAP of the USA consists of, one spray application at 0.88 kg ae/ha at early boot stage (MCPA 2-EHE EC formulation and DMA salt SL formulations). In wheat trials from Canada (15) and US (10) treatment rates were  $2\times$  the maximum rate of Canadian and US GAP. Residues found, in ranked order were: < 0.25(6), 0.31, 0.34, 0.37, 0.42, 0.65, 0.82, 1.16, 1.30, 1.62, 1.72, 1.73, 2.51, 2.99, 3.65, 3.98, 4.93, 5.54, 7.19 and 11.3 mg/kg.

Based on an average dry-mass of 88% residues in wheat hay (dry weight) were: 2.44, 3.44, 4.44, 4.63, 5.68, 6.13, 6.32, 8.09, 8.18, 8.30, 8.92, 9.49, 11.9, 12.3, 12.7(2), 14.2, 16.4, 16.7, 18.0, 18.3, 18.8, 27.6, 29.9 and 32.8 mg/kg.

The Meeting noted that higher residues data came from the scaled datasets at  $2 \times$  US and Canadian GAPs on wheat hay. Based on wheat hay, the Meeting agreed to estimate a maximum

residue level, a highest residue and an STMR for MCPA on wheat hay of 50 (DW), 28.9 and 10.5 mg/kg, and extrapolate them to straw of barley, oat, rye and triticale.

## Maize fodder, dry

The GAP of Canada consists of, one spray application at 0.55 kg ae/ha (MCPA DMA salt SL formulation); or one spray application at 0.60 kg ae/ha (MCPA sodium salt SL formulation), at the 15 cm height stage. Eight trials were carried out in Canada at  $1.5 \times$  the maximum rate and resulted in residues in maize stover of < 0.25(8) mg/kg.

Based on an average dry-mass of 83%, residues in maize fodder (dry weight) were: < 0.30(8) mg/kg.

The Meeting estimated an STMR and a highest residue for MCPA in maize stover of 0 mg/kg (fresh weight) and recommended a maximum residue level of 0.3 mg/kg for maize fodder, dry.

## Fate of residues during processing

The Meeting received information on the fate of MCPA residues during the food processing of wheat grain.

Calculated processing factors are summarized in the following table. Factors are indicated with a "<" (less than) sign when the residue in the processed commodity is below the LOQ of the analytical method. The calculation is then made on the LOQ of the analytical method and the residue concentration of the RAC (raw agricultural commodity).

Processed Fractions	MCPA DMA salt	MCPA 2-EHE	Average process factor	Wheat grain STMR (mg/kg)	STMR-P
Tructions			luctor	STIME (Ing/kg)	(mg/kg)
Germ	0.67	0.29	0.48		0.024
Bran	0.67	0.29	0.48	0.05	0.024
Flour	0.67	0.29	0.48		0.024

## **Residues in animal commodities**

#### Farm animal feeding

The Meeting received <u>lactating dairy cow</u> feeding studies, which provided information on likely residues resulting in animal tissues and milk from residues in the animal diet. Animals were orally administered the equivalent to  $50(1\times)$ ,  $150(3\times)$ , and  $500(10\times)$  ppm in feed on a dry weight basis.

Residues of MCPA in whole milk in the 50, 150 and 500 ppm groups were < 0.01 mg/kg, < 0.01 mg/kg and 0.015-0.023 mg/kg (average values) respectively. In muscle, for the same groups, residues were < 0.05 mg/kg, < 0.05 mg/kg, and < 0.05-0.08 mg/kg respectively. Residues of MCPA in fat were < 0.05 mg/kg, < 0.05-0.17 mg/kg and < 0.05-0.13 mg/kg respectively. Residues of MCPA in liver were < 0.05 mg/kg, < 0.05-0.09 mg/kg and 0.16-0.28 mg/kg respectively. Residues in kidney were 0.28-0.41 mg/kg, 0.60-1.23 mg/kg and 1.66-2.44 mg/kg respectively.

In a <u>hen</u> metabolism study [¹⁴C]-MCPA was fed at 100 ppm in the diet for 7 consecutive days. Residue levels in edible tissues and eggs were 0.004 mg/kg in fat, 0.006 mg/kg in muscle, 0.0663 mg/kg in liver, and 0.156 mg/kg in eggs.

## Estimated maximum and mean dietary burdens of farm animals

Dietary burden calculations for beef cattle, dairy cattle, broilers and layer are provided in Annex 6. The calculations were made according to the animal diets from US-Canada, EU, Australia and Japan in the OECD Feed Table 2009.

	Animal	Animal dietary burden, MCPA, ppm of dry matter diet							
	US-Can	US-Canada		EU		Australia		Japan	
	max	mean	max	mean	max	mean	max	mean	
Beef cattle	37.0	12.7	216	94.0	432 ^a	188 ^b	107.9	39.0	
Dairy cattle	194.4	84.6	259.2	112.8	432 °	188 ^d	191.2	69.5	
Poultry-broiler	0.043	0.043	0.04	0.043	0.009	0.009	0.006	0.006	
Poultry-layer	0.043	0.043	43.3 ^e	18.9 ^f	0.009	0.009	-	-	

The calculations are then summarized and the highest dietary burdens are selected for MRL and STMR estimates on animal commodities.

^a Highest maximum beef or dairy cattle dietary burden suitable for MRL estimates for mammalian meat.

^b Highest mean beef or dairy cattle dietary burden suitable for STMR estimates for mammalian meat.

^c Highest maximum dairy cattle dietary burden suitable for MRL estimates for mammalian milk.

^d Highest mean dairy cattle dietary burden suitable for STMR estimates for mammalian milk.

^e Highest maximum poultry dietary burden suitable for MRL estimates for poultry meat and eggs.

^fHighest mean poultry dietary burden suitable for STMR estimates for meat and eggs.

Both the highest maximum dietary burden (432 ppm) and the mean dietary burden for cattle (188 ppm) is greater than the actual  $3 \times$  dose in the feeding study (150 ppm) and lower than the actual  $10 \times$  dose in the feeding study (500 ppm). The MRL and STMR values were estimated by interpolation of data between dose levels.

Tabulated below are the calculations of maximum residue levels and STMRs for milk and animal tissues.

			(nnm) for	Residues (m		1	5
	milk residues		tissue residues	Muscle	Liver	Kidney	Fat
Maximum residue l	evel beef or da	iry cattle					
Feeding study ^a	500/150	0.043/< 0.01	500/150	0.08/0.08	0.28/0.09	2.44/1.20	0.17/0.13
Dietary burden and residue estimate		0.035	432	0.08	0.25	2.20	0.16
STMR beef or dair	y cattle						
Feeding study ^b	500/150	0.043/< 0.01	500/150	0.08/< 0.08	0.28/0.09	2.44/1.20	0.17/0.13
Dietary burden and residue estimate		0.013	188	0.08	0.10	1.33	0.13

^a Highest residue for tissues and mean residue for milk

^b Mean residues for tissue and milk

The Meeting estimated maximum residue levels of 0.1 mg/kg for meat from mammals other than marine mammals, 0.2 mg/kg for mammalian fat, 3 mg/kg for mammalian edible offal, and 0.04 mg/kg for milks. The Meeting estimated STMRs of 0.08 mg/kg for meat from mammals other than marine mammals, 0.13 mg/kg for mammalian fat, 1.33 mg/kg for mammalian edible offal, 0.013 mg/kg for milks. The Meeting estimated HRs of 0.08 mg/kg for meat from mammals other than marine mammals, 0.16 mg/kg for mammalian fat and 2.20 mg/kg for mammalian edible offal.

Residues in poultry tissues and eggs are estimated using the data from the poultry metabolism study in which the dose rate was 100 ppm and the highest and mean residues in tissues and eggs were determined.

	Feed level	Residues	Feed level	Residues (n	ng/kg) in	
	(ppm) for egg residues	(mg/kg) in egg	(ppm) for tissue residues	Muscle	Liver	Fat
Maximum residu	e level broiler or la	yer poultry				
Feeding study ^a	100	0.156	100	0.006	0.0663	0.004
Dietary burden and residue estimate	43.3	0.068	43.3	0.003	0.029	0.002
STMR broiler or	layer poultry	I				
Feeding study ^b	100	0.156	100	0.006	0.0663	0.004
Dietary burden and residue estimate	18.9	0.029	18.9	0.001	0.0125	0.0008

Estimation of residues in poultry tissues and eggs.

^a Highest residue for tissues and mean residue for egg

^b Mean residues for tissue and egg

The Meeting noted that the LOQ of analytical method is 0.05 mg/kg, and agreed to estimate maximum residue levels of 0.05* mg/kg for poultry meat (fat), poultry edible offal and for eggs. The Meeting estimated STMRs of 0.05 mg/kg for poultry meat, poultry fat, edible offal and for eggs. The Meeting estimated HRs of 0.05 mg/kg for poultry meat, poultry fat, edible offal and for eggs.

## RECOMMENDATIONS

On the basis of the data from supervised trials, the Meeting concluded that the residue concentrations listed below are suitable for establishing MRLs and for assessing IEDIs and/or IESTIs.

Definition of the residue (for compliance with the MRL for plant and animal commodities): *MCPA*.

Definition of the residue (for estimation of dietary intake for plant commodities): Sum of MCPA, its conjugates and esters, expressed as MCPA.

Definition of the residue (for estimation of dietary intake animal commodities): *Sum of MCPA and its conjugates, expressed as MCPA.* 

The residue is considered not fat-soluble.

CCN		Commodity	MRL	STMR	HR
			(mg/kg)	(mg/kg)	(mg/kg)
GC	0640	Barley grain	0.2	0.05	
AS	0641	Barley straw and fodder, dry	50	10.5 ^a	28.9 ^a
PE	0112	Eggs	0.05 *	0.05	0.05
SO	4711	Flax-seed	0.01 *	0	

CCN		Commodity	MRL	STMR	HR
			(mg/kg)	(mg/kg)	(mg/kg)
AS	0162	Hay of grasses, dry	500	74.35 ^a	217 ^a
MO	0105	Edible offal (mammalian)	3	1.33	2.20
GC	0645	Maize grain	0.01 *	0	
AS	0645	Maize straw and fodder, dry,	0.3	0.25 ^a	0.25 ^a
MF	0100	Mammalian fats	0.2	0.13	0.16
MM	0095	Meat from mammals other than marine mammals	0.1	0.08	0.08
ML	0106	Milks	0.04	0.013	0.035
GC	0647	Oat grain	0.2	0.05	
AF	0647	Oat straw and fodder, dry	50	10.5 ^a	28.9 ^a
VD	0072	Peas, dry	0.01 *	0	
PM	0110	Poultry meat	0.05 *	0.05	0.05
PF	0110	Poultry fats	0.05 *	0.05	0.05
РО	0111	Poultry, Edible offal of	0.05 *	0.05	0.05
GC	0650	Rye grain	0.2	0.05	
AF	0650	Rye straw and fodder, dry	50	10.5 ^a	28.9 ^a
GC	0653	Triticale grain	0.2	0.05	
AS	0653	Triticale straw and fodder, dry	50	10.5 ^a	28.9 ^a
GC	0654	Wheat grain	0.2	0.05	
AF	0654	Wheat straw and fodder, dry	50	10.5 ^a	28.9 ^a

* At or about the limit of quantification.

^a fresh weight basis.

Animal commodities and processed foods for which no maximum residue levels were recommended.

CCN		Commodity	STMR or STMR-P	HR or HR-P
			(mg/kg)	(mg/kg)
AF	0649	Barley forage	3.93	9.52
AF	0162	Grass, forage	47	108
AF	0647	Oat forage	3.93	9.52
AF	0650	Rye forage	3.93	9.52
AF	0653	Triticale forage	3.93	9.52
AF	0654	Wheat forage	3.93	9.52
СМ	0654	Wheat bran	0.024	
CF	1211	Wheat flour	0.024	
CF	1210	Wheat germ	0.024	

#### DIETARY RISK ASSESSMENT

## Long term intake

The evaluation of MCPA resulted in recommendations for MRLs and STMR values for raw and processed commodities. Data on consumption were available for 19 food commodities and were used to calculate dietary intake. The results are shown in Annex 3 of the 2012 JMPR Report.

The International Estimated Daily Intakes (IEDIs) of MCPA, based on the STMRs estimated, were 0-1% of the maximum ADI of 0.1 mg/kg bw for the thirteen GEMS/Food cluster diets. The Meeting concluded that the long-term intake of residues of MCPA resulting from its uses that have been considered by JMPR is unlikely present a public health concern.

## Short-term intake

The IESTI of MCPA calculated on the basis of the recommendations made by the JMPR ranged from 0-5% of the ARfD (0.6 mg/kg bw). The results are shown in Annex 4 of the 2012 JMPR Report.

The Meeting therefore concluded that the short-term intake of MCPA residues, when used in

## REFERENCES

Code	Author	Year	Title, Institute, Report reference
MCPA-R001	Roberts, NA	1993	MCPA: Determination of Physico-Chemical Properties of MCPA Technical Acid. Rhone-Poulenc Chemicals Ltd. Report No. 15. Ref No.: MCPA-R001, GLP; Unpublished, issued 29.06.1993.
MCPA-R002	Turk, W	1994	MCPA: Determination of the appearance, the melting point and thermal conversions. BASF Aktiengesellschaft, Report No. PCP 03317, Ref No.: MCPA-R002, GLP; Unpublished, 03.11.1994.
MCPA-R003	Mahmood, T	2004	MCPA: The Physical and Chemical Properties of MCPA 2EH. AH Marks & Co. Ltd. Report No.: 02/0183, Ref No. MCPA-R003, GLP; Unpublished, 29.04.2004.
MCPA-R004	Bass, RV	2000	MCPA: The Chemical and Physical Properties of MCPA DMA Salt Solution at 500 gL ⁻¹ MCPA Acid Concentration. A.H. Marks & Co. Ltd. Report No. 00/0115, Ref No.: MCPA-R004, GLP; Unpublished, 16.10.2000.
MCPA-R005	Bass, RV	1999	MCPA: The Chemical and Physical Properties of MCPA DMA Salt Solution at 750 gL ⁻¹ MCPA Acid Concentration. A.H. Marks & Co. Ltd. Report No. 99/0079 Ref No.: MCPA-R005, GLP; Unpublished, 27.08.1999.
MCPA-R006	Alexander, B, Dinwoodie, N, MacLean, K	1992	MCPA: Product Chemistry of MCPA Acid—pH. Inveresk Research International, Report No. 351679, Ref No.: MCPA-R006, GLP; Unpublished, 23.06.1992.
MCPA-R007	Campbell, CN and Dinwoodie, N	1993	MCPA: Product Chemistry of MCPA Acid—Stability. Inveresk Research International, Report No. 351684, Ref No.: MCPA-R007, GLP; Unpublished, 06.04.1993
MCPA-R008	Campbell, CN and Dinwoodie, N	1997	MCPA: MCPA-Ethylhexyl Ester Product Chemistry of MCPA-Ethylhexyl Ester: Stability. Inveresk Research International, Report No. 351789, Ref No.: MCPA-R008, GLP; Unpublished, 19.11.1997.
MCPA-R009	Chakrabart, A and LaBean, MS	1985	MCPA: Vapour Pressure of MCPA and Two MCPA Esters. Dow Chemical Co., Report No. ML-AL-85-40005, Ref No.: MCPA-R009, Not GLP, Unpublished, 27.06.1985.
MCPA-R010	Downey, JR	1987	MCPA: Henry's Law for 2-Methyl-4-Chlorophenoxyacetic Acid in Water. Dow Chemical Co., Report No. ML-AL-87-40526, Ref No.: MCPA-R010, Not GLP; Unpublished, 18.12.1987.
MCPA-R011	Hopkins, DL	1987	MCPA: 2-Methyl-4-Chlorophenoxyacetic Acid: Determination of the Water Solubility. Dow Chemical Co., Report No. ES-DR-0004-9672-3, Ref No.: MCPA-R011, Not GLP; Unpublished, 04.12.1987.
MCPA-R012	Bailey, RE and Hopkins, DL	1987	MCPA: 2-Methyl-4-Chlorophenoxyacetic Acid: Determination of Octanol/Water Partition Coefficient. Dow Chemical Co., Report No. ES-DR- 0004-9672-4, Ref No.: MCPA-R012, Not GLP; Unpublished, 21.12.1987.
MCPA-R013	Redeker, DC	1988	MCPA: Determination of the pKa Value in Water. BASF Aktiengesellschaft, Report No. 2515, Ref No.: MCPA-R013, GLP; Unpublished, 21.04.1988.
MCPA-R014	Davis, ML and Sabourin, PJ	1995	MCPA: Nature of the Residue of ¹⁴ C-2-Methyl-4-Chlorophenoxyacetic Acid ( ¹⁴ C-MCPA) as the Dimethylamine Salt ( ¹⁴ C-MCPA DMA) and the 2- Ethylhexyl Ester ( ¹⁴ C-MCPA 2-EHE) in Wheat. Battelle, Report No.

Code	Author	Year	Title, Institute, Report reference
			SC930053, Ref No.: MCPA-R014, GLP; Unpublished, 03.03.1995.
MCPA-R015	Goodyear, A	1993	MCPA: ( ¹⁴ C)-MCPB: Metabolism in Peas. Hazleton UK, Report No. 68/137- 1015, Ref No.: MCPA-R015, GLP; Unpublished, 24.09.1993.
MCPA-R016	Sabourin, P and Koebel, D	1995	MCPA: Nature of the Residue Study of ¹⁴ C-2-Methyl-4- Chlorophenoxyacetic Acid ( ¹⁴ C-MCPA) Using Lactating Goats. Battelle
MCPA-R017	Lawrence, LJ	1996	<ul> <li>Columbus Operations, Report No. SC930051, Ref No.: MCPA-R016, GLP; Unpublished, 03.03.1995.</li> <li>MCPA: Supplemental Report to MRID 43575501 (Battelle SC930051): Nature of the Residue Study of ¹⁴C-2-Methyl-4-Chlorophenoxyacetic Acid (MCPA) Using Lactating Goats. PTRL East, Inc., Report No. 908, Ref No.:</li> </ul>
MCPA-R018	McLean, CL and Walker, A	2004	MCPA-R017, GLP, Unpublished, 15.01.1996. MCPA: The Distribution and Metabolism of [ ¹⁴ C] CCPA in the Lactating Goat. Inveresk, Report No. 204941, Ref No.: MCPA-R018, GLP;
MCPA-R019	Sabourin, PJ, Morgens, J, Koebel, D, and	1995	Unpublished, 21.05.2004. MCPA: Nature of the Residue Study of ¹⁴ C-2-Methyl-4- Chlorophenoxyacetic Acid ( ¹⁴ C-MCPA) Using Egg-Laying White Leghorn Hens. Battelle Columbus Operations, Report No. SC920100, Ref No.: MCPA-R019, GLP, Unpublished, 03.03.1995.
MCPA-R020	White, Jon Matt, FJ	1990	MCPA-R019, GLP, Unpublished, 05:05:1995. MCPA: Aerobic and Aerobic/Anaerobic Soil Metabolism of ¹⁴ C MCPA. Hazleton, Laboratories America, Inc., Report No. HLA 6237-107, Ref No.: MCPA-R020, GLP; Unpublished, 01:06.1990.
MCPA-R021	Obrist, J	1987	MCPA: Photodegradation of MCPA on Soil. Hazleton Laboratories America, Inc., Report No. HLA 6015-326, Ref No.: MCPA-R021, GLP; Unpublished, 29.09.1987.
MCPA-R022	Concha, M and Shepler, K	1994	MCPA: Photodegradation of 14C MCPA in/on Soil by Natural Sunlight. PTRL West, Inc., Report No. 436W, Ref No.: MCPA-R022, GLP; Unpublished, 21.04.1994.
MCPA-R023	MacDonald, IA and Battle, V	1988	MCPA: Determination of the Volatility of MCPA Ester from Soil under Laboratory Conditions. Huntingdon Research Centre Ltd., Report No. M&B 269, Ref No.: MCPA-R023, GLP; Unpublished, 12.07.1988.
MCPA-R024	Sarafin, R	1992	MCPA: Laboratory Study on the Volatilization of MCPA after Application of BAS 010 01 H on Soil and Plant Surfaces. BASF Aktiengesellschaft, Report No. P92-B117, Ref No.: MCPA-R024, GLP; Unpublished, 01.12.1992.
MCPA-R025	Sarff, P	2007	<ul> <li>MCPA: Determination of the Laboratory Volatility for an EC Formulation of MCPA-2-EHE. ABC Laboratories, Inc., Report No. 49704, Ref No.: MCPA- R025, GLP; Unpublished, 27.02.2007.</li> </ul>
MCPA-R031	Lai, I	1993	MCPA: Hydrolysis of ¹⁴ -C-MCPA Acid in Buffered Aqueous Solutions. Battelle Memorial Institute, Report No. SC910160, Ref No.: MCPA-R031, GLP; Unpublished, 02.02.1993.
MCPA-R032	Lai, I	1993	MCPA: Hydrolysis of ¹⁴ C-MCPA-2-EHE in Buffered Aqueous Solutions. Battelle Memorial Institute, Report No. SC910087, Ref No.: MCPA-R032, GLP; Unpublished, 26.02.1993.
MCPA-R033	Fernando, TR and Kok, R	1993	MCPA: Hydrolysis of ¹⁴ C-MCPA 2-EHE to MCPA Acid in a Soil/Water System. Battelle Memorial Institute, Report No. SC920064, Ref No.: MCPA- R033, GLP; Unpublished, 10.02.1993.
MCPA-R034	Ackroyd, C	2001	MCPA: Photochemical Oxidative Degradation of MCPA (SAR Estimation). A.H. Marks & Co. Ltd., Report No. 01/0163, Ref No.: MCPA-R034, GLP; Unpublished, 06.09.2001.
MCPA-R035	Ghodes, M	1990	MCPA: Artificial Sunlight Photodegradation of ¹⁴ C-MCPA in Buffered Aqueous Solutions. Hazleton Laboratories America, Inc., Report No. HLA 6237-108, Ref No.: MCPA-R035, GLP; Unpublished, 19.07.1990.
MCPA-R036	Klopffer, W	1991	MCPA: Determination of the Phototransformation in Water of MCPA According to UBA Test Guideline Direct Phototransformation. Battelle Europe, Report No. BE-P-118-91-PHO-02, Ref: MCPA-R036, GLP; Unpublished, 04.11.1991.
MCPA-R037	Concha, M and Shepler, K	1993	MCPA: Sunlight Photodegradation of ¹⁴ C MCPA in a Buffered Aqueous Solution at pH 5 by Natural Sunlight. PTRL West, Inc., Report No. 410W-1, Ref No.: MCPA-R037, GLP; Unpublished, 23.08.1993.
MCPA-R040	Ewing, DD	1988	MCPA: MCPA Confined Accumulation Study on Rotational Crops. Pan- Agricultural Laboratories, Inc., Report No. PAL-EF-86-31, Ref No.: MCPA- R040, GLP; Unpublished, 05.05.1988.
MCPA-R041	Stanley, DC	1994	MCPA: Determination of 4-chloro-2-methylphenoxyacetic acid 2-ethylhexyl ester (MCPA 2-EHE) and 4-chloro-2-methylphenoxyacetic acid dimethylamine salt (MCPA DMAS) as their acid equivalent and 4-chloro-2- methylphenoxyacetic acid (MCPA) in pasture grass samples by gas

# МСРА

Code	Author	Year	Title, Institute, Report reference
			chromatography with mass selective detection. Quality Management and Analytical Services, Report No. QMAM94008, Ref No.: MCPA-R041, GLP; Unpublished, 01.10.1994.
MCPA-R042	Sorenson, BA	1995	MCPA: Internal Validation of a Method for Determining 4-Chloro-2- Methylphenoxyacetic Acid 2-Ethylhexyl Ester (MCPA 2-EHE) and 4- Chloro-2-Methylphenoxyacetic Acid Dimethylamine Salt (MCPA DMAS) as Their Acid Equivalent and 4-Chloro-2-Methylphenoxyacetic Acid (MCPA) in Pasture Grass Samples by Gas Chromatography with Mass Selective
MCPA-R043	Hughes, D,	1997	Detection. Quality Management and Analytical Services, Report No. QMAS94018, Ref No.: MCPA-R042, GLP; Unpublished, 14.06.1995. MCPA: Determination of 4-chloro-2-methylphenoxyacetic acid 2-ethylhexyl
	Ritter, D and Keller, G		ester (MCPA 2-EHE) and 4-chloro-2-methylphenoxyacetic acid dimethylamine salt (MCPA DMAS) as their 4-chloro-2-methylphenoxyacetic acid (MCPA) equivalent, MCPA, 4-chloro-2-hydroxymethylphenoxyacetic acid (HMCPA), 4-chloro-2-hydroxymethylphenoxyacetic acid glucose conjugate (HMCPA GLU) as its HMCPA equivalent, and 4-chloro-2- carboxyphenoxyacetic acid (CCPA) in wheat forage samples by gas chromatography with mass selective detection. Covance Laboratories Inc., Report No. 6698-107, Ref No.: MCPA-R043, Not GLP; Unpublished, 06.06.1997.
MCPA-R044	Morrissey, MA, Eberhard, JS and Telleen, KJ	2000	MCPA: Independent Laboratory Validation of a Method for the Determination of 4-Chloro-2-methylphenoxyacetic Acid 2-Ethylhexyl Ester (MCPA 2-EHE) and 4-Chloro-2-methylphenoxyacetic Acid Dimethylamine Salt (MCPA DMAS) as their 4-Chloro-2-methylphenoxyacetic Acid (MCPA) Equivalent, MCPA, 4-Chloro-2-methylphenoxyacetic Acid (HMCPA), 4-Chloro-2-hydroxymethylphenoxyacetic Acid Glucose Conjugate (HMCPA GLU) as its HMCPA Equivalent, and 4-Chloro-2- carboxyphenoxyacetic Acid (CCPA) in Wheat Forage, Straw and Grain. Covance Laboratories Inc., Report No. 6698-108, Ref No.: MCPA-R044, GLP; Unpublished, 12.12.2000.
MCPA-R045	Cumberbatch, D	2000	MCPA: Analytical Method for the Determination of MCPA, HMCPA and MCPB in Cereals and Grass. A.H. Marks & Co. Ltd., Report No. 592, Ref No.: MCPA-R045, GLP; Unpublished, 05.01.2000.
MCPA-R046	Wasser, C	2001	MCPA: Validation of Analysis for MCPA, MCPB and HMCPA Residues in Peas. ANADIAG, Report No. R9113, Ref No.: MCPA-R046, GLP; Unpublished, 22.11.2001.
MCPA-R047	Wasser, C	2001	MCPA: Validation of Analysis for MCPA, MCPB and HMCPA Residues in Maize. ANADIAG, Report No. R9112, Ref No.: MCPA-R047, GLP; Unpublished, 22.11.2001.
MCPA-R048	Wasser, C	2000	MCPA: Validation of analysis for MCPA, MCPB and HMCPA residues in Cereals. ANADIAG, Report No. R9110, Ref No.: MCPA-R048, GLP; Unpublished, 27.11.2000.
MCPA-R049	Wasser, C	2001	MCPA: Validation of Analysis for MCPA, MCPB and HMCPA Residues in Grass. ANADIAG, Report No. R9111, Ref No.: MCPA-R049, GLP;
MCPA-R050	Rawle, N	2001	Unpublished, 22.11.2001. MCPA: Validation of a GC/MS Method of Analysis of 2,4-D, MCPA, and 2,4-D ethylhexyl ester in Cereal Grain and Straw. CEM Analytical Services Ltd, Report No. CEMR 965, Ref No.: MCPA-R050, GLP; Unpublished, 24.07.2001.
MCPA-R051	Pfarl, C	1994	MCPA: Validation of an Analytical Method for Determination of Residues of MCPA in Cereals and Grass. Agrolinz Melamin GmbH, Report No. 1172 ^a , Ref No.: MCPA-R051, GLP; Unpublished, 30.09.1994.
MCPA-R052	Harper, H	2005	MCPA: MCPA—Validation of Methodology for the Determination of Residues of MCPA in Rape Seed. Huntingdon Life Sciences Ltd., Report No. TFT 004/052164, Ref No.: MCPA-R052, GLP; Unpublished, 22.03.2005.
MCPA-R053	Harper, H	2005	MCPA: MCPA—Independent Laboratory Validation of Methodology for the determination of MCPA in Grain and Straw and Validation of the Methodology for the Determination of MCPA in Apples. Huntingdon Life Sciences Ltd., Report No. TFT 002/052115, Ref No.: MCPA-R053, GLP; Unpublished, 22.03.2005.
MCPA-R054	Johnson, T and King, D	2001	MCPA: Validated Analytical Method for the Determination of 4-Chloro-2- Methylphenoxy acetic Acid (MCPA), MCPA Glycine Conjugate, 4-Chloro- 2-hydroxymethylphenoxy-acetic acid (HMCPA) and HMCPA glucose conjugate in Beef Tissues, Milk and Cream. PTRL East, Inc., Report No. 2117, Ref No.: MCPA-R054, GLP; Unpublished, 27.07.2001.

Code	Author	Year	Title, Institute, Report reference
MCPA-R055	Harper, H	2005	MCPA: MCPA—Independent Laboratory Validation of Methodology for the Determination of Residues of MCPA in Two Soil Types. Huntingdon Life
			Sciences Ltd., Report No. TFT 003/052217, Ref No.: MCPA-R055, GLP;
MCPA-R056	Harper, H	2005	Unpublished, 16.03.2005. MCPA: MCPA, 2,4-D, Mecoprop, Dichlorprop, MCPB and 2,4-DB – Validation of the Methodology for the Determination of Residues in
			Drinking and Surface Waters. Huntingdon Life Sciences Ltd., Report No. TFT 005/052350, Ref No.: MCPA-R056, GLP; Unpublished, 11.04.2005.
MCPA-R058	Eberhard, JS, Bomkamp, D	2001	MCPA: Freezer Storage Stability Study for MCPA DMAS 4-Chloro-2- hydroxymehtylphenoxyacetic Acid (2-HMCPA) and 4-Chloro-2-
	and Wiederich, N		carboxyhenoxyacetic acid (CCPA) and MCPA 2-EHE in Selected Plant Matrices. Covance Laboratories Inc., Report No. 6698-122, Ref No.: MCPA-
	1		R058, GLP; Unpublished, 16.11.2001.
MCPA-R059	Wasser, C	2002	MCPA: Storage Stability of MCPA, MCPB, and HMCPA Residues in Cereals. ANADIAG, Report No. R9123, Ref No.: MCPA-R059, GLP;
			Unpublished, 25.03.2002.
MCPA-R060	Old, J, Orpella, M, Venuti, J	2001	MCPA: MCPA Potassium Salt Residue Decline in Cereals in Southern Europe: Field Phase—Report Amendment 2. Inveresk Research, Report
	and Anderson, I		No. 394403, Ref No.: MCPA-R060, GLP; Unpublished, 05.12.2001.
MCPA-R061	Wasser, C	2000	MCPA: Residue Decline of MCPA Potassium salt in Cereals in Southern Europe (Analytical Phase). ANADIAG, Report No. R9116, Ref No.:
			MCPA-R061, GLP; Unpublished, 25.08.2000.
MCPA-R062	Old, J and	2001	MCPA: MCPA Dimethylamine Salt Residue Decline in Cereals in Northern
	Venuti, J		Europe: Field Phase—Report Amendment 1. Inveresk Research, Report
MCPA-R063	Wasser, C	2000	No. 394361, Ref No.: MCPA-R062, GLP; Unpublished, 15.10.2001. MCPA: Residue Decline of MCPA Dimethylamine salt in Cereals in
	11 45501, C	2000	Northern Europe (Analytical Phase). ANADIAG, Report No. R9114, Ref
			No.: MCPA-R063, GLP; Unpublished, 25.08.2000.
MCPA-R064	Old, J and	2001	MCPA: Harvest Residues of MCPA Potassium Salt (Agroxone (T308A®)
	Duncan, P		in Cereals in Southern Europe (Field Phase). Inveresk Research, Report No.
MCPA-R065	Dormy A	2001	397294, Ref No.: MCPA-R064, GLP; Unpublished, 11.07.2001. MCPA: Harvest Residue of MCPA Potassium salt in Cereals in Southern
MCPA-R003	Perny, A	2001	Europe (Analytical Phase). ANADIAG, Report No. RA0118, Ref: MCPA-
			R065, GLP; Unpublished, 10.10.2001.
MCPA-R066	Old, J and	2001	MCPA: Agroxone 75 (Product Code T021A ®)-Harvest Residues of
	Duncan, P		MCPA Dimethylamine Salt in Cereals in Northern Europe: Field Phase.
			Inveresk Research, Report No. 397273, Ref No.: MCPA-R066, GLP; Unpublished, 22.01.2001.
MCPA-R067	Perny, A	2001	MCPA: Harvest Residue of MCPA Dimethylamine salt in Cereals in
	1 <b>v</b> , <b>y</b> , 1 1	2001	Northern Europe (Analytical Phase). ANADIAG, Report No. RA0116, Ref No.: MCPA-R067, GLP; Unpublished, 10.10.2001.
MCPA-R068	Gallais, C	2002	MCPA: Harvest Residue of MCPA Dimethylamine Salt in Cereals in
			Southern Europe (Field Phase). ANADIAG, Report No. RA1133, Ref No.:
		• • • •	MCPA-R068, GLP; Unpublished, 01.10.2002.
MCPA-R069	Wardman, JP and Marti, S	2002	MCPA: Agroxone K—Harvest Residues of MCPA in Cereals in Southern Europe (Analytical Phase). Inveresk Research, Report No. 680349, Ref No.:
	and Marti, 5		MCPA-R069, GLP; Unpublished, 11.01.2002.
MCPA-R070	Pfarl, C	1994	MCPA: Residues of MCPA in Cereals Treated with 2.01 Dicopur M/ha.
			Agrolinz Melamin GmbH, Report No. 1194, Ref No.: MCPA-R070, GLP;
MCPA-R071	Dowlo N	2001	Unpublished, 13.01.1994. MCPA: Determination of the Residues of MCPA in Cereal Grain and Straw
MCFA-K0/1	Rawle, N	2001	after Treatment with CA 1856. CEM Analytical Services Ltd, Report No.
			967, Ref No.: MCPA-R071, GLP; Unpublished, 25.07.2001.
MCPA-R072	Jones, GL	2007	MCPA: Magnitude and Decline of MCPA and Metabolite Residues from
			Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and
			MCPA Acid to Barley in Canada. Grayson Research, LLC, Report No. GR04-492, Ref No.: MCPA-R072, GLP; Unpublished, 02.03.2007.
MCPA-R073	Belcher, T	2008	MCPA: Magnitude and Decline of MCPA and Metabolite Residues from
	, -		Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and
			MCPA Acid to Barley in Canada; 2006 Field Program. Grayson Research,
			LLC, Report No. GR05-514, Ref No.: MCPA-R073, GLP; Unpublished,
MCDA DO74	Elump SC	1070	22.08.2008. MCPA: Determination of 2 Mathul 4 Chlorophonovy Agetic acid (MCPA)
MCPA-R074	Flynn, SG	1979	MCPA: Determination of 2-Methyl-4-Chlorophenoxy Acetic acid (MCPA) and 2,4-Dichlorophenoxy Propionic Acid (2,4-DP) Residues in Spring
			and 2,+-Diemotophenoxy r topionic Actu (2,+-Dr) Restudes in spillig
			Barley Grain and Straw, Oat Grain and Straw, Grass and Hay. Hazleton

Code	Author	Year	Title, Institute, Report reference         Not GLP; Unpublished, ?.04.1979.
MCPA-R075	Gallais, C	2000	MCPA: Residue Decline of MCPA Potassium Salt in Maize. ANADIAG, Report No. R9120, Ref No.: MCPA-R075, GLP; Unpublished, 07.09.2000.
MCPA-R076	Galy, H	2000	MCPA: Residue Levels of MCPA Potassium Salt & 2,4-D Dimethylamine Salt in Maize Following Post-emergence Treatment with the Preparations Agroxone or Marks 2,4-D Amine under Field Conditions in Europe in 1999. ANADIAG, Report No R9033 TER1, Ref No.: MCPA-R076, GLP; Unpublished, 27.03.2000.
MCPA-R077	Jones, GL	2007	MCPA: Magnitude and Decline of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Corn in Canada. Grayson Research, LLC, Report No. GR04-493, Ref No.: MCPA-R077, GLP; Unpublished, 12.02.2007.
MCPA-R078	Belcher, T	2008	MCPA: Magnitude and Decline of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Corn in Canada; 2006 Field Program. Grayson Research, LLC, Report No. GR05-516, Ref No.: MCPA-R078, GLP; Unpublished, 02.10.2008.
MCPA-R079	Kludas, RS	2000	MCPA: Magnitude of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt to Wheat Underseeded with Alfalfa. Grayson Research, LLC, Report No. GR97-258, Ref No.: MCPA-R079, GLP; Unpublished, 05.11.2000.
MCPA-R080	Kludas, RS	2000	MCPA: Magnitude of MCPA and Metabolite Residues from Application of MCPA 2-Ethylhexyl Ester to Wheat Underseeded with Alfalfa. Grayson Research, LLC, Report No. GR97-266, Ref No.: MCPA-R080, GLP; Unpublished, 05.11.2000.
MCPA-R081	Kludas, RS	2000	MCPA: Magnitude of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt to Winter Wheat. Grayson Research, LLC, Report No. GR97-267, Ref No.: MCPA-R081, GLP; Unpublished, 02.11.2000.
MCPA-R082	Kludas, RS	2000	MCPA: Magnitude of MCPA and Metabolite Residues from Application of MCPA 2-Ethylhexyl Ester to Winter Wheat. Grayson Research, LLC, Report No. GR97-268, Ref No.: MCPA-R082, GLP; Unpublished, 03.11.2000.
MCPA-R083	Kludas, RS	2000	MCPA: Magnitude of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt to Spring Wheat. Grayson Research, LLC, Report No. GR97-269, Ref No.: MCPA-R083, GLP; Unpublished, 19.09.2000.
MCPA-R084	Kludas, RS	2000	MCPA: Magnitude of MCPA and Metabolite Residues from Application of MCPA 2-Ethylhexyl Ester to Spring Wheat. Grayson Research, LLC, Report No. GR97-270, Ref No.: MCPA-R084, GLP; Unpublished, 24.10.2000.
MCPA-R085	Barney, WP	2002	MCPA: Magnitude of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Spring Wheat in Rosthern, Saskatchewan. Grayson Research, LLC, Report No. GR01-416, Ref No.: MCPA-R085, GLP; Unpublished, 28.08.2002.
MCPA-R086	Barney, WP	2002	MCPA: Magnitude of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Spring Wheat in Elm Creek, Manitoba. Grayson Research, LLC, Report No.GR01-413, Ref No.: MCPA-R086, GLP; Unpublished, 28.08.2002.
MCPA-R087	Barney, WP	2002	MCPA: Magnitude of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Spring Wheat in Haywood, Manitoba. Grayson Research, LLC, Report No.GR01-394, Ref No.: MCPA-R087, GLP; Unpublished, 28.08.2002.
MCPA-R088	Barney, WP	2002	MCPA; Magnitude of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Spring Wheat in Barnwell, Alberta, Canada. Grayson Research, LLC, Report No. GR01-414, Ref No.: MCPA-R088, GLP; Unpublished, 06.09.2002.
MCPA-R089	Barney, WP	2002	MCPA: Magnitude of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Spring Wheat in Fairview, Alberta, Canada. Grayson Research, LLC, Report No. GR01-415, Ref No.: MCPA-R089, GLP; Unpublished, 06.09.2002.
MCPA-R090	Jones, GL	2005	MCPA: Magnitude of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt MCPA 2-Ethylhexyl Ester and MCPA Acid to Spring Wheat in Lacombe, Alberta. Grayson Research, LLC, Report No.

1333
------

Code	Author	Year	Title, Institute, Report reference
MCPA-R091	Jones, GL	2005	GR03-444, Ref No.: MCPA-R090, GLP; Unpublished, 22.02.2005. MCPA: Magnitude of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to
MCPA-R092	Jones, GL	2005	Spring Wheat in Delisle, Saskatchewan. Grayson Research, LLC, Report No. GR03-446, Ref No.: MCPA-R091, GLP; Unpublished, 22.02.2005. MCPA: Magnitude of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Spring Wheat in Rosetown, Saskatchewan. Grayson Research, LLC, Report
MCPA-R093	Jones, GL	2006	No. GR03-447, Ref No.: MCPA-R092, GLP; Unpublished, 22.02.2005. MCPA: Magnitude and Decline of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Winter Wheat in New Holland, Ohio. Grayson Research, LLC, Report No. GR04-462, Ref No.: MCPA-R093, GLP; Unpublished, 27.04.2006.
MCPA-R094	Jones, GL	2006	MCPA: Magnitude and Decline of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Winter Wheat in Redfield, South Dakota. Grayson Research, LLC, Report No. GR04-463, Ref No.: MCPA-R094, GLP;
MCPA-R095	Jones, GL	2006	Unpublished, 27.04.2006. MCPA: Magnitude and Decline of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Winter Wheat in Larnard, Kansas. Grayson Research, LLC, Report No. GR04-464, Ref No.: MCPA-R095, GLP; Unpublished,
MCPA-R096	Jones, GL	2006	27.04.2006. MCPA: Magnitude and Decline of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Winter Wheat in Colony, Oklahoma. Grayson Research,
MCPA-R097	Jones, GL	2006	<ul> <li>LLC, Report No. GR04-465, Ref No.: MCPA-R096, GLP; Unpublished, 27.04.2006.</li> <li>MCPA: Magnitude and Decline of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Winter Wheat in Groom, Texas. Grayson Research, LLC, Report No. GR04-466, Ref No.: MCPA-R097, GLP; Unpublished,</li> </ul>
MCPA-R098	Jones, GL	2006	27.04.2006. MCPA: Magnitude of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Spring Wheat in Vanscoy, Saskatchewan, Canada. Grayson Research, LLC, Report No. GR04-467, Ref No.: MCPA-R098, GLP; Unpublished,
MCPA-R099	Jones, GL	2006	12.06.2006. MCPA: Magnitude and Decline of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Spring Wheat in Taber, Alberta, Canada. Grayson Research, LLC, Report No. GR04-468, Ref No.: MCPA-R099, GLP; Unpublished,
MCPA-R100	Jones, GL	2006	12.06.2006. MCPA: Magnitude and Decline of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Spring Wheat in Minto, Manitoba, Canada. Grayson Research, LLC, Report No. GR04-469, Ref No.: MCPA-R100, GLP;
MCPA-R101	Jones, GL	2006	<ul> <li>MCPA: Magnitude and Decline of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Spring Wheat in Boissevain, Manitoba, Canada. Grayson Research, LLC, Report No. GR04-470, Ref No.: MCPA-R101, GLP;</li> </ul>
MCPA-R102	Jones, GL	2006	Unpublished, 12.06.2006. MCPA: Magnitude and Decline of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Spring Wheat in Rosthern, Saskatchewan, Canada. Grayson
MCPA-R103	Jones, GL	2006	Research, LLC, Report No. GR04-471, Ref No.: MCPA-R102, GLP; Unpublished, 12.06.2006. MCPA: Magnitude and Decline of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and MCPA Acid to Spring Wheat in Hepburn, Saskatchewan, Canada. Grayson
MCPA-R104	Jones, GL	2006	Research, LLC, Report No. GR04-472, Ref No.: MCPA-R103, GLP; Unpublished, 12.06.2006. MCPA: Magnitude and Decline of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt, MCPA 2-Ethylhexyl Ester and

# МСРА

Code	Author	Year	Title, Institute, Report reference
			MCPA Acid to Spring Wheat in Innisfail, Alberta, Canada. Grayson
			Research, LLC, Report No. GR04-473, Ref No.: MCPA-R104, GLP;
			Unpublished, 12.06.2006.
MCPA-R105	Honeycutt, RC	1995	MCPA: Magnitude of MCPA Residues from Application of MCPA
	and DeGeare,		Dimethylamine Salt to Winter Wheat. H.E.R.A.C., Inc., Report No. 95-50
	М		Ref No.: MCPA-R105, GLP; Unpublished, 03.07.1995.
MCPA-R106	Honeycutt, RC	1995	MCPA: Magnitude of MCPA Residues from Application of MCPA
	and DeGeare,		Dimethylamine Salt to Spring Wheat. H.E.R.A.C., Inc., Report No. 95-503
	М		Ref No.: MCPA-R106, GLP; Unpublished, 26.07.1995.
MCPA-R107	Honeycutt, RC	1995	MCPA: Magnitude of MCPA Residues from Application of MCPA
	and DeGeare,		Dimethylamine Salt to Spring Wheat Underseeded with Alfalfa.
	М		H.E.R.A.C., Inc., Report No. 95-509, Ref No.: MCPA-R107, GLP;
			Unpublished, 08.09.1995.
MCPA-R108	Honeycutt, RC	1995	MCPA: Magnitude of MCPA Residues from Application of MCPA 2-
	and DeGeare,		Ethylhexyl Ester to Winter Wheat. H.E.R.A.C., Inc., Report No. 95-502,
	M		Ref No.: MCPA-R108, GLP; Not published, 06.07.1995.
MCPA-R109	Honeycutt, RC	1995	MCPA: Magnitude of MCPA Residues from Application of MCPA 2-
	and DeGeare,		Ethylhexyl Ester to Spring Wheat. H.E.R.A.C., Inc., Report No. 95-504, R
	M		No.: MCPA-R109, GLP; Unpublished, 05.07.1995.
MCPA-R110	Honeycutt, RC	1995	MCPA: Magnitude of MCPA Residues from Application of MCPA 2-
	and DeGeare,		Ethylhexyl Ester to Spring Wheat Underseeded with Alfalfa. H.E.R.A.C.,
	М		Inc., Report No. 95-510, Ref No.: MCPA-R110, GLP; Unpublished,
	V1 1 DC	1000	16.09.1995.
MCPA-R111	Kludas, RS	1999	MCPA: Magnitude of MCPA and Metabolite Residues from Application of
			MCPA Dimethylamine Salt to Pasture Grass. Grayson Research, LLC,
			Report No. GR97-273, Ref No.: MCPA-R111, GLP; Unpublished,
	Vludea DC	2000	31.12.1999. MCDA: Magnitude of MCDA and Matchelite Desidues from Application of
MCPA-R112	Kludas, RS	2000	MCPA: Magnitude of MCPA and Metabolite Residues from Application of MCPA 2 Etherlihoud Extents Particle Cross Conserve Parameter LLC
			MCPA 2-Ethylhexyl Ester to Pasture Grass. Grayson Research, LLC,
			Report No. GR97-274., Ref No.: MCPA-R112, GLP; Unpublished,
MCPA-R113	Honovautt PC	1995	03.02.2000. MCPA: Magnitude of MCPA Residues from Application of MCPA
WICFA-KIIS	Honeycutt, RC	1995	
	and DeGeare,		Dimethylamine Salt to Pasture Grass. H.E.R.A.C., Inc., Report No. 95-507
MCPA-R114	M Honeycutt, RC	1995	Ref No.: MCPA-R113, GLP; Unpublished, 01.09.1995. MCPA: Magnitude of MCPA Residues from Application of MCPA 2-
WICI A-R114	and DeGeare,	1995	Ethylhexyl Ester to Pasture Grass. H.E.R.A.C., Inc., Report No. 95-508, R
	M		No.: MCPA-R114, GLP; Unpublished, 25.08.1995.
MCPA-R115	Old, J and	2001	MCPA: MCPA Dimethylamine Salt Residue Decline in Grassland in
WICH AFRITS	Duncan, P	2001	Northern Europe: Field Phase. Inveresk Research, Report No. 397320, Res
	Dunican, I		No.: MCPA-R115, GLP; Unpublished, 29.06.2001.
MCPA-R116	Perny, A	2001	MCPA: Residue Decline of MCPA Dimethylamine salt in Grassland in
	r enny, r e	2001	Northern Europe (Analytical Phase). ANADIAG, Report No. RA0120. Re
			MCPA-R116, GLP; Unpublished, 10.10.2001.
MCPA-R117	Old, J, Duncan,	2001	MCPA: MCPA Potassium Salt (Agroxone T308A(2)) Residue Decline in
	P and		Grassland in Southern Europe: Field Phase. Inveresk Research, Report No
	Livingstone, K		397341, Ref: MCPA-R117, GLP; Unpublished, 29.06.2001.
MCPA-R118	Perny, A	2001	MCPA: Residue Decline of MCPA Potassium Salt in Grassland in Southe
	- ,,		Europe (Analytical Phase). ANADIAG, Report No. RA0122, Ref No.:
			MCPA-R118, GLP; Unpublished, 10.10.2001.
MCPA-R119	Old, J and	2001	MCPA: MCPA Dimethylamine Salt Residue Decline in Grassland in
-	Venuti, J		Northern Europe: Field Phase, Report Amendment 1. Inveresk Research,
	*		Report No. 394445. Ref No.: MCPA-R119, GLP; Unpublished, 15.10.200
MCPA-R120	Gallais, C	2001	MCPA: Residue Decline of MCPA Dimethylamine Salt in Grassland in
	,		Northern Europe (Analytical Phase). ANADIAG, Report No. R9117, Ref
			No.: MCPA-R120, GLP; Unpublished, 12.02.2001.
MCPA-R121	Old, J and	2001	MCPA: MCPA Potassium Salt-Residue Decline in Grassland in Souther
	Orpella, M		Europe: Field Phase-Report Amendment 1. Inveresk Research, Report N
			394471, Ref: MCPA-R121, GLP; Unpublished, 15.10.2001.
MCPA-R122	Gallais, C	2001	MCPA: Residue Decline of MCPA Potassium Salt in Grassland in Southe
	· - • -		Europe (Analytical Phase). ANADIAG, Report No. R9119, Ref No.:
			MCPA-R122. GLP; Unpublished, 21.02.2001.
MCDA D122	Kludas, RS	2000	MCPA: Magnitude of MCPA and Metabolite Residues from Application of
MCPA-K125			MCPA Dimethylamine Salt to Rangeland Grass. Grayson Research, LLC,
MCPA-R123			WICI A DIIICUIVIAIIIIIC SAILIO KAUSCIAIIU (1788) (1778) (1788)
WCFA-K125			
MCPA-R125	Kludas, RS	2000	Report No. GR97-275, Ref: MCPA-R123, GLP; Unpublished, 27.03.2000 MCPA: Magnitude of MCPA and Metabolite Residues from Application of

Code	Author	Year	Title, Institute, Report reference
			Report No. GR97-276, Ref No.: MCPA-R124, GLP; Unpublished, 05.07.2000.
MCPA-R125	Honeycutt, RC and DeGeare, M	1995	MCPA: Magnitude of MCPA Residues from Application of MCPA Dimethylamine Salt to Rangeland Grass, Ground Application. H.E.R.A.C., Inc., Report No. 95-511, Ref No.: MCPA-R125, GLP; Unpublished, 16.09.1995.
MCPA-R126	Honeycutt, RC and DeGeare, M	1995	MCPA: Magnitude of MCPA Residues from Application of MCPA 2- Ethylhexyl Ester to Rangeland Grass, Ground Application. H.E.R.A.C., Inc., Report No. 95-512, Ref: MCPA-R126, GLP; Unpublished, 06.10.199
MCPA-R127	Honeycutt, RC and DeGeare, M	1995	MCPA: Magnitude of MCPA Residues from Application of MCPA 2- Ethylhexyl Ester to Rangeland Grass, Aerial Application. H.E.R.A.C., Inc. Report No. 95-513, Ref: MCPA-R127, GLP; Unpublished, 25.08.1995.
MCPA-R128	Jones, GL	2007	MCPA: Magnitude and Decline of MCPA and Metabolite Residues from Application of MCPA Dimethylamine Salt and MCPA 2-Ethylhexyl Ester to Flax in Canada. Grayson Research, LLC, Report No. GR04-494, Ref: MCPA-R128, GLP; Unpublished, 12.02.2007.
MCPA-R129	Arsenovic, M and Kunkel, D	2004	MCPA: CPA—Magnitude of the Residue on Flax. IR-4 Project, Report No 05000, Ref No.: MCPA-R129, GLP; Unpublished, 03.02.2004.
MCPA-R130	Barney, WP	2007	MCPA: Magnitude of the Residue on Pea (Reregistration). IR-4 Project, Report No. 04999, Ref No.: MCPA-R130, GLP; Unpublished, 04.10.2007
MCPA-R131	Weisskopf, CP	1999	MCPA: IR-4 National Pesticide Research Program Ancillary Analytical Report – MCPA – Magnitude of the Residue on Pea. IR-4 Project, Report No. 04999, Ref No.: MCPA-R131, Not GLP; Unpublished, 15.12.1999.
MCPA-R132	Jones, GL	2007	MCPA: Magnitude and Decline of MCPA and Metabolite Residues from Application of MCPA Acid to Dry Peas in Canada. Grayson Research, LLC, Report No. GR04-495, Ref No.: MCPA-R132, GLP; Unpublished, 02.03.2007.
MCPA-R133	Kludas, RS	2000	MCPA: Magnitude of MCPA and Metabolite Residues in Processed Fractions of Winter Wheat Following Treatment with MCPA Dimethylami Salt. Grayson Research, LLC, Report No. GR97-271, Ref No.: MCPA-R13 GLP; Unpublished, 31.10.2000.
MCPA-R134	Kludas, RS	2000	MCPA: Magnitude of MCPA and Metabolite Residues in Processed Fractions of Winter Wheat Following Treatment with MCPA 2-Ethylhexyl Ester. Grayson Research, LLC, Report No. GR97-272, Ref No.: MCPA- R134, GLP; Unpublished, 31.10.2000.
MCPA-R135	Honeycutt, RC and DeGeare, M	1995	MCPA: Magnitude of MCPA Residues in Processed Fractions of Winter Wheat Following Treatment with MCPA 2-Ethylhexyl Ester. H.E.R.A.C., Inc., Report No. 95-506, Ref No.: MCPA-R135, GLP; Unpublished, 10.08.1995.
MCPA-R136	Honeycutt, RC and DeGeare, M	1995	MCPA: Magnitude of MCPA Residues in Processed Fractions of Winter Wheat Following Treatment with MCPA Dimethylamine Salt. H.E.R.A.C., Inc., Report No. 95-505, Ref No.: MCPA-R136, GLP; Unpublished, 13.10.1995.
MCPA-R137	Koch, DA	2007	MCPA: Magnitude of Residues of MCPA in Dairy Cow Milk and Tissues. ABC Laboratories, Inc., Report No. 49737, Ref No.: MCPA-R137, GLP; Unpublished, 09.02.2007.
MCPA-R140	Krohl, T	1994	MCPA: Physical and Chemical Properties Report for MCPA Acid. BASF Aktiengesellschaft, Report No. PCF 01410, Ref No.: MCPA-R140, GLP; Unpublished, 07.10.1994.
MCPA-R141	Alexander, B, Dinwoodie, W and McLean, K	1992	MCPA: Product Chemistry of MCPA Acid- Density. Inveresk Research International, Report No. 351663, Ref No.: MCPA-R141, GLP; Unpublished, 23.06.1992.
MCPA-R142	Lewis, CJ	2006	MCPA: [ ¹⁴ C]-MCPA-2-ethylhexyl ester: soil hydrolysis study. Covance, Report No. 2591/001-D2149, Ref No.: MCPA-R142, GLP; Unpublished, 06.07.2006.
MCPA-R143	Smith, AE	1989	MCPA: Degradation, Fate and Persistence of Phenoxyalkanoic Acid Herbicides in Soil. Rev. Weed Sci. 1989.4:1-24, Ref: MCPA-R143, Not GLP; Published, ?.?.1989.
MCPA-R144	Harper, H	2006	MCPA: MCPA 2-EHE Determination of Aqueous Stability in Distilled and River Water. Huntingdon Life Sciences Ltd., Report No. TFT 0009/054012 Ref: MCPA-R144, GLP; Unpublished, 30.03.2006.
MCPA-R145	Cremers, RKH and Salmon-te Rietstap	2003	MCPA: Determination of the Degradation of MCPA using [ ¹⁴ C]-MCPA in Two Water/Sediment Systems. TNO Laboratories, Report No. V4022/01, GLP; Unpublished, 07.03.2003.