SPINETORAM (233)

First draft prepared by Dr. Yukiko Yamada, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan

EXPLANATION

Spinetoram is a multicomponent tetracyclic macrolide in the class of spinosyn insecticides obtained from chemical modification of fermentation product of *Saccharopolyspora spinosa*. It consists of two closely related active ingredients (XDE-175-J and XDE-175-L) present approximately in a three to one ratio. It controls lepidopterous larvae, leaf miners, and thrips on a variety of crops by disruption of nicotinic/gamma amino butyric acid-gated chloride channels.

It was first evaluated by the 2008 JMPR which established an ADI of 0–0.05 mg/kg bw and decided that an ARfD is unnecessary. The 2008 Meeting also received information on metabolism on lactating goats and laying hens, apples, lettuces and turnips; environmental fates in soil (aerobic soil metabolism and aqueous photolysis); residues in succeeding crops; methods of analysis for plant and animal matrices; storage stability; supervised residue trials; processing of apples and oranges; and farm animal feeding studies. After reviewing these data, it recommended the following residue definition for plant and animal commodities and estimated maximum residue levels for lettuce, head; lettuce, leaf; oranges, sweet, sour; pome fruits; sugar beets; tomatoes; tree nuts; edible offal, mammalian; meat (from mammals other than marine mammals); milk fats; and milks:

Definition of the residue (for compliance with the MRL): Spinetoram.

Definition of the residue (for estimation of dietary intake): Spinetoram and N-demethyl and N-formyl metabolites of the major spinetoram component.

The residue is fat-soluble.

Note: Spinetoram consists of two related components.

The current Meeting received information on supervised trials in support of additional maximum residue levels.

METHODS OF RESIDUE ANALYSIS

Analytical methods

The analytical methods used in the supervised trials provided to the current Meeting, i.e., GRM 05.03 and GRM 05.04, were reviewed by the 2008 JMPR. GRM 05.03 and GRM 05.04 had been developed for the determination of residues of XDE-175-J and XDE-175-L and their metabolites N-demethyl-175-J and -L, N-formyl-175-J and -L in plant matrices using HPLC with positive-ion electron-spray (ESI) tandem mass spectrometry (LC-MS/MS).

Each method had been validated for each analyte at 0.01–1.0 mg/kg for a variety of crops for which Codex MRLs had been established. Mean recovery was in a range of 82–111%. Validated LOQ was 0.01 mg/kg for all matrices tested.

The 2008 JMPR also reviewed the validation data of one of the existing multi-residue enforcement methods, DFG S19, and concluded that the method was validated successfully for the determination of spinetoram and its N-demethyl and N-formyl metabolites in apples, grapes and oranges.

Procedural recoveries in the analysis of commodities for which supervised trial data were submitted to the current Meeting by the relevant analytical methods are summarized in Table 1. The mean recovery ranges from 73% to 111% except that the mean recovery of N-formyl-J in blueberry was 64%. Relative standard deviation was all < 20% where it could be calculated.

Table 1 Summary c	f procedural recover	y data for crops sup	ported in this document

Crop	Analyte	Fortification	n	Recovery	%	RSD	Method	Reference
		mg/kg		Range	Mean	%		
Citrus Fruits								
Orange	XDE-175-J	0.01-1	17	85-103	94	6	GRM 05.04	246845,
	XDE-175-L	0.01-1	17	73–102	91	10	GRM 05.04	246 851
	N-Demethyl-J	0.01-1	17	74–103	86	11	GRM 05.04	
	N-Formyl-J	0.01-1	17	74–110	88	14	GRM 05.04	-
Whole orange	XDE-175-J	0.01–0.1	10	87–100	94	5	GRM 05.03	JMPR, 2008
	XDE-175-L	0.01–0.1	10	76–98	89	8	GRM 05.03	-
	N-Demethyl-J	0.01–0.1	10	84–93	88	4	GRM 05.03	-
	N-Formyl-J	0.01-0.1	10	71–104	90	10	GRM 05.03	-
Whole orange	XDE-175-J	0.01-0.1	10	82-100	93	7	GRM 05.03	JMPR, 2008
	XDE-175-L	0.01-0.1	10	84–100	91	5	GRM 05.03	-
	N-Demethyl-J	0.01–0.1	10	70–93	80	11	GRM 05.03	1
l	N-Formyl-J	0.01-0.1	10	88–119	105	11	GRM 05.03	-
Acidic crops ^a	XDE-175-J	0.01-1	35	93–115	102	4.8	GRM 05.04	JMPR, 2008
	XDE-175-L	0.01-1	35	92–114	103	5	GRM 05.04	-
	N-Demethyl-J	0.01-1	35	96–114	103	4.5	GRM 05.04	-
	N-Formyl-J	0.01-1	35	76–118	100	9.8	GRM 05.04	-
Orange juice	XDE-175-J	0.01-1	17	80–103	94	8	GRM 05.04	246845,
	XDE-175-L	0.01-1	17	76–105	91	9	GRM 05.04	246 851
	N-Demethyl-J	0.01-1	17	74–103	90	8	GRM 05.04	-
	N-Formyl-J	0.01-1	17	83–119	104	13	GRM 05.04	-
Orange	XDE-175-J	0.01-1	10	92–114	99	7	DFG-S-19	JMPR, 2008
	<i>m/z</i> Q1/Q3 748.7/142.1							
	XDE-175-L m/z Q1/Q3 760.7/142.1	0.01–1	10	81–104	93	7	DFG-S-19	
	N-Demethyl-J <i>m/z</i> Q1/Q3 734.7/127.9	0.01–1	10	88–112	95	7	DFG-S-19	
Orange	N-Formyl-J <i>m/z</i> Q1/Q3 762.3/156.1	0.01–1	10	92–105	99	5	DFG-S-19	
Orange	XDE-175-J m/z Q1/Q3 748.7/98.2	0.01–1	10	87–104	94	6	DFG-S-19	JMPR, 2008
	XDE-175-L m/z Q1/Q3 760.7/98.2	0.01–1	10	79–101	92	8	DFG-S-19	
	N-Demethyl-J <i>m/z</i> Q1/Q3 734.7/84.2	0.01–1	10	82–100	90	6	DFG-S-19	

Crop	Analyte	Fortification	n	Recovery	%	RSD	Method	Reference
		mg/kg		Range	Mean	%		
	N-Formyl-J	0.01-1	10	91–108	99	5	DFG-S-19	_
	<i>m/z</i> Q1/Q3 762.3/203.0							
Fangerine	XDE-175-J	0.01–10	17	85-120	104	11	GRM 05.04	246796,
	XDE-175-L	0.01-10	17	89–118	106	8	GRM 05.04	242998,
	N-Demethyl-J	0.01–10	17	93–112	101	5	GRM 05.04	246801, 246802,
	N-Formyl-J	0.01-10	17	73–115	87	16	GRM 05.04	246802, 246803, 246807 246809, 246811
Stone Fruits								
Apricot	XDE-175-J	0.01-1	18	92–117	106	6	GRM 05.04	259246
	XDE-175-L	0.01-1	18	81-107	89	2		1
	N-Demethyl-J	0.01-1	18	83-106	92	7		
	N-Formyl-J	0.01-1	18	71–88	78	7		1
Apricot	XDE-175-J	0.016-0.16	6	67–100	83	21	GRM 05.04	240988
	XDE-175-L	0.004-0.04	6	84–99	91	8		_
	N-Demethyl-J	0.01-0.1	6	81–93	87	5		_
	N-Formyl-J	0.011-0.11	6	84–112	97	13		_
Apricot	XDE-175-J	0.005-0.2	11	89–109	100	6	GRM 05.03	239322
	XDE-175-L	0.005-0.2	11	87–116	103	12		
	N-Formyl-J	0.005-0.2	11	79–107	93	11		
Cherry	XDE-175-J	0.01-1	18	95–119	106	6	GRM 05.04	259245
	XDE-175-L	0.01-1	18	82-108	93	8		
	N-Demethyl-J	0.01-1	18	80–115	93	10		
	N-Formyl-J	0.01-1	18	70-84	74	6		
Cherry	XDE-175-J	0.016-0.16	12	77–103	90	9	GRM 05.04	240988
	XDE-175-L	0.004-0.04	12	82-102	91	8		
	N-Demethyl-J	0.01-0.1	12	79–94	87	6		-
	N-Formyl-J	0.011-0.11	12	79–103	90	7		-
Cherry	XDE-175-J	0.005-0.2	17	79–107	96	7	GRM 05.03	239322
	XDE-175-L	0.005-0.2	17	86–108	96	6		-
	N-Formyl-J	0.005-0.2	15	79–115	95	12		-
Nectarine	XDE-175-J	0.01-1	18	89–118	109	8	GRM 05.04	259331
	XDE-175-L	0.01-1	18	83-108	95	8		_
	N-Demethyl-J	0.01-1	18	84–101	91	5		_
	N-Formyl-J	0.01-1	18	71–112	88	17		-
Nectarine	XDE-175-J	0.01-1	18	91–108	98	4	GRM 05.04	2003238
	XDE-175-L	0.01-1	18	89–115	103	6		-
	N-Demethyl-J	0.01-1	18	94–110	99	5		-

1922

Crop	Analyte	Fortification	n	Recovery	%	RSD	Method	Reference
		mg/kg		Range	Mean	%		
	N-Formyl-J	0.01-1	18	71–116	100	12		-
Nectarine	XDE-175-J	0.016-0.16	6	80–94	88	7	GRM 05.04	240988
	XDE-175-L	0.004-0.04	6	80–105	93	11		-
	N-Demethyl-J	0.01-0.1	6	76–90	84	8		-
	N-Formyl-J	0.01-0.11	6	87–98	93	5		-
Peach	XDE-175-J	0.01-1	18	92–113	102	7	GRM 05.04	259328
	XDE-175-L	0.01-1	18	73–98	84	10		_
	N-Demethyl-J	0.01-1	18	81-112	96	10		-
	N-Formyl-J	0.01-1	18	71–93	77	7		-
Peach	XDE-175-J	0.01-1	18	78–101	91	5	GRM 05.04	2003242
	XDE-175-L	0.01-1	18	86–98	95	4		-
	N-Demethyl-J	0.01-1	18	83–99	89	4		-
	N-Formyl-J	0.01-1	18	75–118	92	15		-
Peach	XDE-175-J	0.01-1	14	80–119	106	10	GRM 05.04	2000698
	XDE-175-L	0.01-1	14	81-112	93	11		-
	N-Demethyl-J	0.01-1	14	81-110	87	10		-
	N-Formyl-J	0.01-1	14	85-120	98	12		_
Peach	XDE-175-J	0.01-0.25	5	95–99	97	2	GRM 05.04	244912
	XDE-175-L	0.01-0.25	5	90–107	98	6		-
	N-Demethyl-J	0.01-0.25	5	85–93	89	3		-
	N-Formyl-J	0.01-0.25	5	84–101	89	7		-
Peach	XDE-175-J	0.016-0.16	12	70–103	82	13	GRM 05.04	240988
	XDE-175-L	0.004-0.04	12	79–94	87	6		-
	N-Demethyl-J	0.01–0.1	12	74–97	86	10		
	N-Formyl-J	0.01-0.11	12	83-112	100	9		_
Peach	XDE-175-J	0.005-0.2	12	80–101	95	8	GRM 05.03	239322
	XDE-175-L	0.005-0.2	12	87–108	97	7		
	N-Formyl-J	0.005-0.2	12	68–110	88	18		
Plum	XDE-175-J	0.01-1	18	81-111	95	8	GRM 05.04	259247
	XDE-175-L	0.01-1	18	85-104	97	5		-
	N-Demethyl-J	0.01-1	18	74–96	85	6		-
	N-Formyl-J	0.01-1	18	83-115	99	11		
Berries and C	ther Small Fruits							
Raspberry	XDE-175-J	0.01, 1	10	96–114	104	5.7	GRM 05.04	S10-01992
	XDE-175-L	0.01, 1	10	94–105	101	3.4	GRM 05.04	-
	N-Demethyl-J	0.01, 1	10	101-113	106	4.2	GRM 05.04	1
	N-Formyl-J	0.01, 1	10	79–101	92	7	GRM 05.04	1
Blueberry	XDE-175-J	0.01, 1	10	100–109	103	2.8	GRM 05.04	S10-01993

Crop	Analyte	Fortification	n	Recovery	%	RSD	Method	Reference
		mg/kg		Range	Mean	%		
	XDE-175-L	0.01, 1	10	94–103	99	3.6	GRM 05.04	
	N-Demethyl-J	0.01, 1	10	94–114	104	6.8	GRM 05.04	-
	N-Formyl-J	0.01, 1	10	58–69	64	6.3	GRM 05.04	-
Grapes	XDE-175-J	0.01-1	18	89–120	104	9	GRM 05.04	259332
	XDE-175-L	0.01-1	18	75–84	79	4	GRM 05.04	-
	N-Demethyl-J	0.01-1	18	72–101	89	10	GRM 05.04	-
	N-Formyl-J	0.01-1	18	73–114	85	13	GRM 05.04	-
Grapes	XDE-175-J	0.01, 0.1	2	99, 107	103		GRM 05.04	259851
	XDE-175-L	0.01, 0.1	2	100, 112	106		GRM 05.04	-
	N-Demethyl-J	0.01, 0.1	2	95, 98	97		GRM 05.04	-
	N-Formyl-J	0.01, 0.1	2	91, 77	84		GRM 05.04	-
Grapes	XDE-175-J	0.01, 0.1	2	98, 98	98		GRM 05.04	2007533
	XDE-175-L	0.01, 0.1	2	98, 104	101		GRM 05.04	-
	N-Demethyl-J	0.01, 0.1	2	98, 96	97		GRM 05.04	-
	N-Formyl-J	0.01, 0.1	2	89, 96	93		GRM 05.04	-
Grapes	XDE-175-J	0.01-1	9	77–96	87	7	DFG-S-19	JMPR, 2008
	<i>m/z</i> Q1/Q3 748.7/142,1							
	XDE-175-L	0.01-1	9	71–92	82	9	DFG-S-19	-
	<i>m/z</i> Q1/Q3 760.7/142.1							
	N-Demethyl-J	0.01-1	9	73–91	81	7	DFG-S-19	
	<i>m/z</i> Q1/Q3							
	734.7/127.9							
	N-Formyl-J	0.01-1	10	88–111	98	8	DFG-S-19	
	<i>m/z</i> Q1/Q3							
	762.3/156.1							
Grapes	XDE-175-J	0.01-1	9	76–95	86	8	DFG-S-19	JMPR, 2008
	<i>m/z</i> Q1/Q3 748.7/98.2							
	XDE-175-L	0.01-1	9	69–89	80	9	DFG-S-19	
	<i>m/z</i> Q1/Q3 760.7/98.2							
	N-Demethyl-J	0.01-1	9	72–81	77	9	DFG-S-19	
	<i>m/z</i> Q1/Q3							
	734.7/84.2							
	N-Formyl-J	0.01-1	10	89–106	96	6	DFG-S-19	
	<i>m/z</i> Q1/Q3							
	762.3/203.0							
Bulb Vegeta	ables							

Crop	Analyte	Fortification	n	Recovery %		RSD	Method	Reference
		mg/kg		Range	Mean	%		
Onion, green	XDE-175-J	0.01-1	10	96–103	99	2	GRM 05.04	S10-01991
	XDE-175-L	0.01-1	10	98–106	102	3		_
	N-Demethyl-J	0.01-1	10	91–112	102	9		_
	N-Formyl-J	0.01-1	10	75–92	83	6		_
Onion, bulb	XDE-175-J	0.01-1	17	70-81	73	5	GRM 05.04	257916
	XDE-175-L	0.01-1	18	71–93	81	8		_
	N-Demethyl-J	0.01-1	18	77–96	87	7		_
	N-Formyl-J	0.01-1	17	70–87	79	6		
Brassica Vegeta	bles							
Broccoli	XDE-175-J	0.01–2	6		105	2	GRM 05.03	090004
	XDE-175-L	0.01–2	6		103	2		_
	N-Demethyl-J	0.01–2	6		106	2		-
	N-Formyl-J	0.01–2	6	1	102	2		1
Broccoli	XDE-175-J	0.01-1	9		102	3	GRM 05.03	090002
	XDE-175-L	0.01-1	9		103	2		_
	N-Demethyl-J	0.01-1	9		104	2		-
	N-Formyl-J	0.01-1	9		104	2		_
Cabbage	XDE-175-J	0.01–2	6		102	2	GRM 05.03	090004
	XDE-175-L	0.01–2	6		99	5		-
	N-Demethyl-J	0.01-2	6		102	2		_
	N-Formyl-J	0.01-2	6		98	4		_
Cabbage	XDE-175-J	0.01-1	9		105	2	GRM 05.03	090002
	XDE-175-L	0.01-1	9		104	2		_
	N-Demethyl-J	0.01-1	9		104	2		-
	N-Formyl-J	0.01-1	9		97	4		_
Brussels sprouts	XDE-175-J	0.01–2	6		104	2	GRM 05.03	090004
	XDE-175-L	0.01-2	6		103	2		_
	N-Demethyl-J	0.01-2	6		103	1.2		_
	N-Formyl-J	0.01–2	6		102	3		_
Cauliflower	XDE-175-J	0.01–2	6		101	1.2	GRM 05.03	090004
	XDE-175-L	0.01-2	6	1	98	4		-
	N-Demethyl-J	0.01-2	6	1	102	1		-
	N-Formyl-J	0.01-2	6	1	99	5		-
Leafy Vegetable	es	1						
Spinach	XDE-175-J	0.01–2	6		103	2	GRM 05.03	090010
	XDE-175-L	0.01-2	6		95	2.2		-
	N-Demethyl-J	0.01–2	6	1	103	2		
	N-Formyl-J	0.01–2	6	+	96	6		-

Crop	Analyte	Fortification	n	Recovery	%	RSD	Method	Reference
		mg/kg		Range	Mean	%		
Spinach	XDE-175-J	0.01-1	10	91–100	96	3	GRM 05.04	S10-01989
	XDE-175-L	0.01-1	10	94–102	98	3		
	N-Demethyl-J	0.01-1	10	94–110	103	5.3		
	N-Formyl-J	0.01-1	10	79–93	87	5		
Legume Veg	getables							
Beans	XDE-175-J	0.01-10	17	74–102	85	7	GRM 05.04	246852-
	XDE-175-L	0.01–10	17	71–108	90	10		-246855; 246858, 246859
	N-Demethyl-J	0.01-10	17	90–113	101	10		
	N-Formyl-J	0.01–10	17	70–107	83	14		
Stalk and St	em Vegetables							
Celery	XDE-175-J	0.01-1	10	99–113	108	4	GRM 05.04	S10-01990
	XDE-175-L	0.01-1	10	106–114	111	2.5		
	N-Demethyl-J	0.01-1	10	96–110	104	6		
	N-Formyl-J	0.01-1	10	75–86	78	4		

Stability of pesticide residues in stored analytical samples

The 2008 JMPR evaluated stability of spinetoram and its N-demethyl and N-formyl metabolites (each at a fortification level of 0.10 mg/kg) in homogenized samples of orange, lettuce, sugar beet, soya bean and wheat grain stored in deep freezer at -20 °C over 12 months. These commodities represented each of the five crop groupings (dry, oily, acidic, wet, and root crops). The 2008 JMPR concluded that at -20 °C, spinetoram and its N-demethyl and N-formyl metabolites were stable for about 12 months (372 days) in orange, sugar beet, soya bean and wheat.

USE PATTERN

The Meeting received approved labels in Argentina, Australia, Brazil, Canada, Columbia, Israel, Japan, Kenya, South Africa, Turkey and the United States of America.

Information on registered formulations, application methods and dosage rates of spinetoram for uses on the crops for which supervised trial data were provided is summarized in Table 2. Unless otherwise noted, each of the following GAPS are for field use and all applications are <u>foliar</u> applications.

Crop	Country	Formulation		Application					PHI
		g ai/L or g ai/kg	type	g ai/ha	hL/ha	g ai/hL	Interval days	Max no. or g ai/ season/ha	days
Beans	Colombia	60	SC	6–9					1
Blueberry	USA	250	WG	53-105			6	6/(342) ^a	3
Brassica vegetables	Australia	120	SC	24–48			7–14	4	3
Bulb vegetables	USA °	120	SC	44-88			4	5 (263) ^a	1
Cabbage	Japan ^b	120	SC		10-30	2.4-4.8		2	1

Table 2 Registered uses of spinetoram related to supervised trials

Crop	Country	Formulati	on	Applicatio	n				PHI
		g ai/L or g ai/kg	type	g ai/ha	hL/ha	g ai/hL	Interval days	Max no. or g ai/ season/ha	days
Caneberries (blackberry, raspberry, etc.)	USA	250	WG	53–105			4	6/(342) ^a	1
Celery	USA	120	SC	44-88			4	6/(298) ^a	1
Citrus fruits	Brazil	250	WG		20-40	1.25-2.5		3	1
Citrus fruits	USA	250	WG	53-105			7	3/ (210) ^a	1
Grape	Turkey	250	WG			4-6			7
Leafy vegetables (except Brassica)	USA °	120	SC	44-88			4	6/(298) ^a	1
Legume vegetables	Australia	120	SC	24-48			7–14	3	3
Nectarine	Argentina	250	WG	Min 60		3.75–5	14	3	1
Peach	Argentina	250	WG	Min 60		3.75–5	14	3	1
Peach	Japan ^b	250	WG		20-70	2.5–5		2	1
Stone fruits	Australia	250	WG			2.5-5	14	4	3
Welsh onion (green onion)	Japan ^b	120	SC		10–30	4.8		2	1

^a Total application per season or year.

^b The application rate in g ai/ha is not specified on the label

^c Applicable to Puerto Rico, Autonomous Territory of the USA.

RESIDUES RESULTING FROM SUPERVISED TRIALS ON CROPS

The Meeting received information on supervised field trials of spinetoram on the following crops:

Crop Group	Commodity	Country	Table No.
Citrus fruits	Orange	Brazil, USA	Table 3
	Tangerine	Brazil	Table 4
	Comparison of citrus fruits	USA	Table 5
Stone fruits	Apricot	Australia, New Zealand, Chile	Table 6
	Cherry	Australia, New Zealand, Chile	Table 7
	Nectarine	Australia, Argentina, Chile	Table 8
	Peach	Australia, New Zealand, Argentina, Chile, Japan, France, Spain	Table 9
	Plum	Chile, France, Germany, Italy	Table 10
Berries and other	Raspberry	USA	Table 11
small fruits	Blueberry	USA	Table 12
	Grape	Chile, France, Italy	Table 13

Bulb vegetables	Onion	Brazil	Table 14
	Welsh onion	Japan	Table 15
	Spring onion	USA	Table 16
Brassica	Broccoli	Australia, New Zealand	Table 17
vegetables	Cauliflower	Australia, New Zealand	Table 18
	Cabbage	Australia, New Zealand, Japan	Table 19
	Brussels sprout	Australia, New Zealand	Table 20
Leafy vegetable	Spinach	USA	Table 21
Legume vegetable	Common bean	Brazil	Table 22
Pulses	Common bean	France, Greece, Italy, Spain	Table 23
Stalk and stem vegetable	Celery	USA	Table 24

Trials were generally well documented with full laboratory and field reports. Laboratory reports include method validation, with batch recoveries at residue levels similar to those occurring in samples from the supervised trials. Dates of analyses or duration of residue sample storage were also provided. The analytical methods employed in relation to the supervised residue trials provided to the current Meeting were reviewed by the 2008 JMPR and considered to be sufficiently validated. In general, procedural recoveries were within the acceptable range of 70–120%, with relative standard deviation of < 20%.

All commodities tested were stored at or below -20 °C for periods ranging from 55 to 372 days. The 2008 JMPR concluded that at -20 °C, spinetoram and its N-demethyl and N-formyl metabolites were stable for 12 months in orange, sugar beet, soya bean and wheat. The current Meeting also concluded that within the storage periods of 55–372 days, samples tested in Tables 3–23 were stable when analysed.

Field reports provide data on the dates of spray applications, methods used and sampling dates. Although trials included control plots, no control data are recorded in the tables below unless residues in control samples exceeded the LOQ.

The residue concentrations are reported for XDE-175-J, XDE-175-L, N-demethyl-175-J and N-formyl-175-J. They are unadjusted for procedural recovery. Where residues were below the limit of detection, they are expressed as "ND". Where they are below the LOQ of 0.01 mg/kg and at or above the limit of detection, they are expressed as "< 0.01".

Total residues for estimation of maximum residue levels and those for estimation of STMRs were calculated in the same manner as done by the 2008 JMPR.

Total residues for estimation of maximum residue levels were calculated by summing up the concentrations of XDE-175-J and XDE-175-L. XDE-175-J was the primary residue reflecting higher ratio in spinetoram formulations. The method for calculation of the total residues is illustrated below. In the calculation, "ND" is treated in the same manner as "< 0.01".

XDE-175-J	XDE-175-L	Total
	mg/kg	
< 0.01	< 0.01	< 0.01
0.05	< 0.01	0.05
0.06	0.02	0.08

Total residues for estimation of STMRs were calculated by summing up the concentrations of XDE-175-J, XDE-175-L, *N*-demethyl-175-J and *N*-formyl-175-J. In most trials, XDE-175-J was the primary residue at shorter PHIs while, in many cases, N-formyl-175-J was found at higher concentrations than XDE-175-J at longer PHIs. On the other hand, XDE-175-L, with its concentration being one third of that of XDE-175-J, was a minor component in the four compounds. N-demethyl-J was in most cases at lower concentrations than XDE-175-J and in a number of trials was not determined. The method for calculation of the total residues taking the above into account is illustrated below. In the calculation, "ND" is treated in the same manner as "< 0.01".

XDE-175-J	XDE-175-L	N-demethyl-175-J	N-formyl-175-J	Total
		mg/kg		
< 0.01	< 0.01	< 0.01	< 0.01	< 0.02
0.05	< 0.01	< 0.01	< 0.01	0.06
< 0.01	< 0.01	< 0.01	0.05	0.06
0.05	< 0.01	< 0.01	0.05	0.10
0.06	0.02	0.02	0.06	0.16

In trials where replicate field samples were taken from a single plot and analysed separately, or where duplicate analyses of the same sample were made, the average of residue values were used for the estimation of maximum residue levels or STMRs.

Total values of XDE-175-J and XDE-175-L residues from the trials conducted according to the GAP have been underlined and used for the estimation of maximum residue levels. Corresponding total values of XDE-175-J, XDE-175-L, N-demethyl-175-J and N-formyl-175-J residues were used for estimation of STMRs and they are double underlined.

Citrus fruits

There is an existing CXL of 0.07 mg/kg for <u>oranges</u> (sweet, sour), recommended by the 2008 JMPR on a basis of supervised trials conducted according to the GAP in the USA (three applications at a rate of 53–105 g ai/ha for a total seasonal rate of 210 g ai/ha and a PHI of 1 day). Additional trials conducted later on tangerines and grapefruit were submitted in support of a group maximum residue level on citrus fruits.

Oranges

The twelve supervised trials on <u>oranges</u> were conducted in the USA in 2004 and 2007 following the US GAP. They were reviewed by the 2008 JMPR. Trial data summarized in the 2008 JMPR Report are reproduced in Table 3.

Four supervised trials on oranges were carried out in Brazil in 2004 (Report 040063). Each trial consisted of two plots, one treated with 70 g ai/ha of spinetoram 250 WG and the other, with 140 g ai/ha of the same formulation. Samples were collected 0, 1, 3, 7, 14, and 28 days after the final application. Samples were stored frozen up to 368 days. The GAP in Brazil for citrus fruits allows up to three applications at the spray concentration of 1.25–2.5 g ai/hL with the spray volume of 20–40 hL/ha and a PHI of 1 day.

Residues of spinetoram and its metabolites were determined using method GRM 05.04, which had been validated with an LOQ of 0.01 mg/kg.

ORANGE	Form	Applicat	ion/treatm	ent	Total/	PHI,	Residue, mg	/kg		Report No.
Country, year		g ai/	g ai/ha	No	season,	days	XDE-175-J	XDE-175-L	Total ^a	-
(Variety)		hL			g ai/ha				(Average)	
GAP, USA	SC or WG		53-105	3	210	1				
Foliar applicati	ion using	low spray	volume (a	approx.	700 L/ha)				I	
Deleon Spring	SC	10	70–72	3	213	1	0.030	< 0.01	0.030	JMPR,
FL, USA							0.028	< 0.01	0.028	- 2008
2004									(0.029)	
(Valencia)										
Mount Dora,	SC	11	71–72	3	214	1	0.011	ND	0.011	JMPR,
FL, USA							0.022	< 0.01	0.022	- 2008
2004									(0.017)	
(Valencia)										
Raymondville,	SC	10	70–72	3	213	1	< 0.01	ND	< 0.01	JMPR,
TX, USA							< 0.01	ND	< 0.01	- 2008
2004									(< 0.01)	
(N-33)										
Richgrove,	SC	9	70-71	3	211	1	< 0.01	ND	< 0.01	JMPR,
CA ^b ,							< 0.01	ND	< 0.01	2008
USA, 2004									(< 0.01)	
(Olinda)										
Porterville, CA, USA,	SC	9	70	3	210	0	0.011	ND	0.011	JMPR, 2008
2004 05A,							0.014	< 0.01	0.014	2008
(Cutter									(0.013)	
Valencia)										
						1	0.012	< 0.01	0.012	
							0.010	ND	0.010	
									(0.011)	
						3	< 0.01	ND	< 0.01	-
							0.011	ND	0.011	1
									(0.011)	
						7	< 0.01	ND	< 0.01	-
							< 0.01	ND	< 0.01	-
									(< 0.01)	
						14	< 0.01	ND	< 0.01	-
						<u> </u>	0.01		v.v.	

Table 3-1 Residues of spinetoram from supervised trials on oranges in the USA and Brazil (for estimation of maximum residue level)

ORANGE	Form	Applicat	ion/treatm	ent	Total/	PHI,	Residue, mg	/kg		Report No.
Country, year		g ai/	g ai/ha	No	- season,	days	XDE-175-J	XDE-175-L	Total ^a	-
(Variety)		hL			g ai/ha				(Average)	
							< 0.01	ND	< 0.01	=
									(< 0.01)	
FL, 2007	WG	11	69–72	3	212	1	0.028	< 0.01	0.028	JMPR,
(not specified)							0.025	ND	0.025	- 2008
									(0.027)	
Foliar applicati	ion using	high spra	y volume (approx	. 3300L/ha)				
Deleon Spring	SC	2	70–71	3	212	1	0.015	< 0.01	0.015	JMPR,
FL, 2004							0.014	ND	0.013	- 2008
(Valencia)								((0.014)	
Mount Dora,	SC	2	70–71	3	212	1	0.017	< 0.01	0.017	JMPR,
FL, 2004							0.018	< 0.01	0.018	- 2008
(Valencia)									(0.018)	
Raymondville, TX, 2004	SC	2	70–71	3	211	1	< 0.01		< 0.01	JMPR, 2008
(N-33)							ND	ND ·	< 0.01	2008
(11-55)									(< 0.01)	
Richgrove, CA ^b , 2004	SC	2	70–71	3	211	1	0.021	< 0.01	0.021	JMPR, 2008
(Olinda)							0.020	< 0.01	0.020	2008
(Ollida)								((0.021)	
Porterville,	SC	2	70	3	210	0	0.021	< 0.01	0.021	JMPR,
CA, 2004							0.012	< 0.01	0.012	- 2008
(Cutter Valencia)								1	(0.017)	
						1	0.010	ND	0.010	_
							0.012	ND	0.012	1
								((0.011)	
						3	< 0.01	ND ·	< 0.01	
							ND	ND ·	< 0.01	1
									(< 0.01)	
						7	< 0.01	ND ·	< 0.01	-
				1						

ORANGE	Form	Applica	ation/treatm	ent	Total/	PHI,	Residue, mg	/kg		Report No.
Country, year (Variety)		g ai/ hL	g ai/ha	No	g ai/ha	days	XDE-175-J	XDE-17	5-L Total ^a (Average)	
					=		< 0.01	ND	< 0.01 (< 0.01)	=
						14	< 0.01	ND	< 0.01	
						14	< 0.01	ND	< 0.01	-
							< 0.01	ND	(< 0.01)	
FL, 2007	WG	2	69–70	3	209	1	0.021	< 0.01	0.021	JMPR,
(not specified)							0.024	< 0.01	0.024 (0.023)	- 2008
GAP, Brazil	SC or WG	· 1.25– 2.5	25–100 °	3		1				
Jaboticabal,	250	2.33	70	3	210	0	< 0.01	< 0.01	< 0.01	242980/
SP	WG					1	< 0.01	ND	< 0.01	246845
Brazil, 2006						3	< 0.01	ND	< 0.01	(Amended)
(Pera Rio)						7	ND	ND	< 0.01	-
				14	ND	ND	< 0.01	-		
						28	ND	ND	< 0.01	-
	250	4.67	140	3	420	0	0.020	0.013	0.033	-
	WG					1	0.012	ND	0.012	-
						3	< 0.01	ND	< 0.01	-
						7	< 0.01	ND	< 0.01	-
						14	< 0.01	ND	< 0.01	-
						28	< 0.01	ND	< 0.01	-
Mogi Mirim,		7	70	3	210	0	0.053	< 0.01	0.053	242983/
SP,	WG					1	0.052	0.01	0.062	- 246851 (Amended)
Brazil, 2006 (Pera)						3	0.025	< 0.01	0.025	
(Pera)						7	0.023	ND	0.023	1
						14	0.019	ND	0.019	
						28	0.012	ND	0.012	
	250 14 140 3 WG	140	3	420	0	0.096	0.021	0.117	1	
					1	0.089	0.012	0.101	1	
				3	0.052	< 0.01	0.052	1		
						7	0.039	< 0.01	0.039	1
						14	0.043	ND	0.043	1
						28	0.035	ND	0.035	1

ORANGE	Form	Applicat	tion/treatm	ent	Total/	PHI,	Residue, mg	/kg		Report No.
Country, year (Variety)		g ai/ hL	g ai/ha	No	- season, g ai/ha	days	XDE-175-J	XDE-175-I	L Total ^a (Average)	
Anhembi, SP Brazil, 2006	250 WG	7	70	3	210	1	0.041	< 0.01	0.041	242984/ 246850
(Pera Murcha)	250 WG	14	140	3	420	1	0.046	< 0.01	0.046	(Amended)
Limeira, SP	250	7	70	3	210	0	0.058	0.018	0.076	244444/
Brazil, 2006	WG					1	0.029	< 0.01	0.029	246849 (Amended)
(Valencia)						3	0.018	ND	0.018	
						7	0.022	ND	0.022	
						14	0.012	ND	0.012	-
						28	< 0.01	ND	< 0.01	-
	250	14	140	3	420	0	0.157	0.055	0.212	-
	WG					1	0.067	0.013	0.080	-
						3	0.061	< 0.01	0.061	-
						7	0.025	ND	0.025	
						14	0.040	< 0.01	0.040	
						28	0.016	ND	0.016	

^a Total residue = XDE-175-J + XDE-175-L

^b Data from these two trials must have been interchanged

^c Calculated from the specified spray volume and spray concentration.

Table 3-2 Residues o	of spinetoram	from	supervised	trials	on	oranges	in	the	USA	and	Brazil	(for
estimation of STMR)	_		_			-						

ORANGE	Form	Applica	tion/trea	itment		PHI,	Residue	e, mg/kg				Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	season g ai/ha	days	XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl- J	Total ^a	
GAP, USA	SC or WG		53– 105	3	210	1						
Foliar applicati	on usin	g low sp	ray volu	me (app	prox. 700	L/ha)						
Deleon Spring	SC	10	70–72	3	213	1	0.028	< 0.01	0.014	0.024	0.066	JMPR, 2008
FL USA,2004 (Valencia)							0.030	< 0.01	0.011	0.016	0.057 (0.062)	2008
Mount Dora,		11	71–72	3	214	1	0.011	ND	< 0.01	< 0.01	0.021	JMPR, 2008
FL, USA,2004 (Valencia)							0.022	< 0.01	0.012	0.017	0.051 (0.039)	2000
Raymondville	SC	10	70–72	3	213	1	< 0.01	ND	< 0.01	0.012	0.022	JMPR,
TX, USA,2004 (N-33)							< 0.01	ND	< 0.01	0.011	0.021 (0.022)	2008

ORANGE	Form	Applica	tion/trea	tment	Total/	PHI,	Residue	e, mg/kg				Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	season g ai/ha	days	XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl- J	Total ^a	
Richgrove ^b ,	SC	9	70–71	3	211	1	< 0.01	ND	ND	ND	< 0.02	JMPR,
CA, USA, 2004							< 0.01	ND	ND	< 0.01	< 0.02 (< 0.02)	2008
(Olinda) Porterville,	SC	2	70	3	210	0	0.011	ND	< 0.01	0.014	0.025	JMPR,
CA, USA 2004 (Cutter Valencia)	50	2	70	3	210	0	0.011	< 0.01	< 0.01	0.012	0.026 (0.026)	- 2008
						1	0.012	< 0.01	ND	0.015	0.027	
							0.010	ND	< 0.01	0.020	0.030 (0.029)	
						3	< 0.01	ND	ND	< 0.01	< 0.02	_
							0.011	ND	< 0.01	0.022	0.033 (0.027)	
						7	< 0.01	ND	ND	0.015	0.025	
							< 0.01	ND	ND	< 0.01	< 0.02 (0.023)	
						14	< 0.01	ND	ND	0.013	0.023	_
							< 0.01	ND	ND	0.015	0.025 (0.024)	
FL, USA 2007	WG	2	69–70	3	209	1	0.028	< 0.01	0.013	< 0.01	0.041	JMPR,
(not specified)							0.025	ND	< 0.01	ND	0.035 (0.038)	- 2008
Foliar applicati	on usin	g high sp	oray volu	ime (ap	prox. 33	00 L/h	a)	1	1	l	1	1
Deleon Spring	SC	2	70–71	3	212	1	0.015	< 0.01	< 0.01	0.026	0.041	JMPR, 2008
FL, USA, 2004 (Valencia)							0.014	ND	< 0.01	0.024	0.038 (0.040)	
Mount Dora, FL, USA, 2004 (Valencia)	SC	2	70–71	3	212	1	0.017	< 0.01 < 0.01	< 0.01	0.022	0.039 0.039 (0.039)	JMPR, - 2008
Raymondville	SC	2	70–71	3	211	1	< 0.01	ND	< 0.01	< 0.01	< 0.02	JMPR,

ORANGE	Form	Applica	tion/trea	tment	Total/	PHI,	Residue	e, mg/kg				Report No.
Country, year		g ai/hL	g ai/ha	No	season g ai/ha	days	XDE-	XDE-	N-	N-	Total ^a	
(Variety)					0		175-J	175-L	demethyl- J	formyl- J		
TX, USA, 2004							ND	ND	ND	< 0.01	< 0.02	2008
(N-33)											(< 0.02)	
Richgrove ^b ,	SC	2	70–71	3	211	1	0.021	< 0.01	< 0.01	0.032	0.053	JMPR,
CA, USA,	50	2	/0-/1	5	211	1	0.021	< 0.01	< 0.01	0.032	0.055	2008
2004							0.020	< 0.01	< 0.01	0.049	(0.061)	
(Olinda)			-			0	0.001	0.01	0.01	0.020	· · ·	D (DD
Porterville, CA, USA,	SC	2	70	3	210	0	0.021	< 0.01	< 0.01	0.038	0.059	JMPR, 2008
2004							0.012	< 0.01	< 0.01	0.026	0.038	
(Cutter Valencia)											(0.048)	
v aleneia)						1	0.010	ND	< 0.01	0.025	0.045	-
						1	0.010	ND	< 0.01	0.035	0.045	
							0.012	ND	< 0.01	0.035	0.047	
											(0.046)	
						3	< 0.01	ND	ND	0.010	0.029	-
						3	< 0.01 ND	ND	ND	0.019	< 0.029	-
							ND	ND	ND	< 0.01		
											(0.025)	
						7	< 0.01	ND	ND	0.026	0.036	
						,	< 0.01	ND	ND	0.020	0.036	
						14	< 0.01	ND	ND	0.020	0.030	
						17	< 0.01	ND	ND	0.020	0.030	
							< 0.01	TLD .	ND .	0.020	(0.032)	
											(0.002)	
FL, USA,2007	WG	2	69–70	3	209	1	0.021	< 0.01	0.010	< 0.01	0.031	
(not specified)	_						0.024	< 0.01	0.012	< 0.01	0.036	
											(0.034)	
GAP, Brazil	SC	1.25-	25-	3		1		L				
, ,	or	2.5	100 °									
T.1 1 . 1	WG	0.00	70	2	210		< 0.01	< 0.01	ND	0.012	0.022	2420001
Jaboticabal, SP	250 WG	2.33	70	3	210	0	< 0.01	< 0.01	ND	0.012	0.022	242980/
Brazil, 2006						1	< 0.01	ND	ND	ND	< 0.02	246845 (Amended)
(Pera Rio)						3	< 0.01	ND	ND	ND	< 0.02	
						7	ND	ND	ND	ND	ND	
						14	ND	ND	ND	ND	ND	
						28	ND	ND	ND	ND	ND	
	250	4.67	140	3	420	0	0.020	0.013	ND	0.014	0.047	

ORANGE	Form	Applica	ation/trea	itment	Total/	PHI,	Residue	e, mg/kg				Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	season g ai/ha	days	XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl- J	Total ^a	
	WG					1	0.012	ND	ND	0.010	0.022	=
						3	< 0.01	ND	ND	0.011	0.021	
						7	< 0.01	ND	ND	0.011	0.021	
						14	< 0.01	ND	ND	0.014	0.024	
						28	< 0.01	ND	ND	ND	< 0.02	
Mogi Mirim, SP,	250 WG	7	70	3	210	0	0.053	< 0.01	< 0.01	0.014	0.067	242983/ 246851
Brazil, 2006	wu					1	0.052	0.01	< 0.01	0.013	0.075	(Amended)
(Pera)						3	0.025	< 0.01	< 0.01	0.018	0.043	
(1 014)						7	0.023	ND	ND	0.012	0.035	
						14	0.019	ND	< 0.01	< 0.01	0.029	
						28	0.012	ND	ND	< 0.01	0.022	-
	250	14	140	3	420	0	0.096	0.021	< 0.01	0.029	0.146	-
	WG					1	0.089	0.012	< 0.01	0.025	0.126	-
						3	0.052	< 0.01	< 0.01	0.033	0.085	-
						7	0.039	< 0.01	< 0.01	0.015	0.054	-
						14	0.043	ND	< 0.01	0.022	0.065	-
						28	0.035	ND	< 0.01	0.015	0.050	-
Anhembi, SP Brazil, 2006	250 WG	7	70	3	210	1	0.041	< 0.01	< 0.01	0.035	0.076	242984/ 246850
(Pera Murcha)	250 WG	14	140	3	420	1	0.046	< 0.01	< 0.01	0.060	0.106	- (Amended)
Limeira, SP	250	7	70	3	210	0	0.058	0.018	< 0.01	0.018	0.094	244444/
Brazil, 2006	WG					1	0.029	< 0.01	ND	0.013	0.042	246849 (Amended)
(Valencia)						3	0.018	ND	ND	0.014	0.032	
						7	0.022	ND	< 0.01	0.013	0.035	
						14	0.012	ND	< 0.01	0.013	0.025	-
						28	< 0.01	ND	ND	< 0.01	< 0.02	-
	250	14	140	3	420	0	0.157	0.055	< 0.01	0.020	0.232	
	WG					1	0.067	0.013	< 0.01	0.044	0.124	-
						3	0.061	< 0.01	< 0.01	0.045	0.106	
						7	0.025	ND	< 0.01	0.019	0.044	1
						14	0.040	< 0.01	< 0.01	0.043	0.083	1
						28	0.016	ND	< 0.01	0.011	0.027	

^a Total residues = XDE-175-J +XDE-175-L +N-Demethyl-J + N-Formyl-J

^b Data from these two trials must have been interchanged.

^c Calculated from the specified spray volume and spray concentration.

Tangerine

A total of eight supervised trials on <u>tangerines</u> were carried out in Brazil in 2006 (Reports 246796, 246801, 246802, 246803, 246806, 246807, 246809, and 246811). Each site consisted of two treated plots which received three applications of a 250 WG formulation of spinetoram at the rate of 70 g ai/ha for a total of 210 g ai/ha per season. The GAP in Brazil for citrus fruits allows up to three applications at the spray concentration of 1.25–2.5 g ai/hL with the spray volume of 20–40 hL/ha and a PHI of 1 day.

Mature samples were collected one day after the last application. For the four decline trials, samples were also harvested at 0, 3, 7, 14 and 28 days after the last application. The GAP in Brazil is three applications at 25–100 g ai/ha spinetoram, which is similar to the GAP in the USA. The PHI is 1 day. Samples were stored frozen up to about 372 days at approximately -20 °C. Storage stability studies reviewed by the JMPR showed that residues of spinetoram are stable up to 372 days in similar crops stored frozen thus illustrating that the residues in this study were stable at the time of analysis.

Residues of XDE-175-J, XDE-175-L, N-demethyl-J and N-formyl-J were determined by liquid chromatography with tandem mass spectrometry (LC/MS/MS), following method GRM.05.04, which had been previously validated with an LOQ of 0.01 mg/kg.

Table 4-1 Residues of spinetoram from supervised trials on tangerines in Brazil (for estimation of maximum residue level)

TANGERINE	Form	Applic	ation/tre	eatment		PHI,	Residue, mg	/kg		Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	season, g ai/ha	days	XDE-175-J	XDE- 175-L	Total	
GAP, Brazil	SC or WG	1.25– 2.5	25– 100	3		1				
Piracicaba, SP Brazil, 2006 (Poncã)	250 WG	7	70	3	210	1	0.012	ND	0.012	242939/ 246809 (Amended)
Anhembi, SP Brazil, 2006 (Poncã)	250 WG	4.7	70	3	210	1	0.028	< 0.01	0.028	242940/ 246801 (Amended)
Monte Santo de Minas, Minas Gerais, Brazil, 2006 (Poncã)	250 WG	3.5	70	3	210	1	0.018	< 0.01	0.018	242942/ 246796 (Amended)
Campinas, SP Brazil, 2006	250 WG	7	70	3	210	0	0.110	0.034	0.144	242943/ 246803 and
(Mexerica						1	0.026	< 0.01	0.026	247091
Murcote)						3	0.022	ND	0.022	(Amended)
						7	0.013	ND	0.013	1
						14	ND	ND	< 0.01	1
						28	ND	ND	< 0.01	1

TANGERINE	Form	Applic	ation/tr	eatment		PHI,	Residue, mg	/kg		Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	season, g ai/ha	days	XDE-175-J	XDE- 175-L	Total	
Londrina, Paraná Brazil, 2006 (Poncã)	250 WG	3.5	70	3	210	1	0.026	< 0.01	0.026	242944/ 246802 (Amended)
Mogi Mirim, SP, Brazil 2006	250 WG	4.7	70	3	210	0	0.051	0.018	0.069	242945/ 246811 (Amended)
(Poncã)						3 7	0.020	< 0.01 < 0.01	0.020	
Limeira, SP	250	7	70	3	210	14 28 0	ND ND 0.091	ND ND 0.015	< 0.01 < 0.01 0.106	243036/
Brazil, 2006 (Poncã)	WG	7	70	5	210	1 3	0.031 0.038 ND	< 0.013 < 0.01 0.012	0.038	- 246806 and 242998 (Amended)
						7 14 28	0.022 0.012 ND	ND ND ND	0.022 0.012 < 0.01	-
Conchal, SP Brazil, 2006 (Murcote)	250 WG	4.7	70	3	210	0 1 3 7 14	0.035 0.018 < 0.01 < 0.01 < 0.01 ND	0.01 < 0.01 ND ND ND	0.045 0.018 < 0.01	243034/ 246807 and 246658 (Amended)
						28	ND	ND	< 0.01	_

Table 4-2 Residues of spinetoram from supervised trials on tangerines in Brazil (for estimation of STMR)

TANGERINE	Form	Applica	tion/trea	tment		PHI,	Residue,	mg/kg				Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	season g ai/ha	days	XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total	
GAP, Brazil	WG	1.25– 2.5	25– 100	3								
Piracicaba, SP Brazil, 2006 (Ponca)	250 WG	7	70	3	210	1	0.012	ND	< 0.01	< 0.01	0.022	242939/ 246809 (Amended)

TANGERINE	Form	Applica	tion/trea	tment		PHI,	Residue	, mg/kg				Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	season g ai/ha	days	XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total	
Anhembi, SP Brazil, 2006 (Poncã)	250 WG	4.7	70	3	210	1	0.028	< 0.01	0.011	0.014	0.053	242940/ 246801 (Amended)
Monte Santo de Minas, Minas Gerais, Brazil, 2006 (Poncã)	250 WG	3.5	70	3	210	1	0.018	< 0.01	< 0.01	< 0.01	0.028	242942/ 246796 (Amended)
Campinas, SP		7	70	3	210	0	0.110	0.034	0.037	0.013	0.194	242943/
Brazil, 2006	WG					1	0.026	< 0.01	< 0.01	< 0.01	0.036	- 246803 and
(Poncã)						3	0.022	ND	< 0.01	< 0.01	0.032	247079
						7	0.013	ND	ND	< 0.01	0.023	(Amended)
						14	ND	ND	ND	< 0.01	< 0.02	_
						28	ND	ND	ND	< 0.01	< 0.02	_
Londrina, Paraná Brazil, 2006 (Poncã)	250 WG	3.5	70	3	210	1	0.026	< 0.01	0.010	0.016	0.052	242944/ 246802 (Amended)
Mogi Mirim,	250	4.7	70	3	210	0	0.051	0.018	0.012	< 0.01	0.081	242945/
SP,	WG					1	0.034	0.011	< 0.01	< 0.01	0.055	246811
Brazil 2006						3	0.020	< 0.01	< 0.01	< 0.01	0.030	(Amended)
(Poncã)						7	0.017	< 0.01	< 0.01	< 0.01	0.027	
						14	ND	ND	ND	< 0.01	< 0.02	-
						28	ND	ND	ND	ND	< 0.02	_
Limeira, SP	250	7	70	3	210	0	0.091	0.015	< 0.01	ND	0.116	243036/
Brazil, 2006	WG					1	0.038	< 0.01	< 0.01	< 0.01	0.048	246806
(Poncã)						3	ND	0.012	0.019	< 0.01	0.031	and 242998
						7	0.022	ND	< 0.01	< 0.01	0.032	(Amended)
						14	0.012	ND	< 0.01	< 0.01	0.022	-
						28	ND	ND	ND	< 0.01	< 0.02	$\frac{1}{2}$
Conchal, SP	250	4.7	70	3	210	0	0.035	0.01	< 0.01	< 0.01	0.055	243034/
Brazil, 2006	WG					1	0.018	< 0.01	< 0.01	< 0.01	0.028	246807
(Poncã)						3	< 0.01	ND	ND	ND	< 0.02	and 246658
						7	< 0.01	ND	ND	ND	< 0.02	(Amended)
						14	ND	ND	ND	ND	< 0.02	
						28	ND	ND	ND	ND	< 0.02	$\left\{ \right\}$
						-						

Comparison of citrus fruits and effect of spray volume

A confirmatory bridging study including a trial on <u>grapefruit</u> was conducted with an aim to illustrate the effect of spray volume on the residues and that residues among different citrus crops are comparable.

A trial on grapefruit was conducted in the USA as part of a study aimed at supporting a lower spray application volume for citrus crops (Report 263602). The study involved three trials, one each on orange, tangerine and grapefruit. Each trial consisted of two treated plots, one using a low volume application, and the other, a high volume one. Each plot was treated with a single application of a 250 WG formulation at the rate of 105 g ai/ha. Three samples of mature citrus (oranges, grapefruit, and tangerines) were collected from each plot at 1, 3, 5, and 7 days after application. Only the l-day PHI samples were analysed, after it was shown that residues in samples from ULV application were not significantly greater than those receiving the application at a conventional spray volume.

Samples were stored frozen for 106 days at about -20 °C. Residues of spinetoram and its major metabolites analysed by liquid chromatography with tandem mass spectrometry following method GRM 05.04, which had been validated with an LOQ of 0.01 mg/kg.

The results confirmed that there are no significant differences in residues obtained from use of different spray volumes. In addition, the trials illustrated that residues in different citrus crops are comparable, following the same GAP. Therefore, a crop group maximum residue level for citrus fruit is proposed. Tables 9 and 10 summarize the results on citrus fruits. The residues from these trials are not included in the estimation of the maximum residue level and STMR since the trial did not use maximum US GAP rate.

Country, year (Variety)	Form	Applicat	tion/ trea	atment	Total/ season,	PHI, days	Residue, mg/	/kg		Report No.
		g ai/hl	g ai/ha	No	g ai/ha		XDE-175-J	XDE-175-L	Total	
GAP, USA	SC or WG		53– 105	3	210	1				
09-FL61 Florida, USA, 2008	250 WG	57	107	1	107	1	0.0308 0.0205 0.0297	< 0.01 < 0.01 < 0.01	0.03 0.02 0.03	263602
(Orange – Valencia)	250 WG	5.7	108	1	108	1	0.0275 0.0386 0.0376	< 0.01 0.0114 0.0110	0.03 0.05 0.049	263602
09-FL62 Florida, USA, 2008	250 WG	57	107	1	107	1	0.0251 0.0341 0.0448	< 0.01 < 0.01 0.0108	0.03 0.03 0.06	263602
(Grapefruit– Flame)		5.8	110	1	110	1	0.0142 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01	0.01 < 0.01 < 0.01	263602
09-FL63 Florida, USA, 2008	250 WG	57	108	1	108	1	0.0232 0.0182 0.0243	< 0.01 < 0.01 < 0.01	0.02 0.02 0.02	263602

Table 5-1 Residues of spinetoram from supervised trials on citrus fruits in the USA (for estimation of maximum residue level)

Country, year (Variety)	Form	Applicat	tion/ trea	itment	Total/ season,	PHI, days	Residue, mg/	ſkg		Report No.
		g ai/hl	g ai/ha	No	g ai/ha		XDE-175-J	XDE-175-L	Total	
(Tangerine– Sunburst)		5.6	106	1	106	1	< 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01	263602

Table 5-2 Residues of spinetoram from supervised trials on citrus fruits in the USA (for estimation of
STMR)

Country, year (Variety)	Form	Applica	tion/trea	itment	Total/ season g ai/ha	PHI, days	Residue,	mg/kg				Report No.
		g ai/hL	g ai/ha	No	g al/lia		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total	
09-FL61 Florida, USA, 2008	250 WG	57	107	1	107	1	0.0308 0.0205 0.0297	< 0.01 < 0.01 < 0.01	0.0135 < 0.01 0.0128	0.0161 < 0.01 0.0195	0.06 0.03 0.06	263602
(Orange— Valencia)		5.7	108	1	108	1	0.0275 0.0386 0.0376	< 0.01 0.0114 0.0110	< 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01	0.04 0.06 0.06	263602
09-FL62 Florida, USA, 2008 (Grapefruit— Flame)	250 WG	57	107	1	107	1	0.0251 0.0341 0.0448	< 0.01 < 0.01 0.0108	< 0.01 < 0.01 0.0108	0.0152 0.0204 0.0267	0.04 0.05 0.09	263602
		5.8	110	1	110	1	0.0142 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01	< 0.01 < 0.01 < 0.01	0.02 < 0.02 < 0.02	263602
09-FL63 Florida, USA, 2008 (Tangerine— Sunburst)	250 WG	57	108	1	108	1	0.0232 0.0182 0.0243	< 0.01 < 0.01 < 0.01	0.0119 < 0.01 0.0111	0.0150 0.0123 0.0146	0.05 0.03 0.05	263602
		5.6	106	1	106	1	< 0.01 < 0.01 < 0.01	< 0.02 < 0.02 < 0.02	263602			

Stone fruits

The 2008 JMPR reviewed information on the supervised field trial data on <u>apricots</u>, <u>cherries</u>, <u>nectarines and peaches</u> conducted in Australia and New Zealand and decided that since no approved GAP was available, no maximum residue level could be recommended for spinetoram in stone fruit. The GAP in Australia for stone fruits has been approved since then and recently modified. This GAP

allows up to four applications at the spray concentration of 2.5-5 g ai/hL (14 days interval) with a PHI of 3 days.

The same trials are re-submitted for review by the current Meeting. In addition, supervised trials on stone fruit were also conducted in Chile, Argentina, Japan and Europe.

Supervised trials on cherries, peaches, apricots and nectarines in Australia

Twenty-three supervised trials (eight on cherries, seven on peaches, four on nectarines, and four on apricots were conducted during the 2005–2006 season in Australia (Report 240988). Trials were conducted in six sites (two sites for cherries, two for peaches, and one each for apricots and nectarines), each site consisting of one untreated and four treated plots. Each plot, which had 1 to 4 trees ranging from flowering to 7 cm diameter fruits, was treated with four or seven applications of a WG formulation of spinetoram containing 250 g ai/kg. Two treatment regimes were used. The first treatment schedule consisted of three applications at 5-day intervals over flowering followed by four applications at 14-day intervals commencing 63 days before harvest so that the last applications at 14-day intervals commencing 63 days before harvest so that the last applications at 14-day intervals commencing 63 days before harvest so that the last applications at 14-day intervals commencing 63 days before harvest so that the last applications at 14-day intervals commencing 63 days before harvest so that the last applications at 14-day intervals commencing 63 days before harvest so that the last applications at 14-day intervals commencing 63 days before harvest so that the last applications at 14-day intervals commencing 63 days before harvest so that the last applications at 14-day intervals commencing 63 days before harvest so that the last applications at 14-day intervals commencing 63 days before harvest so that the last applications at 14-day intervals commencing 63 days before harvest so that the last applications at 14-day intervals commencing 63 days before harvest so that the last application was 21 days before harvest. Treatments were made as foliar spray applications at rates of 5 g ai/hL or 7.5 g ai/hL of spinetoram.

Approximately 2 kg each of whole peaches, apricots, and nectarines and 0.5 kg of cherries were collected 0, 7, 14 or 15, 21 or 22, 28 and 35 days after the last application. Samples were placed in plastic bags, labelled, and frozen at -20 °C until analysed. The maximum storage period was 293 days, which fell within the demonstrated limit of stability as confirmed in a previous storage stability study on various commodities.

Samples were analysed for residues of spinetoram and the metabolites using the method GRM 05.03. The LOQ for the method was 0.01 mg/kg. Recoveries were within the acceptable range of 70–120% and relative standard deviation < 20%, with the exception of apricots. The mean recovery of XDE-175-J from apricots fortified at the LOQ (66%) was lower than 70%. The results are summarized in the tables below under each commodity (Tables 11 and 12 for apricots, Tables 13 and 14 for cherries, Tables 15 and 16 for nectarines and Tables 17–22 for peaches and Tables 23 and 24 for plums).

Supervised trials on cherries, peaches and apricots in New Zealand

Trials on <u>cherries</u> (12), <u>peach</u> (8), and <u>apricot</u> (8) were conducted during the 2005 to 2006 season in New Zealand (Report 239322). Trials were conducted in seven sites (three sites for cherries, two for peaches, and two for apricots), each site consisting of one untreated and four treated plots. Each peach and apricot site had four trees while the cherry plots had two trees each. Four applications of a SC formulation of spinetoram containing 120 g ai/L were made to each plot using high volume spray applications at rates of 2.5 g ai/hL, 3.7 g ai/hL, 5 g ai/hL or 7.6 g ai/ha. Treatments were made at intervals of 13–15 days to the stone fruit plots containing fruits ranging from 1.1 cm to 5 cm in diameter at the first application to 1.2 cm to 6.5 cm in diameter at the fourth application.

Approximately 2 kg each of whole peaches and apricots, and 1 kg of cherries were collected by hand 0, 1, 3, 7, 14, 21, and 28 days after the last application. Samples were placed in plastic bags, labelled, and frozen at -20 °C until analysed. The maximum period of frozen storage was 348 days, which fell within the demonstrated limit of storage stability for spinetoram, as confirmed by a previous study on several commodities.

Spinetoram and its metabolites were analysed using method GRM 05.03 with an LOQ of 0.01 mg/kg. Recoveries were within the acceptable range of 70–120% and relative standard deviation < 20%. The results are summarized for each specific stone fruit commodity (Tables 11 and 12 for apricots, Tables 13 and 14 for cherries, Tables 15 and 16 for nectarines and Tables 17 to 22 for peaches, and Tables 22 and 23 for plums).

In addition to the four trials in Australia and eight in New Zealand, one trial was conducted in Chile in which two applications of a 250 WG formulation of spinetoram were made to apricot trees at the spray concentration of 3.6 g ai/hL and rate of 77–79 g ai/ha. Samples were collected at 0, 1, 3, 5, 7, and 14 days after the last application (Report 259246). There is no GAP for stone fruits in Chile and the trial did not match any available GAPs.

Table 6-1 Residues of spinetoram from supervised trials on apricot in Australia, New Zealand and Chile (for estimation of maximum residue level)

APRICOT	Form	Applica	tion/trea	tment	Total/ season,	PHI, days	Residue, mg/	/kg		Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	g ai/ha		XDE-175-J	XDE-175-L	Total	_
GAP, Australia (stone fruits)	250 WG	2.5–5		4		3				
TRIALS IN AU	JSTRAL	[A							1	
Ardmona,	250	5	51	4	204	0	0.08	0.02	0.10	240988
VIC, Australia,	WG					7	0.02	ND	0.02	
2005						14	< 0.01	< 0.01	< 0.01	
(Francesco)						21	< 0.01	ND	< 0.01	
						28	ND	ND	< 0.01	1
						35	ND	ND	< 0.01	
Ardmona,	250	7.5	76	4	304	0	0.08	0.02	0.10	240988
VIC, Australia,	WG					7	0.02	ND	0.02	
2005						14	0.01	ND	0.01	
(Francesco)						21	< 0.01	ND	< 0.01	
						28	< 0.01	ND	< 0.01	-
						35	ND	ND	< 0.01	-
Ardmona,	250	5	51-	7	358	0	0.07	0.02	0.09	240988
VIC, Australia,	WG		52			7	0.02	ND	0.02	
2005						14	0.01	ND	0.01	
(Francesco)						21	ND	ND	< 0.01	
						28	ND	ND	< 0.01	
						35	ND	ND	< 0.01	
Ardmona,	250	7.5	76-	7	536	0	0.16	0.04	0.20	240988
VIC, Australia,	WG		79			7	0.02	ND	0.02	1
2005						14	0.02	ND	0.02	1
(Francesco)						21	0.01	ND	0.01	1
						28	< 0.01	ND	< 0.01	1
						35	< 0.01	ND	< 0.01	1
TRIALS IN N	EW ZEAI	LAND	1	1	1	1	1	I	.	<u> </u>
Hawke's	120	2.5	31-	4	129	0	0.038	< 0.01	0.038	239322

APRICOT	Form	Applica	ntion/trea	tment	Total/ season,	PHI, days	Residue, mg/	/kg		Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	g ai/ha		XDE-175-J	XDE-175-L	Total	-
Bay, New	SC		33		-	1	0.048	0.012	0.06	-
Zealand,	50		55			3	0.031	< 0.01	0.031	-
2005 (Castlebright)						7	0.016	ND	0.016	-
(Castlebright)						14	0.010	ND	0.010	-
Hawke's	120	3.7	46-	4	189	0	0.057	0.015	0.072	239322
Bay, New	SC	5.7	48		109	1	0.048	0.012	0.06	
Zealand, 2005						3	0.032	< 0.01	0.032	-
(Castlebright)						7	0.041	< 0.01	0.041	-
						14	0.014	ND	0.014	-
Hawke's	120	5	62–	4	256	0	0.080	0.019	0.099	239322
Bay, New	SC		65			1	0.091	0.022	0.113	
Zealand, 2005						3	0.063	0.015	0.078	-
(Castlebright)						7	0.055	0.012	0.067	-
						14	0.017	ND	0.017	-
Hawke's	120	7.6	93–	4	385	0	0.185	0.043	0.228	239322
Bay, New	SC		98			1	0.208	0.052	0.260	-
Zealand, 2005						3	0.153	0.033	0.186	-
(Castlebright)						7	0.080	0.017	0.097	
						14	0.030	< 0.01	0.03	-
Earnscleugh,	120	2.5	36-	4	150	0	0.035	0.01	0.05	239322
Central Otago, New	SC		40			1	0.039	0.012	0.051	-
Zealand,						3	0.018	ND	0.018	-
2006						7	0.019	ND	0.019	-
(Sundrop)						14	< 0.01	ND	< 0.01	
Earnscleugh,	120	3.7	53-	4	221	0	0.126	0.039	0.165	239322
Central	SC		59			1	0.124	0.037	0.161	_
Zealand,						3	0.063	0.018	0.081	-
2006						7	0.041	0.011	0.052	-
(Sundrop)						14	0.022	< 0.01	0.022	-
Earnscleugh,	120	5	72–	4	298	0	0.101	0.031	0.132	239322
Central	SC		79			1	0.080	0.023	0.102	
Otago, New Zealand,						3	0.081	0.025	0.106	-
2006						7	0.064	0.017	0.081	-
(Sundrop)						14	0.024	ND	0.024	-
Earnscleugh,	120	7.4	107-	4	447	0	0.222	0.067	0.289	239322
Central	SC SC	/.4	107– 119	4	44/	0	0.222	0.067	0.289	239322
Otago, New						1	0.215	0.002	0.273	

APRICOT Country, year	Form	Applica	tion/trea	tment	Total/ season,	PHI, days	Residue, mg/	(kg		Report No.
(Variety)		g ai/hL	g ai/ha	No	g ai/ha		XDE-175-J	XDE-175-L	Total	
Zealand, 2006						3	0.139	0.038	0.177	
						7	0.084	0.022	0.106	
(Sundrop)						14	0.034	< 0.01	0.034	
TRIAL IN CHI	LE									
Calera de	250	3.6	75-	2	144	0	0.113	0.024	0.137	259246
Tango, Chile	WG		79			1	0.059	0.013	0.072	
2007						3	0.057	0.013	0.070	
(Dina)						5	0.036	< 0.01	0.036	
						7	0.033	< 0.01	0.033	
						14	0.026	< 0.01	0.026	

Table 6-2 Residues of spinetoram from supervised trials on apricots in Australia, New Zealand and Chile (for estimation of STMR)

APRICOT Country, year	Form	Applica	tion/treat	tment	season	PHI, days	Residue,	mg/kg				Report No.
(Variety)		g ai/hL	g ai/ha	No	g ai/ha		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total ^a	
GAP, Australia (stone fruits)	250 WG	2.5–5		4		3						
TRIALS IN AU	STRAI	JIA	L		L					L	I	
Ardmona, VIC, Australia, 2005	250 WG	5	51	4	204	0	0.08	0.02	0.01	< 0.01	0.12	240988
(Francesco)						7 14	0.02	ND < 0.01	0.01 ND	< 0.01 ND	0.03 < 0.02	-
						21	< 0.01	ND	ND	ND	< 0.02	_
						28	ND	ND	ND	ND	< 0.02]
						35	ND	ND	ND	ND	< 0.02	
Ardmona, VIC, Australia, 2005	250 WG	7.5	76	4	304	0	0.08	0.02	0.02	< 0.01	0.13	240988
(Francesco)	wu					7	0.02	ND	< 0.01	< 0.01	0.03	
(Trancesco)						14	0.01	ND	< 0.01	< 0.01	0.02	1
						21	< 0.01	ND	ND	ND	< 0.02]
						28	< 0.01	ND	ND	ND	< 0.02]
						35	ND	ND	ND	ND	< 0.02	
Ardmona, VIC, Australia, 2005	250 WG	5	51–52	7	358	0	0.07	0.02	0.01	< 0.01	0.10	240988
(Francesco)	10					7	0.02	ND	0.01	0.01	0.04]
(1 runeesee)						14	0.01	ND	< 0.01	< 0.01	0.02]
						21	ND	ND	ND	ND	< 0.02]

APRICOT Country, year	Form	Applica	tion/treat	ment	season	PHI, days	Residue,	mg/kg				Report No.
(Variety)		g ai/hL	g ai/ha	No	g ai/ha		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total ^a	
						28	ND	ND	ND	ND	< 0.02	
						35	ND	ND	ND	ND	< 0.02	
	250	7.5	76–79	7	536	0	0.16	0.04	0.02	0.01	0.23	240988
Australia, 2005	WG					7	0.02	ND	0.01	< 0.01	0.03	
(Francesco)						14	0.02	ND	0.01	< 0.01	0.03	
						21	0.01	ND	< 0.01	< 0.01	0.02	
						28	< 0.01	ND	< 0.01	< 0.01	0.02	
						35	< 0.01	ND	ND	ND	< 0.02	
TRIALS IN NE	W ZEA	LAND		1		1						
Hawke's Bay,		2.5	31-33	4	129	0	0.038	< 0.01	-	0.018	0.056	239322
New Zealand, 2005	SC					1	0.048	0.012	-	0.023	0.083	
(Castlebright)						3	0.031	< 0.01	-	0.023	0.054	
						7	0.016	ND	-	0.015	0.031	
						14	0.010	ND	_	0.013	0.023	
Hawke's Bay,		3.7	46–48	4	189	0	0.057	0.015	_	0.020	0.092	239322
New Zealand, 2005	SC					1	0.048	0.012	-	0.021	0.081	
(Castlebright)						3	0.032	< 0.01	_	0.021	0.053	
						7	0.041	< 0.01	-	0.028	0.069	
						14	0.014	ND	_	0.017	0.031	
Hawke's Bay,	120	5	62–65	4	256	0	0.080	0.019	-	0.026	0.125	239322
New Zealand, 2005	SC					1	0.091	0.022	-	0.036	0.149	
(Castlebright)						3	0.063	0.015	-	0.032	0.110	
						7	0.055	0.012	-	0.042	0.109	
						14	0.017	ND	-	0.020	0.037	
Hawke's Bay,		7.6	93–98	4	385	0	0.185	0.043	-	0.045	0.273	239322
New Zealand, 2005	SC					1	0.208	0.052	-	0.058	0.318	
(Castlebright)						3	0.153	0.033	-	0.065	0.251	
						7	0.080	0.017	_	0.055	0.152	
						14	0.030	< 0.01	-	0.030	0.06	
Earnscleugh,	120	2.5	36–40	4	150	0	0.035	0.055	-	0.010	0.10	239322
Central Otago, New Zealand,	SC					1	0.039	0.012	-	0.013	0.064	
2006						3	0.018	ND	-	< 0.01	0.028	
(Sundrop)						7	0.019	ND	-	< 0.01	0.029	
						14	< 0.01	ND	-	< 0.01	< 0.02	
Earnscleugh,	120	3.7	53–59	4	221	0	0.126	0.039	-	0.024	0.189	239322
Central Otago, New Zealand,	SC					1	0.124	0.037	-	0.036	0.197	

APRICOT Country, year	Form	Applica	tion/treat	ment	season	PHI, days	Residue,	mg/kg				Report No.
(Variety)		g ai/hL	g ai/ha	No	g ai/ha		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total ^a	
2006						3	0.063	0.018	-	0.028	0.109	
(Sundrop)						7	0.041	0.011	-	0.023	0.075	
						14	0.022	< 0.01	-	0.016	0.038	-
Earnscleugh,	120	5	72–79	4	298	0	0.101	0.031	-	0.025	0.157	239322
Central Otago, New Zealand,	SC					1	0.080	0.023	-	0.019	0.122	
2006						3	0.081	0.025	-	0.031	0.137	
(Sundrop)						7	0.064	0.017	-	0.034	0.115	
						14	0.024	ND	-	0.021	0.045	-
Earnscleugh,	120 SC	7.4	107– 119	4	447	0	0.222	0.067	-	0.038	0.327	239322
Central Otago, New Zealand,	SC		119			1	0.213	0.062	-	0.046	0.321	
2006						3	0.139	0.038	-	0.038	0.215	
(Sundrop)						7	0.084	0.022	-	0.036	0.142	
						14	0.034	< 0.01	-	0.017	0.051	
TRIALS IN CH	ILE					I	1					
	250 WG	3.6	75–79	2	144	0	0.113	0.024	0.01	< 0.01	0.147	259246
Tango, Chile 2007	wG					1	0.059	0.013	< 0.01	< 0.01	0.082	
(Dina)						3	0.057	0.013	< 0.01	< 0.01	0.080	
(Dilla)						5	0.036	< 0.01	< 0.01	< 0.01	0.046	
						7	0.033	< 0.01	< 0.01	< 0.01	0.043	
						14	0.026	< 0.01	< 0.01	< 0.01	0.036	

Cherries

In addition to the trials in Australia and New Zealand, one trial was conducted in Chile during 2007. In this trial, <u>cherry</u> trees were treated with two applications of a 250 WG formulation of spinetoram at the spray concentration of 3.6 g ai/hL and rate of 78 g ai/ha (Report 259245). Samples were taken 0, 1, 3, 5, 7, and 14 days after the last application. There is no GAP in Chile for stone fruit and no available GAP matched the trial.

Table 7-1 Residues of spinetoram from supervised trials on cherries in Australia, New Zealand and Chile (for estimation of maximum residue level)

CHERRY Country, year (Variety)	Form	Applica	tion/trea	tment	Total/ season, g ai/ha	PHI, days	Residue, mg/	′kg		Report No.
		g ai/hL	g ai/ha	No			XDE-175-J	XDE-175-L	Total	
GAP, Australia (stone fruits)	250 WG	2.5–5		4		3				
TRIALS IN AU	STRALL	A								
Sheffield Rd,	WG	5	54–92	4	271	0	0.05	0.01	0.06	240988

CHERRY Country, year (Variety)	Form	Applica	tion/trea	tment	Total/ season, g ai/ha	PHI, days	Residue, mg	/kg		Report No.
		g ai/hL	g ai/ha	No			XDE-175-J	XDE-175-L	Total	
Spreyton TAS						7	< 0.01	ND	< 0.01	
Australia, 2005						14	< 0.01	ND	< 0.01	
(Van)						21	< 0.01	ND	< 0.01	
						28	< 0.01	ND	< 0.01	
Sheffield Rd,	WG	7.5	93–	4	432	0	0.085	0.025	0.11	240988
Spreyton TAS Australia, 2005			125			7	0.02	ND	0.02	
(Van)						14	ND	ND	< 0.01	
						21	< 0.01	ND	< 0.01	
						28	< 0.01	ND	< 0.01	
Sheffield Rd,	WG	5	54–92	7	471	0	0.14	0.04	0.18	240988
Spreyton TAS Australia, 2005						7	0.02	ND	0.02	
(Van)						14	0.01	ND	0.01	
						21	ND	ND	< 0.01	
						28	< 0.01	ND	< 0.01	
Sheffield Rd,	WG	7.5	93– 125	7	758	0	0.13	0.04	0.17	240988
Spreyton TAS Australia, 2005			125			7	0.02	ND	0.02	
(Van)						14	< 0.01	ND	< 0.01	
						21	< 0.01	ND	< 0.01	
						28	< 0.01	ND	< 0.01	
Tumut Road,	WG	5	70–90	4	330	7	< 0.01	ND	< 0.01	240988
Batlow, NSW Australia, 2005						14	ND	ND	< 0.01	
(Stella)						21	ND	ND	< 0.01	
(Stena)						28	ND	ND	< 0.01	
						35	ND	ND	< 0.01	
Tumut Road, Batlow, NSW	WG	7.5	105– 135	4	495	7	0.01	ND	0.01	240988
Australia, 2005			155			14	< 0.01	ND	< 0.01	
(Stella)						21	ND	ND	< 0.01	
(Stella)						28	ND	ND	< 0.01	
						35	ND	ND	< 0.01	
Tumut Road, Batlow, NSW	WG	5	60–90	7	560	7	< 0.01	ND	< 0.01	240988
Australia, 2005						14	ND	ND	< 0.01	
(Stella)						21	ND	ND	< 0.01	
(510114)						28	ND	ND	< 0.01	
						35	ND	ND	< 0.01	
Tumut Road,	WG	7.5	90– 125	7	694	7	< 0.01	ND	< 0.01	240988
Batlow, NSW			135			14	< 0.01	ND	< 0.01	

1948

CHERRY Country, year (Variety)	Form	Applica	ition/trea	tment	Total/ season, g ai/ha	PHI, days	Residue, mg	/kg		Report No.
		g ai/hL	g ai/ha	No			XDE-175-J	XDE-175-L	Total	
Australia, 2005						21	ND	ND	< 0.01	
(Stella)						28	ND	ND	< 0.01	
						35	ND	ND	< 0.01	
TRIALS IN NE	W ZEAI	LAND								
Tukituki,	SC	2.5	38–40	4	157	0	0.019	< 0.01	0.019	239322
Hawke's Bay, NZ, 2005						1	0.018	ND	0.018	
(Stella)						3	< 0.01	ND	< 0.01	
						7	< 0.01	ND	< 0.01	
						14	ND	ND	< 0.01	
Tukituki,	SC	3.7	57–58	4	231	0	0.041	0.011	0.052	239322
Hawke's Bay, NZ, 2005						1	0.025	< 0.01	0.025	
(Stella)						3	0.018	ND	0.018	
l						7	< 0.01	ND	< 0.01	
						14	ND	ND	< 0.01	
						21	ND	ND	< 0.01	
Tukituki,	SC	5	78–79	4	313	0	0.069	0.019	0.088	239322
Hawke's Bay, NZ, 2005						1	0.048	0.013	0.061	
(Stella)						3	0.036	< 0.01	0.036	
						7	0.018	ND	0.018	
						14	< 0.01	ND	< 0.01	
						21	< 0.01	ND	< 0.01	
Tukituki,	SC	7.6	116-	4	469	0	0.136	0.037	0.173	239322
Hawke's Bay, NZ, 2005			119			1	0.092	0.024	0.116	
(Stella)						3	0.029	< 0.01	0.029	
						7	0.045	< 0.01	0.045	
						14	0.028	ND	0.028	
						21	< 0.01	ND	< 0.01	
Alexandra, Central Otago,	SC	2.5	35-41	4	156	0	0.030	< 0.01	0.03	239322
NZ, 2006						1	0.028	< 0.01	0.028	
(Lapins)						3	0.019	ND	0.019	
						7	0.019	ND	0.019	
						14	ND	ND	< 0.01	
						21	ND	ND	< 0.01	
						28	ND	ND	< 0.01	
Alexandra, Central Otago,	SC	3.7	52-61	4	231	0	0.06	0.015	0.075	239322
Central Otago,						1	0.032	< 0.01	0.032	

CHERRY Country, year	Form	Applica	tion/trea	tment	season,	PHI, days	Residue, mg	/kg		Report No.
(Variety)					g ai/ha					
		g ai/hL	g ai/ha	No			XDE-175-J	XDE-175-L	Total	
NZ, 2006						3	0.019	< 0.01	0.019	
(Lapins)						7	0.019	ND	0.019	
						14	< 0.01	ND	< 0.01	
						21	< 0.01	ND	< 0.01	
						28	< 0.01	ND	< 0.01	
Alexandra,	SC	5	70-82	4	311	0	0.102	0.027	0.129	239322
Central Otago, NZ, 2006						1	0.064	0.016	0.08	
(Lapins)						3	0.045	0.012	0.057	
						7	0.054	0.013	0.067	
						14	0.015	ND	0.015	
						21	0.013	ND	0.013	
						28	< 0.01	ND	< 0.01	
Alexandra,	SC	7.6	105–	4	467	0	0.139	0.032	0.171	239322
Central Otago, NZ, 2006			123			1	0.100	0.026	0.126	-
(Lapins)						3	0.044	0.011	0.055	-
						7	0.059	0.013	0.072	-
						14	0.021	< 0.01	0.021	-
						21	0.014	ND	0.014	-
						28	< 0.01	ND	< 0.01	-
Earnscleugh,	SC	2.5	41–49	4	187	0	0.040	0.012	0.052	239322
Central Otago						1	0.039	0.011	0.05	-
NZ, 2005						3	0.025	< 0.01	0.025	-
(Stella)						7	0.024	< 0.01	0.024	-
						14	< 0.01	ND	< 0.01	-
						21	0.010	ND	0.01	
						28	ND	ND	< 0.01	
Earnscleugh,	SC	3.7	60-73	4	275	0	0.065	0.021	0.086	239322
Central Otago						1	0.055	0.019	0.074	1
NZ, 2005						3	0.029	< 0.01	0.029	1
(Stella)						7	0.023	< 0.01	0.023	1
						14	< 0.01	ND	< 0.01	1
						21	< 0.01	ND	< 0.01	1
						28	< 0.01	ND	< 0.01	1
Earnscleugh,	SC	5	81–99	4	374	0	0.075	0.023	0.098	239322
Central Otago						1	0.089	0.028	0.117	1
NZ, 2005						3	0.044	0.011	0.055	1

CHERRY Country, year (Variety)	Form	Application/treatment			Total/ season, g ai/ha	PHI, days	Residue, mg	/kg		Report No.
		g ai/hL	g ai/ha	No			XDE-175-J	XDE-175-L	Total	
(Stella)						7	0.025	< 0.01	0.025	
						14	0.024	< 0.01	0.024	
						21	< 0.01	ND	< 0.01	
						28	ND	ND	< 0.01	
Earnscleugh,	SC	7.6	122-	4	560	0	0.103	0.035	0.138	239322
Central Otago			148			1	0.053	0.017	0.07	
NZ, 2005						3	0.059	0.017	0.076	
(Stella)						7	0.052	0.015	0.067	
						14	< 0.01	< 0.01	< 0.01	
						21	0.013	ND	0.013	
						28	0.01	ND	0.01	
TRIAL IN CHI	LE									
	250	3.6	78	2	144	0	0.080	0.021	0.101	259245
Tango,	WG					1	0.075	0.020	0.095	
Chile, 2007						3	0.044	< 0.01	0.044	
(Bing)						5	0.040	< 0.01	0.040	
						7	0.033	< 0.01	0.033	
						14	0.012	ND	0.012	

Table 7-2Residues of spinetoram from supervised trials on cherries in Australia, New Zealand, and Chile (for estimation of STMR)

CHERRY Country, year	Form	Applica treatme			Total/ season g ai/ha	PHI, days	Residue	e, mg/kg				Report No.
(Variety)		g ai/hL	g ai/ha	No	g al/lia		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl- J	Total ^a	
GAP, Australia (stone fruits)	250 WG	2.5-5		4		3						
TRIALS IN AU	STRAI	JA										
	WG	5	54–92	4	271	0	0.05	0.01	ND	< 0.01	0.07	240988
Spreyton TAS Australia, 2005						7	< 0.01	ND	ND	< 0.01	< 0.02	
(Van)						14	< 0.01	ND	ND	< 0.01	< 0.02	
						21	< 0.01	ND	ND	< 0.01	< 0.02	
						28	< 0.01	ND	ND	0.01	0.02	1
Sheffield Rd,		7.5	93–	4	432	0	0.085	0.025	ND	0.02	0.13	240988
Spreyton TAS Australia, 2005			125			7	0.02	ND	< 0.01	0.03	0.05	1
(Van)						14	ND	ND	ND	< 0.01	< 0.02	1
						21	< 0.01	ND	ND	< 0.01	< 0.02	1

CHERRY	Form	Applic			Total/	PHI,	Residue	e, mg/kg				Report
Country, year		treatme			season g ai/ha	days				r		No.
(Variety)		g ai/hL	g ai/ha	No	0		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl- J	Total ^a	
						28	< 0.01	ND	ND	< 0.01	< 0.02	
Sheffield Rd,	WG	5	54–92	7	471	0	0.14	0.04	< 0.01	< 0.01	0.19	240988
Spreyton TAS Australia, 2005						7	0.02	ND	ND	0.01	0.03	
(Van)						14	0.01	ND	ND	0.01	0.02	
						21	ND	ND	ND	ND	< 0.02	
						28	< 0.01	ND	ND	ND	< 0.02	
Sheffield Rd,	WG	7.5	93– 125	7	758	0	0.13	0.04	< 0.01	0.02	0.19	240988
Spreyton TAS Australia, 2005			125			7	0.02	ND	ND	0.02	0.04	
(Van)						14	< 0.01	ND	ND	< 0.01	< 0.02	
						21	< 0.01	ND	ND	< 0.01	< 0.02	
						28	< 0.01	ND	ND	< 0.01	< 0.02	
Tumut Road,	WG	5	70–90	4	330	7	< 0.01	ND	ND	ND	< 0.02	240988
Batlow, NSW						14	ND	ND	ND	ND	< 0.02	
Australia, 2005 (Stella)						21	ND	ND	ND	ND	< 0.02	
(Stella)						28	ND	ND	ND	ND	< 0.02	
						35	ND	ND	ND	ND	< 0.02	
Tumut Road,	WG	7.5	105-	4	495	7	0.01	ND	ND	ND	0.02	240988
Batlow, NSW			135			14	< 0.01	ND	ND	ND	< 0.02	
Australia, 2005 (Stella)						21	ND	ND	ND	ND	< 0.02	
(Stella)						28	ND	ND	ND	ND	< 0.02	
						35	ND	ND	ND	ND	< 0.02	
Tumut Road,	WG	5	60–90	7	560	7	< 0.01	ND	ND	ND	< 0.02	240988
Batlow, NSW Australia, 2005						14	ND	ND	ND	ND	< 0.02	
(Stella)						21	ND	ND	ND	ND	< 0.02	
(Stella)						28	ND	ND	ND	ND	< 0.02	
						35	ND	ND	ND	ND	< 0.02	
Tumut Road,	WG	7.5	90– 135	7	694	7	< 0.01	ND	< 0.01	0.01	0.02	240988
Batlow, NSW Australia, 2005			133			14	< 0.01	ND	ND	ND	< 0.02	
(Stella)						21	ND	ND	ND	ND	< 0.02	
(Stena)						28	ND	ND	ND	ND	< 0.02	
						35	ND	ND	ND	ND	< 0.02	1
TRIALS IN NE		LAND										
Tukituki, Hawke's Bay,	SC	2.5	38–40	4	157	0	0.019	< 0.01		< 0.01	0.03	239322
NZ, 2005						1	0.018	ND	-	0.012	0.03	
(Stella)						3	< 0.01	ND	-	0.013	0.023	
						7	< 0.01	ND	-	< 0.01	< 0.02	

CHERRY Country, year	Form	Applica treatme			Total/ season	PHI, days	Residue	e, mg/kg				Report No.
(Variety)		g ai/hL	g ai/ha	No	g ai/ha		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl- J	Total ^a	
						14	ND	ND	_	< 0.01	< 0.02	-
Tukituki,	SC	3.7	57–58	4	231	0	0.041	0.011	_	0.013	0.065	239322
Hawke's Bay, NZ, 2005						1	0.025	< 0.01	_	0.014	0.039	
(Stella)						3	0.018	ND	-	0.018	0.036	
						7	< 0.01	ND	-	0.013	0.023	
						14	ND	ND	-	< 0.01	< 0.02	-
						21	ND	ND	-	ND	< 0.02	
Tukituki,	SC	5	78–79	4	313	0	0.069	0.019	-	0.024	0.112	239322
Hawke's Bay, NZ, 2005						1	0.048	0.013	-	0.019	0.08	-
(Stella)						3	0.036	< 0.01	-	0.026	0.062	
						7	0.018	ND	-	0.028	0.046	
						14	< 0.01	ND	-	0.019	0.029	
						21	< 0.01	ND	-	< 0.01	< 0.02	
Tukituki, Hambala Dav	SC	7.6	116-	4	469	0	0.136	0.037	-	0.027	0.20	239322
Hawke's Bay, NZ, 2005			119			1	0.092	0.024	-	0.02	0.136	
(Stella)						3	0.029	< 0.01	-	0.021	0.05	
						7	0.045	< 0.01	-	0.027	0.072	
						14	0.028	ND	-	0.032	0.06	-
						21	< 0.01	ND	-	0.01	0.02	
Alexandra,	SC	2.5	35-	4	156	0	0.030	< 0.01	-	0.015	0.045	239322
Central Otago, NZ, 2006			41			1	0.028	< 0.01	-	0.018	0.046	
(Lapins)						3	0.019	ND	-	0.025	0.044	
						7	0.019	ND	-	0.022	0.041	
						14	ND	ND	-	< 0.01	< 0.02	
						21	ND	ND	-	< 0.01	< 0.02	
						28	ND	ND	-	< 0.01	< 0.02	
Alexandra,	SC	3.7	52-	4	231	0	0.06	0.015	-	0.024	0.099	239322
Central Otago, NZ, 2006			61			1	0.032	< 0.01	-	0.019	0.051	1
(Lapins)						3	0.019	< 0.01	_	0.020	0.039	
						7	0.019	ND	_	0.018	0.037	
						14	< 0.01	ND	-	0.012	0.022	1
						21	< 0.01	ND	-	< 0.01	< 0.02	1
						28	< 0.01	ND	-	< 0.01	< 0.02	1
Alexandra,	SC	5	70-	4	311	0	0.102	0.027	-	0.029	0.158	239322
Central Otago, NZ, 2006			82			1	0.064	0.016	-	0.036	0.116	1
						3	0.045	0.012	-	0.032	0.089	1

CHERRY Country, year	Form		pplication/ eatment /hI ai/ha No		Total/ season	PHI, days	Residue	e, mg/kg				Report No.
(Variety)		g ai/hL	g ai/ha	No	– g ai/ha		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl- J	Total ^a	
(Lapins)					-	7	0.054	0.013	-	0.037	0.104	-
						14	0.015	ND	_	0.016	0.031	-
						21	0.013	ND	-	0.017	0.03	-
						28	< 0.01	ND	_	0.013	0.023	-
Alexandra,	SC	7.6	105-	4	467	0	0.139	0.032	-	0.033	0.204	239322
Central Otago, NZ, 2006			123			1	0.100	0.026	-	0.027	0.153	-
(Lapins)						3	0.044	0.011	-	0.017	0.072	-
CHERRIES						7	0.059	0.013	-	0.037	0.109	-
050075-04						14	0.021	< 0.01	-	0.026	0.047	-
						21	0.014	ND	-	0.018	0.032	-
						28	< 0.01	ND	-	0.016	0.024	-
Earnscleugh,	SC	2.5	41-	4	187	0	0.040	0.012	-	0.018	0.07	239322
Central Otago			49			1	0.039	0.011	-	0.020	0.07	-
NZ, 2005						3	0.025	< 0.01	-	0.016	0.041	-
(Stella)						7	0.024	< 0.01	-	0.014	0.038	-
						14	0.009	ND	-	0.015	0.024	-
						21	0.010	ND	-	0.016	0.026	-
						28	ND	ND	-	ND	< 0.02	-
Earnscleugh,	SC	3.7	60-	4	275	0	0.065	0.021	-	0.024	0.110	239322
Central Otago			73			1	0.055	0.019	-	0.026	0.10	-
NZ, 2005						3	0.029	< 0.01	-	0.019	0.048	
(Stella)						7	0.023	< 0.01	-	0.034	0.057	-
						14	< 0.01	ND	-	0.016	0.026	-
						21	< 0.01	ND	-	0.019	0.029	-
						28	< 0.01	ND	-	< 0.01	< 0.02	-
Earnscleugh,	SC	5	81-	4	374	0	0.075	0.023	-	0.022	0.120	239322
Central Otago			99			1	0.089	0.028	-	0.041	0.158	-
NZ, 2005						3	0.047	0.011	-	0.020	0.078	-
(Stella)						7	0.025	< 0.01	-	0.023	0.048	-
						14	0.024	< 0.01	-	0.023	0.047	1
						21	< 0.01	ND	-	0.015	0.025	1
						28	ND	ND	-	ND	< 0.02	1
Earnscleugh,	SC	7.6	122-	4	560	0	0.103	0.035	-	0.027	0.165	239322
Central Otago			148			1	0.053	0.017	-	0.024	0.094	1
NZ, 2005						3	0.059	0.017	_	0.027	0.103	1
(Stella)						7	0.052	0.015	-	0.024	0.091	1

CHERRY Country, year	Form	Applica treatme			Total/ season g ai/ha	PHI, days	Residue	e, mg/kg				Report No.
(Variety)			g ai/ha	No	g al/lia		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl- J	Total ^a	
						14	< 0.01	< 0.01	-	0.015	0.025	
						21	0.013	ND	-	0.024	0.037	
						28	0.010	ND	—	0.015	0.025	
TRIAL IN CHII	LE		-									
	250	3.6	78	2	144	0	0.080	0.021	< 0.01	< 0.01	0.111	259245
Tango,	WG					1	0.075	0.020	< 0.01	< 0.01	0.105	
Chile, 2007						3	0.044	< 0.01	< 0.01	< 0.01	0.054	
(Bing)						5	0.040	< 0.01	< 0.01	< 0.01	0.050	
						7	0.033	< 0.01	< 0.01	< 0.01	0.043	
						14	0.012	ND	ND	< 0.01	0.022	

Nectarines

In addition to the four trials on <u>nectarines</u> in Australia, two supervised trials were conducted in Argentina, during 2008, and one trial was carried out in Chile in 2007 (Reports 2003238 and 259331). The trials in Argentina received three applications of 4 g ai/hL resulting in 75 g ai/ha each. The GAP in Argentina allows up to three applications of a 250 WG formulation of spinetoram at the spray concentration of 3.75–5 g ai/hL (minimum 60 hL/ha) and a PHI of 1 day. Samples were immediately frozen after harvest and stored frozen until analysis about 181 days later. The storage period fell within the demonstrated stability of spinetoram in various commodities under frozen conditions (372 days).

The trial in Chile used two applications of 250 WG spinetoram at the spray concentration of 4 g ai/hL and rate of 72 g ai/ha. There is no current GAP for stone fruits in Chile, but this trial can be considered as in compliance with the GAP in Argentina.

Residues of spinetoram and its metabolites were determined by LC-MS/MS, following method GRM 05.04, which had been previously validated with an LOQ of 0.01 mg/kg.

Table 8-1 Residues of spinetoram from supervised trials on nectarines in Australia, Argentina and Chile (for estimation of maximum residue level)

NECTARINE	Form	Applicat	tion/ trea	atment	Total/	PHI,	Residue, mg/	kg		Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	season, g ai/ha	days	XDE-175-J	XDE-175-L	Total	
GAP, Australia (stone fruits)	250 WG	2.5–5		4		3				
TRIALS IN AUS	STRALIA	A Contraction of the second se								
McIssacs Rd, Ardmona VIC	WG	5	62	4	248	0	0.010	ND	0.01	240988
Australia, 2005						7	ND	ND	< 0.01	
(Fire Pearl)						14	ND	ND	< 0.01	
(**********						21	ND	ND	< 0.01	

NECTARINE	Form	Applicat	tion/ trea	atment	Total/	PHI,	Residue, mg	/kg		Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	season, g ai/ha	days	XDE-175-J	XDE-175-L	Total	
						28	ND	ND	< 0.01	
						35	ND	ND	< 0.01	
McIssacs Rd,	WG	7.5	93	4	372	0	0.020	ND	0.02	240988
Ardmona VIC						7	< 0.01	ND	< 0.01	
Australia, 2005						14	ND	ND	< 0.01	
(Fire Pearl)						21	ND	ND	< 0.01	
						28	ND	ND	< 0.01	
						35	ND	ND	< 0.01	
McIssacs Rd,	WG	5	59–62	7	427	0	0.020	< 0.01	0.02	240988
Ardmona VIC						7	< 0.01	ND	< 0.01	
Australia, 2005						14	ND	ND	< 0.01	
(Fire Pearl)						21	ND	ND	< 0.01	
						28	ND	ND	< 0.01	
McIssacs Rd,	WG	7.5	77–93	7	629	0	0.010	ND	0.01	240988
Ardmona VIC						7	< 0.01	ND	< 0.01	
Australia, 2005 (Fire Pearl)						14	ND	ND	< 0.01	
(FILE Peall)						21	ND	ND	< 0.01	
						28	ND	ND	< 0.01	
						35	ND	ND	< 0.01	
TRIALS IN ARC	GENTIN	A					1	1	1	I
GAP, Argentina	250 WG	3.75–5	Min 60	3		1				
Trial S08-	250	4	71–72	3	225	0	0.022	ND	0.022	2003238
02640-01	WG					1	0.013	ND	0.013	
San Pedro, Argentina,						3	< 0.01	ND	< 0.01	
2008						5	< 0.01	ND ND	< 0.01	
(Snow Queen)						7	ND	ND	< 0.01	
						10	ND		< 0.01	
S08-02640-02	250 WG	4	72–75	3	225	0	0.011	ND	0.011	2003238
La Consulta	wū					1	0.012	ND ND	0.012	
Mendoza,						3	< 0.01	ND	< 0.01	
Argentina, 2008						5	ND	ND	ND	
(Caldessi						7	< 0.01	ND	< 0.01	
2000)						14	ND		ND	
TRIAL IN CHIL	Æ									

NECTARINE F	Form	Applicat	ion/ trea	tment		PHI,	Residue, mg/	kg		Report No.
Country, year (Variety)	-	g ai/hL	g ai/ha	No	season, g ai/ha	days	XDE-175-J	XDE-175-L	Total	
Calera de 2 Tango, Región W Metropolitana Chile, 2007 (Flavor Top)		4	70–73	2	144	0 1 3 5 7 14	0.119 0.060 0.042 0.048 0.038 0.020	0.028 0.012 0.010 0.010 < 0.01 0.012	0.147 0.072 0.052 0.058 0.038 0.032	259331

Table 8-2 Residues of spinetoram from supervised trials on nectarines in Australia, Argentina and Chile (for estimation of STMR)

NECTARINE Country, year	Form	Applic treatme			Total/ season g	PHI, days	Residue	e, mg/kg				Report No.
(Variety)		g ai/hL	g ai/ha	No	ai/ha		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total	
TRIALS IN AU	JSTRA	LIA	•									
GAP, Australia	250 WG	2.5–5		4		3						
(stone fruits)												
McIssacs Rd, Ardmona VIC	WG	5	62	4	248	0	0.010	ND	ND	ND	0.020	240988
Australia,						7	ND	ND	ND	ND	< 0.02	
2005						14	ND	ND	ND	ND	< 0.02	
(Fire Pearl)						21	ND	ND	ND	ND	< 0.02	
						28	ND	ND	ND	ND	< 0.02	
						35	ND	ND	ND	ND	< 0.02	
McIssacs Rd,	WG	7.5	93	4	372	0	0.020	ND	ND	ND	0.020	240988
Ardmona VIC						7	< 0.01	ND	ND	ND	< 0.02	-
Australia, 2005						14	ND	ND	ND	ND	< 0.02	
(Fire Pearl)						21	ND	ND	ND	ND	< 0.02	
						28	ND	ND	ND	ND	< 0.02	
						35	ND	ND	ND	ND	< 0.02	
McIssacs Rd,	WG	5	59–62	7	427	0	0.020	< 0.01	ND	ND	0.028	240988
Ardmona VIC						7	< 0.01	ND	ND	ND	< 0.02	
Australia, 2005						14	ND	ND	ND	ND	< 0.02	
(Fire Pearl)						21	ND	ND	ND	ND	< 0.02	1
						28	ND	ND	ND	ND	< 0.02	1
McIssacs Rd,	WG	7.5	77–93	7	629	0	0.010	ND	ND	ND	0.020	240988
Ardmona VIC						7	< 0.01	ND	ND	ND	< 0.02	1
Australia, 2005						14	ND	ND	ND	ND	< 0.02	1
						21	ND	ND	ND	ND	< 0.02	1

1956

NECTARINE Country, year	Form	Applic treatme			Total/ season g	PHI, days	Residue	e, mg/kg				Report No.
(Variety)		g ai/hL	g ai/ha	No	ai/ha		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total	
TRIALS IN AU	JSTRA	LIA								-		
(Fire Pearl)						28	ND	ND	ND	ND	< 0.02	
						35	ND	ND	ND	ND	< 0.02	
TRIALS IN AF	RGENT	TINA		1							1	1
GAP, Argentina	250 WG	3.75– 5	Min 60	3		1						
Trial S08-	250	4	71–72	3	225	0	0.022	ND	ND	ND	0.032	2003238
02640-01	WG					1	0.013	ND	ND	ND	0.023	
San Pedro, Argentina,						3	< 0.01	ND	ND	ND	< 0.02	
2008						5	< 0.01	ND	ND	ND	< 0.02	
(Snow Queen)						7	ND	ND	ND	ND	< 0.02	
						10	ND	ND	ND	ND	< 0.02	
S08-02640-02	250	4	75	3	225	0	0.011	ND	ND	ND	0.021	2003238
La Consulta	WG					1	0.012	ND	ND	ND	0.022	
Mendoza,						3	< 0.01	ND	ND	ND	< 0.02	
Argentina,						5	ND	ND	ND	ND	< 0.02	
2008						7	< 0.01	ND	ND	ND	< 0.02	
(Caldessi						14	ND	ND	ND	ND	< 0.02	
2000)												
TRIAL IN CHI					1	1			1			1
Calera de Tango,	250 WG	4	70–73	2	144	0	0.119	0.028	< 0.01	0.012	0.159	259331
Región						1	0.060	0.012	< 0.01	< 0.01	0.082	
Metropolitana						3	0.042	0.010	< 0.01	< 0.01	0.062	
Chile, 2007						5	0.048	0.010	< 0.01	0.01	0.068	
(Flavor Top)						7	0.038	< 0.01	< 0.01	< 0.01	0.048	
						14	0.020	0.012	< 0.01	< 0.01	0.042	

Peaches

Numerous trials were conducted on <u>peaches</u> in Australia (8), New Zealand (4), Argentina (4), Chile (1), and Japan (2). The trials conformed to the respective GAP in each of the countries where trials were carried out. Trials were also conducted on peaches in Spain (4), France (6), but no registration has yet been granted in Europe.

Supervised trials in Argentina and Chile

Four supervised trials were conducted in Argentina during 2007 and 2008 (Reports 2000698 and 2003242) received three applications of 3.75 g ai/hL resulting in 75 g ai/ha each. The GAP in Argentina allows up to three applications of a 250 WG formulation of spinetoram at the spray concentration of 3.75–5 kg ai/hL (minimum 60 hL/ha) and a PHI of 1 day. Samples of mature peaches were collected 0, 1, 3, 5, 7, and 14 days after the last treatment. All samples were immediately frozen and stored frozen until analysis.

Residues of spinetoram and the main metabolites were analysed by method GRM 05.04, which had previously been validated with an LOQ of 0.01 mg/kg. The results are summarized in Tables 17 and 18.

One trial was conducted in Chile with three applications at the spray concentration of 6 g ai/hL. There is no current GAP for stone fruits in Chile but this trial can be considered as in compliance with the GAP in Argentina.

Supervised trials in Japan

Two supervised trials were conducted in different experimental stations in Japan during 2006 (Reports 2002671 and 2002672). Two applications each of a 250 WP formulation of spinetoram were made on treated plants one week apart, at the spray concentration of 5 g ai/hL. The GAP in Japan consists of two applications at 2.25–5 g ai/hL (20–70 hL/ha) and a PHI of 1 day. Samples were collected 1, 7, 14, and 21 days after the last treatment and stored frozen until analysis. Samples collected from the same field trial were sent to two different laboratories for analysis.

Replicate samples of fresh peaches (after removal of skin and seed) as well as of the skin alone were prepared and analysed by LC-MS/MS, with an LOQ of 0.01 to 0.011 mg/kg. Whole fruits were weighed and the total residue calculated after adjusting by the ratio of weight of flesh + skin to weight of whole fruit. For each field trial, the results of analyses by the two laboratories were averaged.

Supervised trials in Southern Europe

A total of ten supervised trials were conducted in Southern Europe on different varieties of peaches during 2006 and 2007. Applications were made at intervals of 28 days and samples were harvested at maturity 7 days after the last treatment. For the decline trials, samples were also collected at 0, 3, 7, 9-11, and 13-14 days after the last treatment. All samples were stored frozen and analysed within the demonstrated stability under frozen storage conditions (see Table 3).

Residues of spinetoram and its main metabolites were determined by method GRM 05.04, which was previously validated with an LOQ of 0.01 mg/kg.

Table 9-1 Residues of spinetoram from supervised trials on peaches in Australia, New Zealand, Argentina, Chile, Japan, Spain and France (for estimation of maximum residue level)

PEACH	Form	Applicat	tion/ trea	atment		PHI,	Residue, mg	/kg		Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	season, g ai/ha	days	XDE-175-J	XDE-175-L	Total ^a	
GAP, Australia (stone fruits)	250 WG	2.5-5		4		3				
TRIALS IN AU	STRALIA	A								
McIssacs Rd, Ardmona VIC		5	62	4	248	0	0.05	0.01	0.06	240988
Australia, 2005						7	0.02	< 0.01	0.02	
(Zea Lady)						14	< 0.01	ND	< 0.01	
						21	ND	ND	< 0.01	
						28	ND	ND	< 0.01	
						35	ND	ND	< 0.01	
McIssacs Rd,		7.5	93	4	372	0	0.025	< 0.01	0.025	240988
Ardmona VIC Australia, 2005						7	0.020	ND	0.02	
(Zea Lady)						14	< 0.01	ND	< 0.01	
						21	ND	ND	< 0.01	

PEACH	Form	Applicat	tion/ trea	atment		PHI,	Residue, mg/	/kg		Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	season, g ai/ha	days	XDE-175-J	XDE-175-L	Total ^a	1
						28	ND	ND	< 0.01	
						35	ND	ND	< 0.01	
McIssacs Rd,	SC	5	54–62	7	415	0	0.03	< 0.01	0.03	240988
Ardmona VIC Australia, 2005						7	0.01	ND	0.01	
(Zea Lady)						14	ND	ND	< 0.01	
						21	ND	ND	< 0.01	
						28	ND	ND	< 0.01	
McIssacs Rd,	SC	7.5	86–93	7	637	0	0.05	0.01	0.06	240988
Ardmona VIC Australia, 2005						7	0.01	ND	0.01	
(Zea Lady)						15	ND	ND	< 0.01	
						22	ND	ND	< 0.01	
						28	ND	ND	< 0.01	
						35	ND	ND	< 0.01	
	SC	5	81–91	4	360	0	0.11	0.03	0.14	240988
Upper Hermitage SA						7	0.02	ND	0.02	
Australia, 2005/2006						15	< 0.01	ND	< 0.01	
(Tasty ee)						22	< 0.01	ND	< 0.01	
(10309 00)						28	ND	ND	< 0.01	
						35	ND	ND	< 0.01	
Neale Road	WG	7.5	121-	4	538	0	0.115	0.03	0.145	240988
Upper Hermitage SA			136			7	0.03	ND	0.03	
Australia, 2005/2006						15	0.01	ND	0.01	
(Tasty ee)						22	0.01	ND	0.01	
(1000) 00)						28	< 0.01	ND	< 0.01	
						35	ND	ND	< 0.01	
Neale Road	WG	5	91– 126	7	729	0	0.065	0.015	0.08	240988
Upper Hermitage SA			136			7	0.02	ND	0.02	
Australia, 2005/2006						15	< 0.01	ND	< 0.01	
(Tasty ee)						22	< 0.01	ND	< 0.01	
× J J						28	ND	ND	< 0.01	
						35	ND	ND	< 0.01	
TRIALCREATE										
TRIALS IN NEV			16	4	104			ND	0.02	220202
Havelock North, Hawke's	SC	2.5	46	4	184	0	0.02	ND	0.02	239322
Bay, NZ, 2006						1	0.01	ND	0.01	
(Golden Queen)						3	0.011	ND	0.011	
2000011)						7	< 0.01	ND	< 0.01	

PEACH	Form	Applica	tion/ trea	atment		PHI,	Residue, mg	/kg		Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	season, g ai/ha	days	XDE-175-J	XDE-175-L	Total ^a	
						14	ND	ND	< 0.01	
						21	ND	ND	< 0.01	
						28	ND	ND	< 0.01	
Havelock	SC	3.7	67–68	4	269	0	0.038	< 0.01	0.038	239322
North, Hawke's Bay, NZ, 2006						1	0.018	ND	0.018	
(Golden						3	0.02	ND	0.020	
Queen)						7	< 0.01	ND	< 0.01	
						14	< 0.01	ND	< 0.01	
						21	< 0.01	ND	< 0.01	
						28	ND	ND	< 0.01	
Havelock	SC	5	91–92	4	365	0	0.049	0.012	0.061	239322
North, Hawke's Bay, NZ, 2006						1	0.032	< 0.01	0.032	
(Golden						3	0.026	< 0.01	0.026	
Queen)						7	0.024	< 0.01	0.024	
						14	< 0.01	ND	< 0.01	
						21	ND	ND	< 0.01	
						28	ND	ND	< 0.01	
Havelock	SC	7.6	137– 138	4	549	0	0.058	0.016	0.074	239322
North, Hawke's Bay, NZ, 2006			138			1	0.041	< 0.01	0.041	
(Golden						3	0.036	< 0.01	0.036	
Queen)						7	0.039	< 0.01	0.039	
						14	0.023	ND	0.023	
						21	0.012	ND	0.012	
						28	0.014	ND	0.012	
Earnscleugh, Central Otago	SC	2.5	49–	4	199	0	0.06	0.014	0.074	239322
NZ, 2006			52			1	0.094	0.024	0.118	
(Southern Ice)						3	0.032	< 0.01	0.032	
()						7	0.013	ND	0.013	
						14	< 0.01	ND	< 0.01	
						21	0.019	ND	0.019	
						28	0.027	ND	0.027	
Earnscleugh, Central Otago	SC	3.7	72–76	4	293	0	0.078	0.019	0.097	239322
NZ, 2006						1	0.053	0.012	0.065	
(Southern Ice)						3	0.052	0.01	0.062	
(7	0.03	< 0.01	0.03	
						14	< 0.01	ND	< 0.01	
						21	0.014	ND	0.014	

PEACH	Form	Applica	tion/ tre	atment		PHI,	Residue, mg	/kg		Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	season, g ai/ha	days	XDE-175-J	XDE-175-L	Total ^a	
						28	< 0.01	ND	< 0.01	
Earnscleugh,	SC	5	98–	4	397	0	0.154	0.032	0.186	239322
Central Otago			103			1	0.053	0.012	0.065	
NZ, 2006						3	0.071	0.013	0.084	
(Southern Ice)						7	0.039	< 0.01	0.039	
						14	0.015	ND	0.015	
						21	0.014	ND	0.014	
						28	0.02	ND	0.02	
Earnscleugh,	SC	7.6	147–	4	596	0	0.106	0.027	0.133	239322
Central Otago			155			1	0.111	0.029	0.140	
NZ, 2006						3	0.088	0.014	0.102	
(Southern Ice)						7	0.027	< 0.01	0.027	
						14	0.019	ND	0.019	
						21	0.020	ND	0.02	
						28	0.034	ND	0.034	
TRIALS IN AR	GENTIN	A								
GAP, Argentina	250 WG	3.75–5	MIN 60	3		1				
Almeria S.A	250	3.75	75	3	225	0	0.042	< 0.01	0.042	2000698
Rio Tala	WG					1	0.050	< 0.01	0.050	
San Pedro						3	0.042	< 0.01	0.042	
Argentina,						5	0.030	ND	0.030	
2007						7	0.020	ND	0.020	
(Red Globe)						14	0.013	ND	0.013	
Finca Amejo	250 WG	3.75	75	3	225	0	0.055	< 0.01	0.055	2000698
Danti s/n	wG					1	0.023	ND	0.023	
Agua Amarga						3	0.025	ND	0.025	
Tunuyán						5	0.039	ND	0.039	
Mendoza						7	0.035	< 0.01	0.035	
Argentina, 2007						14	0.016	ND	0.016	
(Andross)										
S08-02641-01	250 WG	3.75	75	3	225	0	0.054	0.013	0.067	2003242
San Pedro, Argentina, 2008	WG					1 3	0.056 0.022	0.012 < 0.01	0.068 0.022	
(June Gold)						5	0.016	ND	0.016	
(Julie Oolu)						7	0.015	< 0.01	0.015	
						14	0.011	ND	0.011	

PEACH	Form	Applicat	tion/ trea	atment		PHI,	Residue, mg	/kg		Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	season, g ai/ha	days	XDE-175-J	XDE-175-L	Total ^a	
S08-02641-02 La Consulta, Mendoza, Argentina, 2008 (Maria Bianca)	250 WG	3.75	75	3	225	0 1 3 5 7 14	0.027 0.021 < 0.01 < 0.01 < 0.01 ND	< 0.01 < 0.01 ND ND ND ND	0.027 0.021 < 0.01 < 0.01 < 0.01 < 0.01	2003242
TRIAL IN CHII	Æ									
Calera de Tango, Región Metropolitana Chile, 2007 (Kaweah)	250 WG	6	108– 111	3	324	0 1 3 5 7 14	0.164 0.112 0.070 0.125 0.126 0.063	0.034 0.025 0.014 0.024 0.027 0.011	0.198 0.137 0.084 0.149 0.153 0.074	259328

PEACH Country, year	Form	Applica treatment			PHI days	Residue, mg	/kg			Report No.
(Variety)		g ai/hL	hL/ha	No		XDE-175-J (Flesh + Skin)	XDE-175- L (Flesh + Skin)	Total ^a (Flesh + Skin)	Total whole fruit base ^b	
TRIALS IN J.	APAN									
GAP, Japan	250 WG	2.5–5	20-70	2	1					
RLR-0067J Fukushima Japan, 2006 (Akatsuki)	250 WP	5	40	2	1 7 13 19	1.39 < 0.01+ 1.84 < 0.01 0.54 < 0.01+ 0.90	$\begin{array}{c} + &< 0.01 + \\ 0.18 \\ < 0.01 + \\ 0.22 \\ + &< 0.01 + \\ 0.06 \\ < 0.01 + \\ 0.01 + \\ 0.04 \\ < 0.01 + \\ 0.04 \\ < 0.01 + \\ 0.04 \\ < 0.01 + \\ 0.02 \\ < 0.01 + \\ 0.02 \end{array}$	< 0.01 + 1.57 < 0.01+ 2.06 < 0.01+ 0.60 < 0.01+ 1.00 < 0.01+ 0.40 < 0.01+ 0.48 < 0.01+ 0.27 < 0.01+ 0.27 < 0.01+ 0.34	0.21 0.18 (0.20) 0.09 0.10 (0.09) 0.06 0.05 (0.06) 0.04 0.04 (0.04)	2002671/ 2002672

1962

PEACH Country, year	Form	Applica treatmen			PHI days	Residue, mg/	kg			Report No.
(Variety)		g ai/hL		No		Škin)	XDE-175- L (Flesh + Skin)	(Flesh + Skin)	Total whole fruit base ^b	
RLR-0067J Wakayama/ Japan, 2006 (Hakuhou)	250 WP	5	50	2	1 7 14 21	< 0.01 + 1.37 < 0.01+ 1.90 < 0.01 + 1.90 < 0.01 + 1.12 < 0.01+ 1.12 < 0.01+ 0.36 < 0.01+ 0.55 < 0.01+ 0.33 < 0.01 0.51	0.30 < 0.01 0.40 < 0.01 + 0.18 < 0.01 0.20 < 0.01 + 0.05 < 0.01 0.06	< 0.01 + 1.67 < 0.01+ 2.30 < 0.01 + 1.15 < 0.01+ 1.32 < 0.01+ 0.41 < 0.01+ 0.61 < 0.01+ 0.38 < 0.01+ 0.59	0.27 0.28 (0.27) 0.17 0.12 (0.15) 0.06 (0.06) 0.06 0.06 (0.06) 0.06 (0.06)	2002671/ 2002672

^a Data on flesh (no skin and stone) were from Report 2002671; data on skin alone were from Report 2002672.

^b Residues on total fruit, including stone, were calculated using the following equation: [Total whole fruit residue =((residue in flesh \times weight of flesh)+(residue in skin \times weight of skin))/ total weight of fruit including stone]. Mean values in parentheses.

PEACH Country, year	Form	Applic treatme			PHI, days	Residue,	mg/kg				Report No.
(Variety)		g ai/hL	g ai/ha	No		XDE- 175-J	XDE- 175-L	Total ^a flesh	Wt ratio/ factor ^b	Total whole fruit ^c	
TRIALS IN SPAI	N										
060066SZ1	250 WG	8	99.5	3	7	0.104	0.023	0.127	1:6.0 ^d /0.86	0.109	244912
Valencia,											
Spain, 2006											
(Carrasco de Cofrentes)											

PEACH	Form	Applic			PHI,	Residue	, mg/kg				Report
Country, year		treatme			days	THE	VIDE		· · · · ·	m . 1 . 1 . 1	No.
(Variety)		g ai/hL	g ai/ha	No		XDE- 175-J	XDE- 175-L	Total ^a flesh	Wt ratio/ factor ^b	Total whole fruit ^c	
060066SZ3	250 WG	8	100	3	0	0.091	0.025	0.116	1:5.8/ 0.85	0.099	244912
Valencia, Spain, 2006					3	0.077	0.019	0.096	1:8.1/ 0.89	0.085	
(Royal Gladys)					5	0.077	0.017	0.090	1.0.1/ 0.09	0.000	
					7	0.061	0.014	0.075	1:5.0/ 0.83	0.062	
					9	0.046	0.011	0.057	1:9.3/ 0.90	0.051	
					14	0.027	< 0.01	0.027	1:11.7/0.92	0.025	
CEMS-3448H	250 WG	11	100	4	7	0.060	0.010	-	_	0.070	259788
Valencia											
Spain, 2007											
(Andross)											
CEMS-3448L	250 WG	11	100	3	28	0.017	ND	-	_	0.017	259788
Valencia, Spain,					21	0.019	ND			0.019	
2007					15	0.059	< 0.01			0.059	
(Royal Gladys)					7	0.054	< 0.01			0.054	
TRIALS IN FRAM	NCE										
060066SZ2	250 WG	9	101	3	7	0.037	< 0.01	0.037	1:6.8/ 0.87	0.032	244912
Roussillon, Franc, 2006											
(Gladys)											
060066SZ4	250 WG	9	102	3	0	0.045	0.012	0.057	1: 4.8/ 0.83	0.047	244912
Roussillon, France, 2006					3	0.019	< 0.01	0.019	1:22.3/0.96	0.018	
(Western Red)											
					7	0.017	< 0.01	0.017	1:6.1/0.86	0.015	
					11	0.018	ND	0.018	1:5.4/0.84	0.015	
					13	0.013	ND	0.013	1:5.0/0.83	0.011	
CEMS-3448G	250 WG	10	99	4	7	0.048	< 0.01	_	_	0.048	259788
Roussillon	230 00	10	,,,		ĺ ′	0.040	× 0.01			0.010	200700
France, 2007											
(Gladys)											

PEACH Country, year	Form	Applic treatme			PHI, days	Residue,	mg/kg				Report No.
(Variety)		g ai/hL	g ai/ha	No		XDE- 175-J	XDE- 175-L	Total ^a flesh	Wt ratio/ factor ^b	Total whole fruit ^c	
CEMS-3448I	250 WG	10	98	4	0*	0.110	0.028	-	-	0.138	259788
Roussillon					0	0.131	0.031			0.162	
France, 2007					3	0.061	0.013			0.074	
(O'Henry)					7	0.053	0.011			0.064	
					10	0.049	< 0.01			0.049	
					14	0.028	< 0.01			0.028	
CEMS-3448J	250 WG	10	99	4	0*	0.028	< 0.01	-	-	0.028	259788
Roussillon					0	0.133	0.031			0.164	
France, 2007					3	0.103	0.017			0.120	
(Gladys)					7	0.053	< 0.01			0.053	
					10	0.042	< 0.01			0.042	
					14	0.031	< 0.01			0.031	
CEMS-3448K	250 WG	8	97	3	28	< 0.01	ND	-	_	< 0.01	259788
Roussillon					21	0.031	< 0.01			0.031	
France, 2007					14	0.043	< 0.01			0.043	
(Toudibelle)					7	0.090	0.018			0.108	

^a Residues in flesh, no seed;

^b Correction factor was calculated from the stone/flesh weight ratio as: flesh/whole fruit (flesh + stone) e.g. for a stone/flesh ratio of 1:4.8 the correction factor is 4.8/(4.8 + 1) = 0.83.

^c Total residues in whole fruit = residues in flesh x Correction Factor.

^d The stone weight was mistakenly not recorded for this sample. So, the average ratio of the samples collected 7 days after the last application from the other three sites was used as the ratio for this sample (6.8 + 5.0 + 6.1)/3) = 6.0, the average ratio is 1:6.0.

Table 9-2 Residues of spinetoram from supervised trials on peaches in Australia, New Zealand, Argentina, Chile, Japan, Spain and France (for estimation of STMR)

PEACH Country,	Form	Applic treatme			Total/ season g ai/ha	PHI, days	Residue	e, mg/kg				Report No.
year (Variety)		g ai/hL	g ai/ha	No	g al/lia		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total ^a	
GAP, Australia (stone fruits)	250 WG	2.5–5		4		3						
TRIALS IN A	USTRAL	IA										
McIssacs Rd,	SC	5	62	4	248	0	0.050	0.010	ND	ND	0.060	240988
Ardmona VIC						7	0.020	< 0.01	ND	ND	0.003	
Australia, 2005						14	< 0.01	ND	ND	ND	< 0.02	
(Zea Lady)						21	ND	ND	ND	ND	< 0.02	
						28	ND	ND	ND	ND	< 0.02	1
						35	ND	ND	ND	ND	< 0.02	

1966

PEACH Country,	Form	Applic treatme			Total/ season	PHI, days	Residue	e, mg/kg				Report No.
year (Variety)		g ai/hL	g ai/ha	No	g ai/ha		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total ^a	
GAP, Australia (stone fruits)	250 WG	2.5–5		4		3						
McIssacs Rd,	SC	7.5	93	4	372	0	0.025	< 0.01	ND	ND	0.035	240988
Ardmona VIC						7	0.020	ND	ND	ND	0.030	
Australia, 2005						14	< 0.01	ND	ND	ND	< 0.02	
(Zea Lady)						21	ND	ND	ND	ND	< 0.02	
(Zeu Euuy)						28	ND	ND	ND	ND	< 0.02	
						35	ND	ND	ND	ND	< 0.02	_
McIssacs Rd,	SC	5	54-	7	415	0	0.030	< 0.01	ND	ND	0.04	240988
Ardmona VIC			62			7	0.010	ND	ND	ND	0.02	_
Australia, 2005						14	ND	ND	ND	ND	< 0.02	_
(Zea Lady)						21	ND	ND	ND	ND	< 0.02	_
(Zea Lauy)						28	ND	ND	ND	ND	< 0.02	_
McIssacs Rd,	SC	7.5	86-	7	637	0	0.05	0.01	< 0.01	< 0.01	0.07	240988
Ardmona VIC			93			7	0.01	ND	ND	ND	0.02	_
Australia,						15	ND	ND	ND	ND	< 0.02	-
2005						22	ND	ND	ND	ND	< 0.02	-
(Zea Lady)						28	ND	ND	ND	ND	< 0.02	_
						35	ND	ND	ND	ND	< 0.02	_
Neale Road	SC	5	81-	4	360	0	0.11	0.03	< 0.01	< 0.01	0.15	240988
Upper Hermitage			91			7	0.02	ND	ND	< 0.01	0.03	_
SA Australia,						15	< 0.01	ND	ND	ND	< 0.02	_
2005/2006						22	< 0.01	ND	ND	ND	< 0.02	_
(Tasty ee)						28	ND	ND	ND	ND	< 0.02	_
						35	ND	ND	ND	ND	< 0.02	_
Neale Road	WG	7.5	121-	4	538	0	0.115	0.03	0.01	0.015	0.17	240988
Upper Hermitage			136			7	0.03	ND	ND	0.01	0.04	-
SA Australia,						15	0.01	ND	ND	< 0.01	< 0.02	-
2005/2006						22	0.01	ND	ND	< 0.01	< 0.02	-
(Tasty ee)						28	< 0.01	ND	ND	< 0.01	< 0.02	-
					35	ND	ND	ND	ND	< 0.02	-	
Neale Road	WG	5	91–	7	729	0	0.065	0.015	< 0.01	< 0.01	0.09	240988
Upper			91– 7 136			7	0.02	ND	ND	0.01	0.03	
Hermitage SA Australia,						15	< 0.01	ND	ND	ND	< 0.02	-
2005/2006						22	< 0.01	ND	ND	ND	< 0.02	-
(Tasty ee)	Fasty ee)					28	ND	ND	ND	ND	< 0.02	-
						20					\$ 0.02	

PEACH Country,	Form	Applic treatme			Total/ season g ai/ha	PHI, days	Residue	, mg/kg				Report No.
year (Variety)		g ai/hL	g ai/ha	No	g al/lla		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total ^a	
GAP, Australia (stone fruits)	250 WG	2.5–5		4		3						
						35	ND	ND	ND	ND	< 0.02	
TRIALS IN N	EW ZEA	LAND	<u> </u>				1	<u> </u>			<u>I</u>	
Havelock	SC	2.5	46	4	184	0	0.02	ND	-	0.011	0.03	239322
North, Hawke's						1	0.01	ND	-	< 0.01	0.02	
Bay, NZ, 2006						3	0.011	ND	-	0.011	0.022	
(Golden						7	< 0.01	ND	-	< 0.01	< 0.02	
Queen)						14	ND	ND	-	ND	< 0.02	
						21	ND	ND	-	ND	< 0.02	
						28	ND	ND	-	ND	< 0.02	
Havelock North,	SC	3.7	67–68	4	269	0	0.038	< 0.0 1	-	0.013	0.051	239322
Hawke's Bay, NZ,						1	0.018	ND	-	0.011	0.029	-
2006						3	0.02	ND	-	0.016	0.036	-
(Golden Queen)						7	< 0.01	ND	-	< 0.01	< 0.02	-
Queen)						14	< 0.01	ND	-	< 0.01	< 0.02	-
						21	< 0.01	ND	-	< 0.01	< 0.02	
						28	ND	ND	-	< 0.01	< 0.02	
Havelock	SC	5	91–92	4	365	0	0.049	0.012	-	0.017	0.078	239322
North, Hawke's Bay, NZ,						1	0.032	< 0.0 1	-	0.013	0.045	
2006 (Golden						3	0.026	< 0.0 1	-	0.015	0.041	
Queen)						7	0.024	< 0.0 1	-	0.015	0.039]
						14	< 0.01	ND	-	0.011	0.021	
						21	ND	ND	_	ND	< 0.02	
						28	ND	ND	_	< 0.01	< 0.02	
Havelock North,	SC	7.6	137– 138	4	549	0	0.058	0.016	-	0.018	0.092	239322
Hawke's Bay, NZ,			150			1	0.041	< 0.0 1	_	0.016	0.057	
2006 (Golden						3	0.036	< 0.0 1	-	0.027	0.063	
Queen)						7	0.039	< 0.0 1	-	0.025	0.064]
						14	0.023	ND	-	0.017	0.04	1
						21	0.012	ND	-	0.017	0.029	1
						28	0.014	ND	-	0.020	0.034	1

PEACH Country,	Country, g	Applic treatme			Total/ season g ai/ha	PHI, days	Residue	, mg/kg				Report No.
year (Variety)		g ai/hL	g ai/ha	No	g al/lla		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total ^a	
GAP, Australia (stone fruits)	250 WG	2.5–5		4		3						
Earnscleugh, Central	SC	2.5	49–	4	199	0	0.06	0.014	-	0.022	0.096	239322
Otago			52			1	0.094	0.024	-	0.038	0.156	_
NZ, 2006						3	0.032	< 0.0 1	-	0.023	0.055	
(Southern Ice)						7	0.013	ND	-	< 0.01	0.023	
						14	< 0.01	ND	-	< 0.01	< 0.02	
						21	0.019	ND	-	< 0.01	0.029	
						28	0.027	ND	-	0.010	0.037	
Earnscleugh,	SC	3.7	72–76	4	293	0	0.078	0.019	-	0.013	0.11	239322
Central Otago						1	0.053	0.012	-	0.020	0.085	
NZ, 2006						3	0.052	0.01	-	0.025	0.087	
(Southern Ice)						7	0.03	< 0.0 1	_	0.017	0.047	
						14	< 0.01	ND	-	< 0.01	< 0.02	
						21	0.014	ND	-	0.011	0.025	
						28	< 0.01	ND	-	< 0.01	< 0.02	
Earnscleugh,	SC	5	98– 102	4	397	0	0.154	0.032	-	0.041	0.227	239322
Central Otago			103			1	0.053	0.012	-	0.026	0.091	
NZ, 2006						3	0.071	0.013	-	0.033	0.117	
(Southern Ice)						7	0.039	< 0.0 1	_	0.036	0.075	
						14	0.015	ND	-	0.014	0.029	
						21	0.014	ND	-	0.017	0.031	
						28	0.02	ND	-	0.02	0.04	
Earnscleugh, Central	SC	7.6	147–	4	596	0	0.106	0.027	-	0.017	0.15	239322
Otago			155			1	0.111	0.029	-	0.035	0.175	
NZ, 2006						3	0.088	0.014	-	0.041	0.143	1
(Southern Ice)						7	0.027	< 0.0 1	-	0.019	0.046]
						14	0.019	ND	-	0.014	0.033	1
						21	0.020	ND	_	0.012	0.032	1
						28	0.034	ND	_	0.021	0.055	
TRIALS IN A	RGENTI	NA					1					
GAP, Argentina	250 WG	3.75– 5	Min 60	3		1						

PEACH Country,	Form	Applica treatme			Total/ season g ai/ha	PHI, days	Residue					Report No.
year (Variety)		g ai/hL	g ai/ha	No	gaina		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total ^a	
GAP, Australia (stone fruits)	250 WG	2.5–5		4		3						
Almeria S.A	250 WG	3.75	75	3	225	0	0.042	< 0.01	< 0.01	ND	0.052	2000698
Rio Tala	wū					1	0.050	< 0.01	< 0.01	< 0.01	0.060	
San Pedro						3	0.042	< 0.01	< 0.01	< 0.01	0.052	
Argentina, 2007						5	0.030	ND	ND	ND	0.040	
						7	0.020	ND	ND	ND	0.030	
(Red Globe)						14	0.013	ND	ND	< 0.01	0.023	
Finca Amejo	250	3.75	75	3	225	0	0.055	< 0.01	< 0.01	< 0.01	0.065	2000698
Danti s/n	WG					1	0.023	ND	ND	< 0.01	0.033	
Agua Amarga						3	0.025	ND	ND	ND	0.035	
Tunuyán						5	0.039	ND	< 0.01	< 0.01	0.049	
Mendoza						7	0.035	< 0.01	< 0.01	0.011	0.046	
Argentina, 2007						14	0.016	ND	< 0.01	< 0.01	0.026	
(Andross)												
S08-02641-01		3.75	75	3	225	0	0.054	0.013	ND	0.01	0.077	2003242
San Pedro,	WG					1	0.056	0.012	< 0.01	< 0.01	0.078	
Argentina, 2008						3	0.022	< 0.01	ND	ND	0.032	
(June Gold)						5	0.016	ND	ND	< 0.01	0.026	
· · · ·						7	0.015	< 0.01	ND	ND	0.025	
						14	0.011	ND	ND	ND	0.021	
S08-02641-02		3.75	75	3	225	0	0.027	< 0.01	ND	< 0.01	0.037	2003242
La Consulta,	WG					1	0.021	< 0.01	ND	< 0.01	0.031	
Mendoza, Argentina,						3	< 0.01	ND	ND	ND	< 0.02	
2008						5	< 0.01	ND	ND	ND	< 0.02	
(Maria						7	< 0.01	ND	ND	< 0.01	< 0.02	
Bianca)						14	ND	ND	ND	ND	< 0.02	
TRIAL IN C	HILE	1	1	1	1	1	I	1	1	1	1	1
Calera de		6	108-	3	324	0	0.164	0.034	0.016	0.022	0.236	259328
Tango, Región	WG		111			1	0.112	0.025	0.012	0.022	0.171	
Metropolitana						3	0.070	0.014	< 0.01	0.020	0.104	
Chile, 2007						5	0.125	0.024	0.01	0.022	0.181	
(Kaweah)						7	0.126	0.027	0.012	0.023	0.188	
						14	0.063	0.011	< 0.01	0.014	0.088	

1970

Spinetoram

Country, year		treatme	ation/ ent		PHI, days	Residue, 1	mg/kg					Report No.
(Variety)		g ai/hL	hL/ha	No		XDE- 175-J (Flesh + Skin)	XDE- 175-L (Flesh + Skin)	N-de- methyl-J (Flesh + Skin)	N- formyl- J (Flesh + Skin)	Total ^a (Flesh + Skin)	Total whole fruit ^b	
TRIALS IN JA	APAN											
· .	250 WG	2.5–5	20–70	2	1							
	250	5	40	2	1	< 0.01 +	< 0.01+	< 0.011	< 0.01	< 0.02+	0.29	2002671/
Fukushima	WP					1.39	0.18	+ 0.296	+ 0.255	2.12		2002672
Japan, 2006						< 0.01+	< 0.01+	< 0.01+	< 0.01+	< 0.02+	0.24	
(Akatsuki)						1.84	0.22	0.326	0.304	2.69	(0.27)	
					7	< 0.01 +	< 0.01+	< 0.011	< 0.01 + 0.098	< 0.02	0.13	
						0.54	0.06	+0.092	< 0.01+	+ 0.79		
						< 0.01+	< 0.01+	< 0.01+		< 0.02+	0.14	
						0.90	0.10	0.184	0.235	1.42	(0.13)	
					13	< 0.01 +	< 0.01 +	< 0.011	< 0.01 + 0.157	< 0.02+	0.11	
						0.36	0.04	+ 0.133	< 0.01+	0.69		
						< 0.01+	< 0.01+	< 0.01+	0.216	< 0.02+	0.09	
						0.44	0.04	0.194	< 0.01+	0.89	(0.10)	
					19	< 0.01 +	< 0.01 +	< 0.011 + 0.082	0.137	< 0.021	0.07	
						0.25	0.02	< 0.01+	< 0.01+	+0.49	0.07	
						< 0.01+	< 0.01+	0.112	0.127	< 0.02+	0.06	
						0.34	0.02			0.60	(0.07)	
RLR-0067J 2	250	5	50	2	1	< 0.01 +	< 0.01 +	< 0.011	< 0.01	< 0.02+	0.35	2002671/
	WP	5	50	2	1	1.37	0.30	+0.194	+0.274	2.14	0.55	2002672
-									< 0.01	< 0.02+	0.34	
Japan, 2006						< 0.01	< 0.01+	< 0.01+	0.274	2.82		
(Hakuhou)					-	1.90	0.40	0.245	< 0.01	< 0.02 +	(0.35)	
					7	< 0.01 +	< 0.01 +	< 0.011+ 0.122	+ 0.196	1.47	0.22	
						0.97	0.18	< 0.01+	< 0.01+	< 0.02+		
						< 0.01+	< 0.01+	0.1631	0.216	1.70	0.17	
						1.12	0.20	< 0.01+	< 0.01	< 0.02 +	(0.19)	
					14	< 0.01 +	< 0.01 +	0.122	+ 0.167	0.670	0.11	
						0.36	0.05	< 0.01+	< 0.01+	< 0.02+		
						< 0.01+	< 0.01+	0.204	0.235	1.05	0.11	
						0.55	0.06		< 0.01 + 0.147	< 0.02 + 0.63	(0.11)	
					21	< 0.01 +	< 0.01 +	< 0.011 +0.102	+ 0.147 < 0.01+	< 0.03	0.11	
						0.33	0.05	< 0.01				
						< 0.01+	< 0.01+	0.163	0.235	0.99	0.10	
						0.51	0.08	_			(0.11)	

^a Data on flesh (no skin and stone) were from Report 2002671; data on skin alone were from Report 2002672.

^b Residues on total fruit, including stone, were calculated using the following equation: [Total whole fruit residue =((residue in flesh \times weight of flesh)+(residue in skin \times weight of skin))/ total weight of fruit including stone]. Mean values in parentheses.

PEACH Country,	Form	Applic treatm			PHI, days	Residue	e, mg/kg						Report No.
year (Variety)		g ai/hL	g ai/ha	No		XDE- 175-J	XDE- 175-L	N-de- methyl- J	N- formyl- J	Total ^a flesh	Wt ratio/ factor ^b	Total whole fruit ^c	-
TRIALS IN S	PAIN	1	<u> </u>		<u> </u>	<u> </u>	<u> </u>	1	I	1		1	1
060066SZ1 Valencia, Spain, 2006 (Carrasco de Cofrentes)	250 WG	8	99.5	3	7	0.104	0.023	0.011	0.024	0.162	1:6.0 ^d /0.86	0.139	244912
060066SZ3 Valencia, Spain, 2006 (Royal Gladys)	250 WG	8	100	3	0 3 7 9 14	0.091 0.077 0.061 0.046 0.027	0.025 0.019 0.014 0.011 < 0.01	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 0.01 0.012 0.013 < 0.01 < 0.01	0.126 0.108 0.082 0.067 0.037	1:5.8/0.85 1:8.1/ 0.89 1:5.0/ 0.83 1:9.3/0.90 1:11.7/0.92	0.107 0.096 0.068 0.060 0.034	244912
CEMS- 3448H Valencia Spain, 2007 (Andross) CEMS- 3448L	250 WG 250 WG	11	100	4 3	7 28 21	0.060	0.010 ND	< 0.01	0.018	_	_	0.088	259788 259788
Valencia, Spain, 2007 (Royal Gladys)					21 15 7	0.019 0.059 0.054	ND < 0.01 < 0.01	< 0.01 0.019 0.020	0.013 0.029 0.028			0.032 0.107 0.102	
TRIALS IN F 060066SZ2 Roussillon, France, 2006 (Gladys)	RANCE 250 WG	9	101	3	7	0.037	< 0.01	< 0.01	< 0.01	0.047	1:6.8/0.87	0.041	244912

PEACH Country,	Form	Applic treatm			PHI, days	Residue	e, mg/kg						Report No.
year (Variety)		g ai/hL	g ai/ha	No		XDE- 175-J	XDE- 175-L	N-de- methyl- J	N- formyl- J	Total ^a flesh	Wt ratio/ factor ^b	Total whole fruit ^c	
060066SZ4 Roussillon,	250 WG	9	102	3	0	0.045	0.012	< 0.01	< 0.01	0.067	1: 4.8/ 0.83	0.056	244912
France, 2006 (Western					3	0.019	< 0.01	ND	< 0.01	0.029	1:22.3/0.96	0.028	
Red)					7	0.017	< 0.01	< 0.01	< 0.01	0.027	1:6.1/0.86	0.023	
					11	0.018	ND	< 0.01	< 0.01	0.028	1:5.4/0.84	0.024	
					13	0.013	ND	ND	< 0.01	0.023	1:5.00.83	0.019	
CEMS- 3448G	250 WG	10	99	4	7	0.048	< 0.01	< 0.01	0.014	-	_	0.062	259788
Roussillon													
France, 2007													
(Gladys)													
CEMS-	250	10	98	4	0*	0.110	0.028	< 0.01	0.010	_	_	0.049	259788
3448I	WG				0	0.131	0.031	< 0.01	< 0.01	_	_	0.172	
Roussillon					3	0.061	0.013	< 0.01	< 0.01	_	_	0.084	
France, 2007					7	0.053	0.011	< 0.01	< 0.01	_	_	0.074	
(O'Henry)					10	0.049	< 0.01	< 0.01	0.013	_	_	0.062	
					14	0.028	< 0.01	ND	< 0.01	_	_	0.038	
CEMS-	250	10	99	4	0*	0.028	< 0.01	< 0.01	< 0.01	-	-	0.038	259788
3448J Roussillon	WG				0	0.133	0.031	0.011	0.012	_	_	0.187	
France, 2007					3	0.103	0.017	0.010	0.027	_	_	0.157	
(Gladys)					7	0.053	< 0.01	< 0.01	< 0.01	_	_	0.063	
(Oludyo)					10	0.042	< 0.01	< 0.01	< 0.01	-	_	0.052	
					14	0.031	< 0.01	< 0.01	0.013	_	-	0.044	
CEMS-	250	8	97	3	28	< 0.01	ND	ND	< 0.01	-	-	< 0.02	259788
3448K Roussillon	WG				21	0.031	< 0.01	< 0.01	0.012			0.043	
France, 2007					14	0.043	< 0.01	< 0.01	0.015			0.058	
(Toudibelle)					7	0.090	0.018	< 0.01	0.020			0.128	

^a Residues in flesh, no seed;

^b Correction factor was calculated from the stone/flesh weight ratio as: flesh/whole fruit (flesh + stone) e.g. for a stone/flesh ratio of 1:4.8 the correction factor is 4.8/(4.8 + 1) = 0.83.

^c Total residues in whole fruit = residues in flesh x Correction Factor.

 $^{\rm d}$ The stone weight was mistakenly not recorded for this sample. So, the average ratio of the samples collected 7 days after the last application.

Plums

Supervised trials in Europe

Eleven supervised trials were carried out in France (6), Germany (4) and Italy (1) during 2007 and 2008 (Reports 259788 and 2007541). Each treated plot received three to four applications of 250 WP spinetoram at rates ranging from 98 to 109 g ai/ha. Samples of mature fruits were collected 7 days after the last application and for decline trials, also at 0, 3, 10 and 14 days after application. Spinetoram is yet to be registered in Europe.

Residues of spinetoram and the main metabolites were analysed by method GRM 05.04, which had been validated with an LOQ of 0.01 mg/kg.

Supervised trials in Chile

One trial was conducted in Chile. Two applications at 72 g ai/ha spinetoram were made using 250 WG spinetoram. Samples were collected 0, 1, 3, 5, 7, and 14 days after application. There is no current GAP for stone fruits in Chile or in Argentina.

Table 10-1 Residues of spinetoram from supervised trials on plums in France, Germany, Italy and Chile (for estimation of maximum residue level)

PLUM	Form	Applica	tion/ treatm	ient	PHI,	Residue, 1	ng/kg		Report
Country, year		g	g ai/ha	No	days	XDE-	XDE-	Total	No.
(Variety)		ai/hL				175-J	175-L		
TRIALS IN FRANCE						•	•	•	
CEMS-3448A	250	13	102	4	7	0.012	ND	0.012	259788
Alsace,	WG								
France, 2007									
(Top)									
CEMS-3448C	250	13	99	4	0 ^b	< 0.01	ND	< 0.01	259788
Alsace	WG				0	0.073	0.015	0.088	
France, 2007					3	0.021	ND	0.021	
(Quetsches d'Alsace)					7	0.016	ND	0.016	
					10	0.012	ND	0.012	
					14	< 0.01	ND	< 0.01	
CEMS-3448F	250	10	101	4	0 ^b	< 0.01	ND	< 0.01	259788
PACA	WG				0	0.023	< 0.01	0.023	
France, 2007					3	< 0.01	ND	< 0.01	
(President)					7	< 0.01	ND	< 0.01	
					10	< 0.01	ND	< 0.01	
					14	< 0.01	ND	< 0.01	
CEMS-3818A	250	10	101	3	0 ^b	ND	ND	< 0.01	2007541
Alsace	WG				0	0.061	0.016	0.077	
France, 2008					3	0.020	< 0.01	0.020	
(Quetsches d'Alsace)					7	0.012	ND	0.012	
					10	< 0.01	ND	< 0.01	
					14	ND	ND	< 0.01	

PLUM	Form	Applica	ation/ treatn	nent	PHI,	Residue,	mg/kg		Report
Country, year (Variety)		g ai/hL	g ai/ha	No	— days	XDE- 175-J	XDE- 175-L	Total	– No.
TRIALS IN FRANCE	<u> </u>								
CEMS-3818B	250	10	101	3	7	0.071	0.011	0.082	2007541
Alsace	WG								
France, 2008									
(Quetsches d'Alsace)									
CEMS-3818E	250	10	101	3	0 ^b	ND	ND	< 0.01	2007541
Cote d'Azur, France,	WG				0	0.022	< 0.01	0.022	
2008					3	0.016	< 0.01	0.016	
(President)					7	< 0.01	ND	< 0.01	
					10	< 0.01	ND	< 0.01	
					14	ND	ND	< 0.01	
TRIALS IN GERMANY	1					1	1	1	
CEMS-3448B	250	10	98	4	7	< 0.01	ND	< 0.01	259788
Lower Saxony	WG								
Germany, 2007									
{Vom Felde)									
CEMS-3448D	250	10	101	4	0 ^b	< 0.01	ND	< 0.01	259788
Lower Saxony	WG				0	0.057	0.012	0.069	
Germany, 2007					3	0.031	< 0.01	0.031	
(Fellenberger)					7	0.013	ND	0.013	
					10	< 0.01	ND	< 0.01	
					14	< 0.01	ND	< 0.01	
CEMS-3818C	250	10	109	3	7	0.016	ND	0.016	2007541
Baden-Württemberg, Germany, 2008	WG								
(Presenta)									
CEMS-3818D	250	10	102	3	0 ^b	< 0.01	ND	< 0.01	2007541
Lower Saxony,	WG				0	0.037	< 0.01	0.037	
Germany, 2008					3	0.030	< 0.01	0.030	
(Fellenberger)					7	0.016	ND	0.016	
					10	0.012	ND	0.012	
					14	< 0.01	ND	< 0.01	
TRIALS IN ITALY ^a	•	•	·						
CEMS-3449E	250	10	100	4	7	< 0.01	ND	< 0.01	259788
Romagna	WG								
Italy, 2007									
(TC Sun)									
TRIAL IN CHILE	1	1	_1	1		1	1	1	1

PLUM	Form	Applicat	tion/ treatme	ent	PHI,		Report		
Country, year		g	g ai/ha	No	days	XDE-	XDE-	Total	No.
(Variety)		ai/hL				175-J	175-L		
TRIALS IN FRANCE					1				•
Calera de ChTango,	250	4	72	2	0	0.028	0.010	0.038	259247
Región Metropolitana	WG				1	0.022	< 0.01	0.022	
Chile, 2007					3	0.026	< 0.01	0.026	
(Larry Ann)					5	0.014	< 0.01	0.014	
					7	0.011	< 0.01	0.011	
					14	0.010	< 0.01	0.010	

^a Assumed GAP in Southern EU is the same as that for Northern EU.

^b Before the last application.

Table10-2 Residues of spinetoram from supervised trials on plums in France, Germany, Italy and Chile (for estimation of STMR)

PLUM Country, year	Form	Appli treatm	cation/ ient		PHI, days	Residue, 1	mg/kg				Report No.
(Variety)		g ai/hL	g ai/ha	No		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total	
TRIALS IN FR	ANCE		•				•				
CEMS-3448A Alsace,	250 WG	13	102	4	7	0.012	ND	ND	0.016	0.028	259788
France, 2007											
(Top)											
CEMS-3448C	250	13	99	4	0 ^b	< 0.01	ND	ND	< 0.01	< 0.01	259788
Alsace	WG				0	0.073	0.015	< 0.01	0.099	0.187	
France, 2007					3	0.021	ND	< 0.01	0.026	0.047	
(Quetsches					7	0.016	ND	< 0.01	0.020	0.036	
d'Alsace)					10	0.012	ND	< 0.01	0.015	0.027	
					14	< 0.01	ND	ND	< 0.01	< 0.02	
CEMS-3448F	250	10	101	4	0 ^b	< 0.01	ND	ND	ND	< 0.02	259788
PACA	WG				0	0.023	< 0.01	ND	ND	0.033	
France, 2007					3	< 0.01	ND	ND	ND	< 0.02	
(President)					7	< 0.01	ND	ND	ND	< 0.02	
					10	< 0.01	ND	ND	ND	< 0.02	
					14	< 0.01	ND	ND	ND	< 0.02	
CEMS-3818A	250	10	101	3	0 ^b	ND	ND	ND	ND	< 0.02	2007541
Alsace	WG				0	0.061	0.016	ND	ND	0.087	
France, 2008					3	0.020	< 0.01	< 0.01	ND	0.030	
(Quetsches					7	0.012	ND	< 0.01	ND	0.022	
d'Alsace)					10	< 0.01	ND	ND	ND	< 0.02	
					14	ND	ND	ND	ND	< 0.02	

PLUM Country, year	Form	Applie treatm	cation/ nent		PHI, days	Residue,		Report No.			
(Variety)		g ai/hL	g ai/ha	No		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total	
CEMS-3818B Alsace France, 2008	250 WG	10	101	3	7	0.071	0.011	0.018	0.018	0.118	2007541
(Quetsches d'Alsace)											
CEMS-3818E Cote d'Azur, France, 2008 (President)	250 WG	10	101	3	0 ^b 0 3 7 10	ND 0.022 0.016 < 0.01 < 0.01	ND < 0.01 < 0.01 ND ND	ND ND ND ND ND	ND ND ND ND ND	< 0.02 0.032 0.026 < 0.02 < 0.02	2007541
					14	ND	ND	ND	ND	< 0.02	
TRIALS IN GE		Ý	•					-			•
CEMS-3448B Lower Saxony Germany, 2007	250 WG	10	98	4	7	< 0.01	ND	ND	ND	< 0.02	259788
(Vom Felde)											
CEMS-3448D Lower Saxony Germany, 2007 (Fellenberger)	250 WG	10	101	4	0 ^b 0 3 7 10 14	< 0.01 0.057 0.031 0.013 < 0.01 < 0.01	ND 0.012 < 0.01	ND < 0.01 0.010 < 0.01 < 0.01 < 0.01	ND ND 0.010 < 0.01 < 0.01 < 0.01	< 0.02 0.079 0.053 0.023 < 0.02 < 0.02	259788
CEMS-3818C Baden- Württemberg, Germany, 2008 (Presenta)	250 WG	10	109	3	7	0.016	ND	< 0.01	< 0.01	0.026	2007541
CEMS-3818D Lower Saxony, Germany, 2008 (Fellenberger) TRIALS IN ITA	250 WG	10	102	3	0 ^b 0 3 7 10 14	< 0.01 0.037 0.030 0.016 0.012 < 0.01	ND < 0.01 < 0.01 ND ND ND	ND ND < 0.01 ND ND ND	ND ND < 0.01 < 0.01 ND < 0.01	< 0.02 0.047 0.040 0.026 0.022 < 0.02	2007541

PLUM Country, year	Form	Applie treatm	cation/ ent		PHI, days		Report No.				
(Variety)		g ai/hL	g ai/ha	No		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total	
CEMS-3449E Romagna Italy, 2007 (TC Sun)	250 WG	10	100	4	7	< 0.01	ND	ND	ND	< 0.02	259788
TRIALS IN CH	ILE					•					
Calera de Tango, Región Metropolitana Chile, 2007 (Larry Ann)		4	72	2	0 1 3 5 7 14	0.028 0.022 0.026 0.014 0.011 0.010	$\begin{array}{c} 0.010 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \end{array}$	ND ND ND ND ND ND	0.011 0.014 0.014 < 0.01 < 0.01 < 0.01	0.117 0.036 0.040 0.024 0.021 0.020	259247

^a Assumed GAP in Southern EU is the same as that for Northern EU.

^b Before last application

Berries and other small fruits

Raspberries

Supervised trials in the USA

Six supervised trials were conducted in different sites in the USA during 2010, following the GAP for <u>caneberries</u> (up to six applications at 53–105 g ai/ha for a seasonal maximum of 342 g ai/ha and PHI of 1 day). Each treated plot received 4 applications at 25–105 g ai/ha of a 250 WG formulation of spinetoram (first application at around 25 g ai/ha and the latter three applications at around 100 g ai/ha). The total applied rate for the season was 324–330 g ai/ha. Duplicate samples of mature berries were collected one day after the last application. For decline trials, duplicate samples were also collected 0, 3, 7, 14, and 21 days after the last application. All samples were frozen until analysis for periods ranging from 240 to 303 days.

Residues of spinetoram and the main metabolites were analysed by method GRM 05.04, which had been validation with an LOQ of 0.01 mg/kg.

Table 11-1 Residues of spinetoram from supervised trials on raspberries in the USA (for estimation of maximum residue level)

RASPBERRY	Form	Applicat	ion/ treatme	Total/	PHI,	Residue, n		Report No.		
Country, year (Variety)		g ai/hL	g ai/ha	No	g ai/ha	days	XDE- 175-J	XDE- 175-L	Total	
GAP, USA (caneberry)	250 WG		53-105	6	342	1				

1978

RASPBERRY	Form	Applicat	ion/ treatm	ent	Total/	PHI,	Residue,	mg/kg		Report No.
Country, year		g ai/hL	g ai/ha	No	season,	days	XDE-	XDE-	Total	-
(Variety)					g ai/ha		175-J	175-L		
NY-1	250 WG		25-102	4	330	0	0.307	0.065	0.372	2009870
Williamson, NY,						1	0.159	0.022	0.181	
USA, 2010						3	0.113	0.012	0.125	
(Laurin)						7	0.087	< 0.01	0.087	
						14	0.043	< 0.01	0.043	
						21	0.032	< 0.01	0.032	
WI-1	250 WG		25-105	4	333	1	0.278	0.040	0.318	2009870
Marengo,										
IL, USA										
2010										
(Heritage)										
OR-1	250 WG		26–100	4	324	1	0.034	< 0.01	0.034	2009870
Portland, OR, USA										
2010										
(Canby)										
OR-2	250 WG		25–	4	328	0	0.359	0.084	0.443	2009870
Lebanon, OR,			103			1	0.218	0.046	0.264	
USA						3	0.167	0.036	0.203	
2010						7	0.105	0.023	0.128	
(Meeker)						14	0.052	0.011	0.063	
						21	0.033	0.012	0.045	
OR-3	250 WG		26–104	4	330	1	0.144	0.030	0.174	2009870
Jefferson, OR, USA										
2010										
(Coho)										
OR-4	250 WG		26–	4	327	1	0.359	0.064	0.423	2009870
Hillsboro, OR			101							
USA										
2010										
(Williamette)										

RASPBERRY Country, year	Form	Applic treatme				PHI, days	Residue	e, mg/kg				Report No.
(Variety)		g ai/hL	g ai/ha	No	g ai/na		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total	
GAP, USA (caneberry)	250 WG		53– 105	6	342	1						
NY-1 Williamson, NY, USA,	250 WG		25– 102	4	330	0 1 3	0.307 0.159 0.113	0.065 0.022 0.012	0.011 0.061 0.045	0.474 0.534 0.426	0.857 0.776 0.596	2009870
2010 (Laurin)						3 7 14	0.087 0.043	< 0.012< 0.01< 0.01	0.043 0.033 0.017	0.428 0.292 0.039	0.398 0.412 0.099	
WI-1 Marengo, IL, USA	250 WG		25– 105	4	333	21	0.032	< 0.01	< 0.01	0.013	0.045	2009870
2010 (Heritage)												
OR-1 Portland, OR, USA 2010 (Canby)	250 WG		26- 100	4	324	1	0.034	< 0.01	0.023	< 0.01	0.057	2009870
OR-2 Lebanon, OR, USA 2010 (Meeker)	250 WG		25- 103	4	328	0 1 3 7 14 21	0.359 0.218 0.167 0.105 0.052 0.033	0.084 0.046 0.036 0.023 0.011 0.012	0.064 0.042 0.031 0.020 0.020 0.019	0.036 0.018 0.017 < 0.01 < 0.01 < 0.01	0.543 0.324 0.251 0.148 0.083 0.064	2009870
OR-3 Jefferson, OR, USA 2010 (Coho)	250 WG		26– 104	4	330	1	0.144	0.030	0.024	0.012	0.210	2009870
OR-4 Hillsboro, OR USA 2010 (Williamette)	250 WG		26- 101	4	327	1	0.359	0.064	0.083	0.042	0.548	2009870

Table 11-2 Residues of spinetoram from supervised trials on raspberries in the USA (for estimation of STMR)

Blueberries

Supervised trials in the USA

Six supervised trials were conducted on <u>blueberries</u> during 2010 in the USA following the GAP in the USA for blueberry (up to six applications at 53–105 g ai/ha for a seasonal maximum of 342 g ai/ha and PHI of 3 days). Each treated plot received four applications at 25–104 g ai/ha of a 250 WG formulation of spinetoram (first application at around 25 g ai/ha and the latter three applications at around 100 g ai/ha). The total treatment for the season was 327–330 g ai/ha. Duplicate samples of mature berries were collected 3 days after the last application. For decline trials, duplicate samples were also collected 0, 1, 7, 14, and 21 days after the last application. All samples were frozen until analysis for periods ranging from 256 to 313 days.

Residues of spinetoram and the main metabolites were analysed by method GRM 05.04, which had been validated with an LOQ of 0.01 mg/kg. Each sample was analysed and the results of duplicate samples from each plot were averaged.

Table 12-1 Residues of spinetoram from supervised trials on blueberries in the USA (for estimation of
maximum residue level)

BLUEBERRY	Form	Applicat	tion/ tre	atment		PHI,	Residue, mg	/kg		Report No.
Country, year (Variety)		g ai/ hL	g ai/ha	No	season, g ai/ha	days	XDE-175-J	XDE-175-L	Total	
GAP, USA	250 WG		53– 105	6	342	3				
NY-1 Dundee, NY, USA, 2010 (Blue Ray)	250 WG		26– 102	4	328	3	0.053	ND	0.053	2009871
GA-1 Montezuma, GA, USA 2010 (Bright Blue)	250 WG		25– 101	4	327	0 1 3 7 10 14 21	0.160 0.131 0.069 0.039 0.029 0.019 < 0.01	0.035 < 0.01 ND ND ND ND ND	0.195 0.131 0.069 0.039 0.029 0.019 < 0.01	2009871
GA-2 Alma, GA, USA (2010) (Powder Blue)	250 WG		25– 104	4	327	3	0.050	ND	0.050	2009871
WI-1 Morengo, IL, USA 2010 (Duke)	250 WG		26– 102	4	330	0 1 3 7 10 14 21	0.189 0.092 0.049 0.038 0.027 0.020 0.014	0.034 0.014 ND ND ND ND	0.223 0.106 0.049 0.038 0.027 0.020 0.014	2009871

BLUEBERRY	Form	Applicat	tion/ trea	atment		PHI,	Residue, mg/	kg		Report No.
Country, year (Variety)		g ai/ hL	g ai/ha	No	season, g ai/ha	days	XDE-175-J	XDE-175-L	Total	
MI-1 Freemont, MI, USA 2010 (Jersey)	250 WG		25– 101	4	328	3	0.080	ND	0.080	2009871
OR-1 Hillsboro, OR, USA 2010 (Blue Crop)	250 WG		25– 102	4	329	3	0.056	< 0.01	0.056	2009871

Table 12-2 Residues of spinetoram from supervised trials on blueberries in the USA (for estimation of
STMR)

BLUEBERRY Country, year	Form	Applie treatm			Total/ season g ai/ha	PHI, days	Residu	e, mg/kg				Report No.
(Variety)		g ai/hL	g ai/ha	No			XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl- J	Total	
GAP, USA	250 WG		53– 105	6	342	3						
NY-1 Dundee, NY, USA, 2010 (Blue Ray)	250 WG		26– 102	4	328	3	0.053	ND	0.016	0.040	0.109	2009871
GA-1 Montezuma, GA, USA 2010 (Bright Blue)	250 WG		25– 101	4	327	0 1 3 7 10 14 21	0.160 0.131 0.069 0.039 0.029 0.019 < 0.01	0.035 < 0.01 ND ND ND ND ND	0.028 0.055 0.036 0.023 0.016 0.012 < 0.01	0.015 0.031 0.025 0.017 0.013 0.012 ND	0.238 0.217 0.130 0.079 0.058 0.043 < 0.02	2009871
GA-2 Alma, GA, USA (2010) (Powder Blue)	250 WG		25– 104	4	327	3	0.050	ND	0.017	0.033	0.100	2009871

BLUEBERRY Country, year	Form	Applic treatm			Total/ season g ai/ha	PHI, days	Residue	e, mg/kg				Report No.
(Variety)		g ai/hL	g ai/ha	No			XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl- J	Total	
WI-1	250 WG		26–	4	330	0	0.189	0.034	0.031	0.115	0.369	2009871
Morengo, IL, USA			102			1	0.092	0.014ND		0.164	0.297	
2010						3 7	0.049 0.038	ND ND	0.021 0.018	0.117 0.088	0.187 0.144	
(Duke)						10	0.038	ND	0.018	0.088	0.097	
						14	0.020	ND	0.011	0.036	0.067	
						21	0.014		< 0.01	0.022	0.036	
MI-1 Freemont, MI, USA 2010 (Jersey)	250 WG		25– 101	4	328	3	0.080	ND	0.027	0.054	0.161	2009871
OR-1 Hillsboro, OR, USA 2010 (Blue Crop)	250 WG		25– 102	4	329	3	0.056	< 0.01	0.019	0.039	0.114	2009871

Grapes

Supervised trials in Southern Europe (France and Italy)

Eight supervised trials, four in France and four in Italy, were conducted during 2007 and 2008. Registration of spinetoram is yet to be granted in these countries.

The trials in Italy used three applications at 36 g ai/ha while those in France four applications from 37 to 42 g ai/ha. All samples were harvested 7 days after the final treatment. Samples were stored frozen until a maximum of 293 days prior to analysis.

Residues of spinetoram and the main metabolites were analysed by method GRM 05.04, validated with an LOQ of 0.01 mg/kg.

Supervised trial in Chile

One trial was conducted in Chile during 2008, in which two applications of 250 WG spinetoram were made at 60 g ai/ha and samples collected 0, 1, 3, 5, 7, and 14 days after the last treatment. There is no GAP for grapes in Chile and no other available GAPs match the trial.

Table 13-1 Residues of spinetoram from supervised trials on grapes in France, Italy and Chile (for estimation of maximum residue level)

GRAPE	Form	Application/ treatment				. 1	Residue, mg	/kg		Report No.
Country, year (Variety)		g ai/ hL	g ai/ha	No	season, g ai/ha	days	XDE-175-J	XDE-175-L	Total	
GAP, Turkey	250 WG	4–6				7				

GRAPE	Form	Applica	tion/ trea	atment	Total/	PHI,	Residue, mg	/kg		Report No.
Country, year		g ai/		No	season,	days	XDE-175-J	XDE-175-L	Total	
(Variety)		hL	ai/ha		g ai/ha					
GAP, Turkey	250 WG	4-6				7				
TRIALS IN FRA	NCE			•		-				1
Carpentras	120	7	41	4	164	7	0.138	0.032	0.17	259851
Provence	SC									
Alpes C6te										
d ' Azur										
France, 2007										
(Cardinal)										
Carpentras	120 SC	7	42	4	168	0*	0.027	< 0.01	0.027	259851
Provence						0	0.033	< 0.01	0.033	
Alpes Cote						3	0.044	0.01	0.054	
d' Azur						7	0.039	< 0.01	0.039	
France, 2007						10	0.019	< 0.01	0.019	
(Muscat de						14	0.027	< 0.01	0.027	
Hambourg)										
Mazon, Paca	120 SC	6	37	3	111	0	0.077	0.02	0.092	2007533
France, 2008						3	0.040	< 0.01	0.040	
(Muscat						7	0.029	< 0.01	0.029	
Hamburg)						11	0.026	< 0.01	0.026	
						14	0.028	< 0.01	0.028	
Thor, Paca	120 SC	6	38	3	114	7	< 0.01	ND	< 0.01	2007533
France, 2008										
(Centennial)										
TRIALS IN ITA	LY									
Capurso,	120	5	42	4	168	7	0.067	0.014	0.081	259851
700 10	SC									
Puglia										
Italy, 2007										
(Italia)										
Capurso,	120 SC	4.5	36	3	108	0*	0.08	0.016	0.096	2007533
Puglia						0	0.145	0.034	0.179	
Italy, 2008						3	0.113	0.023	0.136	
(Italia)						7	0.083	0.013	0.096	
						, 10	0.054	< 0.01	0.054	
						14	0.038	< 0.01	0.034	
Moladibari,	120 SC	4.5	37	3	111	7	0.018	< 0.01 ND	0.038	2007533
PugIia	120 SC	4.5	51	5	111	/	0.010	ND .	0.018	2007333
Italy, 2008										
(Red Globe)										
. /										

GRAPE	Form	Application/ treatment				PHI,	Residue, mg	/kg		Report No.
Country, year		g ai/ hL	g ai/ha	No	season, g ai/ha	days	XDE-175-J	XDE-175-L	Total	
(Variety)		ΠL	al/lia		g al/lla					
GAP, Turkey	250 WG	4–6				7				
Bitonto, Puglia	120 SC	4.5	37	3	111	0*	0.065	0.013	0.078	2007533
Italy, 2008						0	0.116	0.027	0.143	
(Italia)						3	0.139	0.033	0.172	
						7	0.081	0.016	0.097	
						10	0.055	< 0.01	0.055	
						14	0.080	0.013	0.093	
TRIAL IN CHIL	Æ						1	L		
	250	15	60	2	122	0	0.270	0.062	0.332	259332
Tango, Chile	WG					1	0.237	0.049	0.286	
2008						3	0.230	0.049	0.279	
(Flame- seedless)						5	0.171	0.039	0.210	
						7	0.150	0.030	0.180	
						14	0.114	0.024	0.138	

Table 13-2 Residues of spinetoram from supervised trials on grapes in France, Italy and Chile (for estimation of STMR)

GRAPE Country, year	Form	Applica treatme			Total/ season g ai/ha	PHI, days	Residue	e, mg/kg				Report No.
(Variety)		g ai/ hL	g ai/ha	No	ai/ iia		XDE- 175-J	XDE- 175-L	N- demethyl-J	N- formyl-J	Total	
GAP, Turkey	250 WG	4-6				7						
TRIALS IN F	RANCE	ļ,						•				
Carpentras	120	7	41	4	164	7	0.138	0.032	0.018	0.045	0.233	259851
Provence	SC											
Alpes Cote												
d ' Azur												
France, 2007												
(Cardinal)												
Carpentras	120	7	42	4	168	0*	0.027	< 0.01	< 0.01	ND	0.028	259851
Provence	SC					0	0.033	< 0.01	< 0.01	ND	0.043	
Alpes Cote						3	0.044	0.01	< 0.01	< 0.01	0.064	
d' Azur						7	0.039	< 0.01	< 0.01	ND	0.049	
France, 2007						10	0.019	< 0.01	< 0.01	ND	0.029	
(Muscat de Hambourg						14	0.027	< 0.01	< 0.01	ND	0.037	

1984

GRAPE Country, year	Form	Application treatment			Total/ season g	PHI, days	Residue	e, mg/kg				Report No.
(Variety)		g ai/ hL	g ai/ha	No	ai/ha		XDE- 175-J	XDE- 175-L	N- demethyl-J	N- formyl-J	Total	
Mazon, Paca	120	6	37	3	111	0	0.077	0.02	0.012	< 0.01	0.109	2007533
France, 2008	SC					3	0.040	< 0.01	< 0.01	< 0.01	0.05	
(Muscat						7	0.029	< 0.01	< 0.01	< 0.01	0.039	
Hamburg)						11	0.026	< 0.01	< 0.01	< 0.01	0.036	
						14	0.028	< 0.01	< 0.01	< 0.01	0.038	
Thor, Paca	120	6	38	3	114	7	< 0.01	ND	< 0.01	< 0.01	< 0.02	2007533
France, 2008	SC											
(Centennial)												
TRIALS IN I	FALY											
Capurso,	120	5	42	4	168	7	0.067	0.014	0.017	< 0.01	0.098	259851
700 10	SC											
Puglia												
Italy, 2007												
(Italia)												
Capurso,	120	4.5	36	3	108	0*	0.08	0.016	0.015	< 0.01	0.111	2007533
Puglia	SC					0	0.145	0.034	0.021	< 0.01	0.200	
Italy, 2008						3	0.113	0.023	0.020	0.014	0.170	
(Italia)						7	0.083	0.013	0.027	0.014	0.137	
						10	0.054	< 0.01	0.016	< 0.01	0.070	
						14	0.038	< 0.01	0.013	< 0.01	0.051	
Moladibari, PugIia	120 SC	4.5	37	3	111	7	0.018	ND	< 0.01	ND	0.028	2007533
Italy, 2008												
(Red Globe)												
Bitonto,	120	4.5	37	3	111	0*	0.065	0.013	< 0.01	< 0.01	0.098	2007533
Puglia	SC					0	0.116	0.027	0.022	< 0.01	0.165	
Italy, 2008						3	0.139	0.033	0.020	0.015	0.207	
(Italia)						7	0.081	0.016	0.014	< 0.01	0.111	
						10	0.055	< 0.01	< 0.01	< 0.01	0.065	
						14	0.080	0.013	0.013	< 0.01	0.106	
TRIAL IN CH	IILE		1			1	I	1	<u> </u>	[I	
Calera de	250	15	60	2	122	0	0.270	0.062	0.011	0.018	0.361	259332
Tango, Chile	WG					1	0.237	0.049	0.011	0.014	0.311	
2008						3	0.230	0.049	0.01	0.020	0.309	
(Flame-						5	0.171	0.039	< 0.01	0.012	0.222	
seedless)						7	0.150	0.030	< 0.01	0.010	0.190	
						14	0.114	0.024	< 0.01	< 0.01	0.148	
					<u> </u>							

Bulb vegetables

Onion, Bulb

Supervised trials in Brazil

Eight trials were conducted on <u>bulb onions</u> during 2007 in different locations in Brazil (Report 257916, amended by Report 257269). Onion plants were treated four times with 250 WG spinetoram at the rate of 62.5 g ai/ha for a seasonal total of 250 g ai/ha. The trials were carried out according to the US GAP (applicable also to Puerto Rico in the Caribbean) as the proposed label for Brazil had not yet been approved.

Residues of spinetoram determined by method GRM 05.04 were all non-detectable. The LOQ for the method was < 0.01 mg/kg.

Table 14-1 Residues of spinetoram from supervised trials on onion in Brazil (for estimation of maximum residue level)

ONION	Form	Applicat	tion/ trea	atment	Total	PHI,	Residue, mg/	kg		Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	(g ai/ha/ season)	days	XDE-175-J	XDE-175-L	Total	
GAP, USA (Bulb vegetables)	60 or120 SC		44–88	5	263	1				
Trial #1 Monte Alto, Sao Paolo, Brazil, 2007 (Princesa)	250 WG	12.5	62.5	4	250	1	ND	ND	< 0.01	257916
Trial # 2 Piedade,	250 WG	12.5	62.5	4	250	0	< 0.01 < 0.01	ND ND	< 0.01 < 0.01	257916
-										
Sao Paolo,						3	ND	ND	< 0.01	
Brazil, 2007 (Hibrida						7	ND	ND	< 0.01	
Òptima)						10	ND	ND	< 0.01	
						14	ND	ND	< 0.01	
Trial #3	250 WG	12.5	62.5	4	250	0	ND	ND	< 0.01	257916
Capão, Sao Paolo,						1	ND	ND	< 0.01	
Brazil, 2007						3	ND	ND	< 0.01	
						7	ND	ND	< 0.01	
(Boreal)						10	ND	ND	< 0.01	
						14	ND	ND	< 0.01	
Trial #4 Irati, Paraná Brazil, 2007	250 WG	12.5	62.5	4	250	1	ND	ND	< 0.01	257916
(Cioula)										

ONION	Form	Applicat	tion/ trea	atment	Total	PHI,	Residue, mg/l	кg		Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	(g ai/ha/ season)	days	XDE-175-J	XDE-175-L	Total	
Trial #5 Mogi Mirim, Sao Paolo, Brazil, 2007 (Baia Periforme)	250 WG	6.25	62.5	4	250	0 1 3 7 10	ND ND ND ND	ND ND ND ND ND	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	257916/ 258269
Trial #6 Campinas, Sao Paolo, Brazil, 2007 (Baia Periforme)	250 WG	6.25	62.5	4	250	14 0 1 3 7 10 14	ND < 0.01 < 0.01 ND ND ND ND	ND ND ND ND ND ND ND	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	257916/ 258269
Trial #7 Sao Sebastiáo da Grama, SP Brazil, 2007 (Superex)	250 WG	6.25	62.5	4	250	1	ND	ND	< 0.01	257916/ 258269
Trial #8 Sao Jose do Rio Pardo, SP Brazil, 2007 (Optma)	250 WG	6.25	62.5	4	250	1	< 0.01	ND	< 0.01	257916/ 258269

ND = < LOD (< 0.003 mg/kg)

Table 14-2 Residues of spinetoram	from supervised trials on	onion in Brazil (for estimation of STMR)

ONION Country, year	Form	· ·	Application/ treatment g g ai/ha No			PHI days	Residue	, mg/kg				Report No.
(Variety)		g ai/hL	g ai/ha	No	season)		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total	
GAP, USA (Bulb vegetables)	60 or120 SC		44-88	5	262	1						
Trial #1 Monte Alto, Sao Paolo, Brazil, 2007 (Princesa)		12.5	62.5	4	250	1	ND	ND	ND	ND	< 0.02	257916

1988

Spinetoram

ONION Country, year	Form	treatment (g ai/ha/ days						Report No.				
(Variety)		g ai/hL	g ai/ha	No	season)		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total	
Trial # 2	250	12.5	62.5	4	250	0	< 0.01	ND	ND	ND	< 0.02	257916
Piedade,	WG					1	< 0.01	ND	ND	ND	< 0.02	
Sao Paolo,						3	ND	ND	ND	ND	< 0.02	
Brazil, 2007						7	ND	ND	ND	ND	< 0.02	
(Hibrida Optima)						10	ND	ND	ND	ND	< 0.02	
• F)						14	ND	ND	ND	ND	< 0.02	
Trial #3	250	12.5	62.5	4	250	0	ND	ND	ND	ND	< 0.02	257916
Capão, Sao	WG					1	ND	ND	ND	ND	< 0.02	
Paolo,						3	ND	ND	ND	ND	< 0.02	
Brazil, 2007						7	ND	ND	ND	ND	< 0.02	
(Boreal)						10	ND	ND	ND	ND	< 0.02	
						14	ND	ND	ND	ND	< 0.02	
Trial #4 Irati, Paraná	250 WG	12.5	62.5	4	250	1	ND	ND	ND	ND	< 0.02	257916
Brazil, 2007												
(Cioula)						-						
Trial #5	250 WG	6.25	62.5	4	250	0	ND	ND	ND	ND	< 0.02	257916/
Mogi Mirim, Sao Paolo,						1	ND	ND	ND	ND	< 0.02	258269
Brazil, 2007						3	ND	ND	ND	ND	< 0.02	
(Baia Dariforma)						7	ND	ND	ND	ND	< 0.02	
Periforme)						10	ND	ND	ND	ND	< 0.02	
						14	ND	ND	ND	ND	< 0.02	
Trial #6	250 WG	6.25	62.5	4	250	0	< 0.01	ND	ND	ND	< 0.02	257916/
Campinas,						1	< 0.01	ND	ND	ND	< 0.02	258269
Sao Paolo,						3	ND	ND	ND	ND	< 0.02	
Brazil, 2007						7	ND	ND	ND	ND	< 0.02	
(Baia Periforme)						10	ND	ND	ND	ND	< 0.02	
	0.50	6.05	(2.5	4	2.50	14	ND	ND	ND	ND	< 0.02	2550161
Trial #7 Sao Sebastiáo da Grama, SP	250 WG	6.25	62.5	4	250	1	ND	ND	ND	ND	< 0.02	257916/ 258269
Brazil, 2007												
(Superex)												
Trial #8	250	6.25	62.5	4	250	1	< 0.01	ND	ND	ND	< 0.02	257916/
Sao Jose do Rio Pardo, SP	WG											258269
Brazil, 2007 (Optma)												

ND = <LOD (< 0.003 mg/kg)

Green onions

Supervised trials in Japan on Welsh onion

Two supervised trials on <u>Welsh onions</u> were conducted in the experimental stations in Japan during 2006 (Report 2002673). Each treated plot received two applications of 120 WP spinetoram formulation, at the spray concentration of 4.8 g ai/hL resulting in the rate of 96 g ai/ha (20 hL/ha). Samples were harvested 1, 7, 14 and 21 days after the last application and maintained frozen until analysis. The GAP in Japan allows up to two applications at the maximum spray concentration of 4.8 g ai/hL with the volume of 10–30 hL/ha and a PHI of 1 day.

Residues of spinetoram and its main metabolites were determined by LC/MS/MS. The LOQ for the method was 0.01 mg/kg.

Table 15-1 Residues of spinetoram	from supervised	trials on	Welsh onion	in Japan (t	for estimation of
maximum residue level)	_				

WELSH ONION	Form	Application/ treatment			PHI,	Residue, mg/kg	Report No.		
Country, year (Variety)		G ai/hL	hL/ ha	No	· days	XDE-175-J	XDE-175-L	Total ¹	
GAP, Japan	120 SC	4.8	10- 30	2	1				
Nigata Japan, 2006 (Welsh onion –Motokura)	120 WP	4.8	20	2	1 7 14 21	0.08 < 0.01 < 0.01 < 0.01	0.02 < 0.01 < 0.01 < 0.01	0.10 < 0.01 < 0.01 < 0.01	2002673
Shiga, Japan, 2006 (Welsh onion – Kujyo)	120 WP	4.8	20	2	1 7 14 21	0.10 < 0.01 < 0.01 < 0.01	0.03 < 0.01 < 0.01 < 0.01	0.13 < 0.01 < 0.01 < 0.01	2002673

Table 15-2 Residues of spinetoram from supervised trials on Welsh onion in Japan (for estimation of STMR)

WELSH ONION	Form	Application/ treatment			PHI, days	Residue, n	Report No.				
Country, year (Variety)		G ai/hL	hL/ha	No		XDE- 175-J	XDE- 175-L	N- demethyl-J	N- formyl-J	Total	
GAP, Japan	120 SC	4.8	10– 30	2	1						
Nigata Japan, 2006 (Welsh onion –Motokura)	120 WP	4.8	20	2	1 7 14 21	0.08 < 0.01 < 0.01 < 0.01	0.02 < 0.01 < 0.01 < 0.01	0.011 < 0.011 < 0.011 < 0.011	0.01 < 0.01 < 0.01 < 0.01	0.121 < 0.021 < 0.021 < 0.021	2002673

WELSH ONION	Form	Application/ treatment			PHI, days	Residue, n		Report No.			
Country, year (Variety)		G ai/hL	hL/ha	No		XDE- 175-J	XDE- 175-L	N- demethyl-J	N- formyl-J	Total	
Shiga, Japan, 2006 (Welsh onion – Kujyo)	120 WP	4.8	20	2	1 7 14 21	0.10 < 0.01 < 0.01 < 0.01	0.03 < 0.01 < 0.01 < 0.01	0.051 < 0.011 < 0.011 < 0.011	0.02 < 0.01 < 0.01 < 0.01	0.201 < 0.021 < 0.021 < 0.021	2002673

Supervised trials in the USA on spring onion

Six field trials were conducted within the principal green onion growing regions of the United States during 2010 and 2011 (Report 2009869). The trials were carried out according to the GAP in the US for bulb vegetables (up to five applications (4 day interval) at the rate of 44–88 g ai/ha per treatment, up to a seasonal maximum of 263 g ai/ha with a PHI of 1 day).

Each trial included one untreated control plot and one treated plot. Each treated plot received three applications of a 250 WG formulation of spinetoram at the target rate of 96 g ai/ha. All applications were made at 4 day intervals with the final application occurring 1 day prior to typical harvest. One sample was collected from the untreated control plot and duplicate samples were collected independently from the treated plot at normal harvest, 1 day after the last application. At the decline sites, sampling occurred on day 0 immediately following the third application. Samples were immediately frozen and maintained frozen until analysis. The maximum period of frozen storage was 298 days prior to analysis.

Analysis of spinetoram and metabolite residues in green onion samples proceeded according to the previously validated method GRM 05.04.

GREEN ONION	Form	Application/ treatment			Total (g ai/ha/	PHI, days	Residue, mg/	Report No.		
Country, year (Variety)		g ai/hL	g ai/ha	No	season)		XDE-175-J	XDE-175-L	Total	
GAP, USA (Bulb vegetables)	60 or120 SC		44– 88	5	262	1				
NY-1 Alton, NY, USA, 2010 (Gallop Bunching)	120 SC		87– 88	3	263	0 1 3 7 14 21	0.172 0.042 0.040 0.015 < 0.01 ND	0.035 < 0.01 < 0.01 ND ND ND	0.207 0.042 0.040 0.015 < 0.01 < 0.01	2009869

Table 16-1 Residues of spinetoram from supervised trials on spring onions in the USA (for estimation of maximum residue level)

GREEN ONION	Form	Applica treatme			Total (g ai/ha/	PHI, days	Residue, mg/	kg		Report No.
Country, year		g	g	No	season)		XDE-175-J	XDE-175-L	Total	
(Variety)		ai/hL	ai/ha							
TX-1	120 SC		87	3	262	1	0.085	0.017	0.102	2009869
East Bernard, TX, USA, 2011	50									
(Evergreen White Bunching)										
TX-2	120 SC		87	3	262	1	0.378	0.048	0.426	2009869
Levelland, TX, USA, 2010	50									
(Evergreen White Bunching)										
CA-1	120 SC		88	3	264	1	0.029	< 0.01	0.029	2009869
Porterville, CA, USA	sc									
2010										
(Bunching)										
CA-2	120 SC		88– 92	3	268	0	0.260	0.063	0.323	2009869
Fresno, CA, USA, 2010	50		92			1	0.080	0.014	0.094	
(White Spear)						3	0.051	< 0.01	0.051	
(7	0.033	< 0.01	0.033	
						14	< 0.01	ND	< 0.01	
						21	0.012	ND	0.012	
ID-1 Payette, IN, USA. 2010	120 SC		88	4	264	1	0.066	< 0.01	0.066	2009869
(Green Banner)										

Table 16-2 Residues of spinetoram from supervised trials on spring onion in the USA (for estimation	
of STMR)	

GREEN ONION	Form	Applica treatme			Total (g ai/ha/	PHI days	Residue	, mg/kg				Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	season)		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl- J	Total	
GAP, USA (Bulb vegetables)	120 SC		44-88	5	262	1						
NY-1 Alton, NY,	120 SC		87–88	3	263	0 1	0.172 0.042	0.035 < 0.01	0.073 0.038	0.228 0.102	0.508 0.182	2009869

GREEN ONION	Form	Applica treatme			Total (g ai/ha/	PHI days	Residue	, mg/kg				Report No.
Country, year		g ai/hL	g ai/ha	No	season)		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-	Total	
(Variety)									J	J		
USA, 2010						3	0.040	< 0.01	0.039	0.098	0.177	
(Gallop Bunching)						7	0.015	ND	0.011	0.021	0.047	
Dunening)						14	< 0.01	ND	< 0.01	< 0.01	< 0.02	
						21	ND	ND	ND	ND	< 0.02	
TX-1	120 SC		87	3	262	1	0.085	0.016	0.112	0.187	0.40	2009869
East Bernard, TX, USA, 2011	sc											
(Evergreen White Bunching)												
TX-2	120		87	3	262	1	0.378	0.048	0.098	0.339	0.863	2009869
Levelland, TX, USA, 2010	SC											
(Evergreen White Bunching)												
CA-1	120 SC		88	3	264	1	0.029	< 0.01	0.019	0.077	0.125	2009869
Porterville, CA, USA	sc											
2010												
(Bunching)												
CA-2	120 SC		88–92	3	268	0	0.260	0.063	0.103	0.203	0.629	2009869
Fresno, CA, USA, 2010	30					1	0.080	0.014	0.064	0261	0.419	
(White						3	0.051	< 0.01	0.047	0.229	0.327	
Spear)						7	0.033	< 0.01	0.029	0.139	0.201	
						14	< 0.01	ND	0.010	0.017	0.027	
						21	0.012	ND	0.012	0.041	0.065	
ID-1 Payette, IN, USA. 2010	120 SC		88	4	264	1	0.066	< 0.01	0.040	0.109	0.216	2009869
(Green Banner)												

Brassica vegetables

Supervised trials on broccoli, cauliflower, cabbage and Brussels sprouts in Australia and New Zealand

Numerous trials on <u>Brassica vegetables</u> were conducted during 2009 in Australia (10 on broccoli, 10 on cabbage, and one each on cauliflower and Brussels sprouts) (Reports 2008174 and 2008175).

One trial each for broccoli, cauliflower, cabbage, and Brussels sprouts were conducted in New Zealand. In one set of trials (Report 2008174), spinetoram as a 120 SC formulation was applied once at a target rate of 35 g ai/ha, followed by three applications at 7-day intervals at a target rate of 88 g ai/ha, for a seasonal total of about 300 g ai/ha. The other set of trials (Report 2008175) used four applications at target rates of 18, 24, and 36 g ai/ha. The GAP in Australia consists of four applications of spinetoram at the rate of 24 to 48 g ai/ha and a PHI of 3 days.

GAP in Australia allows up to four applications at a rate of 24–48 g ai/ha with a PHI of 3 days.

Samples of mature commodities were harvested 3 days after the last treatment. For decline trials, additional samples were taken 0, 1, 5–7, and 10 days after the final application. All samples were immediately frozen and kept in frozen storage until analysis. The maximum period of storage was 192 days.

Residues of spinetoram and metabolite were analysed with method GRM 05.03, which had been validated with an LOQ of 0.01 mg/kg. The summaries of Australian trials reflect calculations for total residues exactly as provided in the studies. Data on individual analytes were not reported, although the total residues indicated conformity to the current residue definition.

Supervised trials on cabbage in Japan

Two supervised trials on <u>cabbage</u> were conducted in Japanese experimental stations during 2006 (Report 2002097). Each treated plot received two applications of 120 WP spinetoram formulation, at the rate of 96 g ai/ha. Samples were harvested 1, 7 and 14 days after the last application and maintained frozen until analysis, 13 and 23 days after harvest. GAP in Japan allows up to four applications at a spray concentration of 2.4–4.8 g ai/hL (10–30 hL/ha) with a PHI of 1 day.

Residues of spinetoram and its main metabolites were determined by LC/MS/MS. The LOQ for the method was 0.01 mg/kg.

The residue values to which the proportionality approach is applied are underlined with a dotted line.

BROCCOLI Country, year	Form	Applicatio	on/ treatment		PHI, days	Residue, mg/kg	Report No.
(Variety)		g ai/hL	g ai/ha	No		XDE-175-J +	
						XDE-175-L	
GAP, Australia	120 SC		24–48	4	3		
Site 1	120 SC	6.1	18 (×4)	4	0	0.11	2008175
Boneo, Victoria					1	0.04	
Australia, 2009					3	0.03	
(Ironman)					7	0.01	
					10	< 0.01	
		8.2	24 (×4)	4	0	0.16	
					1	0.14	
					3	0.08	
					7	0.01	
					10	0.02	

Table 17-1 Residues of spinetoram from supervised trials on Broccoli in Australia and New Zealand (for estimation of maximum residue level)

BROCCOLI Country, year	Form	Applicati	on/ treatment		PHI, days	Residue, mg/kg	Report No.
(Variety)		g ai/hL	g ai/ha	No		XDE-175-J +	
						XDE-175-L	
		12.3	36 (×4)	4	0	0.21	
					1	0.10	
					3	0.04	
					7	0.01	
					10	< 0.01	
Site 5	120 SC	7.2	19 (×4)	4	3	0.01	2008175
Cambooya,		9.6	25 (×4)	4	3	0.02	
Queensland, Australia, 2009		14.4	37 (×4)	4	3	0.02	
(Booster)							
Site 10	120 SC	6.1	19 (×4)	4	0	0.06	2008175
Little Rakaia, New					1	0.06	
Zealand,					3	0.02	
2009					7	0.01	
(Medley)					10	< 0.01	
		8.2	26 (×4)	4	0	0.13	
					1	0.06	
					3	0.09	
					7	0.02	
					10	ND	
		12.3	38 (×4)	4	0	0.15	
					1	0.10	
					3	0.04	
					7	0.01	
					10	0.01	
Site 1 Cambooya,	120 SC	14	35	4	0	0.37	2008174
Queensland, Australia, 2009		36	92		1	0.18	
(Booster)		36	89		3	0.09	
(200000)		36	91		5	0.03	
Site 2	120 SC	12	33	4	0	0.22	2008174
Boneo, Victoria,		30	92		1	0.12	
Australia, 2009		30	88		3	0.04	
(Ironman)		30	86		5	0.01	
Site 3	120 SC	12	36	4	0	0.19	2008174
Boneo, Victoria,		30	87		1	0.10	
Australia, 2009		30	93		3	0.06	
(Bridge)		30	92		5	0.02	
		50	12		5	0.02	

BROCCOLI Country, year	Form	Application/ treatment			PHI, days	Residue, mg/kg	Report No.
(Variety)		g ai/hL	g ai/ha	No		XDE-175-J + XDE-175-L	
Site 4	120 SC	12	35	4	0	0.60	2008174
Moriarty, Tasmania		30	94		1	0.21	
Australia, 2009		30	91		3	0.10	
(Ironman)		30	92		5	0.05	
Site 9	120 SC	14	37	4	1	0.08	2008174
Cambooya,		36	87				
Queensland, Australia, 2009		36	87				
(Booster)		36	89				
Site 10	120 SC	12	36	4	1	0.12	2008174
Boneo, Victoria,		30	91				
Australia, 2009		30	87				
(Viper)		30	91				
Site 11	120 SC	12	34	4	1	0.09	2008174
Boneo, Victoria,		30	93				
Australia, 2009		30	84				
(Viper)		30	93				
Site 12	120 SC	12	36	4	1	0.13	2008174
Moriarty, Tasmania,		30	94				
Australia, 2009		30	91				
(Ironman)		30	92				

Table 17-2 Residues of spinetoram from supervised trials on Broccoli in Australia and New Zealand (for estimation of STMR)

BROCCOLI	Form	Application/ treatment			PHI,	Residue, mg/kg	Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	days	XDE-175-J + XDE-175-L + N-demethyl-J + N-formyl-J	
GAP, Australia	120 SC		24–48	4	3		
Site No.1 Boneo, Victoria Australia, 2009 (Ironman)	120 SC	6.1	18 (×4)	4	0 1 3 7 10	0.11 0.05 0.03 0.01 ND	2008175

BROCCOLI	Form	Applicatio	n/ treatment		PHI,	Residue, mg/kg	Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	days	XDE-175-J + XDE-175-L + N-demethyl-J + N-formyl-J	
		8.2	24 (×4) 36 (×4)	4	0 1 3 7 10 0 1 3 7 	0.18 0.14 0.08 0.01 0.02 0.22 0.11 0.05 0.02	
Site 5 Cambooya, Queensland, Australia, 2009 (Booster)	120 SC	7.2 9.6 14.4	19 (×4) 25 (×4) 37 (×4)	4 4 4	10 3 3 3	< 0.01 0.01 0.03 0.02	2008175
Site 10 Little Rakaia, New Zealand, 2009 (Medley)	120 SC	6.1	19 (×4)	4	0 1 3 7 10	0.09 0.07 0.03 0.01 < 0.01	2008175
		8.2	26 (×4)	4	0 1 3 7 10	0.14 0.08 0.10 0.02 < 0.01	
		12.3	38 (×4)	4	0 1 3 7 10	0.19 0.12 0.06 0.01 0.01	
Site 1 Cambooya, Queensland, Australia, 2009 (Booster)	120 SC	14 36 36 36	35 92 89 91	4	0 1 3 5	0.42 0.22 0.12 0.05	2008174

Form	Applicatio			PHI,	Residue, mg/kg	Report No.
	g ai/hL	g ai/ha	No	days	XDE-175-J +	
					XDE-175-L +	
					N-demethyl-J +	
					N-formyl-J	
120 SC	12	33	4	0	0.24	2008174
	30	92		1	0.15	
	30	88		3	0.06	
	30	86		5	0.02	
120 SC	12	36	4	0	0.22	2008174
	30	87		1	0.13	
	30	93		3	0.10	
	30	92		5	0.04	
120 SC	12	35	4	0	0.68	2008174
	30	94		1	0.25	
	30	91		3	0.14	
	30	92		5	0.09	
120 SC	14	37	4	1	0.10	2008174
	36	87				
	36	87				
	36	89				
120 SC	12	36	4	1	0.13	2008174
	30	91				
	30	87				
	30	91				
120 SC	12	34	4	1	0.10	2008174
	30	93				
	30	84				
	30	93				
120 SC	12	36	4	1	0.18	2008174
	30	94				
	30	91				
	30	92				
	120 SC 120 SC 120 SC 120 SC 120 SC	Image: 1 million of the sector of the sec	g ai/hL g ai/ha g ai/hL g ai/ha g ai/hL g ai/ha 120 SC 12 33 30 92 30 88 30 86 120 SC 12 36 30 93 30 93 30 92 120 SC 12 36 30 92 120 SC 12 35 30 91 30 30 92 120 120 SC 14 37 36 87 36 36 87 36 36 87 36 36 89 120 SC 12 30 91 30 91 30 91 30 91 120 SC 12 34 30 30 91 30 93 30 93 30 93	Interpretation of the section of the	12 12 3 mark 10 10 g ai/hL g ai/ha No 10 120 SC 12 33 4 0 30 92 1 30 30 30 86	init of transform $init of transform init of transform inito$

Table 18-1 Residues of spinetoram from supervised trials on Cauliflower in Australia and New Zealand (for estimation of maximum residue level)

CAULIFLOWER Country, year	Form	Applicatio	n/ treatment		PHI, days	Residue, mg/kg	Report No.
(Variety)		g ai/hL	g ai/ha	No		XDE-175-J + XDE-175-L	
GAP, Australia	120 SC		24–48	4	3		

CAULIFLOWER	Form	Application	on/ treatment		PHI, days	Residue, mg/kg	Report No.
Country, year		· /1 T	· /1	D.	uuys	NDE 175 L	-
(Variety)		g ai/hL	g ai/ha	No		XDE-175-J +	
						XDE-175-L	
Site 4	120 SC	6.1	18	4	3	ND	2008175
Werribee, Australia, 2009		8.2	25	4	3	< 0.01	
(Discovery)		12.3	36	4	3	0.01	
Site 8	120 SC	6.1	19	4	0	0.07	2008175
Little Racaia, New					1	0.02	
Zealand, 2009					3	0.03	
(Galiote)					7	0.01	
					10	< 0.01	
		8.2	26	4	0	0.06	
					1	0.10	
					3	0.03	
					7	0.04	
					10	< 0.01	
		12.3	38	4	0	0.16	
					1	0.09	
					3	0.10	
					7	0.03	
					10	0.02	

Table 18-2Residues of spinetoram from supervised trials on Cauliflower in Australia and New Zealand (for estimation of STMR)

CAULIFLOWER	Form	Application/ treatment			PHI,	Residue, mg/kg	Report No.
Country, year (Variety)		G ai/hL	g ai/ha	No	days	XDE-175-J + XDE-175-L + N-demethyl-J + N-formyl-J	
GAP, Australia	120 SC		24–48	4	3		
Site 4	120 SC	6.1	18	4	3	< 0.01	2008175
Werribee,		8.2	25	4	3	< 0.01	-
Australia, 2009 (Discovery)		12.3	36	4	3	0.01	
Site 8	120 SC	6.1	19	4	0	0.07	2008175
Little Racaia, New					1	0.03	
Zealand, 2009					3	0.03	
(Galiote)					7	0.01	
					10	< 0.01	

CAULIFLOWER	Form	Applicatio	on/ treatment		PHI,	Residue, mg/kg	Report No.
Country, year		G ai/hL	g ai/ha	No	days	XDE-175-J +	
(Variety)						XDE-175-L +	
						N-demethyl-J +	
						N-formyl-J	
		8.2	26	4	0	0.06	
					1	0.10	
					3	0.03	
					7	0.04	
					10	< 0.01	
		12.3	38	4	0	0.18	
					1	0.10	
					3	0.11	
					7	0.03	
					10	0.02	

Table 19-1 Residues of spinetoram from supervised trials on Cabbage in Australia, New Zealand and Japan (for estimation of maximum residue level)

CABBAGE Country, year	Form	Application/ treatment			PHI, days	Residue, mg/kg	Report No.
(Variety)		g ai/hL	g ai/ha	No		XDE-175-J +	-
(variety)						XDE-175-L	
GAP, Australia	120 SC		24–48	4	3		
Site 2	120 SC	6.1	18 (×4)	4	0	0.04	2008715
Boneo, Victoria					1	0.04	
Australia, 2009					3	0.01	
(Surprise)					7	0.02	
					10	< 0.01	
		8.2	24 (×4)	4	0	0.05	-
					1	0.06	
					3	0.02	
					7	0.01	
					10	ND	
		12.3	37 (×4)	4	0	0.08	-
					1	0.06	
					3	0.02	
					7	0.01	
					10	ND	
Site 6	120 SC	7.3	19 (×4)	4	3	ND	2008175
Cambooya,		9.8	24 (×4)	4	3	< 0.01	-
Queensland, Australia, 2009		14.7	37 (×4)	4	3	< 0.01	

CABBAGE Country, year	Form	Applicatio	on/ treatment		PHI, days	Residue, mg/kg	Report No.
(Variety)		g ai/hL	g ai/ha	No		XDE-175-J +	_
(vallety)						XDE-175-L	
(Warrior)							=
Site 9	120 SC	6.1	21 (×4)	4	3	< 0.01	2008175
Little Rakaia,		8.2	27 (×4)	4	3	< 0.01	
New Zealand 2009		12.3	43 (×4)	4	3	0.01	-
(Ducati and Cabaret)							
Site 5	120 SC	14	35	4	0	0.02	2008174
Cambooya,		36	91		1	0.01	
Queensland, Australia, 2009		36	92		3	0.02	
(Warrior)		36	90		5	0.01	
Site 6	120 SC	12	31	4	0	0.07	2008174
Boneo,		30	102		1	0.05	
Victoria, Australia, 2009		30	100		3	0.03	
(Surprise)		30	88		5	0.02	
Site 7	120 SC	12	38	4	0	0.11	2008174
Boneo,		30	92		1	0.08	
Victoria, Australia, 2009		30	96		3	0.06	
(Field Glory)		30	84		5	0.02	
Site 8	120 SC	12	38	4	0	0.22	2008174
Kindred,		30	89		1	0.15	
Tasmania, Australia, 2009		30	96		3	0.12	
(Beverly Hills)		30	92		5	0.07	
Site 13	120 SC	12	36	4	1	0.02	2008174
Cambooya,	120 50	30	89		1	0.02	2000171
Queensland,		30	89				
Australia, 2009 (Warrior)		30	89				
Site 14	120 SC	12	34	4	1	0.05	2008174
Boneo,		30	85				
Victoria, Australia, 2009		30	92				
(Field Glory)		30	85				
Site 15	120 SC	12	33	4	1	0.03	2008174
Boneo,		30	87				
Victoria, Australia, 2009		30	85				
(Megaton)		30	94				
Site 16	120 SC	12	37	4	1	0.10	2008174

CABBAGE Country, year	Form	Application/ treatment			PHI, days	Residue, mg/kg	Report No.
(Variety)		g ai/hL	g ai/ha	No		XDE-175-J +	
(((((((((((((((((((((XDE-175-L	
Kindred,		30	82				
Tasmania, Australia, 2009		30	97				
(Beverly Hills)		30	86				
GAP Japan	120 SC	2.4-4.8	10-30	2	1		
Mie,	120 WP	4.8	20	2	1	0.14, 0.07	0.04, 0.02
Japan, 2006							
(Matsunami)					7	< 0.01, < 0.01	< 0.01, < 0.01
					14	< 0.01, < 0.01	< 0.01, < 0.01
Miyazaki, Japan, 2006	120 WP	4.8	20	2	1	0.02, 0.04	< 0.01, < 0.01
(YR Kinshu Kyouryoku					7	< 0.01, < 0.01	< 0.01, < 0.01
152)					14	< 0.01, < 0.01	< 0.01, < 0.01

Table 19-2 Residues of spinetoram from supervised trials on Cabbage in Australia, New Zealand and Japan (for estimation of STMR)

CABBAGE	Form	Application/ treatment			PHI,	Residue, mg/kg	Report No.
Country, year		g ai/hL	g ai/ha	No	days	XDE-175-J +	
(Variety)						XDE-175-L +	
						N-demethyl-J +	
						N-formyl-J	
GAP, Australia	120 SC		24-48	4	3		
Site 2	120 SC	6.1	18 (×4)	4	0	0.05	2008175
Boneo, Victoria					1	0.05	
Australia, 2009					3	0.03	
(Surprise)					7	0.02	
					10	< 0.01	
		8.2	24 (×4)	4	0	0.04	
					1	0.07	
					3	0.02	
					7	0.01	
					10	ND	
		12.3	37 (×4)	4	0	0.09	
					1	0.07	
					3	0.04	
					7	0.02	
					10	ND	
Site 6	120 SC	7.3	19 (×4)	4	3	ND	2008175

CABBAGE	Form	Applicatio	on/ treatment		PHI,	Residue, mg/kg	Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	— days	XDE-175-J + XDE-175-L + N-demethyl-J + N-formyl-J	
Cambooya, Queensland,		9.8	24 (×4)	4	3	< 0.01	
Australia, 2009		14.7	37 (×4)	4	3	0.02	
(Warrior)							
Site 9	120 SC	6.1	21 (×4)	4	3	< 0.01	2008175
Little Rakaia, New Zealand		8.2	27 (×4)	4	3	0.02	
2009		12.3	43 (×4)	4	3	0.03	
(Ducati and Cabaret)							
Site 5	120 SC	14	35	4	0	0.03	2008174
Cambooya,		36	91		1	0.01	
Queensland, Australia, 2009		36	92		3	0.02	
(Warrior)		36	90		5	0.02	
Site 6	120 SC	12	31	4	0	0.09	2008174
Boneo,		30	102		1	0.07	
Victoria, Australia, 2009		30	100		3	0.04	
(Surprise)		30	88		5	0.03	
Site 7	120 SC	12	38	4	0	0.12	2008174
Boneo,		30	92		1	0.10	
Victoria, Australia, 2009		30	96		3	0.09	
(Field Glory)		30	84		5	0.05	
Site 8	120 SC	12	38	4	0	0.26	2008174
Kindred,		30	89		1	0.21	
Tasmania, Australia, 2009		30	96		3	0.20	
(Beverly Hills)		30	92		5	0.17	
Site 13	120 SC	12	36	4	1	0.02	2008174
Cambooya,		30	89				
Queensland, Australia, 2009		30	89				
(Warrior)		30	89				
Site 14	120 SC	12	34	4	1	0.08	2008174
Boneo,		30	85				
Victoria, Australia, 2009		30	92				
(Field Glory)		30	85				

CABBAGE	Form	Applicatio	n/ treatment		PHI,	Residue, mg/kg	Report No.
Country, year		g ai/hL	g ai/ha	No	days	XDE-175-J +	-
(Variety)						XDE-175-L +	
						N-demethyl-J +	
						N-formyl-J	
Site 15	120 SC	12	33	4	1	0.05	2008174
Boneo,		30	87				
Victoria, Australia, 2009		30	85				
(Megaton)		30	94				
Site 16	120 SC	12	37	4	1	0.15	2008174
Kindred,		30	82				
Tasmania, Australia, 2009		30	97				
(Beverly Hills)		30	86				
GAP, Japan	120 SC	2.4-4.8	10–30	2	1		
Mie	120 WP	4.8	20	2	1	0.14	0.04
Japan, 2006						0.07	0.02
(Matsunami)							
					7	< 0.01	< 0.01
						< 0.01	< 0.01
					14	< 0.01	< 0.01
						< 0.01	< 0.01
Miyazaki,	120 WP	4.8	20	2	1	0.02	< 0.01
Japan, 2006						0.04	< 0.01
(YR Kinshu Kyouryoku							
152)					7	< 0.01	< 0.01
						< 0.01	< 0.01
					14	< 0.01	< 0.01
						< 0.01	< 0.01

Table 20-1 Residues of spinetoram from supervised trials on Brussels sprout in Australia and New
Zealand (for estimation of maximum residue level)

BRUSSELS SPROUT	Form	Application/ treatment			PHI, days	Residue, mg/kg	Report No.
Country, year		g ai/hL	g ai/ha	No		XDE-175-J +	
(Variety)						XDE-175-L	
GAP, Australia	120 SC		24-48	4	3		
Site 3	120 SC	4.6	19	4	0	0.01	2008175
Fort Tasmania,					1	0.01	
Tasmania, Australia, 2009					3	0.01	
(Abacus)					7	< 0.01	
``´´					10	< 0.01	

BRUSSELS SPROUT	Form	Application/ treatment			PHI, days	Residue, mg/kg	Report No.
Country, year		g ai/hL	g ai/ha	No		XDE-175-J +	
(Variety)						XDE-175-L	
		6.1	24	4	0	0.02	
					1	0.01	
					3	0.02	
					7	< 0.01	
					10	ND	
		9.2	37	4	0	0.02	
					1	0.02	
					3	0.01	
					7	< 0.01	
					10	< 0.01	
Site 7	120 SC	6.1	20	4	3	0.01	2008175
Southbridge,		8.2	26	4	3	0.02	
New Zealand, 2009		12.3	38	4	3	0.02	
(Diablo)							

Table 20-2 Residues of spinetoram from supervised trials on Brussels sprout in Australia and New Zealand (for estimation of STMR)

BRUSSELS SPROUT	Form	Applicatio	n/ treatment		PHI, days	Residue, mg/kg	Report No.
Country, year (Variety)		g ai/hL	g ai/hL g ai/ha No		lays	XDE-175-J + XDE-175-L + N-demethyl-J + N-formyl-J	
GAP, Australia	120 SC		24–48	4	3		
Site 3	120 SC	4.6	19	4	0	0.01	2008175
Fort Tasmania, Tasmania, Australia,					1 3	0.01 0.01	
2009					7	< 0.01	
(Abacus)					10	< 0.01	
		6.1	24	4	0	0.03	
					1	0.01	
					3	0.02	
					7	< 0.01	
					10	< 0.01	

2004

BRUSSELS	Form	Applicati	on/ treatment		PHI,	Residue, mg/kg	Report No.
SPROUT Country, year (Variety)		g ai/hL	g ai/ha	No	— days	XDE-175-J + XDE-175-L + N-demethyl-J + N-formyl-J	
		9.2	37	4	0 1 3 7 10	0.02 0.03 0.01 < 0.01 < 0.01	
Site 7 Southbridge, New Zealand, 2009 (Diablo)	120 SC	6.1 8.2 12.3	20 26 38	4	3 3 3	0.02 0.03 0.03	2008175

Leafy vegetables

Spinach

Six supervised field trials were conducted during 2010 across the United States in regions where <u>spinach</u> is grown commercially (Report 2009867). Each trial consisted of two plots; an untreated control plot and a treated plot that received four applications of a 120 SC formulation of spinetoram at the target rate of 35 g ai/ha for the first application and 87 g ai/ha for the second through fourth applications. The applications were made at 4 day intervals with the final application occurring 1 day prior to typical harvest. GAP in the USA allows up to fix applications at a rate of 44–88 g ai/ha with a seasonal maximum rate of 300 g ai/ha and a PHI of 1 day.

Duplicate spinach samples were collected from the treated plot and a single sample was collected from the untreated control plot at a PHI of 1 day. For the decline trials, samples were also collected at 0, 3, 7, and 14 days after the last application. Two trials yielded residues that appear as outliers (2.59 and 2.67 mg/kg). A review of the study showed that the trials were valid and followed the same protocol and methods as the other trials. The results of these trials were therefore included in the estimation of the maximum residue level and STMR. Samples were stored frozen from collection to analysis. The maximum period of frozen storage was 212 days.

Residues of spinetoram and metabolites were analysed by method GRM 05.04, which had been validated with an LOQ of 0.01 mg/kg.

Table 21-1 Residues of spinetoram from supervised trials on spinach in the USA (for estimation of maximum residue level)

SPINACH	Form	Application/ treatment			Total	PHI,	Residue, mg/k	кg		Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	(g ai/ha/ season)	days	XDE-175-J	XDE-175-L	Total	
GAP, USA (Leafy vegetables)	120 SC		44-88	6	300	1				
NY-1 Alton, NY	120 SC		35 + 88 (3×)	4	299	0	2.25 0.237	1.34 0.040	3.59 0.277	2009867

2006

SPINACH	Form	Applicat	tion/ treatm	nent	Total	PHI,	Residue, mg/	kg		Report No.
Country, year		g ai/hL	g	No	(g ai/ha/	days	XDE-175-J	XDE-175-L	Total	
(Variety)			ai/ha		season)					
USA, 2010					=	3	0.163	0.023	0.186	=
(Santorini)						7	0.110	0.013	0.123	
						14	0.087	< 0.01	0.087	
SC-1	120		32 +	4	275	1	0.325	0.039	0.364	2009867
Elko, SC,	SC		81 (3×)							
USA, 2011										
(Bloomsdale Long Standing)										
TX-1	120		35 +	4	299	1	2.39	1.30	3.69	2009867
East Bernard,	SC		88 (3×)							
TX, USA										
2010										
(Noble Giant)										
ID-1	120		35 +	4	296	2	2.29	1.28	3.57	2009867
Jerome, ID, USA, 2010	SC		87 (3×)							
(Unipack 151)										
CA-1	120		35 +	4	302	0	2.84	1.53	4.37	2009867
Fresno, CA,	SC		89 (3x)			1	0.622	0.129	0.751	
USA, 2010						3	0.297	0.047	0.344	
(Tyee)						7	0.180	0.025	0.205	
						14	0.086	< 0.01	0.086	
						21	0.053	< 0.01	0.053	
CA-2	120		35 +	4	296	1	0.635	0.149	0.802	2009867
Porterville, CA	SC		87 (3×)							
USA, 2010										
(Shasta)										

Table 21-2 Residues of spinetoram	from	supervised	trials	on	spinach	in the	USA	(for	estimatio	on of
STMR)										

SPINACH Country, year	Form	Applica treatme			Total (g ai/ha/	g ai/ha/ days						Report No.
(Variety)		g ai/hL	g ai/ha		season)		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total	
GAP, USA (Leafy vegetables)	120 SC		44-88	6	300	1						
NY-1 Alton, NY	120 SC		35 + 88	4	299	0 1	2.25 0.237	1.34 0.040	1.36 0.157	1.11 0.087	6.06 0.521	2009867

SPINACH	Form	Applic treatm			Total	PHI days	Residue	e, mg/kg				Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	(g ai/ha/ season)		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total	-
USA, 2010			(3×)			3	0.163	0.023	0.114	0.064	0.364	-
(Santorini)						7	0.110	0.013	0.084	0.048	0.255	_
						14	0.087	< 0.01	0.063	0.027	0.177	-
SC-1 Elko, SC,	120 SC		32 + 81	4	275	1	0.325	0.039	0.296	0.163	0.823	2009867
USA, 2011			(3×)									
(Bloomsdale Long Standing)												
TX-1	120		35 +	4	299	1	2.39	1.30	1.64	1.93	7.26	2009867
East Bernard,	SC		88									
TX, USA			(3×)									
2010												
(Noble Giant)												
ID-1	120 SC		35 +	4	296	2	2.29	1.28	1.68	1.37	6.62	2009867
Jerome, ID, USA, 2010	50		87 (3×)									
(Unipack 151)												
CA-1	120		35 +	4	302	0	2.84	1.53	1.49	1.20	7.02	2009867
Fresno, CA, USA, 2010	SC		89			1	0.622	0.129	0.322	0.455	1.53	
(Tyee)			(3×)			3	0.297	0.047	0.233	0.361	0.938	
(Tyee)						7	0.180	0.025	0.165	0.268	0.638	
						14	0.086	< 0.01	0.076	0.064	0.226	
						21	0.053	< 0.01	0.051	0.050	0.154	
CA-2	120		35 +	4	296	1	0.635	0.149	0.437	0.432	1.65	2009867
Porterville, CA	SC		87 (3×)									
USA, 2010												
(Shasta)												

Legume vegetables

Common beans

Supervised trials in Brazil

Eight greenhouse trials were conducted in various sites in Brazil during 2006 (Reports 246852, 246853, 246854, 246855, 246856, 246857, 246858, and 246859). The GAP has not yet been approved. The closest GAP that matched these trials is the GAP in the USA which is also applicable to Puerto Rico, Autonomous Territory of the USA (total seasonal rate of 245 g ai/ha and a PHI of 3 days).

For each of the sites, four applications of a 250 WG formulation of spinetoram were made to French beans at the rate of 50 g ai/ha or a seasonal total of 200 g ai/ha. Applications were made at 7-day intervals. Samples of mature beans were harvested 3 days after the last application. For the decline trials, samples were collected at 0, 1, 3, 7, 10, and 14 days after the final application. Samples were immediately frozen and kept in frozen storage until analysis. The maximum period of storage was 272 days.

Residues of spinetoram and metabolites were analysed by method GRM 05.04, validated with an LOQ of 0.01 mg/kg.

Supervised trials in Southern Europe

Four reverse-decline trials were conducted, one each in Italy, Spain, Southern France and Greece, in 2009 (2007581). Two applications of a 120 SC formulation of spinetoram were made at the rate of 50 g ai/ha and targeted at the following timing: 42 and 35 days before normal harvest (T2); 35 and 28 days before normal harvest (T3); 28 and 22 days before normal harvest (T4); and 21 and 14 days before normal harvest (T5).

All samples were immediately frozen and maintained at < -18 °C until analysis. The maximum period of storage was 321 days. Residues of spinetoram in French beans were analysed by method GRM 05.04, with a limit of quantification of 0.01 mg/kg.

The GAP for spinetoram on beans has not yet been approved in Europe and there are no available GAPs that can be applied at this time; nonetheless the trials are summarized below.

FRENCH BEAN	Form	Applicat treatmen			Total g ai/ha/	PHI, days	Residue, mg/k	g		Report No.
Country, year		G ai/hL	g	No	season		XDE-175-J	XDE-175-L	Total ¹	
(Variety)			ai/ha							
TRIALS IN BRA	ZIL						•	•		
GAP, USA incl.	120 SC		26–70	6	245	3				
Puerto Rico										
Campinas, Sao			50	4	200	0	ND	ND	< 0.01	242715/
Paolo, Brazil, 2006	WP					1	ND	ND	< 0.01	246852 (Addendum)
(Itatiba II)						3	ND	ND	< 0.01	()
						7	ND	ND	< 0.01	
						10	ND	ND	< 0.01	
						14	ND	ND	< 0.01	
Mogi Mirim,			50	4	200	0	0.022	< 0.01	0.022	242644/
Sao Paolo, Brazil, 2006	WP					1	0.010	< 0.01	0.010	246853 (Addendum)
(Itatiba II)						3	< 0.01	ND	< 0.01	· · ·
、 <i>,</i>						7	< 0.01	< 0,01	< 0.01	
						10	ND	ND	< 0.01	
						14	ND	ND	< 0.01	

Table 22-1 Residues of spinetoram from greenhouse trials on French beans in Brazil, (for estimation of maximum residue level)

FRENCH BEAN	Form	treatment			Total g ai/ha/	PHI, days	Residue, mg/l	кg		Report No.
Country, year (Variety)		G ai/hL	g ai/ha	No	season		XDE-175-J	XDE-175-L	Total ¹	=
Jaboticabal, Sao Paolo, Brazil, 2006	250 WP		50	4	200	3	0.014	ND	0.014	243277/ 246854 (addendum)
(Macarrã0 favorito)										
Mogi Mirim,	250		50	4	200	0	0.031	< 0.01	0.031	242714/
Sao Paolo, Brazil, 2006	WP					1	0.031	< 0.01	0.031	246855 and 256518
(Itatiba II)						3	0.016	< 0.01	0.016	(Addenda)
						7	0.032	< 0.01	0.032	
						10	0.028	< 0.01	0.028	
						14	0.020	ND	0.020	
Elias Fausto, Sao Paolo Brazil, 2006 (Itatiba II)	250 WP		50	4	200	3	0.014	< 0.01	0.014	242643// 246856 (addendum)
Piracicaba, Sao Paolo, Brazil, 2006 (Itatiba II)	250 WG		50	4	200	3	0.017	< 0.01	0.017	242713/ 246857 (addendum)
Mogi Mirim, Sao Paolo, Brazil, 2006 (Bragança)	250 WP		50	4	200	1	0.014	ND	0.014	242716/ 246858 (addendum)
Campinas, Sao	250		50	4	200	0	0.023	< 0.01	0.023	242941/
Paolo, Brazil, 2006	WP					1	0.031	ND	0.031	246859 (addendum)
(Itatiba II)						3	0.030	ND	0.030	(···· ··· ·)
` <i>'</i>						7	0.016	< 0.01	0.016	
						10	0.026	ND	0.026	
						14	< 0.01	ND	< 0.01	

Table 22-2 Residues of spinetoram from greenhouse trials on French beans in Brazil (for estimation of
STMR)

FRENCH BEAN	Form	Application/ treatment			Total g ai/ha/	PHI, days	Residue	, mg/kg				Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	season		XDE- 175-J	XDE- 175-L	N- demethyl -J	N- formyl-J	Total ¹	
GAP, USA incl. Puerto Rico	120 SC		26-70	6	245	3						

FRENCH BEAN	Form	Applic treatme			Total g ai/ha/	PHI, days	Residue	, mg/kg				Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	season		XDE- 175-J	XDE- 175-L	N- demethyl -J	N- formyl-J	Total ¹	
Campinas,	250		50	4	200	0	ND	ND	ND	ND	< 0.02	242715/
Sao Paolo, Brazil, 2006	WG					1	ND	ND	ND	ND	< 0.02	246852 (Addendum)
(Itatiba II)						3	ND	ND	ND	ND	< 0.02	(Audendum)
(Itatiba II)						7	ND	ND	ND	ND	< 0.02	
						10	ND	ND	ND	ND	< 0.02	
						14	ND	ND	ND	ND	< 0.02	
Mogi Mirim,			50	4	200	0	0.022	< 0.01	< 0.01	< 0.01	0.032	242644/
Sao Paolo, Brazil, 2006	WG					1	0.010	< 0.01	ND	< 0.01	0.02	246853 (addendum)
(Itatiba II)						3	< 0.01	ND	ND	< 0.01	< 0.02	(uuuuiii)
()						7	< 0.01	< 0,01	ND	ND	< 0.02	
						10	ND	ND	ND	ND	< 0.02	
						14	ND	ND	ND	ND	< 0.02	
Jaboticabal,	250		50	4	200	3	0.014	ND	ND	< 0.01	0.024	243277/
Sao Paolo, Brazil, 2006	WG											246854 (addendum)
(Macarrã0 favorito)												
Mogi Mirim,			50	4	200	0	0.031	< 0.01	< 0.01	< 0.01	0.041	242714/
Sao Paolo, Brazil, 2006	WG					1	0.031	< 0.01	< 0.01	< 0.01	0.041	246855 and256518
(Itatiba II)						3	0.016	< 0.01	< 0.01	ND	0.026	(Addenda)
						7	0.032	< 0.01	< 0.01	ND	0.042	
						10	0.028	< 0.01	ND	< 0.01	0.038	
						14	0.020	ND	< 0.01	< 0.01	0.030	
Elias Fausto	250		50	4	200	3	0.014	< 0.01	ND	ND	0.024	242634/
Sao Paolo	WG											246856
Brazil, 2006												(addendum)
(Itatiba II)												
Piracicaba, Sao Paolo, Brazil, 2006	250 WG		50	4	200	3	0.017	< 0.01	< 0.01	ND	0.027	242713/ 246857 (addendum)
(Itatiba II)												
Mogi Mirim, Sao Paolo, Brazil, 2006	250 WG		50	4	200	1	0.014	ND	< 0.01	< 0.01	0.024	242716/ 246858 (addendum)
(Bragança)												

FRENCH BEAN	Form	~ ~	Application/ treatment			PHI, days	Residue	, mg/kg				Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	season		XDE- 175-J	XDE- 175-L	N- demethyl -J	N- formyl-J	Total ¹	
Campinas, Sao Paolo, Brazil, 2006 (Itatiba II)	250 WG		50	4	200	0 1 3 7 10 14	0.023 0.031 0.030 0.016 0.026 < 0.01	< 0.01 ND ND < 0.01 ND ND	ND < 0.01 < 0.01 ND ND ND	ND ND < 0.01 < 0.01 ND ND	0.033 0.041 0.040 0.026 0.036 < 0.02	242941/ 246859 (addendum)

Pulses

Common beans

Supervised trials in Southern Europe

Four reverse-decline trials were conducted, one each in Italy, Spain, Southern France and Greece, in 2009 (2007581). Two applications of a 120 SC formulation of spinetoram were made at the rate of 50 g ai/ha and targeted at the following timing: 42 and 35 days before normal harvest (T2); 35 and 28 days before normal harvest (T3); 28 and 22 days before normal harvest (T4); and 21 and 14 days before normal harvest (T5).

All samples were immediately frozen and maintained at < -18 °C until analysis. The maximum period of storage was 321 days. Residues of spinetoram in French beans were analysed by method GRM 05.04, with a limit of quantification of 0.01 mg/kg.

The GAP for spinetoram on beans has not yet been approved in Europe and there are no available GAPs that can be applied at this time; nonetheless the trials are summarized below.

Table 23-1 Residues of spinetoram from greenhouse trials on French beans in France, Greece, Italy and Spain (for estimation of maximum residue level)

FRENCH BEAN	Form	Applicati	on/ treatmen	nt	PHI,	Residue, mg/k	g		Report No.		
Country, year (Variety)		g ai/hL	g ai/ha	No	days	XDE-175-J	XDE-175-L	Total ¹			
TRIALS IN SOUTHERN EUROPE											
Emilia	120 SC	12.5	53	2	28	0.011	ND	0.011	2007581		
Romagna, Italy, 2009			53		35	< 0.01	ND	< 0.01			
(Slenderette)					42	ND	ND	< 0.01			
			53	2	21	< 0.01	ND	< 0.01			
			54		28	< 0.01	ND	< 0.01			
					35	< 0.01	ND	< 0.01			
			48	2	14	0.023	ND	0.023			
			52		21	< 0.01	ND	< 0.01			
					28	< 0.01	ND	< 0.01			

FRENCH	Form	Applicat	ion/ treatm	ent	PHI,	Residue, mg/	kg		Report No.
BEAN		g ai/hL	g ai/ha	No	days	XDE-175-J	XDE-175-L	Total ¹	
Country, year									
(Variety)								0.014	=
			54	2	7	0.014	ND	0.014	
			51		14	0.022	ND	0.022	
					21	< 0.01	ND	< 0.01	
Navarra,	120 SC	17	53	2	28	ND	ND	< 0.01	2007581
Spain, 2009			51		35	ND	ND	< 0.01	
(Pocha Rastrojera)					42	ND	ND	< 0.01	
Kasuojeia)			51	2	20	ND	ND	< 0.01	
			52		27	ND	ND	< 0.01	
					35	ND	ND	< 0.01	
			49	2	14	ND	ND	< 0.01	-
			50		21	ND	ND	< 0.01	
					28	ND	ND	< 0.01	
			51	2	8	ND	ND	< 0.01	_
			52		15	ND	ND	< 0.01	
					22	ND	ND	< 0.01	
Midi-Pyrénées,	120 SC	25	51	2	28	ND	ND	< 0.01	2007581
France, 2009			49		35	ND	ND	< 0.01	
(Bravo)					42	ND	ND	< 0.01	
			51	2	21	ND	ND	< 0.01	-
			52		28	ND	ND	< 0.01	
					35	ND	ND	< 0.01	
			53	2	14	ND	ND	< 0.01	_
			49	2	21	ND	ND	< 0.01	
			7		28	ND	ND	< 0.01	
			51	2	7	ND ND	ND	< 0.01	-
				2					
			52		14	ND	ND	< 0.01	
		-			21	ND	ND	< 0.01	
Thessaloniki, Greece, 2009	120 SC	8	50	2	28	ND	ND	< 0.01	2007581
(Magiulis)			50		35	ND	ND	< 0.01	
(42	ND	ND	< 0.01	
			49	2	21	ND	ND	< 0.01	
			50		28	ND	ND	< 0.01	
					35	ND	ND	< 0.01	
			49	2	14	ND	ND	< 0.01	1
			49		21	ND	ND	< 0.01	
					28	ND	ND	< 0.01	

2012

		Applicati	Application/ treatment			Residue, mg/k		Report No.	
BEAN Country, year			g ai/ha	No	days	XDE-175-J	XDE-175-L	Total ¹	
(Variety)									
			50	2	7	< 0.01	ND	< 0.01	
			50		14	ND	ND	< 0.01	
					21	ND	ND	< 0.01	

Table 23-2 Residues of spinetoram from greenhouse trials on French beans in France, Greece, Italy and Spain (for estimation of STMR)

FRENCH BEAN	Form	Applicati	on/ treatn	nent	PHI,	Residue	, mg/kg				Report No.
Country, year (Variety)		g ai/hL	g ai/ha	No	- days	XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total	
			DODE								
TRIALS IN				_	_						
Emilia Romagna,	120 SC	12.5	53	2	28	0.011	ND	ND	< 0.01	0.021	2007581
Italy, 2009	50		53		35	< 0.01	ND	ND	ND	< 0.02	
(Slenderette)					42	ND	ND	ND	ND	< 0.02	
			53	2	21	< 0.01	ND	ND	ND	< 0.02	
			54		28	< 0.01	ND	ND	ND	< 0.02	
					35	< 0.01	ND	ND	ND	< 0.02	
			48	2	14	0.023	ND	< 0.01	< 0.01	0.033	
			52		21	< 0.01	ND	ND	ND	< 0.02	
					28	< 0.01	ND	ND	ND	< 0.02	
			54	2	7	0.014	ND	< 0.01	ND	0.024	
			51		14	0.022	ND	< 0.01	< 0.01	0.032	
					21	< 0.01	ND	ND	ND	< 0.02	
Navarra,	120	17	53	2	28	ND	ND	ND	ND	< 0.02	2007581
Spain, 2009	SC		51		35	ND	ND	ND	ND	< 0.02	
(Pocha					42	ND	ND	ND	ND	< 0.02	
Rastrojera)			51	2	20	ND	ND	ND	ND	< 0.02	
			52		27	ND	ND	ND	ND	< 0.02	
					35	ND	ND	ND	ND	< 0.02	
			49	2	14	ND	ND	ND	ND	< 0.02	
			50		21	ND	ND	ND	ND	< 0.02	
					28	ND	ND	ND	ND	< 0.02	
			51	2	8	ND	ND	ND	ND	< 0.02	
			52		15	ND	ND	ND	ND	< 0.02	
					22	ND	ND	ND	ND	< 0.02	
Midi-	120	25	51	2	28	ND	ND	ND	ND	< 0.02	2007581
Pyrénées, France, 2009	SC		49		35	ND	ND	ND	ND	< 0.02	
France, 2009					42	ND	ND	ND	ND	< 0.02	

FRENCH	Form	Form Application/ treatment				Residue	, mg/kg				Report No.
BEAN Country, year (Variety)		g ai/hL	g ai/ha	No	– days	XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total	
(Bravo)			51	2	21	ND	ND	ND	ND	< 0.02	
			52		28	ND	ND	ND	ND	< 0.02	
					35	ND	ND	ND	ND	< 0.02	
			53	2	14	ND	ND	ND	ND	< 0.02	
			49		21	ND	ND	ND	ND	< 0.02	
					28	ND	ND	ND	ND	< 0.02	
			51	2	7	ND	ND	ND	ND	< 0.02	
			52		14	ND	ND	ND	ND	< 0.02	
					21	ND	ND	ND	ND	< 0.02	
Thessaloniki,	120	8	50	2	28	ND	ND	ND	ND	< 0.02	2007581
Greece, 2009	SC		50		35	ND	ND	ND	ND	< 0.02	
(Magiulis)					42	ND	ND	ND	ND	< 0.02	
			49	2	21	ND	ND	ND	ND	< 0.02	
			50		28	ND	ND	ND	ND	< 0.02	
					35	ND	ND	ND	ND	< 0.02	
			49	2	14	ND	ND	ND	ND	< 0.02	
			49		21	ND	ND	ND	ND	< 0.02	
					28	ND	ND	ND	ND	< 0.02	
			50	2	7	< 0.01	ND	ND	ND	< 0.02	
			50		14	ND	ND	ND	ND	< 0.02	
					21	ND	ND	ND	ND	< 0.02	

Stalk and stem vegetables

Celery

Eight supervised field trials on <u>celery</u> were conducted within the principal growing regions of the USA following the GAP (up to six applications at a rate of 44–88 g ai/ha with a total seasonal application of 300 g ai/ha and a PHI of 1 day)(Report 2009868). Each trial included one untreated control plot and one treated plot. Each treated plot received four applications of a 120 SC formulation of spinetoram at the target rate of 35 g ai/ha for the first application and 87 g ai/ha for the second through fourth applications. The four applications were made at 4 day intervals with the final application occurring 1 day prior to typical harvest.

Duplicate samples of celery were collected from each field trial at normal crop maturity, 1 day after the last application. At the decline sites, sampling occurred on day 0 immediately following the final application, 1 day prior to normal harvest, and then at 1, 3, 7, and 14 days after the last application, with an extra sampling at 21 days in one decline site. Two replicate celery samples were collected independently from each treated plot, and one sample was collected from control plots at all sites. Samples were immediately frozen and maintained in frozen storage until analysis. A maximum of approximately 10 months (304 days) elapsed between harvest and final analysis of the raw agricultural commodity for spinetoram and metabolites.

2014

Residues of spinetoram and metabolites from untrimmed celery stalks were analysed by method GRM 05.04, which had been validated with an LOQ of 0.01 mg/kg.

Table 24-1 Residues of spinetoram from supervised trials on celery (untrimmed stalks) in the USA	L
(for estimation of maximum residue level)	

Country, year	Form	Applica	tion/ treatr	nent	Total	PHI,	Residues, mg	/kg		Report No.
(Variety)		g ai/hL	g ai/ha	No	(g ai/ha/ season)	days	XDE-175-J	XDE-175-L	Total	
GAP, USA	120 SC		44-88	6	300	1		1	1	
FL-1	120 SC		36 +	4	303	0	2.52	1.32	7.42	2009868
Clermont, FL, USA			89 (3×)			1	1.92	1.10	3.02	
2011						3	0.025	< 0.01	0.025	
(Sonora)						7	0.013	ND	0.013	
(301101a)						14	< 0.01	ND	< 0.01	
						21	ND	ND	< 0.01	
FL-2	120 SC		38 +	4	299	1	0.024	< 0.01	0.024	2009868
Hobe Sound, FL, USA			87 (3×)							
2011										
(Walts Pride)										
IA-1	120 SC		36 +	4	302	1	1.51	1.07	2.58	2009868
Richmond, IA, USA, 2010			89 (3×)							
(Conquistador										
CA-1	120 SC		35 +	4	296	0	0.674	0.196	0.870	2009868
San Luis			87 (3×)			1	0.153	0.034	0.187	
Obispo, CA, 2010						3	0.124	0.027	0.151	
(Mission)						7	0.018	ND	0.018	
						14	0.012	ND	0.012	
CA-2	120 SC		35 +	4	299	1	0.149	0.033	0.182	2009868
Santa Maria, CA, USA			88 (3×)							
2010										
(Command)										
CA-3	120 SC		35 +	4	299	1	0.072	0.014	0.086	2009868
Fresno, CA, USA, 2010			88 (3×)							
(Sonora)										
CA-4	120 SC		35 +	4	299	1	0.125	0.032	0.157	2009868
Porterville, CA, USA, 2010			88 (3×)							
(Conquistador										

Country, year	Form	Application/ treatment			Total PHI, Residues, mg/kg					Report No.
(Variety)		g ai/hL	g ai/ha	No	(g ai/ha/ season)	days	XDE-175-J	XDE-175-L	Total	
CA-5	120 SC		35 +	4	302	1	0.083	0.020	0.103	2009868
King City, CA, USA			89 (3×)							
2010										
(SSCI)										

Table 24-2 Residues of spinetoram from supervised trials on untrimmed celery stalks in the USA (for estimation of STMR)

Country, year	Form	Applic treatme			Total (g ai/ha/	PHI days		e, mg/kg		-	-	Report No.
(Variety)		g ai/hL	g ai/ha	No	season)		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total	
GAP, USA	120 SC		43–87	6	300	1						
FL-1	120		36 +	4	303	0	2.52	1.32	1.15	0.861	5.85	2009868
Clermont, FL, USA	SC		89 (3×)			1	1.92	1.10	1.10	0.857	4.98	
2011						3	0.025	< 0.01	0.016	< 0.01	0.041	
(Sonora)						7	0.013	ND	< 0.01	< 0.01	0.023	
()						14	< 0.01	ND	< 0.01	ND	< 0.02	
						21	ND	ND	ND	ND	< 0.02	
FL-2 Hobe Sound, FL, USA 2011 (Walts Pride)	120 SC		38 + 87 (3×)	4	299	1	0.024	< 0.01	0.010	0.063	0.097	2009868
IA-1 Richmond, IA, USA, 2010 (Conquistad or	120 SC		36 + 89	4	302	1	1.51	1.07	1.30	1.44	5.32	
CA-1	120		35 +	4	296	0	0.674	0.196	0.096	0.253	1.22	2009868
San Luis	SC		87			1	0.153	0.034	0.048	0.490	0.725	1
Obispo, CA, 2010			(3×)			3	0.124	0.027	0.021	0.345	0.517	1
(Mission)						7	0.018	ND	< 0.01	0.065	0.083	1
						14	0.012	ND	< 0.01	0.035	0.047	1

2016

Country, year	Form	treatme	treatment		Total (g ai/ha/	PHI days	Residue,					Report No.
(Variety)		g ai/hL	g ai/ha	No	season)		XDE- 175-J	XDE- 175-L	N- demethyl- J	N- formyl-J	Total	
CA-2 Santa Maria, CA, USA 2010 (Command)	120 SC		35 + 88 (3×)	4	299	1	0.149	0.033	0.072	0.055	0.309	2009868
CA-3 Fresno, CA, USA, 2010 (Sonora)	120 SC		35 + 88 (3×)	4	299	1	0.072	0.014	0.038	0.049	0.173	2009868
CA-4 Porterville, CA, USA, 2010 (Conquistad or	120 SC		35 + 88 (3×)	4	299	1	0.125	0.032	0.043	0.024	0.224	2009868
CA-5 King City, CA, USA 2010 (SSCI)	120 SC		35 + 89 (3×)	4	302	1	0.083	0.020	0.041	0.146	0.290	2009868

APPRAISAL

Spinetoram belongs to the class of spinosyn insecticides obtained from chemical modification of the fermentation product of *Saccharopolyspora spinosa*. It consists of two closely related active ingredients (XDE-175-J and XDE-175-L) present approximately in a three to one ratio.

It was first evaluated by the 2008 JMPR which established an ADI of 0–0.05 mg/kg bw and decided that an ARfD is unnecessary. The 2008 Meeting estimated 11 maximum residue levels on a basis of the following residue definition.

Definition of the residue (for compliance with the MRL): Spinetoram.

Definition of the residue (for estimation of dietary intake): Spinetoram and N-demethyl and N-formyl metabolites of the major spinetoram component.

The residue is fat-soluble.

Note: Spinetoram consists of two related components.

At the Forty-third Session, the CCPR included spinetoram in the Priority List for additional MRLs. The current Meeting received information on supervised trials on additional crops in support of additional maximum residue levels.

Methods of analysis

The analytical methods used in the supervised trials provided to the current Meeting were already reviewed by the 2008 JMPR to be satisfactorily validated. These methods had been developed for the determination of residues of XDE-175-J and XDE-175-L and their metabolites N-demethyl-175-J and -L, N-formyl-175-J and -L in plant matrices using HPLC with positive-ion electron-spray (ESI) tandem mass spectrometry (LC-MS/MS).

Procedural recoveries in the analysis of commodities for which supervised trial data were submitted to the current Meeting were available. The mean recovery ranged from 73% to 111% except that the mean recovery of N-formyl-J in blueberry which was 64%. The relative standard deviations were all < 20%, where it could be calculated.

Stability of pesticide residues in stored analytical samples

The 2008 JMPR concluded that at -20 °C, spinetoram and its N-demethyl and N-formyl metabolites were stable for about 12 months (372 days) in orange, sugar beet, soya bean and wheat. The storage periods of samples in the supervised trial studies were mostly within 372 days or only slightly longer.

Results of supervised residue trials on crops

The Meeting received information on supervised field trials of spinetoram on citrus fruits, stone fruits, berries and other small fruits, bulb vegetables, Brassica vegetables, common beans, spinach and celery.

For all analytes and matrices, the LOQ was 0.01 mg/kg. The LOD was reported to be 0.003 mg/kg for trials conducted in the USA and 0.005 mg/kg for trials conducted in Australia.

The OECD MRL calculator was used as a tool to assist in the estimation of maximum residue levels from the selected residue data set obtained from the supervised residue trials. As a first step, the Meeting reviewed trial conditions and other relevant factors related to each data set to arrive at a best estimate of the maximum residue level using expert judgement. Then, the OECD calculator was employed. If the statistical calculation spreadsheet suggested a different value, a brief explanation of the derivation was supplied.

Citrus fruits

There is an existing CXL of 0.07 mg/kg for oranges (sweet, sour) estimated by the 2008 JMPR on the basis of supervised trials in the USA conducted according to US GAP (3 applications of a maximum rate of 103 g ai/ha for a total seasonal rate of 210 g ai/ha and a PHI of 1 day). Additional trials conducted on oranges and tangerines in Brazil were submitted in support of a group MRL on citrus fruits.

Orange

Twelve supervised trials on oranges were conducted in the USA between 2004 and 2007 following the US GAP for citrus fruits (maximum rate of 103 g ai/ha, three applications, maximum seasonal rate of 210 g ai/ha, PHI one day). They were reviewed by the 2008 JMPR and regarded as six valid trials. While there were six valid trial results, the 2008 Meeting concluded that since each of the trials was conducted using low (approximately 700 L/ha) and high (approximately 3300 L/ha) spray volume and resulting in similar residue situation, two data sets from the two different spray volume applications were considered mutually supportive.

Residues of spinetoram in oranges from trials in the USA conducted following US GAP for citrus fruits were re-evaluated by the current Meeting. In rank order they were: < 0.01, 0.011, 0.018, 0.021, 0.027 and 0.029 mg/kg.

Corresponding total residues of spinetoram and the two metabolites for estimation of STMR in ranked order were: 0.022, 0.038, 0.039, 0.046, 0.061 and 0.062 mg/kg.

Four supervised trials on oranges were carried out in Brazil in 2004 with three applications at the spray concentration of 2.3–14 g ai/hL, corresponding to the application rate of 70 g ai/ha or 140 g ai/ha for a total seasonal rate of 210 g ai/ha. The registered use in Brazil for citrus fruits allows the maximum of three applications of 20–40 hL/ha at 1.25–2.5 g ai/hL with a PHI of 1 day.

Residues of spinetoram in oranges from one trial in Brazil conducted following GAP in Brazil were < 0.01 mg/kg and corresponding total residues were < 0.02 mg/kg.

Tangerine

A total of eight supervised trials on tangerines were carried out in Brazil in 2006 with 3 applications at the spray concentration of 3.5–7 g ai/hL, corresponding to the application rate of 70 g ai/ha for a total of 210 g ai/ha per season.

No trials conducted in Brazil matched the GAP of Brazil.

As for the trials conducted on oranges in Brazil, only one trial matched the GAP in Brazil. The Meeting decided to maintain the previous recommendation of 0.07 mg/kg for oranges, sweet, sour.

Stone fruits

The 2008 JMPR reviewed information on the supervised field trial data on apricot, cherries, nectarine and peach conducted in Australia and New Zealand and decided that since no approved GAP was available, no maximum residue level could be recommended for spinetoram in stone fruits. The GAPs in Australia and New Zealand have since been approved.

In addition, supervised trials on stone fruits were also available from Chile, Argentina, Japan and Europe.

A total of 23 supervised trials were conducted in Australia during the 2005–2006 season (four on apricot, eight on cherry, four on nectarine and seven on peaches). Each plot was treated with 4 or 7 applications at a spray concentration of 5 g or 7.5 g ai/hL. The registered use of spinetoram in Australia for stone fruits allows a maximum of four applications at a spray concentration of 2.5– 5 g ai/hL with a PHI of 3 days. However, in all of the trials conducted, samples were not taken 3 days after the last application (taken 0 day, 7 days and later after the last application). Therefore, the results of these trials could not be used for estimating maximum residue levels.

A total of 28 supervised trials were conducted in New Zealand during the 2005-2006 season (eight on apricot, 12 on cherry and eight on peach). Four applications were made to each plot at rates of 2.5 g ai/hL, 3.7 g ai/hL, 5 g ai/hL or 7.6 g ai/ha.

Apricot

Residues of spinetoram in apricot from trials in New Zealand conducted in accordance with GAP in Australia in ranked order were: 0.078 and 0.11 mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: 0.11 and 0.14 mg/kg.

One trial was conducted in Chile in which two applications were made to apricot trees at the spray concentration of 3.6 g ai/hL corresponding to the application rate of 75–79 g ai/ha. There was no GAP available for apricot in Chile or Argentina.

Cherries

Residues of spinetoram in cherries from trials in New Zealand conducted in accordance with GAP in Australia in ranked order were: 0.036, 0.055 and 0.067 mg/kg.

Corresponding total residues of spinetoram and the two metabolites in rank order were: 0.062, 0.078 and 0.10 mg/kg.

One trial was conducted in Chile during 2007. In this trial, cherry trees were treated with two applications at the spray concentration of 3.6 g ai/hL corresponding to the rate of 78 g ai/ha. There is no GAP in Chile or in Argentina for cherries.

Nectarine

Two supervised trials were conducted in Argentina during 2008, and one trial in Chile in 2007. The trials in Argentina used 3 applications at a spray concentration of 4 g ai/hL resulting in a rate of 71–75 g ai/ha and a PHI of 1 day. The registered use in Argentina for nectarine allows a maximum of 3 applications at a spray concentration of 3.75-5 g ai/hL with the minimum application rate of 60 g ai/ha and a PHI of 1 day.

The trial in Chile used two applications at a spray concentration of 4 g ai/hL corresponding to a rate of 72 g ai/ha. There is no current GAP for nectarine in Chile. However, the trial was conducted at the same rate as the trials in Argentina with 2 applications instead of three applications. As the decline studies on stone fruits indicate that the contribution of earlier applications (interval of 14 days between applications) to the residues of spinetoram in harvested fruits was insignificant (on average no more than 20%), the Meeting decided to use the residue result from this trial.

Residues of spinetoram in nectarine from trials in Argentina and Chile conducted in accordance with GAP in Argentina in rank order were: 0.012, 0.013 and 0.072 mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: 0.022, 0.023 and 0.082 mg/kg.

Peach

Four trials were conducted in Argentina and two in Japan. Trials were also conducted on peaches in Spain (4), France (6), but no registration has yet been granted in Europe.

Residues of spinetoram in peach from trials in New Zealand conducted in accordance with GAP in Australia in ranked order were: 0.026 and 0.084 mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: 0.041 and 0.12 mg/kg.

In four supervised trials conducted in Argentina during 2007 and 2008, 3 applications were made at a spray concentration of 3.75 g ai/ hL resulting in the rate of 75 g ai/ha. The registered use in Argentina for peach is identical to that for nectarine, i.e., a maximum of 3 applications at a spray concentration of 3.75–5 g ai/ha with the minimum application rate of 60 g ai/ha and a PHI of 1 day.

The trial in Chile used 3 applications at the spray concentration of 6 g ai/hL resulting in a rate of 108 g ai/ha. There is no current GAP for peach in Chile but this trial was matching GAP in Argentina.

Residues of spinetoram in peach from trials in Argentina and Chile conducted in accordance with GAP in Argentina in ranked order were: 0.021, 0.039, 0.050, 0.068 and 0.14 mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: 0.031, 0.049, 0.060, 0.078 and 0.17 mg/kg.

Two supervised trials were conducted in Japan during 2006 with 2 applications at the spray concentration of 5 g ai/ha. The registered use in Japan for peach allows two applications at 2.5-5 g ai/hL and 20-70 hL/ha and a PHI of 1 day.

Residues of spinetoram in peach from trials in Japan conducted in accordance with GAP in Japan in ranked order were: 0.20 and 0.27 mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: 0.27 and 0.35 mg/kg.

A total of ten supervised trials were conducted in Southern Europe on different varieties of peaches during 2006 and 2007 with 3 or 4 applications at the spray concentration of 8–11 g ai/hL corresponding to 97–102 g ai/ha. Spinetoram is yet to be registered in Europe.

Plum

Eleven supervised trials were carried out in France (6), Germany (4) and Italy (1) during 2007 and 2008. Each treated plot received 3 or 4 applications at the spray concentrations of 10–13 g ai/hL resulting in rates of 98–109 g ai/ha. Spinetoram is yet to be registered in Europe.

One trial was conducted in Chile. Two applications at spray concentration of 4 g ai/hL corresponding to 72 g ai/ha were made. There is no GAP in Chile or in Argentina for plum.

Summary for stone fruits

Data sets for individual stone fruits from trials matching GAP were not sufficient for estimating individual maximum residue levels for them as shown below.

Commodity	Trials conducted in	Residues, mg/kg								
Trials matching GAP of Australia										
Apricot	New Zealand	0.078, 0.11								
Cherries	New Zealand	0.036, 0.055, 0.067								
Peach	New Zealand	0.026, 0.084								
Trials matching GAP	of Argentina									
Nectarine	Argentina/Chile	0.012, 0.013, 0.072								
Peach	Argentina/Chile	0.021, 0.039, 0.050, 0.068, 0.14								
Trials matching GAP	of Japan									
Peach	Japan	0.20, 0.27								

Among these data sets from four different countries, residues in the Japanese trials on peach were significantly higher than those from the trials conducted in other countries. However, the data from Japanese trials were considered insufficient to estimate a maximum level.

While GAP in Australia was for stone fruits, the number of trials on each crop matching Australian GAP was not sufficient to estimate a maximum residue level for individual commodities or for the stone fruit group.

The Meeting decided to use the results of trials conducted on nectarine and peach in Argentina and Chile matching GAP of Argentina to estimate maximum residue levels for nectarine and peach.

Combined residues, in rank order, were (n = 8): 0.012, 0.013, 0.021, 0.039, 0.050, 0.068, 0.072 and 0.14 mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: 0.022, 0.023, 0.031, 0.049, 0.060, 0.078, 0.082 and 0.17 mg/kg.

The Meeting estimated a maximum level of 0.3 mg/kg and an STMR of 0.055 mg/kg for both nectarine and peach.

Berries and other small fruits

Raspberries

Six supervised trials were conducted in the USA during 2010. Each treated plot received 4 applications at 25–105 g ai/ha of a 250 WG formulation of spinetoram. The total treatment for the season was 324–330 g ai/ha. The registered use in the USA for caneberries including raspberry allows up to 6 applications at 53–105 g ai/ha for a seasonal maximum of 342 g ai/ha and PHI of 1 day. Although the number of applications in the trials was four while the GAP allows up to six applications, the decline data show that contribution of the two earlier applications to the residues in harvested fruits was negligible.

Residues of spinetoram in raspberry from trials in the USA conducted in accordance with US GAP, in ranked order, were: 0.034, 0.17, 0.18, 0.26, 0.32 and 0.42 mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: 0.057, 0.21, 0.32, 0.51, 0.55 and 0.78 mg/kg.

The Meeting estimated a maximum residue level of 0.8 mg/kg and STMR of 0.42 mg/kg for raspberries, red, black.

Blueberries

Six supervised trials were conducted on blueberries during 2010 in the USA. Each treated plot received 4 applications at 25–104 g ai/ha of a 250 WG formulation of spinetoram. The total treatment for the season was 327–330 g ai/ha. The registered use in the USA for blueberry allows up to 6 applications at 53–105 g ai/ha for a seasonal maximum of 342 g ai/ha and PHI of 3 days. Although the number of applications in the trials was four while the GAP allows up to six applications, the decline data show that contribution of the two extra earlier applications to the residues in harvested fruits was insignificant.

Residues of spinetoram in blueberry from trials in the USA conducted in accordance with US GAP, in ranked order, were: 0.049, 0.050, 0.053, 0.056, 0.069 and 0.080 mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: 0.10, 0.11, 0.13, 0.16, and 0.19 mg/kg.

The Meeting estimated a maximum residue level of 0.2 mg/kg and STMR of 0.12 mg/kg for blueberries.

Grapes

Eight supervised trials, four in France and four in Italy, were conducted during 2007 and 2008. The trials in Italy used 3 applications at 6–7 g ai/hL while those in France 4 applications from 4.5 to 5 g ai/hL. While registration of spinetoram is yet to be granted in these countries, the registered use in Turkey for grapes allows spray concentration of 4–6 g ai/hL with a PHI of 7 days. There was no description of maximum number of applications on the label.

One trial was conducted in Chile during 2008, in which 2 applications of 250 WG spinetoram were made at 60 g ai/ha. There is no GAP for grapes in Chile.

Residues of spinetoram in grapes from trials in France and Italy conducted in accordance with the GAP in Turkey, in ranked order, were: < 0.01, 0.018, 0.029, 0.039, 0.081, 0.096, 0.097 and 0.17 mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: < 0.02, 0.028, 0.039, 0.049, 0.098, 0.11, 0.14 and 0.23 mg/kg.

The Meeting estimated a maximum residue level of 0.3 mg/kg and STMR of 0.074 mg/kg for grapes.

Onion, Bulb

Eight trials were conducted on bulb onions during 2007 in Brazil. Onion plants were treated 4 times with spinetoram at the rate of 62.5 g ai/ha for a seasonal total of 250 g ai/ha. The trials were carried out according to the US GAP as the proposed label for Brazil had not yet been approved. The US GAP for bulb vegetables allows up to five applications at 44–88 g ai/ha for a maximum seasonal rate of 263 g ai/ha with a PHI of 1 day. As there was no residue expected to be found in onion bulb and there was no significant translocation of spinetoram occurring in plant, the Meeting agreed to evaluate the residue data of onion bulb from trials in Brazil against US GAP.

Residues of spinetoram in onion bulb from trials in Brazil conducted in accordance with US GAP in ranked order were: < 0.01 (8) mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: < 0.02 (8) mg/kg. However, as residues of the four components were below the limit of detection except that the major component of spinetoram (XDE-175-J) was found < 0.01 mg/kg on 1 day after the last application in two trials only, the Meeting concluded that in the case of onion, bulb, it was more appropriate to use < 0.01 mg/kg rather than < 0.02 mg/kg for total residue concentrations.

The Meeting therefore estimated a maximum residue level of 0.01* mg/kg and STMR of 0.01 mg/kg for onion, bulb.

Welsh onions and spring onion

Two supervised trials on Welsh onions were conducted in Japan during 2006. Each treated plot received 2 applications of spinetoram of 20 hL/ha at the spray concentration of 4.8 g ai/hL resulting in the application rate of 96 g ai/ha. The registered use in Japan for Welsh onion allows 2 applications of 10–30 hL/ha at the spray concentration of 4.8 g ai/hL with a PHI of 1 day.

Residues of spinetoram in Welsh onion from trials in Japan complying with GAP in Japan, in ranked order were: 0.10 and 0.13 mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: 0.12 and 0.20 mg/kg.

Six field trials were conducted in the USA on green onion during 2010 and 2011. Each treated plot received three applications of spinetoram at the rate of 87–92 g ai/ha (total seasonal rate of 262–268 g ai/ha). The registered use in the USA for bulb vegetables allows up to 5 applications at 44–87 g ai/ha with the maximum seasonal rate of 262 g ai/ha with a PHI of 1 day.

Residues of spinetoram in green onion from trials in the USA conducted in accordance with US GAP, in ranked order were: 0.029, 0.042, 0.066, 0.094, 0.10 and 0.43 mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: 0.13, 0.18, 0.22, 0.40, 0.42 and 0.86 mg/kg.

Based on the results of trials conducted in the USA, the Meeting estimated a maximum residue level of 0.8 mg/kg and STMR of 0.33 mg/kg for spring onion and Welsh onion.

Brassica vegetables

Numerous trials on Brassica vegetables were conducted during 2009 in Australia (10 on broccoli, 10 on cabbage, and one each on cauliflower and Brussels sprouts). One trial each for broccoli, cauliflower, cabbage, and Brussels sprouts were conducted in New Zealand. In one set of trials, spinetoram was applied once at a target rate of 35 g ai/ha, followed by three applications at 7 day intervals at a target rate of 88 g ai/ha, for a seasonal total of about 300 g ai/ha. The other set of trials used 4 applications at target rates of 18, 24, and 36 g ai/ha. The GAP in Australia allows 4 applications of spinetoram at the rate of 24–48 g ai/ha and a PHI of 3 days.

In the trials conducted in Australia and New Zealand, concentrations of spinetoram and total concentrations of spinetoram and the two metabolites were reported. As for the latter, the calculation method was clearly different from that of JMPR as the value of 0.01 mg/kg was reported.

Broccoli

In three trials the actual application rates were up to on average 77% of the maximum GAP rate. In other trials the application rates of last three applications were on average 1.9 times the maximum GAP rate. As the number of trials conducted with the application rate within \pm 25% of the maximum GAP rate was three, the Meeting decided to use proportionality approach for estimating residues at the maximum GAP rate; i.e., multiplying the highest residue at PHI in each trial by a relevant scaling factor.

Scaled residues of spinetoram in broccoli from trials in Australia and New Zealand, in ranked order were (n = 7)(residues found in the trials and scaling factor in parentheses): $0.022 (0.04 \times 48/86)$, $0.026 (0.02 \times 48/37)$, $0.031 (0.06 \times 48/92)$, $0.045 (0.09 \times 48/91)$, $0.052 (0.10 \times 48/92)$, $0.16 (0.08 \times 48/24)$ and $0.17 (0.09 \times 48/26)$ mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: 0.033 ($0.06 \times 48/86$), 0.052 ($0.10 \times 48/92$), 0.058 ($0.03 \times 48/25$), 0.063 ($0.12 \times 48/91$), 0.073 ($0.14 \times 48/92$), 0.16 ($0.08 \times 48/24$) and 0.18 ($0.10 \times 48/26$) mg/kg.

Cauliflower

Residues of spinetoram in cauliflower from trials in Australia and New Zealand conducted in accordance with GAP in Australia in ranked order were: 0.01 and 0.10 mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: 0.01 and 0.11 mg/kg.

Cabbages, Head

In three trials the application rates were on average 81% of the maximum GAP rate. In other trials the application rates of last three applications were on average 1.9 times the maximum GAP rate. As the number of trials conducted with the application rate within \pm 25% of the maximum GAP rate was three, the Meeting decided to use proportionality approach for estimating residues at the maximum GAP rate; i.e., multiplying the highest residue at PHI in each trial by a relevant scaling factor.

Scaled residues of spinetoram in broccoli from trials in Australia and New Zealand in ranked order were (n = 7)(residues found in the trials and scaling factor in parentheses): < 0.013 (< 0.01 × 48/37), 0.011 (0.02 × 48/90), 0.011 (0.01 × 48/43), 0.016 (0.03 × 48/88), 0.026 (0.02 × 48/37), 0.034 (0.06 × 48/84) and 0.063 (0.12 × 48/92) mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: 0.011 ($0.02 \times 48/90$), 0.022 ($0.04 \times 48/88$), 0.026 ($0.02 \times 48/37$), 0.033 ($0.03 \times 48/43$), 0.051 ($0.09 \times 48/84$), 0.052 ($0.04 \times 48/37$) and 0.10 ($0.20 \times 48/92$) mg/kg.

Two supervised trials on cabbage were conducted in Japan during 2006. Each treated plot received 2 applications of 20 hL/ha at the spray concentration of 4.8 g ai/hL resulting in the rate of 96 g ai/ha.

Residues of spinetoram in cabbage from trials in Japan conducted in accordance with GAP in Japan in ranked order were: 0.03 and 0.14 mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: 0.05 and 0.15 mg/kg.

Brussels sprouts

Residues of spinetoram in Brussels sprout from trials in Australia and New Zealand conducted in accordance with GAP in Australia in ranked order were: 0.02 (2) mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: 0.02 and 0.03 mg/kg.

Summary for Brassica vegetables

Data sets for individual brassica vegetable commodities from trials matching GAP were not sufficient for estimating individual maximum residue levels for them.

Residues in these commodities from trials conducted in Australia and New Zealand matching GAP of Australia, and scaled residues are as follows for these commodities.

Commodity	Trials conducted in	Residues, mg/kg					
Broccoli	Australia, New Zealand (scaled)	0.022, 0.026, 0.031, 0.045, 0.052, 0.16, 0.17					
Cauliflower	Australia, New Zealand	0.01, 0.10					
Cabbage	Australia, New Zealand (scaled)	<0.013, 0.011, 0.011, 0.016, 0.026, 0.034, 0.063					
Brussels sprout	Australia, New Zealand	0.02, 0.02					

As the residue concentrations in broccoli, cauliflower, cabbage and Brussels sprout from trials in Australia and New Zealand were not significantly different, and the GAP in Australia is for Brassica vegetables, the Meeting considered estimating a maximum residue level for Brassica vegetables.

The residues in broccoli, cauliflower, cabbage and Brussels sprout from trials in Australia and New Zealand were considered together.

The combined residues of spinetoram in broccoli, cauliflower, cabbage and Brussels sprout from trials in Australia and New Zealand in ranked order were (n = 18): < 0.01, 0.01, 0.01, 0.01, 0.02, 0.02, 0.02, 0.02, 0.03, 0.03, 0.03, 0.04, 0.05, 0.06, 0.10, 0.16 and 0.17 mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were (n = 18): 0.01, 0.01, 0.02, 0.02, 0.03, 0.03, 0.03, 0.03, 0.05, 0.05, 0.05, 0.06, 0.06, 0.07, 0.10, 0.11, 0.16 and 0.18 mg/kg.

The Meeting estimated a maximum residue level of 0.3 mg/kg and STMR of 0.05 mg/kg for Brassica vegetables.

For the purpose of calculating animal dietary burden on a basis of spinetoram residues in cabbage leaves, the Meeting estimated a highest residue of 0.063 mg/kg and median residue of 0.016 mg/kg.

Spinach

Six supervised field trials were conducted during 2010 in the USA. Each treated plot received four applications of spinetoram at the target rate of 35 g ai/ha for the first application and 87 g ai/ha for the second through fourth applications. The registered use in the USA for leafy vegetables allows up to 6 applications at the rate of 43–87 g ai/ha with the maximum seasonal rate of 300 g ai/ha and a PHI of 1 day.

Residues of spinetoram in spinach from trials in the USA conducted in accordance with US GAP, in ranked order were: 0.28, 0.36, 0.75, 0.80, 3.6 and 3.7 mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: 0.52, 0.82, <u>1.5</u>, <u>1.7</u>, 6.6 and 7.3 mg/kg.

The Meeting estimated a maximum residue level of 8 mg/kg and STMR of 1.6 mg/kg for spinach.

2026

Common beans

Eight greenhouse trials were conducted in Brazil during 2006. For each of the sites, four applications of a 250 WG formulation of spinetoram were made to French beans at the rate of 50 g ai/ha for a seasonal total of 200 g ai/ha.

The GAP has not yet been approved in Brazil. The closest GAP that matched these trials is the GAP in USA (total seasonal rate of 245 g ai/ha and a PHI of 3 days). Since the label in the USA does not preclude greenhouse use, the Meeting decided to evaluate the results of greenhouse trials conducted in Brazil against the US GAP.

Residues of spinetoram in French beans from trials in Brazil matching US GAP, in ranked order were: < 0.01 (2), 0.014, 0.014, 0.016, 0.017 and 0.030 mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: < 0.02 (2), 0.024, 0.024, 0.026, 0.027 and 0.040 mg/kg.

The Meeting estimated a maximum residue level of 0.05 mg/kg and STMR of 0.024 mg/kg for common bean (pods and/or immature seeds). The Meeting agreed to extend the maximum residue level and STMR to beans, except broad bean and soya bean (green pods and immature seeds).

Celery

Eight supervised field trials on celery were conducted in the USA. Each treated plot received four applications of spinetoram at the target rate of 35 g ai/ha for the first application and 87 g ai/ha for the second through fourth applications. The registered use in the USA for celery allows up to six applications at the rate of 44–88 g ai/ha with the maximum total seasonal application of 300 g ai/ha and a PHI of 1 day. In trials the number of application was four, different from six specified as the maximum in GAP. The decline data indicate that only the last application contributes significantly to residues in harvested celery.

Residues of spinetoram in celery from trials in the USA conducted in accordance with US GAP in ranked order were: 0.024, 0.086, 0.10, 0.16, 0.18, 0.19, 2.6 and 3.0 mg/kg.

Corresponding total residues of spinetoram and the two metabolites in ranked order were: 0.097, 0.17, 0.22, 0.29, 0.31, 0.73, 5.0 and 5.3 mg/kg.

The Meeting estimated a maximum residue level of 6 mg/kg and STMR of 0.30 mg/kg for celery.

Residues in animal commodities

Farm animal dietary burden

The commodities for which maximum residues were estimated by the current Meeting include cabbage which can be used as feed. Since the contribution of cabbage in feed of cattle or other mammals is insignificant, the Meeting did not re-calculate dietary burden for cattle.

Calculated dietary burdens for layer are shown below.

	US-Canada		EU		Australia		Japan	
	max	mean	max	Mean	max	mean	Max	mean
Layers	0	0	0.043 ^a	0.029 ^b	0	0	0	0

Summary of livestock dietary burdens (ppm of dry matter diet)

^a Suitable for estimating maximum residue levels for meat, fat and edible offal of poultry and eggs.

^b Suitable for estimating STMRs for meat, fat and edible offal of poultry and eggs.

Residues in poultry tissues and eggs

No information was available on a poultry feeding study.

The maximum burden for layers was calculated to be 0.043 ppm and mean burden was 0.029 ppm. The dose level used in the metabolism study on laying hens was 10 ppm in the diet. The concentration of spinetoram found was the highest in abdominal fat at 1.37 mg/kg, followed by 0.78 mg/kg in skin with fat, 0.11 mg/kg in eggs, 0.11 mg/kg in liver and 0.048 mg/kg in muscle. The metabolites included in the residue definition were not identified or found at lower concentrations than the parent.

At 0.043 ppm dietary burden, the concentration of spinetoram was calculated to be 0.005 mg/kg in abdominal fat and significantly lower in muscle, liver and eggs. The Meeting estimated a maximum residue level of 0.01* mg/kg for poultry meat, poultry fats, edible offal of poultry, and eggs; and an STMR of 0.01 mg/kg for poultry fats, poultry meat, edible offal of poultry and eggs.

RECOMMENDATIONS

On the basis of the data from supervised trials, the Meeting concluded that the residue levels listed below are suitable for establishing maximum residue limits and for IEDI assessment.

Definition of the residue (for compliance with the MRL): Spinetoram.

Definition of the residue (for estimation of dietary intake): Spinetoram and N-demethyl and N-formyl metabolites of the major spinetoram component.

The residue is fat-soluble.

Note: Spinetoram consists of two related components.

	Commodity	Recommended	MRL, mg/kg	STMR or STMR-P	
CCN	Name	New	Previous	(mg/kg)	
VP 0061	Beans, except broad bean and soya bean (green pods and immature seeds)		-	0.024	
FB 0020	Blueberries	0.2	-	0.12	
VB 0040	Brassica (cole or cabbage) vegetables, Head cabbages, Flowerhead brassicas		-	0.05	
VS 0624	Celery	6		0.30	
PE 0112	Eggs	0.01 *	-	0.01	
FB 0269	Grapes	0.3	-	0.074	
FS 0245	Nectarine	0.3	-	0.055	
VA 00385	Onion, Bulb	0.01 *	-	0.01	
VA 0387	Onion, Welsh	0.8	-	0.33	
FS 0247	Peach	0.3	-	0.055	
PF 0111	Poultry fats	0.01 *	-	0.01	
PM 0110	Poultry meat	0.01 *	-	0.01 (fat) 0.01 (muscle)	
PO 0111	Poultry, edible offal of	0.01 *	-	0.01	
FB 0272	Raspberries, Red, Black	0.8	-	0.42	
VL 0502	Spinach	8	-	1.6	

	Commodity	Recommended N	MRL, mg/kg	STMR or STMR-P
CCN	Name	New	Previous	(mg/kg)
VA 0389	Spring onion	0.8	-	0.33
	Cabbages, Head, leaves	-		0.016 ^a
				0.63 ^b

^a For dietary burden calculation. Based on spinetoram residues only.

^b Highest residue for dietary burden calculation. Based on spinetoram residues only.

DIETARY RISK ASSESSMENT

Long-term intake

The International Estimated Daily Intakes (IEDIs) of spinetoram were calculated for the 13 GEMS/Food cluster diets using STMRs estimated by the Meeting in 2009 and 2012 (See Annex 3 of the 2012 JMPR REport). The ADI is 0–0.05 mg/kg bw and the calculated IEDIs were 0–1 % of the maximum ADI. The Meeting concluded that the long-term intake of residues of spinetoram resulting from the uses considered by the 2009 and current JMPR is unlikely to present a public health concern.

Short-term intake

The 2008 JMPR decided that an ARfD is unnecessary. The Meeting therefore concluded that the short-term intake of residues of spinetoram is unlikely to present a public health concern.

Code	Author(s)	Year	Title, Institute, Report reference
	FAO/WHO	2008	Pesticide residues in food—2008, Report 2008, FAO Plant production and protection paper []
	FAO/WHO	2008	Pesticide residues in food—2008, Evaluation 2008, Part I, FAO Plant production and protection paper []
246796	Pinheiro, AC, Pavan, LA, De Vito, R, Kalvan, HC and Faria, FP	2007	Residues of XDE-175 Insecticide in Tangerines after Multiple Applications of 250 WG Formulation, Brazil, 2006. Report No. GHB-P 1428S1m Dow AgroSciences, Sao Paolo, Brazil. Dow AgroSciences Ref ID: DERBI No. 246796. 10 July 2007 GLP. Unpublished
246801	Pinheiro, AC, Pavan, LA, De Vito, R, Kalvan, HC and Faria, F P	2007	Residues of XDE-175 Insecticide in Tangerines after Multiple Applications of 250 WG Formulation, Brazil, 2006. Report No. GHB-P 1429S1, Dow AgroSciences, Sao Paolo, Brazil. Dow AgroSciences Ref ID: DERBI No. 246801 10 July 2007 GLP. Unpublished
246802	Pinheiro, AC, Carvalho, JC, De Vito, R, Kalvan, HC and Faria, F P	2007	Residues of XDE-175 Insecticide in Tangerines after Multiple Applications of 250 WG Formulation, Brazil, 2006. Report No. GHB-P 1425S1m Dow AgroSciences, Sao Paolo, Brazil. Dow AgroSciences Ref ID: DERBI No. 246802. 06 July 2007 GLP. Unpublished
246803	Pinheiro, AC, Pavan, LA, De Vito, R, Kalvan, HC and Faria, F P	2007	Residues of XDE-175 Insecticide in Tangerines after Multiple Applications of 250 WG Formulation, Brazil, 2006. Report No. GHB-P 1426S1, Dow AgroSciences, Sao Paolo, Brazil. Dow AgroSciences Ref ID: DERBI No. 246803. 06 July 2007 GLP. Unpublished
246806	Pinheiro, AC, Pavan, LA, Vito, R, Kalvan, HC and Faria, FP	2007	Residues of XDE-175 Insecticide in Tangerines after Multiple Applications of 250 WG Formulation, Brazil, 2006. Report No. GHB-P 1430S1, Dow AgroSciences, Sao Paolo, Brazil. Dow AgroSciences Ref ID: DERBI No. 246806. 10 July 2007, GLP. Unpublished
246807	Pinheiro, AC, Pavan, LA, De Vito, R, Kalvan, HC and Faria, FP	2007	Residues of XDE-175 Insecticide in Tangerines after Multiple Applications of 250 WG Formulation, Brazil, 2006. Report No. GHB-P 1431S1. Dow AgroSciences, Sao Paolo, Brazil. Dow AgroSciences Ref ID: DERBI No. 246807. 10 July 2007 GLP. Unpublished

Code	Author(s)	Year	Title, Institute, Report reference
246809	Pinheiro, AC, Faria, FP, De Vito, R and Kalvan, HC	2007	Residues of XDE-175 Insecticide in Tangerines after Multiple Applications of 250 WG Formulation, Brazil, 2006. Report No. GHB-P 1424S1, Dow AgroSciences, Sao Paolo, Brazil. Dow AgroSciences Ref ID: DERBI No. 246809. 06 July 2007 GLP. Unpublished
246811	Pinheiro, AC, Pavan, LA, De Vito, R, Kalvan, HC and Faria, FP	2007	Residues of XDE-175 Insecticide in Tangerines after Multiple Applications of 250 WG Formulation, Brazil, 2006. Report No. GHB-P 1427S1, Dow AgroSciences, Sao Paolo, Brazil. Dow AgroSciences Ref ID: DERBI No. 246811. 07 July 2007 GLP. Unpublished
246845	Pinheiro, AC, De Vito, R, Faria, FP, Santos, AC and Kalvan, HC	2007	Residues of XDE-175 Insecticide in Citrus after Multiple Applications of 250 WG Formulation, Brazil, 2006. Report No. GHB-P 1507S1, Dow AgroSciences, Sao Paolo, BrazilDow AgroSciences Ref ID: DERBI No. 246845. 16 July 2007 GLP. Unpublished
246849	Pinheiro, AC, Pavan, LA, De Vito, R, Kalvan, HC and Faria, FP	2007	Residues of XDE-175 Insecticide in Citrus after Multiple Applications of 250 WG Formulation, Brazil, 2006. Report No. GHB-P 1508S1, Dow AgroSciences, Sao Paolo, Brazil. Dow AgroSciences Ref ID: DERBI No. 246849. 16 July 2007 GLP. Unpublished
246850	Pinheiro, AC, Pavan, LA, De Vito, R, Kalvan, HC and Faria, FP	2007	Residues of XDE-175 Insecticide in Citrus after Multiple Applications of 250 WG Formulation, Brazil, 2006. Report No. GHB-P 1509S1, Dow AgroSciences, Sao Paolo, Brazil. Dow AgroSciences Ref ID: DERBI No. 246850. 16 July 2007, GLP. Unpublished
246851	Pinheiro, AC Pavan, LA, De Vito, R, Kalvan, HC and Faria, FP	2007	Residues of XDE-175 Insecticide in Citrus after Multiple Applications of 250 WG Formulation, Brazil, 2006. Report No. GHB-P 1510S1, Dow AgroSciences, Sao Paolo, Brazil. Dow AgroSciences Ref ID: DERBI No. 246851. 16 July 2007 GLP. Unpublished
247091	Pinheiro, AC Pavan, LA, De Vito, R, Kalvan, HC and Faria, FP	2007	Residues of XDE-175 Insecticide in Tangerines after Multiple Applications of 250 WG Formulation, Brazil, 2006. Report No. GHB-P 1428S1, Dow AgroSciences, Sao Paolo, Brazil. Dow AgroSciences Ref ID: DERBI No. 246796. 10 July 2007, GLP. Unpublished
263602	Dorschner, KW	2009	Spinetoram: Magnitude of the Residue on Citrus. Report No. IR-4 PR No. 10145, IR-4 Project, New Jersey, USA. Dow AgroSciences Ref ID: DERBI No. 263602. 22 September 2009, GLP. Unpublished
239322	Cowles, J	2007	Residues of DE-175 in New Zealand Stone Fruit after Four Applications of GF-1587 in the 2005–2006 Season. Report No. DN0022546, Dow AgroSciences Australia, New South Wales, Australia, Dow AgroSciences Ref ID: DERBI No. 239322. 02 February 2007, GLP. Unpublished
240988	Cowles, J	2006	Residues of DE-175 in Australian Stone Fruit after Multiple Applications of GF-1640 in the 2005–2006 Season. Report No. DN0021858, Dow AgroSciences Australia, New South Wales, Australia, Dow AgroSciences Ref ID: DERBI No. 240988. 04 December 2006, GLP. Unpublished
244912	Dolder, SC and Schelle, GE	2007	Magnitude of the Residues of XDE-175 in Peaches from Europe – 2006, Report No. 060066, Dow AgroSciences, Indiana, USA. Dow AgroSciences Ref ID: DERBI No. 244912. 29 May 2007, GLP. Unpublished
259245	Pinheiro, AC, Faria, FP and Curkovic, T	2008	Residues of DE-175 Insecticide in Cherry after Multiple Applications of 250 WG Formulation, Chile, 2007, Report No. GHB-P 1743, Dow AgroSciences, Santiago, Chile, Dow AgroSciences Ref ID: DERBI No. 259245, 18 April 2008,, GLP. Unpublished
259246	Pinheiro, AC, Faria, FP and Curkovic, T	2008	Residues of DE-175 Insecticide in Apricot after Multiple Applications of 250 WG Formulation, Chile, 2007, Report No. GHB-P 1741, Dow AgroSciences, Santiago, Chile, Dow AgroSciences Ref ID: DERBI No. 259246, 22 April 2008, GLP. Unpublished
259247	Pinheiro, AC, Faria, FP and Curkovic, T	2008	Residues of DE-175 Insecticide in Plum After Multiple Applications of 250 WG Formulation, Chile, 2007, Report No. GHB-P 1740, Dow AgroSciences, Santiago, Chile, Dow AgroSciences Ref ID: DERBI No. 259247, 17 April 2008, GLP. Unpublished
259328	Pinheiro, AC, Faria, FP and Curkovic, T	2008	Residues of DE-175 Insecticide in Peach after Multiple Applications of 250 WG Formulation, Chile, 2007, Report No. GHB-P 1752. Dow AgroSciences, Santiago, Chile, Dow AgroSciences Ref ID: DERBI No. 259328, 13 May 2008, GLP. Unpublished

	AC, and	2008	Residues of DE-175 Insecticide in Nectarine after Multiple Applications of
			250 WG Formulation, Chile, 2007. Report No. GHB-P 1751, Dow AgroSciences, Santiago, Chile. Dow AgroSciences Ref ID: DERBI No. 259311. 07 May 2008, GLP. Unpublished
Rawle, NW		2008	Residues of Spinetoram in Plums and Peaches at Intervals and Harvest Following Multiple Applications of GF-1640—Northern and Southern Europe – 2007, Report No. GHE-P-11733. Dow AgroSciences, Norfolk, United Kingdom. 13 August 2008, GLP. Unpublished
Pinheiro, AC, 200 Becerra, V, Ruberti, D, De Vito, R, Rampazzo, PE and Ambrosio, LC		2008	Residues of DE-175 Insecticide in Peach After Multiple Applications of 250 WG Formulation, Argentina, 2007. Report No. GHB-P 1779, Dow AgroSciences, Buenos Aires, Argentina, Dow AgroSciences Ref ID: DERBI No. 2000698. 12 December 2008, GLP. Unpublished
Sumitomo		2007	Sumitomo Japanese Magnitude of Residue for Spinetoram (XDE-175) Wettable Powder Formulation in Fresh Peach. Report No. SUM Peach FR MOR 07, Sumitomo Chemical Co., Hyogo, Japan, Dow AgroSciences Ref ID: DERBI No. 2002671. 28 November 2007, GLP unspecified. Unpublished
Sumitomo		2007	Sumitomo Japanese Magnitude of Residue for Spinetoram (XDE-175) Wettable Powder Formulation in Peach Peel, Report No. SUM Peach Peel MOR 07m Sumitomo Chemical Co., Hyogo, Japan. Dow AgroSciences Ref ID: DERBI No. 2002672, 28 November 2007. GLP unspecified. Unpublished
Gehl, J		2009	Determination of Residues of Spinetoram (XDE-175) after Multiple Applications of GF-1640 in Open Field Nectarines, Argentina 2008–2009. Report No. S08-02640, Dow AgroSciences, Buenos Aires, Argentina, Dow AgroSciences Ref ID: DERBI No. 2003238. 10 November 2009, GLP. Unpublished
Gehl, J		2009	Determination of Residues of Spinetoram (XDE-175) after Multiple Applications of GF-1640 in Open Field Peaches, Argentina 2008–2009. Report No. S08-02641 Dow AgroSciences, Buenos Aires, Argentina. Dow AgroSciences Ref ID: DERBI No. 2003242. 10 November 2009, GLP. Unpublished
Rawle, NW		2009	Residues of Spinetoram in Plums at Intervals and Harvest Following Multiple Applications of GF-1640–Northern and Southern Europe—2008, Report No. GHE-P-120933, Dow AgroSciences, Norfolk, United Kingdom, Dow AgroSciences Ref ID: DERBI No. 2007541. 17 August 2009m GLP. Unpublished
Belcher, TI Riley, ME	and	2011	Magnitude and Decline of the Residue of Spinetoram Following Application of DelegateTM WG to Raspberries. Report No. 101644 / S10- 01992 Dow AgroSciences, Indiana, USA. Dow AgroSciences Ref ID: DERBI No. 2009870. 12 September 2011. GLP. Unpublished
Belcher, TI and 2011 Riley, ME		2011	Magnitude and Decline of the Residue of Spinetoram Following Application of DelegateTM WG to Blueberries, Report No. 101641 / S10- 01993, Dow AgroSciences, Indiana, USA. Dow AgroSciences Ref ID: DERBI No. 2009871. 12 September 2011, GLP. Unpublished
		2008	Residues of DE-175 Insecticide in Table Grape after Multiple Applications of 250 WG Formulation, Chile, 2007. Report No. GHB-P 1755, Dow AgroSciences, Santiago, Chile. Dow AgroSciences Ref ID: DERBI No. 259332. 15 May 2008, GLP. Unpublished
Rawle, NW		2008	Residues of Spinetoram in Table Grapes from Covered Vines at Intervals and Harvest Following Multiple Applications of GF-1587—Southern Europe—2007, Report No. GHE-P-11732. Dow AgroSciences, Norfolk, United Kingdom. Dow AgroSciences Ref ID: DERBI No. 259851. 26 August 2008, GLP. Unpublished
Rawle, NW		2009	Residues of Spinetoram in Table Grapes from Covered Vines at Intervals and Harvest Following Multiple Application of GF-1587—Southern Europe—2008, Report No. GHE-P-12092 Dow AgroSciences, Norfolk, United Kingdom, Dow AgroSciences Ref ID:
	Becerra, Ruberti, D, Vito, Rampazzo, PE Ambrosio, LC Sumitomo Sumitomo Gehl, J Gehl, J Gehl, J Rawle, NW Belcher, TI Riley, ME Belcher, TI Riley, ME Pinheiro, Faria, FP Curkovic, T Rawle, NW	Becerra,V,Ruberti,D,DeVito,R,Rampazzo, PE andAmbrosio, LCSumitomoSumitomoGehl, JGehl, JGehl, JBelcher, TIandRiley, MEBelcher, TIandRiley, MEPinheiro,AC,Faria, FPCurkovic, TRawle, NW	Becerra,V, Ruberti,D, De Vito,R, Rampazzo, PE and Ambrosio, LCSumitomo2007Sumitomo2007Gehl, J2009Gehl, J2009Gehl, J2009Belcher, TIandRawle, NW2009Belcher, TIandRiley, ME2011Riley, ME2011Rawle, NW2008

Code	Author(s)	Year	Title, Institute, Report reference
2009869	Belcher, TI and Riley, ME	2011	Magnitude and Decline of the Residue of Spinetoram Following Application of RadiantTM SC to Green Onions, Report No. 101639 / S10- 01991, Dow AgroSciences, Indiana, USA, Dow AgroSciences Ref ID DERBI No. 2009869, 12 September 2011, GLP. Unpublished
257916	Rampazzo, PE, Meneghel, D, Pavan, LA and De Vito, R	2008	Residues of DE-175 Insecticide in Onion after Multiple Applications of 250WG Formulation, Brazil, 2007 Report No. GHB-P 1718. Dow AgroSciences, Sao Paulo, Brazil, Dow AgroSciences Ref ID: DERBI No 257916, 08 January 2008, GLP. Unpublished
258269	Rampazzo, PE, Meneghel, D, Pavan, LA and De Vito, R	2008	Residues of DE-175 Insecticide in Onion after Multiple Applications of 250WG Formulation, Brazil, 2007, Report No. GHB-P 1718S1. Dow AgroSciences, Sao Paulo, Brazil, Dow AgroSciences Ref ID: DERBI No 258269, 08 January 2008, GLP. Unpublished
2002673	Sumitomo 2007		Sumitomo Japanese Magnitude of Residue for Spinetoram (XDE-175) Wettable Powder Formulation in Welsh Onion, Report No. SUM WEL ON MOR 07, Sumitomo Chemical Co., Hyogo, Japan. Dow AgroSciences Re: ID: DERBI No. 2002673. 28 November 2007, GLP unspecified Unpublished
2008174	Keats, A	2010	Magnitude of Residues of Spinetoram in Brassica Vegetable Crops for EU Import Tolerance, Report No. 090002. Dow AgroSciences Australia Limited, New South Wales, Australia. Dow AgroSciences Ref ID: DERBI No. 2008174. 12 January 2010. GLP. Unpublished
2008175	Keats, A	2010	Residues of Spinetoram in Brassica Crops in ANZ. Report No. 090004 Dow AgroSciences Australia Limited, New South Wales, Australia. Dow AgroSciences Ref ID: DERBI No. 2008175. 12 January 2010, GLP Unpublished
2002097	Sumitomo	2007	Sumitomo Japanese Magnitude of Residue for Spinetoram (XDE-175) Wettable Powder Formulation in Cabbage, Report No. SUM Cabbage MOR 07, Sumitomo Chemical Co., Hyogo, Japan. Dow AgroSciences Ref ID DERBI No. 2002097. 28 November 2007, GLP unspecified. Unpublished
2009867	Belcher, TI and Riley, ME	2011	Magnitude and Decline of the Residue of Spinetoram Following Application of RadiantTM SC to Spinach Report No. 101640 / S10-01989 Dow AgroSciences, Indiana, USA. Dow AgroSciences Ref ID: DERBI No 2009867. 12 September 2011, GLP. Unpublished
246852	Pinheiro, AC Pavan, LA, De Vito, R, Kalvan, HC and Faria, FP	2007	Residues of DE-175 Insecticide in French Beans after Multiple Applications of 250WG Formulation, Brazil, 2006. Report No. GHB-P 1423S1, Dow AgroSciences, Sao Paulo, Brazil. Dow AgroSciences Ref ID: DERBI No 246852. 06 July 2007, GLP. Unpublished
246853	Pinheiro, AC Pavan, LA, De Vito, R, Kalvan, HC and Faria, FP	2007	Residues of DE-175 Insecticide in French Beans after Multiple Applications of 250WG Formulation, Brazil, 2006. Report No. GHB-P 1421S1, Dow AgroSciences, Sao Paulo, Brazil. Dow AgroSciences Ref ID: DERBI No 246853, 05 July 2007. GLP. Unpublished
246854	Pinheiro, AC, Santos, AC, De Vito, R, Kalvan, HC and Faria, FP	2007	Residues of XDE-175 Insecticide in French Beans after Multiple Applications of 250WG Formulation, Brazil, 2006. Report No. GHB-F 1416S1, Dow AgroSciences, Sao Paulo, Brazil. Dow AgroSciences Ref ID DERBI No. 246854. 05 July 2007, GLP. Unpublished
246855	Pinheiro, AC Pavan, LA, De Vito, R, Kalvan, HC and Faria, FP	2007	Residues of XDE-175 Insecticide in French Beans after Multiple Applications of 250WG Formulation, Brazil, 2006. Report No. GHB-F 1420S1, Dow AgroSciences, Sao Paulo, Brazil. Dow AgroSciences Ref ID DERBI No. 246855. 05 July 2007, GLP. Unpublished
246856	Pinheiro, AC, Meneghel, D, De Vito, R, Kalvan, HC and Faria, FP	2007	Residues of XDE-175 Insecticide in French Beans after Multiple Applications of 250WG Formulation, Brazil, 2006. Report No. GHB-F 1419S1, Dow AgroSciences, Sao Paulo, Brazil. Dow AgroSciences Ref ID DERBI No. 246856. 06 July 2007, GLP. Unpublished
246857		2007	Residues of XDE-175 Insecticide in French Beans after Multiple Applications of 250WG Formulation, Brazil, 2006. Report No. GHB-F 1418S1, Dow AgroSciences, Sao Paulo, Brazil. Dow AgroSciences Ref ID DERBI No. 246857. 05 July 2007, GLP. Unpublished
246858		2007	Residues of XDE-175 Insecticide in French Beans after Multiple Applications of 250WG Formulation, Brazil, 2006. Report No. GHB-I 1417S1, Dow AgroSciences, Sao Paulo, Brazil. Dow AgroSciences Ref ID DERBI No. 246858. 05 July 2007, GLP. Unpublished

Code	Author(s)	Year	Title, Institute, Report reference
246859	Pinheiro, AC Pavan, LA, De Vito, R, Kalvan, HC and Faria, FP	2007	Residues of DE-175 Insecticide in French Beans after Multiple Applications of 250WG Formulation, Brazil, 2006. Report No. GHB-P 1422S1, Dow AgroSciences, Sao Paulo, Brazil. Dow AgroSciences Ref ID: DERBI No. 246859. 06 July 2007, GLP. Unpublished
256518	Pinheiro, AC Pavan, LA, De Vito, R, Kalvan, HC and Faria, FP	2007	Residues of XDE-175 Insecticide in French Beans after Multiple Applications of 250WG Formulation, Brazil, 2006. Report No. GHB-P 1420S2, Dow AgroSciences, Sao Paulo, Brazil. Dow AgroSciences Ref ID: DERBI No. 256518. 30 November 2007, GLP. Unpublished
2006401	Rawle, NW	2010	Residues of Spinetoram in French Beans at Intervals and Harvest Following Multiple Applications of GF-1587—Southern Europe —2009, Report No. GHE-P-12480, Dow AgroSciences, Norfolk, United Kingdom, Dow AgroSciences Ref ID: DERBI No. 2006401. 16 August 2010, GLP. Unpublished
2007581	Rawle, NW	2010	Residues of Spinetoram in French Beans at Intervals and Harvest Following Multiple Applications of GF-1587—Southern Europe—2009. Report No. GHE-P-12480, Dow AgroSciences, Norfolk, United Kingdom, Dow AgroSciences Ref ID: DERBI No. 2007581. 16 August 2010, GLP. Unpublished
2009868	Belcher, TI and Riley, ME	2011	Magnitude and Decline of the Residue of Spinetoram Following Application of RadiantTM SC to Celery, Report No. 101642 / S10-01990. Dow AgroSciences, Indiana, USA, Dow AgroSciences Ref ID: DERBI No. 2009868, 12 September 2011, GLP. Unpublished