CYANTRANILIPROLE (263)

The first draft was prepared by Mr. David Lunn New Zealand Food Safety Authority, Wellington, New Zealand

EXPLANATION

Cyantraniliprole is a diamide insecticide with a mode of action (ryanodine receptor activation) similar to chlorantraniliprole and flubendiamide. It has root systemic activity with some translaminar movement and is effective against the larval stages of lepidopteran insects; and also on thrips, aphids, and some other chewing and sucking insects.

Authorisations exist for the use of cyantraniliprole in Canada, Columbia, Malaysia, New Zealand, Vietnam and the CLISS countries in West Africa. Authorisations are also being progressed in Australia, Europe and USA under an OECD Joint Review exercise.

Cyantraniliprole was scheduled by the Forty-fourth Session of the CCPR as a new compound for consideration by the 2013 JMPR. Residue and analytical aspects of cyantraniliprole were considered for the first time by the present meeting. The manufacturer submitted studies on metabolism, analytical methods, supervised field trials, processing, freezer storage stability, environmental fate in soil and rotational crop residues.

In this evaluation, the values presented in the tables are as reported in the various studies, but in the accompanying text, they have generally been rounded to two significant digits. Abbreviations have also been used for the various cyantraniliprole metabolites mentioned in the study reports. These include:

IN-F6L99	3-Bromo-N-methyl-1 <i>H</i> -pyrazole-5-carboxamide
IN-HGW87	N-[2-(Aminocarbonyl)-4-cyano-6-methylphenyl]-3-bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> -pyrazole-5-carboxamide
IN-J9Z38	2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> -pyrazol-5-yl]-3,4-dihydro-3,8-dimethyl-4-oxo-6-quinazolinecarbonitrile
IN-JCZ38	4-[[[3-Bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> -pyrazol-5-yl]carbonyl]amino]- N'3',5-dimethyl-1,3-benzenedicarboxamide
IN-K7H19	4-[[[3-Bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> -pyrazol-5-yl]carbonyl]amino]-5-methyl-1,3-benzenedicarboxamide
IN-MLA84	2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> -pyrazol-5-yl]-1,4-dihydro-8-methyl-4-oxo-6-quinazolinecarbonitrile
IN-MYX98	3-Bromo-1-(3-chloro-2-pyridinyl)-N-[4-cyano- 2[[(hydroxymethyl)amino]carbonyl]-6-methylphenyl]-1 <i>H</i> -pyrazole-5- carboxamide
IN-N5M09	6-Chloro-4-methyl-11-oxo-11H-pyrido[2,1-b]quinazoline-2-carbonitrile
IN-N7B69	3-Bromo-1-(3-chloro-2-pyridinyl)-N-[4-cyano-2-(hydroxymethyl)-6- [(methylamino)carbonyl]phenyl]-1 <i>H</i> -pyrazole-5-carboxamide

IDENTITY

ISO common name:	Cyantraniliprole
Code number	DPX-HGW86, SYN545377
IUPAC name:	3-bromo-1-(3-chloro-2-pyridyl)-4' -cyano-2' -methyl-6' - (methylcarbamoyl)pyrazole-5-carboxanilide
Chemical Abstracts name:	3-bromo-1-(3-chloro-2-pyridinyl)-N-[4-cyano-2-methyl-6-[(methylamino)carbonyl] phenyl]-1H-pyrazole-5-carboxamide
CAS number	736994-63-1
CIPAC number	not allocated
Molecular mass:	473.72 g/mol
Molecular formula	C19H14BrCIN6O2
Structural formula:	$N = \underbrace{\begin{array}{c} 0 \\ H_{0} \\ CH_{3} \\ H \\ N - N \\ N - CI \\ CI$

PHYSICAL AND CHEMICAL PROPERTIES

Pure active ingredient

Property	Findings			Reference
Test Item	DPX-HGW86-209 (98.4% purity)	DPX-HGW86-412 (97% purity)	DPX-HGW86-141 (93.3% purity)	
Melting point	217-219 °C			DP-27440
Boiling point	232 °C			DP-27440
Relative density (20°C)	1.497	1.384	1.496	DP-18863 DP-27440
Vapour pressure (extrapolated)	$ \begin{array}{l} 5.133 \times 10^{-15} \mbox{ Pa} \ (20 \ ^{\circ}\mbox{C}) \\ 1.787 \times 10^{-14} \mbox{ Pa} \ (25 \ ^{\circ}\mbox{C}) \\ < 6.15 \times 10^{-8} \mbox{ Pa} \ (80 \ ^{\circ}\mbox{C}) \end{array} $			DP-17052
Henry's law constant (calculated)	$1.7 \times 10^{-13} \mathrm{Pa} \;\mathrm{m}^3 \;\mathrm{mol}^{-1}$ (2)	20 °C)		DP-18861
Appearance	white powder, no noticea	able odour		DP-18863 DP-27440
pH (1% dispersion)	5.61			DP-19177

Property	Findings					Reference
Test Item	DPX-HGW86-209 (98.4% purity)	DPX-HGW86-4 (97% purity)	12	DPX-H (93.3%	GW86-141 purity)	
Solubility in water (20 °C)	pH 4 17.43 mg/L pH 7 12.33 mg/L pH 9 5.94 mg/L In pure (Milli-RO) water pH 7.2 14.23 mg/L	:				DP-17050
Solubility in organic solvents (20°C)	acetone 6.54 g/	L ethyl acetate dichloromethane n-octanol methanol n-hexane o-xylene acetonitrile	1.96 g/L e 5.05 g/L 0.79 g/L 4.73 g/L 0.00007 0.29 g/L 2.45 g/L	g/L		DP-27447
n-Octanol/water partition coefficient	log P _{ow} 1.94 at 22 °C (sha Not pH-dependant (pH 4	ake flask method) –9)				DP-17054
Hydrolysis (sterile buffer solutions, [cyano- ¹⁴ C] and [pyrazole	Hydrolysis of cyantranili dependant: DT ₅₀ (days	prole (99% purity)) is pH and DT_{90} (days)	tempera	ature	DP-17058
carbonyl- ¹⁴ C] radiolabels	pH 4 362 212 pH 7 126 30.3 pH 9 3.1 0.85	<u>35 °C</u> 55.2 7.51 0.58	<u>15 °C</u> 1204 417 10.3	<u>25 °C</u> 705 101 2.82	<u>35 °C</u> 183 25 1.91	
	IN-J9Z38 is the major hy (pH 4), 89% AR (pH 7) a	drolysis product a and 98% AR (pH 9	ccounting (). Estimate	for up to ed degra	28% AR dation rates:	
	DT ₅₀ (days) @ pH 7 227 pH 9 376	35 °C	DT ₉₀ (da	ys) @ 3: 755 1248	5 °C	
Photolysis [CN- ¹⁴ C] and [PC- ¹⁴ C] radiolabels purity > 98%	Cyantraniliprole is rapidl natural water and pH 4 st artificial sunlight for 15 c	y degraded by pho erile buffer at 25 ° lays are:	otolysis. De C, exposed	egradatic d to cont	on rates in inuous	DP-17060
	pH 4 buffer 0.17 natural water 0.22	5)	DT	⁵ 90 (days) 0.57 0.72)	
	Degradation products include four major (> 5% AR) degradation products (IN-NXX69, IN-QKV54, IN-NXX70, IN-QKV55).					
	Quantum yield: $(\phi)=1.19$	5×10^{-4} molecules	s degraded	/photon		
Dissociation constant	pKa=8.8 at 20 °C (pH rat	nge of 2–11, wave	length of 3	16 nm)		DP-19176

Formulations

Formulations of cyantraniliprole are available for use as foliar applications and soil or seed treatments.

Formulation type	Active substance/s and content	Application type
OD (Oil Dispersion)	Cyantraniliprole 100 g/L	Foliar applications
SC (Soluble Concentrate)	Cyantraniliprole 200 g/L	Soil and seed treatments
FS (Flowable suspension	Cyantraniliprole 625 g/L	Seed treatment

METABOLISM AND ENVIRONMENTAL FATE

The Meeting received cyantraniliprole metabolism studies on animals (rats, lactating goats and laying hens), plants, soil and rotational crops. Cyantraniliprole radiolabelled on the 4-cyano or the pyrazole carbonyl groups were used in these studies. The label positions are given below:

[CN-¹⁴C]-cyantraniliprole (CN-label) *=location of the radiolabel

[PC-¹⁴C]-cyantraniliprole (PC #=location of the radiolabel

(PC-label)

Major metabolites identified in these studies and discussed in this evaluation are listed below.

Codes	Names	Molecular formula	Occurrence
DPX-HGW86	3-Bromo-1-(3-chloro-2-pyridinyl)-N-[4- cyano-2-methyl-6- [(methylamino)carbonyl]phenyl]-1H- pyrazole-5-carboxamide	HN O HN N O N CI	sediment soil hydrolysis photolysis plants rat livestock water
Bis hydroxy DPX- HGW86	3-Bromo-1-(3-chloro-2-pyridinyl)-N-[4- cyano-2-(hydroxymethyl)-6- [[(hydroxymethyl)amino]carbonyl]phenyl]- 1 <i>H</i> -pyrazole-5-carboxamide		rat poultry

Table 1 Major cyantraniliprole metabolites identified in plant, animal and soil matrices

6

Codes	Names	Molecular formula	Occurrence
IN-DBC80	3-Bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> - pyrazole-5-carboxylic acid		Soil rat urine livestock
IN-F6L99	3-Bromo-N-methyl-1 <i>H</i> -pyrazole-5- carboxamide	HN N O H	soil high temperature hydrolysis
IN-HGW87	N-[2-(Aminocarbonyl)-4-cyano-6- methylphenyl]-3-bromo-1-(3-chloro-2- pyridinyl)-1 <i>H</i> -pyrazole-5-carboxamide	N NH2 N N N N N N N N N N CI	Plants rat livestock
IN-J9Z38	2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> - pyrazol-5-yl]-3,4-dihydro-3,8-dimethyl-4- oxo-6-quinazolinecarbonitrile	N N CI	Sediment degradation soil hydrolysis photolysis plants livestock rat
IN-JCZ38	4-[[[3-Bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> - pyrazol-5-yl]carbonyl]amino]-N'3',5- dimethyl-1,3-benzenedicarboxamide	HN O Br HN O N NH ₂ O CI	Sediment degradation soil plants livestock
IN-JSE76	4-[[[3-Bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> - pyrazol-5-yl]carbonyl]amino]-3-methyl-5- [(methylamino)carbonyl]benzoic acid		Sediment degradation soil plants livestock

Codes	Names	Molecular formula	Occurrence
IN-K5A77	2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> - pyrazol-5-yl]-3,4-dihydro-3,8-dimethyl-4- oxo-6-quinazolinecarboxamide	O H ₂ N N N N CI	Sediment degradation soil plants livestock
IN-K5A78	2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> - pyrazol-5-yl]-3,4-dihydro-3,8-dimethyl-4- oxo-6-quinazolinecarboxylic acid	O N N O N CI OH	Sediment degradation soil plants livestock
IN-K5A79	3-(Aminocarbonyl)-4-[[[3-bromo-1-(3- chloro-2-pyridinyl)-1 <i>H</i> -pyrazol-5- yl]carbonyl]amino]-5-methylbenzoic acid	H ₂ N O Br HO N CI	Sediment degradation soil plants livestock
IN-K7H19	4-[[[3-Bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> - pyrazol-5-yl]carbonyl]amino]-5-methyl- 1,3-benzenedicarboxamide	H ₂ N O Br H N N O O CI NH ₂	Soil plants livestock
IN-M2G98	3-Bromo-1-(3-chloro-2-pyridinyl)-1H- pyrazole-5-carboxylic acid, amide	$ \begin{array}{c} \mathbf{O} \\ \mathbf{H}_{2}\mathbf{N} \\ \mathbf{N} \\ \mathbf{N} \\ \mathbf{C}\mathbf{l} \end{array} \\ \mathbf{Br} $	Soil degradation
IN-MLA84	2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> - pyrazol-5-yl]-1,4-dihydro-8-methyl-4-oxo- 6-quinazolinecarbonitrile		Plants livestock rat

Codes	Names	Molecular formula	Occurrence
IN-MLA84	2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1H-	Br	Plants
carboxylic acid	pyrazol-5-yl]-6-cyano-1,4-dihydro-4-oxo-	- H 🛒	rat
	8-quinazolinecarboxylic acid		poultry
		Ϋ́Ν΄	
		N= + +0	
		ÓН	
Hydroxy IN	2 [3 Bromo 1 (3 chloro 2 pyridinyl) 1H	D.	Poultry
MLA84	pyrazol-5-yll-3 4-dibydro-8-		1 Outury
NILL IO I	(hydroxymethyl)-4-oxo-6-		
	quinazolinecarbonitrile	Y N	
	quinazonneearoonnine		
		OH	
Hydroxy-IN-	2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1H-	N. U	Plants
MLA84 glucoside	pyrazol-5-yl]-8-[(β-D-		
	glucopyranosyloxy)methyl]-1,4-dihydro-4-		
	oxo-6-quinazolinecarbonitrile	N Br	
		HO	
		ОН	
Hydroxy-IN-	[2-[3-bromo-1-(3-cbloro-2-pyridinyl)-1H]	0	Rate
MLA84	pyrazol-5-yll-6-cyano-1 4-dihydro-4-oxo-	N _N Ĭ	Rato
glucuronide	8-quinazolinyl]methyl ß-D-	NH	
Bravaronnav	glucopyranosiduronate		
	Sharopyhanoonaaronaaro	O ↓ N ↓ Br	
		011	
	2 Drama 1 (2 shlars 2 remidired) N [4		Dlanta
11N-1VI Y A98	3-Bromo-1-(3-chloro-2-pyridinyi)-N-[4-	HU D-	livesteek
	cyallo- 2[[(hydroxymothyl)amino]aarhonyl] 6	Br	rot
	2[[(IIydioxymetriyi)amino]carbonyi]-0-	O NH	lat
	ineuryiphenyij-111-pyrazoie-5-earooxannue	1 H // `N	
		N	
IN-N5M09	6-Chloro-4-methyl-11-oxo-11H-pyrido[2,1-	0	High temperature
	b]quinazoline-2-carbonitrile	N I	hydrolysis
		$\gamma N \gamma$	
		0	

Codes	Names	Molecular formula	Occurrence
IN-N7B69	3-Bromo-1-(3-chloro-2-pyridinyl)-N-[4- cyano-2-(hydroxymethyl)-6- [(methylamino)carbonyl]phenyl]-1 <i>H</i> - pyrazole-5-carboxamide		rat plants livestock
IN-N7B69 glucoside	3-Bromo-1-(3-chloro-2-pyridinyl)-N-[4- cyano-2-[(β-D-glucopyranosyloxy)methyl]- 6-[(methylamino)carbonyl]phenyl]-1 <i>H</i> - pyrazole-5-carboxamide		plants
IN-NBC94	2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> - pyrazole-5-yl]-3,4-dihydro-8- (hydroxymethyl)-3-methyl-4-oxo-6- quinazolinecarbonitrile		plants rat poultry
IN-NXX69	2-[[(4Z)-2-bromo-4 <i>H</i> -pyrazolo[1,5- <i>d</i>]pyrido[3,2-b][1,4]oxazin-4- ylidene]amino]-5-cyano-N,3- dimethylbenzamide	HN O N N N N	aqueous photolysis soil photolysis
IN-NXX70	2-[3-Bromo-1-(3-hydroxy-2-pyridinyl)-1 <i>H</i> - pyrazol-5-yl]-3,4-dihydro-3,8-dimethyl-4- oxo-6-quinazolinecarbonitrile		plants aqueous photolysis soil photolysis
IN-PLT97	2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> - pyrazol-5-yl]-1,4-dihydro-8-methyl-4-oxo- 6-quinazolinecarboxylic acid	O H Br N N N HO N CI	soil sediment

Codes	Names	Molecular formula	Occurrence
IN-QKV54	2-(3-Bromo-1 <i>H</i> -pyrazol-5-yl)-1,4-dihydro- 3,8-dimethyl-4-oxo-6- quinazolinecarbonitrile	N O N N N Br H N	rat plants aqueous photolysis, soil photolysis
IN-RNU71	2-(2-Bromo-4-oxopyrazolo[1,5- a]pyrido[3,2-e]pyrazin-5(4H)-yl)-5-cyano- N,3-dimethylbenzamide		soil photolysis
IN-QKV55	3-bromo- <i>N</i> -[4-cyano-2-methyl-6- (methylcarbamoyl)phenyl]-1-(3- hydroxypyridin-2-yl)-1 <i>H</i> -pyrazole-5- carboxamide	NC $NHCH_3$ H_3C NH H_3C NH NH H_3C NH NH H_3C NH NH H_3C NH H_3C NH H_3C NH H_3C H H_3C H H_3C H H_3C H H_3C H H_3C H H_3C H H_3C H H H H H H H H	aqueous photolysis

Animal metabolism

The Meeting received animal metabolism studies on rats, lactating goats and laying hens, following oral dosing with [3-¹⁴C-thienyl] dimethenamid (the racemic mixture).

Rats

The metabolism of cyantraniliprole in rats was evaluated by the WHO Core Assessment Group of the 2013 JMPR, where it was concluded that majority of the dose was excreted within 24 to 48 hours, with about 1-5.5% TRR being recovered in tissues. Tissue elimination half-lives ranged from 2.6 days (fat) to 5.1 days (kidney).

The metabolic pathway was primarily through hydroxylation (to form IN-N7B69 and IN-MYX98), with IN-N7B69 being further metabolized to a glucuronide. Cyantraniliprole undergoes ring closure to generate IN-J9Z38 which is then in turn hydroxylated to form IN-NBC94, its carboxylic acid, and its glucuronide conjugate. IN-MYX98 is also metabolized to the closed-ring metabolite IN-MLA84, which, like IN-NBC94, is further oxidized to a hydroxylated metabolite, a carboxylic acid, and the glucuronide of the hydroxyl metabolite. Further, the hydroxylated metabolite IN-MYX98 can be N-dealkylated to form IN-HGW87 as well as being hydroxylated a second time to form bis-hydroxy-HGW86. Cyantraniliprole can also be hydroxylated on the pyridine ring, followed by a ring closure analogous to the conversion of cyantraniliprole to IN-J9Z38. Cyantraniliprole can also be N-dealkylated and cleaved at the carbonyl bridge to form IN-DBC80glutathione conjugation, with other pathways involving reductive dechlorination, oxidation, hydroxylation, *O*-demethylation and cyclization as well as conjugation with glucuronic acid.

Lactating goats

One <u>lactating goat</u> was orally administered [CN-¹⁴C]-cyantraniliprole in a gelatine capsule at a dose rate equivalent to 13.7 ppm in the diet for seven consecutive days and a second goat was similarly

dosed with the dietary equivalent of 12.5 ppm [PC-¹⁴C]-cyantraniliprole. The results of this study have been reported by McLellan, Vance and Lowry, 2008 [Ref: DP-16987].

Urine and faeces were collected before the first dose and daily thereafter. Milk samples were collected twice daily, in the morning before each dosing and in the afternoon, about 7 hours after dosing, with the afternoon milk being combined with the milk collected the next morning. The animals were sacrificed 23 hours after last of the seven daily doses.

Samples were double or triple-extracted with acetonitrile/water mixtures, centrifuged and radioactivity was measured by LSC with the liver samples being further processed by enzyme (protease) digestion. Milk samples were extracted with acetonitrile and partitioned with hexane. Extracts were analysed using reversed phase HPLC (UV detection at 254 nm) to detect reference standards, with quantification either by on-line radiodetection with peak integration or by fraction collection and LSC. LC-MS/MS (electrospray positive ion mode) was used to confirm the presence of cyantraniliprole and major metabolites. All samples were stored at -20 °C and were extracted within 25 days and analysed within 33 days of sampling.

Overall ¹⁴C recoveries were 96–97% of the administered dose, primarily in faeces (84–88%), urine (7%), milk (1–2%), liver (0.3%) and 0.01% or less in kidney, muscle and fat.

Matrix	[CN- ¹⁴ C]-cyantraniliprole		[PC- ¹⁴ C]-cyantraniliprole	
	% administered dose	TRR (mg/kg)	% administered dose	TRR (mg/kg)
Urine	6.7	NA	6.9	NA
Faeces	87.5	NA	84.3	NA
Total excreted ^a	95.5		93.5	
Liver	0.3	0.46	0.3	0.495
Kidney	0.01	0.117	0.01	0.177
Total body muscle	NA	0.02	NA	0.043
Total body fat	NA	0.137	NA	0.336
Milk (day 1)	0.123	0.074	0.154	0.099
Milk (day 2)	0.16	0.089	0.239	0.148
Milk (day 3)	0.132	0.082	0.289	0.181
Milk (day 4)	0.151	0.078	0.27	0.156
Milk (day 5)	0.15	0.092	0.259	0.171
Milk (day 6)	0.135	0.093	0.314	0.18
Milk (day 7)	0.186	0.109	0.287	0.164
Milk composite (day 1-7)	1.04	0.08	1.81	0.147
Total	96.8			95.6

Table 2 Total radioactive residues in dissected tissues, excreta and milk of the lactating goat following 7 daily oral administrations of $[^{14}C]$ -cyantraniliprole

^a Total excreted includes bile and cage wash

Solvent extraction was able to retrieve 99% TRR from milk, 90–98% TRR from fat, 61–81% TRR from muscle, 63–79% TRR from kidney and while the solvent extractable TRR in the liver were lower (54–60% TRR), an additional 21–27% TRR were recovered following digestion of the post extracted solids (PES) with protease.

Characterization and identification of residues used HPLC and/or LC/MS/MS with 88-90% TRR in milk, 69-70% TRR in liver and 75-80% TRR in fat being characterised and/or identified. In kidney and muscle, 42-43% of the CN-¹⁴C label and 71% of the PC-¹⁴C label was able to be characterised and/or identified.

In <u>milk</u> from the goat dosed with $[CN-^{14}C]$ -cyantraniliprole, TRR on Day 1 were 0.07 mg/kg, reaching a plateau about Day 2 (0.09 mg/kg) and up to 0.11 mg/kg on Day 7. The major

radiochemical residue was cyantraniliprole, accounting for 40% TRR (0.03 mg/kg) with IN-MYX98 (15% TRR–0.01 mg/kg) being the significant metabolite found.

IN-N7B69 (12% TRR), IN-JCZ38 (7.2% TRR), IN-K7H19 (2.6% TRR), IN-HGW87 (1% TRR) and IN-J9Z38 (0.48% TRR) were identified as minor metabolites in milk, all present at less than 0.01 mg/kg.

In the goat dosed with $[PC^{-14}C]$ -cyantraniliprole, results were similar, with TRR in milk on Day 1 being 0.1 mg/kg, reaching a plateau about Day 3 (0.18 mg/kg). Cyantraniliprole was the major residue, representing 50% TRR (0.07 mg/kg). The major metabolite was IN-MYX98, comprising 18% of TRR (0.03 mg/kg).

Other metabolites were identified as IN-K7H19, IN-JCZ38, IN-N7B69, IN-HGW87, IN-K5A78, IN-MLA84 and IN-J9Z38, each representing $\leq 0.01 \text{ mg/kg}$ and < 4% TRR.

Table 3 Distribution of radioactive residues in goat milk following administration of [CN-¹⁴C]cyantraniliprole

Component	Milk ^a		Milk ^a	
	[CN-14C]-cyantra	niliprole	[PC-14C]-cyantra	aniliprole
	% TRR	mg/kg	% TRR	mg/kg
TRR	100.0	0.076	100.0	0.14
Extracted	99.3	0.075	99	0.139
Cyantraniliprole	39.5	0.03	49.6	0.07
IN-K7H19	2.6	0.00133	0.57	0.001
IN-JCZ38	7.2	0.005	1.32	0.002
IN-N7B69	11.8	0.008	2.01	0.003
IN-MYX98	15.1	0.011	18.3	0.026
IN-HGW87	1.1	< 0.001	0.69	0.001
IN-K5A78	ND		1.26	0.002
IN-MLA84	ND		2.24	0.003
IN-J9Z38	0.48	< 0.001	3.72	0.005
Unknowns	12.7	0.006	8.81	0.012
Total Char./Ident.	90.5	0.061	88.4	0.125
Total Unextracted	0.7	0.001	0.83	0.001

^a Day 1–7 composite sample

<u>Liver</u> from the goat dosed with $[CN^{-14}C]$ -cyantraniliprole contained 0.43 mg/kg TRR with cyantraniliprole being the major residue, accounting for 17% TRR (0.07 mg/kg). IN-K5A77 and IN-MLA84 were also found at up to 0.02 mg/kg (5% TRR).

Other minor components (0.6–2.6% TRR) were IN-K7H19, IN-JCZ38, IN-N7B69, IN-K5A79, IN-MYX98, IN-HGW87 and IN-K5A78, each at \leq 0.01 mg/kg. About 32% TRR was made up of a large number of unknown components, none of which were found at levels greater than 0.006 mg/kg (1.5% TRR).

In the goat dosed with [PC-¹⁴C]-cyantraniliprole, liver contained 0.5 mg/kg TRR, the major component being cyantraniliprole at 27% TRR (0.14 mg/kg). IN-K5A77 and IN-MLA84 were each present at 0.02–0.03 mg/kg (5–6% TRR) with IN-K5A78 and IN-MYX98 also found at about 3.5% TRR (< 0.02 mg/kg).

Other minor components were IN-K7H19, IN-HGW87, IN-J9Z38, IN-K5A79, IN-JCZ38 and IN-N7B69, each at ≤ 0.01 mg/kg and not more than 1% TRR. About 18% TRR was made up of a number of unknown components, none of which were found at levels above 0.009 mg/kg (1.8% TRR).

In <u>kidney</u> from the goat dosed with [CN-¹⁴C]-cyantraniliprole, TRR were 0.14 mg/kg with the major residue being cyantraniliprole, accounting for 13% TRR (0.02 mg/kg).

Minor metabolites, present at up to 7% TRR (0.01 mg/kg or less) were IN-MYX98, IN-MLA84, IN-K7H19, IN-J9Z38 and IN-HGW87. Unknown peaks 13% TRR) individually accounted for ≤ 0.01 mg/kg.

In the goat dosed with $[PC^{-14}C]$ -cyantraniliprole, kidney contained TRR of 0.21 mg/kg, 19% of which was cyantraniliprole (0.04 mg/kg). The IN-MYX98 metabolite (7.1% TRR–0.014 mg/kg) and one unknown component, more polar than parent, (present at 11% TRR–0.02 mg/kg) were the only residues found at levels above 0.01 mg/kg.

IN-K7H19, IN-JCZ38, IN-N7B69, IN-HGW87, IN-K5A77 and IN-MLA84 were identified as minor metabolites (< 2.5% TRR) each representing ≤ 0.01 mg/kg parent equivalents.

In <u>muscle</u> from the [CN-¹⁴C]-cyantraniliprole dosed goat, TRR were 0.03 mg/kg with the only significant residue being cyantraniliprole, this making up 30% TRR (0.01 mg/kg).

IN-K7H19 was also identified as a minor metabolite (< 0.01 mg/kg). Minor unknowns totalled 7.6% TRR for three peaks each < 0.01 mg/kg parent equivalents.

In the goat dosed with $[PC^{-14}C]$ -cyantraniliprole, muscle contained 0.04 mg/kg TRR the principal ¹⁴C-residue was IN-MYX98, accounting for 33% TRR (0.01 mg/kg parent equivalents) with cyantraniliprole making up 15% TRR (0.01 mg/kg).

IN-K5A77 and IN-J9Z38 each represented ≤ 0.01 mg/kg and unidentified components accounted for a total of 17% TRR (0.01 mg/kg).

For <u>fat</u>, omental, subcutaneous and renal fat were sampled and analyzed separately. TRR levels were similar in the three types of fat, with the respective PC-label residues of 0.117, 0.119 and 0.115 mg/kg and 0.047, 0.046 and 0.049 mg/kg for the CN-label. Results are reported as the mean values of the three types of fat in this evaluation.

For the goat dosed with $[CN^{-14}C]$ -cyantraniliprole, the calculated mean TRR in fat was 0.05 mg/kg with cyantraniliprole (31% TRR–0.02 mg/kg) being the major residue. In the three types of fat, cyantraniliprole residues were 23% TRR (omental), 42% TRR (subcutaneous) and 34% TRR (renal). The metabolite IN-J9Z38 accounted for an average of 27% TRR (0.01 mg/kg), present at 24% TRR in omental fat, 22% TRR in subcutaneous fat and 37% TRR (0.02 mg/kg) in renal fat.

All other individual metabolites accounted for $\leq 0.01 \text{ mg/kg}$ each (IN-K7H19, IN-N7B69, IN-K5A79, IN-MYX98, IN-NBC94, IN-K5A78, and IN-MLA84. Unknown metabolite peaks individually accounted for $\leq 0.01 \text{ mg/kg}$.

For the goat dosed with $[PC^{-14}C]$ -cyantraniliprole, the calculated mean TRR in fat was 0.12 mg/kg. Cyantraniliprole was the major residue, representing 45% TRR (0.05 mg/kg) on average, with 58% TRR (0.07 mg/kg) in omental fat, 43% TRR in subcutaneous fat and 36% TRR in renal fat. The IN-J9Z38 metabolite was present at 24% TRR (0.03 mg/kg) on average with 0.5% TRR in omental fat, 17% TRR in subcutaneous fat and 56% TRR (0.06 mg/kg) in renal fat.

IN-K7H19, IN-DBC80, IN-N7B69, IN-K5A79, IN-MYX98, IN-K5A77, IN-NBC94, IN-K5A78, and IN-MLA84 were all identified as minor metabolites, each accounted for < 0.01 mg/kg. Individual unknowns accounted for < 0.01 mg/kg parent equivalents.

Table 4 Distribution of radioactive residues in goat tissues following administration of [CN-¹⁴C]cyantraniliprole

Component	Liver				Kidney	Kidney		Muscle		Fat ^a	
	Solvent	Extract	Protease	Digest							
	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	
TRR	100.0	0.43	100.0	0.43	100.0	0.136	100.	0.027	100.	0.052	
Extracted	54.3	0.233	26.8	0.115	62.7	0.085	61.0	0.016	90.4	0.047	
Cyantraniliprole	17.1	0.073	0.3	0.002	12.7	0.017	30.3	0.009	30.8	0.016	
IN-K7H19	1.0	0.004	0.9	0.005	3.0	0.004	4.6	0.001	1.9	< 0.001	
IN-JCZ38	0.83	0.004	0.4	0.003	ND		ND		ND		
IN-N7B69	0.64	0.002	1.8	0.008	ND		ND		1.9	< 0.001	

Component	Liver				Kidney		Muscle		Fat ^a	
	Solvent l	Extract	Protease	Digest						
	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg
IN-K5A79	0.61	0.003	ND		ND		ND		1.9	< 0.001
IN-MYX98	2.5	0.011	0.1	< 0.001	7.1	0.01	ND		1.9	< 0.001
IN-HGW87	1.1	0.004	0.1	0.001	0.61	0.001	ND		ND	
IN-K5A77	5.4	0.023	ND		ND		ND		ND	
IN-NBC94	ND		ND		ND		ND		1.9	< 0.001
IN-K5A78	0.83	0.003	0.2	0.001	ND		ND		1.9	< 0.001
IN-MLA84	3.7	0.017	0.2	0.001	4.1	0.005	ND		1.9	0.001
IN-J9Z38	ND		ND		1.1	0.001	ND		26.9	0.014
Unknowns	13.2 ^b	0.053 ^b	18.6 °	0.080 ^c	13.2	0.018	7.6	0.003	11.5	0.006
Total Char./Ident.	46.9	0.202	22.6	0.101	41.8	0.056	42.5	0.013	75.0	0.039
Total Unextracted	45.7	0.197	18.9 ^d	0.082 ^d	37.4	0.051	39.2	0.011	9.6	0.005

^a Concentrations are a mean of omental, renal, and subcutaneous fat samples analysed

^b 13 components, none greater than 0.006 mg/kg (1.4% TRR)

 $^{\rm c}$ 32 components, none greater than 0.006 mg/kg (1.5% TRR)

^d Terminal unextracted residues following protease digestion

Table 5	Distribution	of	radioactive	residues	in	goat	tissues	following	administration	of	[PC- ¹²	[∗] C]-
cyantran	iliprole											

Component	Liver				Kidney		Muscle		Fat ^a	
	Solvent I	Extract	Protease	Digest						
	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg
TRR	100.0	0.5	100.0	0.5	100.0	0.206	100.0	0.040	100.0	0.119
Extracted	59.5	0.296	20.7	0.103	78.6	0.162	80.9	0.032	98.3	0.117
Cyantraniliprole	27.3	0.136	ND		18.9	0.04	15.3	0.006	45.4	0.054
IN-K7H19	0.95	0.005	0.5	0.003	2.3	0.004	ND		< 0.8	< 0.001
IN-JCZ38	0.42	0.002	ND		0.64	0.001	ND		ND	
IN-DBC80	ND		ND		ND		ND		< 0.8	< 0.001
IN-N7B69	0.32	0.002	ND		1.7	0.003	ND		< 0.8	< 0.001
IN-K5A79	0.61	0.003	ND		ND		ND		2.5	< 0.003
IN-MYX98	3.6	0.017	ND		7.1	0.014	32.8	0.014	< 0.8	< 0.001
IN-HGW87	1.0	0.005	ND		1.1	0.002	ND		ND	
IN-K5A77	5.7	0.028	ND		0.70	0.001	4.4	0.001	< 0.8	< 0.001
IN-NBC94	ND		ND		ND		ND		1.7	0.002
IN-K5A78	3.4	0.017	0.3	0.002	ND		ND		< 0.8	< 0.001
IN-MLA84	5.3	0.026	0.4	0.002	1.8	0.004	ND		1.7	0.002
IN-J9Z38	0.9	0.004	ND		ND		1.1	< 0.001	24.4	0.029
Unknowns	6.2 ^b	0.031 ^b	11.6 °	0.059 ^c	36.9 ^d	0.076 ^d	17.1	0.006	5.0	0.006
Total Char./Ident.	55.7	0.279	12.8	0.066	71.0	0.145	70.9	0.027	79.8	0.095
Total Unextracted	40.5	0.204	19.9 ^e	0.101	21.5	0.044	19.2	0.008	1.7	0.002

^a Concentrations are a mean of omental, renal and subcutaneous fat samples analysed

^b7 components, none greater than 0.008 mg/kg (1.6% TRR)

^c 19 components, none greater than 0.009 mg/kg (1.8% TRR)

^d 10 components, none greater than 0.023 mg/kg (11.4% TRR)

^e Terminal unextracted residues following protease digestion

Cyantraniliprole was rapidly eliminated by the lactating goat, primarily in the excreta (94–96% of the applied dose). There was no significant transfer of residues of cyantraniliprole and its metabolites to fat, meat or edible offal as these tissues contained only ca. 1-2% of the total administered dose. Approximately 1-2% of the total administered dose was eliminated via the milk.

Significant metabolites found at more than 10% TRR or 0.01 mg/kg were IN-MYX98 in milk and muscle and IN-J9Z38 in fat.

Cyantraniliprole

The biotransformation of cyantraniliprole in the goat is consistent with pathways proposed for poultry (laying hens) and the rat and is outlined below.

Figure 1 Proposed metabolic pathway of cyantraniliprole in lactating goats

Laying hens

In a study reported by McLellan Lowry, 2008 [Ref: DP-16988], one group of five <u>hens</u> was orally administered [CN-¹⁴C]-cyantraniliprole in gelatine capsules at a dose rate equivalent to 11.6 ppm in the diet for 14 consecutive days and a second group of five hens was similarly dosed with the dietary equivalent of 11.2 ppm [PC-¹⁴C]-cyantraniliprole.

For each group, eggs were collected twice daily, excreta were collected daily, and tissues were collected after sacrifice, approximately 23 hours after the last dose.

Cyantraniliprole

Samples were triple-extracted with acetonitrile:water (9:1) centrifuged and the radioactive content was determined by LSC analysis of duplicate aliquots. Liver samples were further processed by enzyme digestion using protease. Extracts were analysed using reversed phase HPLC (UV detection at 254 nm) eluted with a gradient of acetonitrile and water containing 0.1% formic acid and quantification of radioactive residues was accomplished either by on-line radio detection with peak integration or by fraction collection and LSC. Identification of radioactive residues was based on comparison of HPLC retention times with those of authentic reference standards. LC-MS/MS in electrospray positive ion mode was conducted to confirm the presence of parent and selected metabolites. All samples were stored frozen (-20 °C) for no more than 55 days before extraction and analyzed within 62 days after sampling.

The overall ¹⁴C recoveries of the administered dose for both radiolabels were consistent with 97–100% of the total administered dose found in the excreta. Based on composite Day 1–14 samples, egg whites accounted for 0.4–0.5% (0.20–0.26 mg/kg) while egg yolks contained 0.07% (0.09 mg/kg) of the total administered dose. The highest concentrations of total radioactivity in tissues were observed in liver (0.2 mg/kg PC-¹⁴C label, 0.14 mg/kg CN-¹⁴C label). Abdominal fat, skin with fat and muscle each contained $\leq 0.1\%$ of the total administered dose for either label, each equivalent ≤ 0.01 mg/kg.

The concentration of radioactivity in egg whites was variable, increasing to 0.26 mg/kg (PC-¹⁴C label) and 0.56 mg/kg (CN-¹⁴C label) in eggs sampled 2 days after the first dose, decreasing to a steady state of about 0.2–0.24 mg/kg after 7 days but with concentrations of the PC-¹⁴C label dropping to 0.12 mg/kg on day 13 and increasing to 0.38 mg/kg on day 14. Radioactivity in egg yolks increased steadily reaching a plateau concentration of about 0.1 mg/kg after 5 days (CN-¹⁴C label) and 7 days (PC-¹⁴C label).

Matrix	[CN- ¹⁴ C]-c	yantranili	prole		[PC- ¹⁴ C]-c	yantranilipro	ole	
	% administ	ered dose	TRR (m	g/kg)	% administ	tered dose	TRR (mg/k	g)
Excreta	96.95		NA		99.72		NA	
Cage wash	3.83		NA	NA		2.52		
Total excreted	100.8							
Fat	0.004		0.004		0.01		0.005	
Liver	0.026		0.141		0.04		0.205	
Muscle	0.006		0.003		0.01		0.005	
Skin with fat	0.01		0.005		0.01		0.007	
Eggs	white	yolk	white	yolk	white	yolk	white	yolk
Day 1	0.01	0.0	0.081	0.004	0.017	0.0	0.127	0.008
Day 2	0.066	0.002	0.56	0.051	0.035	0.001	0.259	0.027
Day 3	0.064	0.005	0.356	0.066	0.034	0.002	0.244	0.038
Day 4	0.057	0.005	0.388	0.084	0.034	0.003	0.256	0.062
Day 5	0.05	0.006	0.329	0.106	0.016	0.004	0.117	0.065
Day 6	0.037	0.006	0.241	0.101	0.026	0.005	0.185	0.084
Day 7	0.031	0.007	0.207	0.114	0.02	0.005	0.186	0.098
Day 8	0.035	0.006	0.242	0.111	0.03	0.006	0.218	0.109
Day 9	0.036	0.006	0.237	0.11	0.024	0.006	0.168	0.106
Day 10	0.027	0.006	0.174	0.1	0.034	0.009	0.195	0.112
Day 11	0.022	0.005	0.191	0.1	0.022	0.006	0.159	0.099
Day 12	0.023	0.005	0.155	0.087	0.03	0.006	0.221	0.103
Day 13	0.03	0.006	0.198	0.092	0.01	0.004	0.12	0.1
Day 14	0.05	0.008	0.233	0.099	0.065	0.009	0.377	0.126
Eggs-composite (Days 1-14)	0.54	0.07	0.259	0.092	0.4	0.07	0.203	0.087
Total	101.4				102.7		95.6	

Table 6. Total radioactive residues in dissected tissues, excreta and eggs of laying hens following 14 daily oral administrations of $[^{14}C]$ -cyantraniliprole

Solvent extraction was able to retrieve more than 99% TRR from egg white, 79–83% TRR in egg yolk and 17–23% TRR in liver. An additional 38% TRR were recovered following digestion of the post extracted solids (PES) with protease. Low levels of radioactivity < 0.001 mg/kg) were

detected in muscle, abdominal fat and skin + fat, with solvent extraction recovering 100% TRR in muscle, 63% TRR (PC-¹⁴C label) and 120% TRR (CN-¹⁴C label) in abdominal fat and 53% TRR (PC-¹⁴C label) and 72% TRR (CN-¹⁴C label) in skin + fat.

Characterization and identification of residues by HPLC (with LC-MS confirmation) was conducted on composite egg white and egg yolk samples (day 1–14) and liver. No analysis was carried out with muscle, abdominal fat or skin + fat samples because of the low residues (< 0.004 mg/kg) present. About 95% TRR in egg white, 71% TRR in egg yolk and 35–42% TRR in liver was able to be characterised and/or identified.

In egg white, TRRs were 0.26 mg/kg (CN-¹⁴C label) and 0.2 mg/kg (PC-¹⁴C label). Cyantraniliprole was the major ¹⁴C-residue representing 32-42% TRR (0.09 mg/kg). IN-MLA84 (18–19% TRR) and IN-J9Z38 (17–29% TRR) were principal egg white metabolites, found at 0.04–0.05 mg/kg and 0.03–0.08 mg/kg respectively.

IN-HGW87, IN-K7H19, IN-MYX98, and IN-NBC94 were also identified in each composite sample, present at $\leq 8.1\%$ TRR (≤ 0.017 mg/kg).

In <u>egg yolk</u>, TRRs were 0.09 mg/kg, with cyantraniliprole making up about 9-10% TRR (0.01 mg/kg). Significant metabolites were IN-MLA84, IN-HGW87 and IN-J9Z38, each present at 12-17% TRR (up to 0.015 mg/kg).

IN-JSE76, IN-K5A77, IN-K5A79, IN-MYX98, and IN-NBC94 were also found in egg yolks as minor metabolites each representing 1-6% TRR (≤ 0.006 mg/kg).

In <u>liver</u>, TRRs were 0.14 mg/kg (CN-¹⁴C label) and 0.17 mg/kg (PC-¹⁴C label). Cyantraniliprole was not found any samples. IN-JCZ38, IN-K5A78, IN-K5A79, IN-K7H19, IN-MLA84, IN-MYX98 and IN-N7B69 were found as minor metabolites, each representing < 4% TRR (< 0.01 mg/kg).

Table 7 Distribution of radioactive residues in hen eggs and liver following administration of [CN-¹⁴C]-cyantraniliprole

Component	Egg white		Egg yolk		Liver			
	(Day 1-14	·)	(Day 1-14))	Aqueous A	CN	Protease dig	est
	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg
Total	100.0	0.259	100.0	0.092	100.0	0.137	100.0	0.137
Total extracted	99.01	0.256	79.3	0.073	17.07	0.023	38.09	0.052
Cyantraniliprole	32.48	0.084	10.28	0.009	ND		ND	
IN-HGW87	0.61	0.002	11.98	0.011	ND		ND	
IN-J9Z38	29.21	0.075	7.42	0.006	2.08	0.003	ND	
IN-MLA84	18.66	0.049	11.56	0.011	0.89	0.001	ND	
IN-MYX98	6.4	0.017	5.42	0.006	0.42	0.001	1.1	0.002
IN-NBC94	0.96	0.002	0.86	0.001	ND		0.4	0.001
Total characterized	7.75	0.021	23.62	0.025	7.58	0.010	22.33	0.042
unknowns ^a								
Total	96.07	0.25	71.14	0.068	10.97	0.015	23.82	0.045
characterized/identified ^b								
Total uncharacterized/	2.94	0.008	8.16	0.005	6.1	0.008	16.94	0.023
unidentified ^c								
Total unextracted	0.99	0.003	20.7	0.019	82.93	0.114	44.97 ^d	0.062 ^e

^a Up to 32 components, each <5% TRR and < 0.005 mg/kg (except one liver component at 0.008 mg/kg)

^b Total characterized/identified=Sum of identified metabolites + Total characterized unknowns

^c Total uncharacterized/unidentified=Total extracted-Total characterized/identified

^d Does not include 16.9% TRR unaccounted for during sample processing

^e Does not include 0.023 mg/kg unaccounted for during sample processing

ND=Not Detected

Residue	Egg whit	e	Egg yolk		Liver			
	(Day 1-1	.4)	(Day 1-1	(4)	Aqueous	ACN	Protease	digest
	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg
Total	100.0	0.203	100.0	0.087	100.0	0.174	100.0	0.174
Total extracted	99.7	0.202	83.1	0.072	23.0	0.04	37.6	0.065
Cyantraniliprole	41.7	0.085	9.33	0.008	ND		ND	
IN-HGW87	0.74	0.001	ND		ND		ND	
IN-J9Z38	17.1	0.034	13.1	0.011	ND		ND	
IN-JSE76	ND		1.9	0.002	ND		ND	
IN-JCZ38	ND		ND		ND		0.23	< 0.001
IN-K5A77	ND		6.19	0.005	ND		ND	
IN-K5A78	ND		ND	· •	0.23	< 0.001	ND	
IN-K5A79	3.9	0.007	1.52	0.001	0.27	< 0.001	0.45	0.001
IN-K7H19	ND		ND		ND	L	0.46	< 0.001
IN-MLA84	18.2	0.037	16.8	0.015	3.98	0.007	ND	
IN-MYX98	8.13	0.016	2.09	0.002	0.27	< 0.001	ND	
IN-N7B69	ND		ND		ND		0.55	0.001
IN-NBC94	2.86	0.005	1.24	0.001	ND		ND	
Total characterized unknowns ^a	0.98	0.002	17.4	0.015	10.5	0.02	25.0	0.045
Total characterized/ identified ^b	93.6	0.187	69.6	0.06	15.2	0.027	26.7	0.047
Total uncharacterized /unidentified °	6.09	0.014	13.5	0.012	7.8	0.013	10.9	0.018
Total unextracted	0.33	0.001	16.9	0.015	77.0	0.134	39.5 ^d	0.053 ^e

Table 8 Distribution of radioactive residues in hen eggs and liver following administration of [PC-¹⁴C]-cyantraniliprole

 a Up to 24 components, each < 5% TRR and < 0.005 mg/kg (except one liver component at 7% TRR–0.007 mg/kg)

^b Total characterized/Identified=Sum of identified metabolites + Total characterized unknowns

^c Total uncharacterized/unidentified=Total extracted-Total characterized/identified

^d Does not include 23.0% TRR unaccounted for during sample processing

^e Does not include 0.056 mg/kg unaccounted for during sample processing

ND=Not Detected

Cyantraniliprole was rapidly eliminated in laying hens with more than 97% being excreted, mostly as unchanged parent compound (68–74%). About 0.5–0.6% of the total administered dose was observed in eggs, fat, liver, and muscle, with unchanged cyantraniliprole being the principal (0.08 mg/kg) residue found in egg whites and found at lower levels in yolks (0.01 mg/kg). Cyantraniliprole was not detected in any of the liver samples.

A number of metabolites were identified in egg whites and egg yolks. IN-J9Z38 and IN-MLA84 were the principal metabolites (0.03-0.08 mg/kg) in egg whites but accounted for $\leq 0.02 \text{ mg/kg}$ in yolks. In liver, about 35–40% TRR was characterized/identified with most of the TRR remaining bound following solvent and protease extractions.

The proposed metabolic pathway in laying hens was consistent with that proposed for rats and lactating goats, and is outlined below:

Figure 2 Proposed metabolic pathway of cyantraniliprole in laying hens

Plant metabolism

The Meeting received plant metabolism studies on cotton, lettuce, tomato and rice seedlings following foliar and soil treatments with [¹⁴C]-cyantraniliprole. A 1:1 (μ Ci/ μ Ci ratio) mixture of [CN-¹⁴C]-cyantraniliprole was used in the foliar treatments and separate treatments of the two radiolabels were applied as soil treatments.

The Meeting noted that the IN-DBC80 metabolite was the only cleavage product containing just the PC-¹⁴C label and as this was found only at low concentrations in some metabolism studies, it was agreed that the use of the mixed radiolabels in the foliar treatment studies did not significantly impact on the results of these studies.

Cotton

In a study reported by MacDonald, MacKinnon & Chapleo (2008) [Ref: DP-16984], three applications of [¹⁴C]-cyantraniliprole equivalent to 150 g ai/ha/treatment, were made to <u>cotton</u> plants grown in 30 cm pots containing an acidic (pH 6.4) commercial growing medium (since abiotic degradation of cyantraniliprole occurs at alkaline pH). Foliar applications (SC formulation) were made to plants 3 weeks post-emergence and at 7 and 14 days after the initial application. Soil drench

applications (SC formulation), pipetted onto wetted soil were made 7 weeks post-emergence and at 7 and 14 days after the first application.

Leaves were collected from immature plants after the first application (foliar treatment only), immediately prior to and following the second and third applications, and at ca. 7 and 14 days after the third application. Cotton bolls (seed plus lint) and the remaining aerial portions (cotton-gin by-products, gin trash) were sampled at crop maturity (ca. 125 days after the third application). The bolls were separated into undelinted (fuzzy) seed and lint.

Selected samples from the foliar-treatment regime were surface washed with acetonitrile: water (7:3, v/v) immediately after sampling. Plant samples from both regimes were pulverized and total tissue residues determined by oxidative combustion analysis. Where characterization of radioactivity was warranted, samples were extracted three times using acetone:1N formic acid (9:1). The unextracted radioactivity in the post-extracted solids (PES) was determined by combustion analysis. Extracts containing significant radioactivity ($\geq 0.01 \text{ mg/kg}$) were analysed by high performance liquid chromatography (HPLC) and identification of ¹⁴C-residues was accomplished by HPLC and liquid chromatography mass spectrometry (LC-MS), with reference to authenticated reference standards. Samples were stored at ca -20 °C for up to 28 days before analysis.

To assess if storage at -20 °C resulted in degradation of radioactive residues, a subsample of stored tissue (7 days post-application 3, foliar treatment) was extracted with acetone:formic acid following a storage period of 392 days. The TRR and extractability values after prolonged storage (0.449 mg/kg, 74.4% TRR) were similar to those obtained originally (0.505 mg/kg, 81.5% TRR). The residue composition also remained unchanged with cyantraniliprole being the principle component (30.8% TRR, 0.138 mg/kg) and minor components individually making up $\leq 4.6\%$ TRR (≤ 0.021 mg/kg).

A comparison of the extraction efficiency of acetone:formic acid and acetonitrile:water showed similar results, with the extracted radioactivity from unwashed leaves from the foliar-treated plants being 76% TRR in the acetonitrile extract and 74% TRR in the acetone extract. HPLC analysis of the two extracts also reported comparable results, with cyantraniliprole making up 27% of the TRR in the acetone extract and 21% of the TRR in the acetonitrile extract.

In plants from the <u>soil drench</u> treatments, TRRs in leaves from immature plants, lint and undelinted seed were all ≤ 0.005 mg/kg with TRR values in cotton gin by-products being 0.1 mg/kg (CN-label) and 0.02 mg/kg (PC-label).

The majority of the radioactivity in cotton gin by-products (79.6–99.9% TRR) was extracted into acetone:formic acid. Additional amounts of radioactivity were extracted from the CN-label sample using enzymes (7.4% TRR), 1 M HCl at 60 °C (3.9% TRR), 6 M HCl at 90 °C (2.2% TRR) and 6 M NaOH at 90 °C (1.8% TRR), each releasing < 0.01 mg/kg.

Cyantraniliprole was the major radioactive residue in gin by-products at concentrations of 25.6% TRR (0.02 mg/kg) for the CN-label and 46.8% TRR (0.01 mg/kg) for the PC-label.

Gin by-products from [CN-¹⁴C]-treated cotton also contained IN-J9Z38, IN-JCZ38, IN-JSE76, IN-HGW87, IN-QKV54 and unresolved IN-MLA84/IN-NXX70, each at ≤ 0.01 mg/kg and less than 8% TRR. The only identified metabolite in gin by-products from [PC-¹⁴C]-treated cotton was IN-J9Z38 (< 0.01 mg/kg).

Table 9 Total radioactive residues (mg/kg) in cotton samples following soil drench treatments with [¹⁴C]-cyantraniliprole

Treatment	Leaves				Lint	Seed	Gin by-products
Sample point	7 DAT1	7 DAT2	7-8 DAT3	13-14 DAT3	124-125	DAT3	
[CN-14C]-cyantraniliprole	< 0.001	0.005	< 0.001	0.002	< 0.001	< 0.001	0.095
[PC- ¹⁴ C]-cyantraniliprole	0.002	0.002	< 0.001	0.002	< 0.001	< 0.001	0.023

¹⁴ C-Residue	[CN-14C]-cyan	traniliprole	[PC-14C]-cyant	raniliprole
	%TRR	mg/kg	%TRR	mg/kg
TRR, mg/kg		0.095		0.023
Extracted	95.7	0.09	99.9	0.023
Cyantraniliprole	25.6	0.025	46.8	0.011
IN-HGW87	2.6	0.003		ND
IN-J9Z38	7.5	0.006	4.7	0.001
IN-JCZ38	1.2	< 0.001		ND
IN-JSE76	1.7	< 0.001		ND
IN-MLA84/ IN-NXX70	5.7	0.004		ND
IN-QKV54	6.4	0.005		ND
Unidentified	16.4 ^a	0.007	11.6 ^b	0.003

Table 10 Distribution of radioactive residues in cotton gin by-products 124 days after the last of three soil drench treatments with $[^{14}C]$ -cyantraniliprole

^a 48 components; none greater than 0.002 mg/kg (2.6%TRR)

^b One component

TRRs in cotton leaves following <u>foliar treatment</u> with the 1:1 mixture of $[CN-^{14}C]$ -cyantraniliprole + $[PC-^{14}C]$ -cyantraniliprole were 2.7 mg/kg immediately after the first application, 14.5 mg/kg immediately after the second application and 7.9 mg/kg just after the last application. Residues decreased to 0.43 mg/kg at 13 days after the last application. At harvest, TRRs in cotton gin by-products, lint and undelinted seed were 0.13, 0.01, and < 0.01 mg/kg, respectively.

The majority of the radioactivity (74–87%TRR) in immature leaves was removed by surface washing (56–70% TRR) and extraction into acidified aqueous acetone (27–33% TRR). Low concentrations of radioactivity were subsequently extracted using enzymes (4.1–7.7% TRR), 1 M HCl at 60 °C (2.9–4.7% TRR), 6 M HCl at 90 °C (0.6–4.5% TRR) and 6 M NaOH at 90 °C (1.1–8.0% TRR).

Cyantraniliprole was the major residue in leaves, decreasing from 69.7% TRR immediately after the first application to 19.7% TRR seven days later and accounted for 37.3 and 27.1% TRR, respectively, 7 and 13 days after the final application.

The photodegradate, IN-NXX70, found predominately in the surface wash, accounted for 21.7% TRR seven days after the first application, declining to 1.1% TRR 7 days after the third application.

The metabolite IN-QKV54 accounted for 10.3% TRR in leaf extracts 7 days after the first application. Other metabolites identified in leaf samples (IN-DBC80, IN-J9Z38, IN-JCZ38, IN-JSE76, IN-K5A77, IN-K7H19, IN-MYX98 and IN-N7B69) each did not exceed 5% TRR. Numerous other metabolites detected but not identified were each present at less than 10% TRR (0.04 mg/kg). Unextracted leaf residues accounted for $\leq 13.2\%$ TRR (≤ 0.38 mg/kg).

Surface washing of cotton gin by-products removed about 19% TRR (0.025 mg/kg) with a further 40% TRR being extracted using acidified aqueous acetone. Additional radioactivity was extracted using enzymes (7.4% TRR), 1 M HCl at 60 °C (5.4% TRR), 6 M HCl at 90 °C (7.5% TRR) and 6 M NaOH at 90 °C (4.2% TRR), giving a total extraction efficiency of 83.8% TRR (0.11 mg/kg).

Cyantraniliprole was the main component, accounting for 34.4% TRR (0.04 mg/kg). Other metabolites including IN-J9Z38 (5.7% TRR), IN-JCZ38 (6.1% TRR) and IN-N7B69 (1.2% TRR) were present at \leq 0.01 mg/kg. Other metabolites detected but not identified did not individually exceed 0.9% TRR or 0.001 mg/kg. Unextracted residues accounted for 16.2% TRR (0.02 mg/kg).

Table 11 Distribution of radioactive residues in leaves and cotton gin by-products from plants treated with foliar applications of a 1:1 mixture of [CN-¹⁴C]-cyantraniliprole and [PC-¹⁴C]-cyantraniliprole

Sampling point	0 DAT1	7 DAT1	7 DAT2	7 DAT3	13 DAT3	124 DAT3
	Leaves	Leaves	Leaves	Leaves	Leaves	Gin by-products

TRR, mg/kg	2.709		5.414		2.654		0.505		0.425		0.131	
	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg
Surface wash	55.9	1.514	66.6	3.606	69.9	1.855					19.1	0.025
Tissue extracts ^a	30.9	0.837	33.4	1.808	26.8	0.711					64.7	0.086
Total Extracted	86.8	2.35	100	5.414	96.7	2.566	97.8	0.494	97.9	0.416	83.8	0.111
Unextracted	13.2	0.358	< 0.1	< 0.001	3.5	0.093	2.2	0.011	2	0.009	16.2	0.021
Cyantraniliprole	69.7	1.89	19.7	1.066	70.7	1.873	37.3	0.187	27.1	0.115	34.4	0.043
IN-DBC80	ND		1.2		ND		ND		ND		ND	
IN-J9Z38	1.0	0.028	3.5	0.19	2.9	0.078	2.3	0.011	1.5	0.006	5.7	0.008
IN-JCZ38	ND		1.3	0.069	ND		ND		ND		6.1	0.007
IN-JSE76	ND		0.7	0.039	0.1	0.003	ND		ND		ND	
IN-K5A77	ND		0.9	0.05	ND		ND		ND		ND	
IN-K7H19	ND		1.7	0.089	0.7	0.018	4.1	0.019	4.9	0.021	ND	
IN-MLA84	3.3	0.091	0.8	0.049	0.5	0.013	3.5	0.017	3.3	0.014	ND	
IN-MYX98	ND		2.0	0.106	ND		ND		ND		ND	
IN-N7B69	ND		0.3	0.017	ND		ND		1.1	0.005	1.2	0.001
IN-NXX70			21.7	1.172			1.1	0.006				
IN-QKV54	ND		10.3	0.577	1.5	0.039	5.0	0.025	3.8	0.016	ND	
Unidentified	4.4 ^b	0.12	13.9 °	0.749	6.9 ^d	0.167	25.2 ^e	0.122	41.3 ^f	0.176	7.3 ^g	0.002

Note: TRR in leaves at 0 DAT2 were 14.5 mg/kg and were 7.9 mg/kg at 0 DAT3

^a Sequential extraction with acetone:1 N formic acid (3×); a mixture of cellulase, beta-glucosidase and driselase (2× for 24 hours at 37 °C); 1 M HCl (6 hours at 60 °C); 6 M HCl (6 hours at 90 °C) and 6 M NaOH (6 hours at 60 °C)

^b 8 components; none greater than 0.035 mg/kg (1.3%TRR)

^c 47 components; none greater than 0.163 mg/kg (3.0%TRR)

 $^{\rm d}$ 28 components; none greater than 0.047 mg/kg (1.8%TRR)

^e 32 components; none greater than 0.031 mg/kg (6.2%TRR)

^f31 components; none greater than 0.042 mg/kg (9.9%TRR)

^g 20 components; none greater than 0.001 mg/kg (0.9%TRR)

The proposed pathway is outlined below.

Figure 3 Proposed metabolic pathway for [¹⁴C]-cyantraniliprole in cotton plants

Lettuce

In a study reported by MacKinnon (2008) [Ref: DP-16986], three applications of $[^{14}C]$ cyantraniliprole equivalent to 150 g ai/ha/treatment, were made to <u>lettuce</u> plants grown in 1 square metre outdoor sandy loam plots (pH 6.5) commercial growing medium (since abiotic degradation of cyantraniliprole occurs at alkaline pH).). Foliar applications (SC formulation) were made to plants 3 weeks post-emergence and at 7 and 14 days after the initial application. Soil drench applications were made 7 weeks post-emergence and at 7 and 14 days after the first application.

Leaves were collected from immature plants after the first application (foliar treatment only), immediately before and after the second and third applications, and 7 and 14 days after the third application and mature plants were collected 32 days after the last application.

Selected samples from the foliar-treatment regime were surface washed with acetonitrile: water (7:3, v/v) immediately after sampling. Plant samples from both regimes were pulverized and total tissue residues determined by oxidative combustion analysis. Where characterization of radioactivity was warranted, samples were extracted three times using acetone:1 N formic acid (9:1). The unextracted radioactivity in the post-extracted solids (PES) was determined by combustion analysis. Extracts containing significant radioactivity ($\geq 0.01 \text{ mg/kg}$) were analysed by high performance liquid chromatography (HPLC) and identification of ¹⁴C-residues was accomplished by HPLC and liquid chromatography mass spectrometry (LC-MS), with reference to authenticated

reference standards. Samples were stored at ca -20 $^{\circ}$ C for up to 72 days before analysis (up to 28 days before extraction).

To assess if storage at -20 °C resulted in degradation of radioactive residues, a subsample of stored tissue (7 days after the third foliar treatment) was extracted with acetone:formic acid following a storage period of 405 days. Frozen storage did not influence the extractability (%) of TRR (97.3% TRR in stored samples and 98.4% TRR in the original samples). The residue composition also remained unchanged with cyantraniliprole making up 77.2% TRR (1.55 mg/kg) compared to 78.5% TRR (1.56 mg/kg) in the original samples. Minor components in the stored samples individually accounted for < 10% TRR (0.01–0.05 mg/kg).

A comparison of the extraction efficiency of acetone:formic acid and acetonitrile:water showed similar results, with the extracted radioactivity from unwashed leaves from the foliar-treated plants being 97.8% TRR in the acetonitrile extract and 98.4% TRR in the acetone extract. HPLC analysis of the two extracts also reported comparable results, with cyantraniliprole making up 72.1% of the TRR in the acetone extract and 71.6% of the TRR in the acetonitrile extract.

In plants from the <u>soil drench</u> treatments, TRR in leaves from the [CN-¹⁴C]-cyantraniliprole plots declined from 0.14 mg/kg (7 days after the first application) to 0.01 mg/kg at final harvest. TRRs following PC-label soil treatment were ≤ 0.06 mg/kg in immature leaves and at crop maturity. Higher residues were observed following foliar application.

The majority (76.7–98.4% TRR) of the radioactivity in lettuce leaves was extracted into acetone:formic acid.

Cyantraniliprole was the major radioactive component in leaves from the [CN-¹⁴C]cyantraniliprole treated plants, accounting for up to 76.7% TRR in young leaves and 37.1% TRR in mature leaves. Minor components (IN-K5A79 and unresolved IN-MLA84/IN-NXX70) were detected at ≤ 0.01 mg/kg in samples taken prior to the second application. Cyantraniliprole was the only component detected (< 0.01 mg/kg) at maturity.

Following the PC-label soil drench treatment, cyantraniliprole was the only detectable component in immature lettuce samples accounting for 75.3% to 84.1.0% TRR and was the major residue (69% TRR–0.039 mg/kg) in mature leaves. Low level metabolites (< 10% TRR) detected in mature leaves were unresolved IN-MLA84/IN-NXX70 and IN-J9Z38, both present at < 0.01 mg/kg.

'	Table	12 Tota	al radioactive	residues	(mg/kg)	in	lettuce	leaves	following	soil	drench	treatments	with
	$[^{14}C]-c$	yantran	niliprole										

Treatment	Leaves				
Sample point	7 DAT1	7 DAT2	7 DAT3	14 DAT3	32 DAT3
[CN- ¹⁴ C]-cyantraniliprole	0.144	0.049	0.046	0.035	0.012
[PC- ¹⁴ C]-cyantraniliprole	0.017	0.035	0.009	0.007	0.057

Table 13 Distribution of radioactive residues in lettuce leaves following soil drench treatments with [¹⁴C]-cyantraniliprole

Sample point	7 DAT1		7 DAT2		7 DAT3		14 DAT3		32 DAT3	
	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg
¹⁴ C-Residue	[CN- ¹⁴ C]	-cyantranil	iprole							
TRR, mg/kg		0.144		0.049		0.045		0.035		0.012
Extracted	98.4	0.142	96.7	0.047	92.9	0.042	89.2	0.031	76.7	0.009
Cyantraniliprole	67.9	0.099	76.8	0.037	72.1	0.033	51	0.018	37.1	0.004
IN-K5A79	7.1	0.011		ND		ND		ND		ND
IN-MLA84/ IN-	3	0.004		ND		ND		ND		ND
NXX70										
Unidentified	11.4 ^a	0.017	1.9	< 0.001	5.1	0.004	6.9	< 0.001	7.8	< 0.001
¹⁴ C-Residue	[PC-14C]	-cyantranil	iprole							
TRR, mg/kg		0.017		0.035						0.057
Extracted	96.4	0.016	96	0.034					85.9	0.049
Cyantraniliprole	75.3	0.014	84.1	0.03					69	0.039

Sample point	7 DAT1		7 DAT2		7 DAT3		14 DAT3		32 DAT3	
	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg
IN-J9Z38		ND		ND					10	0.005
IN-MLA84/ IN- NXX70		ND		ND					3.4	0.002
Unidentified	6.6 ^b	< 0.001		ND						ND

^a 13 components; none greater than 0.003 mg/kg (2.7% TRR)

^b4 components; none greater than 0.001 mg/kg (2% TRR)

In plants from the <u>foliar</u> treatments of a 1:1 mixture of $[CN-^{14}C]$ -cyantraniliprole + $[PC-^{14}C]$ -cyantraniliprole, TRRs in leaves declined from 10.8 mg/kg (immediately after the first foliar application) to 0.03 mg/kg at maturity (32 days after the final application).

The majority of the radioactivity (more than 92% TRR) was removed from leaves by surface washing and/or extraction into acidified aqueous acetone.

Cyantraniliprole was the major residue in leaves, decreasing from about 98% TRR immediately after the first application to 50% TRR in mature leaves, 32 days after the last application.

The only metabolite accounting for more than 5% TRR was IN-J9Z38, present in mature leaves at about 23% TRR (0.011 mg/kg). Other metabolites identified in immature leaf samples (IN-MLA84/IN-NXX70, IN-DBC80, IN-QKV54, IN-K5A77, IN-K5A79, IN-N7B69, IN-HGW87 and IN-JSE76) each did not exceed 5% TRR or 0.06 mg/kg. Numerous other metabolites detected but not identified were each present at less than 1% TRR (0.01 mg/kg). Unextracted leaf residues accounted for $\leq 1.5\%$ TRR (≤ 0.03 mg/kg).

The main HPLC method did not resolve the two components IN-MLA84 and the photodegradate IN-NXX70. Subsequent analysis indicated that the photodegradate, IN-NXX70, accounted for 1.9% TRR (0.03 mg/kg) seven days after the first application and was found predominantly in the surface wash. At 7 days after the first application, IN-MLA84 was present in tissue extracts at much lower levels (0.4% TRR, 0.01 mg/kg).

Table	14	Distribution	of	radioactive	residues	in	lettuce	leaves	from	plants	treated	with	foliar
applica	atior	ns of a 1:1 mi	xtur	$e of [CN-^{14}C]$	C]-cyantra	nili	prole an	d [PC-14	⁴ C]-cy	antranil	iprole		

Sampling point	0 DAT	1	7 DAT	1	0 DAT2	OAT2 7 DAT2 0		0 DAT3	7 DAT	3	14 DA	T3	32 DA'	Т3
TRR, mg/kg	10.844		1.669		9.622	2.801		7.789	1.993		0.983		0.032	
	%TRR	mg/kg	%TRR	mg/kg		%TRR	amg/kg		%TRF	amg/kg	%TRR	mg/kg	%TRR	mg/kg
Surface wash	90.7	9.84	82.9	1.38		57.3	1.61				65.6	0.645	12.5	0.004
Tissue extracts ^a	9.2	0.1	16.1	0.27		41.3	1.16		98.4	1.96	32.1	0.315	79.3	0.026
Total Extracted	99.9	10.83	99	1.65		98.6	2.76		98.4	1.96	97.7	0.96	91.7	0.029
Unextracted	< 0.1	< 0.00 1	1.1	0.018		1.3	0.036		1.5	0.03	2.3	0.023	8.3	0.003
Cyantraniliprole	97.9	10.6	79.1	1.32		87.3	2.45		78.5	1.56	72.6	0.716	50.3	0.016
IN-DBC80	ND		1.2			3.8			2.0		ND	•	ND	
IN-N7B69	ND		1	0.017		0.4	0.012		3.8		ND		ND	
IN-K5A79	ND		1.2	0.018		ND	•		ND	•	ND		ND	
IN-JSE76	ND		0.7	0.012	1	ND			0.7	0.014	ND		ND	
IN-HGW87	ND		0.6	0.01		ND			0.9	0.018	ND		ND	
IN-K5A77	ND		ND			1.2	0.036		ND		ND		ND	
IN-QKV54	ND		ND			1.4	0.042		0.9	0.017	ND		ND	
IN-MLA84/ IN-NXX70	0.3	0.034	3	0.05		2	0.058		1.4	0.027	2.6	0.027	4.9	0.001
IN-J9Z38	0.4	0.042	ND			1	0.028		0.8	0.021	2.3	0.023	23.3	0.011
Unidentified	0.3 ^b	0.035	6.6 °	0.103		4.1 ^d	0.117		3.8 ^e	0.078	6.4 ^f	0.067	0.7	0.001

- ^a Triple extraction with acetone:1 N formic acid
- b 7 components; none greater than 0.006 mg/kg (0.1% TRR)
- $^{\rm c}46$ components; none greater than 0.009 mg/kg (0.6% TRR)
- $^{\rm d}$ 29 components; none greater than 0.011 mg/kg (0.4% TRR)
- $^{\rm e}\,27$ components; none greater than 0.009 mg/kg (0.4% TRR)
- $^{\rm f}$ 13 components; none greater than 0.007 mg/kg (0.7% TRR)

The metabolic fate of cyantraniliprole in lettuce grown outdoors was complex, with the formation of many low level metabolites. The proposed metabolic pathway is outlined below.

Figure 4 Proposed metabolic pathway for cyantraniliprole in lettuce

Tomatoes

In a study reported by MacKinnon (2008) [Ref: DP-16985], three applications of $[^{14}C]$ cyantraniliprole equivalent to 150 g ai/ha/treatment, were made to <u>tomato</u> plants grown in 24 cm pots containing an acidic (pH 6.4) commercial growing medium.). Foliar applications (SC formulation) were made to plants 3 weeks post-emergence and at 7 and 14 days after the initial application. Soil drench applications were made 7 weeks post-emergence and at 7 and 14 days after the first application.

Leaves were collected from immature plants after the first application (foliar treatment only), immediately prior to and following the second and third applications, and at ca. 7 and 14 days after the third application. Leaves and fruit were also sampled at crop maturity (ca. 125 days after the third application).

Selected samples from the foliar-treatment regime were surface washed with acetonitrile: water (7:3, v/v) immediately after sampling. Plant samples from both regimes were pulverized and total tissue residues determined by oxidative combustion analysis. Where characterization of radioactivity was warranted, samples were extracted three times using acetone:1 N formic acid (9:1). Insoluble residues from immature leaves were subjected to further sequential extraction using enzyme digestion (2×24 hours with cellulose, glucosidase, driselase), 1 M HCl (6 hours, 60 °C), 6 M HCl (6 hours, 90 °C) and 6 M NaOH (6 hours, 90 °C) hydrolysis. The unextracted radioactivity in the post-extracted solids (PES) was determined by combustion analysis.

Extracts containing significant radioactivity ($\geq 0.01 \text{ mg/kg}$) were analysed by high performance liquid chromatography (HPLC) and identification of ¹⁴C-residues was accomplished by HPLC and liquid chromatography mass spectrometry (LC-MS), with reference to authenticated reference standards. Samples were stored at ca -20 °C for up to 69 days before analysis.

To assess if storage at -20 °C resulted in degradation of radioactive residues, a subsample of stored leaf tissue (7 days post-application 3, foliar treatment) was extracted with acetone:formic acid following a storage period of 392 days. The TRR and extractability values after prolonged storage (1.86 mg/kg, 84.4% TRR) were similar to those obtained originally (2.21 mg/kg, 87.1% TRR). The residue composition also remained unchanged with cyantraniliprole being the principle component (55.3% TRR, 1.03 mg/kg) and minor components individually making up \leq 5.4% TRR (< 0.01 mg/kg).

A comparison of the extraction efficiency of acetone:formic acid and acetonitrile:water showed similar results, with the extracted radioactivity from unwashed leaves from the foliar-treated plants being 84% TRR in the acetonitrile extract and 82.8% TRR in the acetone extract. HPLC analysis of the two extracts also reported comparable results, with cyantraniliprole making up 43.4% of the TRR in the acetone extract and 36.6% of the TRR in the acetonitrile extract.

In plants from the <u>soil drench</u> treatments, TRRs in leaves from immature plants reached a maximum of 0.03 mg/kg seven days after the last CN-label application and 0.01 mg/kg 14 days after the last PC-label application. In mature leaves (125 days after the last application), TRRs were < 0.01 mg/kg in leaves and 0.001 mg/kg in fruit.

Only extractable residues from immature leaves taken 7 and 14 days after the last CN-label application were sufficiently high to permit HPLC analysis. Cyantraniliprole was the major radioactive component ranging from 22.2% to 26.1% TRR (0.01 mg/kg). Minor components (unresolved IN-MLA84/IN-NXX70 and IN-J9Z38) each at < 0.01 mg/kg, were also detected in leaves taken 7 days after the last application.

Table 15 Total radioactive residues (mg/kg) in tomato samples following soil drench treatments with [¹⁴C]-cyantraniliprole

Treatment	Leaves				Leaves	Fruit
Sample point	7 DAT1	7 DAT2	7 DAT3	14 DAT3	125 DAT3	
[CN-14C]-cyantraniliprole	0.005	0.023	0.03	0.026	0.008	0.001
[PC- ¹⁴ C]-cyantraniliprole	0.002	0.012	0.014	0.014	0.009	0.001

Sample point	7 DAT3		14 DAT3	
	%TRR	mg/kg	%TRR	mg/kg
TRR, mg/kg		0.03		0.026
Extracted	86	0.026	78.4	0.02
Cyantraniliprole	22.2	0.006	26.1	0.008
IN-MLA84/ IN-NXX70	6.4	0.002	5.8	0.002
IN-J9Z38	5.4	0.002		ND
Unidentified	11.8	0.006	13.7	0.002

Table 16 Distribution of radioactive residues in tomato leaves, 7 and 14 days after the last of three soil drench treatments with $[CN^{14}C]$ -cyantraniliprole

TRRs in tomato leaves immediately following <u>foliar treatments</u> with the 1:1 mixture of [CN-¹⁴C]-cyantraniliprole + [PC-¹⁴C]-cyantraniliprole ranged between 2.55 and 4.81 mg/kg and decreased to 1.3 mg/kg at 14 days after the last application. At harvest, 125 days after the last application, TRRs in leaves and fruit were < 0.01 mg/kg.

In immature leaves, 74–87% TRR was removed by surface washing and/or extraction into acidified aqueous acetone. Low concentrations of radioactivity were subsequently extracted using enzymes (1.2–5.6% TRR), 1 M HCl at 60 °C (1–3.4% TRR), 6 M HCl at 90 °C (0.2–3.7% TRR) and 6 M NaOH at 90 °C (0.7–2.9% TRR).

Cyantraniliprole was the major residue in leaves, decreasing from 95% TRR immediately after the first application to 61% TRR seven days later and accounted for 62 and 43% TRR, respectively, 7 and 14 days after the final application.

Concentrations of the unresolved radioactivity corresponding to both IN-MLA84 and IN-NXX70 were highest 7 days after the first application (11.5% TRR), decreasing to 5.8% TRR thereafter. Further analysis indicated that the photodegradate IN-NXX70 accounted for 12% TRR (0.23 mg/kg) 7 days after the first application, mostly (10% TRR) in the surface wash and declined to 3.8% TRR, 0.08 mg/kg, 7 days after final application. Seven days after the first application, IN-MLA84 was present in tissue extracts at lower levels ($\leq 2.3\%$ TRR, ≤ 0.02 mg/kg).

Other minor metabolites were identified as IN-J9Z38, IN-K7H19, IN-JCZ38, IN-DBC80, IN-N7B69, IN-MYX98, IN-JSE76, IN-K5A77 and IN-QKV54, with no single metabolite exceeding 5% TRR. Numerous other metabolites were detected which did not correspond to known reference standards, none exceeding 5.6% TRR (0.07 mg/kg). The unextracted residue accounted for $\leq 2.3\%$ TRR (≤ 0.03 mg/kg).

In leaves taken at maturity, low levels of radioactivity were present in the surface wash (< 0.01 mg/kg) and the acidified aqueous acetone extract (0.01 mg/kg). The unextracted residues also accounted for < 0.01 mg/kg.

Sampling point	0 DAT1	0 DAT1 7		7 DAT1		7 DAT2		7 DAT3		3
		2.546								
TRR, mg/kg	2.546	2.546			4.806	4.806		2.216		
	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg
Surface wash	65.5	1.668	72.3	1.337	85	4.085				
Tissue extracts	33.6	0.854	27.6 ^a	0.509	15 ^a	0.723	99.2 ^a	2.197	97.7 ^a	1.269
Total Extracted	99	2.52	99.8	1.845	100	4.807	99.2	2.197	97.7	1.269
Unextracted	1.0	0.025	0.1	0.002	0.1	0.005	0.8	0.018	2.3	0.03
Cyantraniliprole	95.3	2.429	61.1	1.132	86.5	4.154	62.2	1.377	43.4	0.562
IN-MLA84/	0.9	0.023	11.5	0.213	3.1	0.149	6.6	0.147	5.8	0.074
IN-NXX70										
IN-J9Z38	0.9	0.022	1.6	0.029	1.2	0.051	5.1	0.114	4.4	0.055

Table 17 Distribution of radioactive residues in leaves from tomato plants treated with foliar applications of a 1:1 mixture of [CN-¹⁴C]-cyantraniliprole and [PC-¹⁴C]-cyantraniliprole

Sampling point	0 DAT1		7 DAT1		7 DAT2		7 DAT3		14 DAT3		
TRR, mg/kg	2.546	2.546		1.849		4.806		2.216		1.298	
	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	
IN-QKV54	ND		ND		0.8	0.04	2.8	0.062	4.3	0.054	
IN-N7B69	ND		ND		0.3	0.016	0.8	0.019	2.9	0.037	
IN-JCZ38	ND	ND		1.0 0.019		0.01	1.0	0.022	2.8	0.036	
IN-K7H19	ND		ND		ND		1.2	0.025	1.4	0.019	
IN-DBC80	ND		3.8		1.0		3.0		ND		
IN-MYX98	ND		ND		ND		1.0	0.023	1.5	0.018	
IN-JSE76	ND		ND		ND		ND		1.0	0.012	
IN-HGW87	ND		ND		0.6 0.028		ND		ND		
Unidentified	5.0 ^b	0.102	10.7 ^c	0.197	2.6 ^d	0.137	15.9 ^e	0.352	22.2 f	0.265	

^a Sequential extraction with acetone:1 N formic acid (3×); a mixture of cellulase, beta-glucosidase and driselase (2× for 24 hours at 37 °C); 1 M HCl (6 hours at 60 °C); 6 M HCl (6 hours at 90 °C) and 6 M NaOH (6 hours at 60 °C)

 $^{\rm b}$ 32 components; none greater than 0.008 mg/kg (0.4%TRR)

 $^{\rm c}$ 23 components; none greater than 0.025 mg/kg (1.3%TRR)

^d 28 components; none greater than 0.02 mg/kg (0.4%TRR)

^e 51 components; none greater than 0.07 mg/kg (3.1%TRR)

^f45 components; none greater than 0.07 mg/kg (5.6%TRR)

The proposed pathway is outlined below.

Figure 5 Proposed metabolic pathway for [¹⁴C]-cyantraniliprole in tomatoes

Rice

In a study reported by Chapleo, Hobbs & Grant-MacDonald (2010) [Ref: DP-18780], single soil applications of [¹⁴C]-cyantraniliprole (granular formulations), equivalent to 300 g ai/ha, was applied at the 3–4 leaf stage to rice plants grown in a glasshouse in a sandy-loam soil (pH 6.2) and three foliar applications (SC formulation) of 0.15 kg ai/ha were made to other plants at the 3–4 leaf stage and 7 and 14 days later. In both cases the plants were grown under flooded conditions (pots immersed in about 3 cm water) from 2 days after the initial treatment until 2–3 days before harvest.

Leaves and shoots from foliar-treated plants were sampled 0 and 7 days after the first treatment, 7 days after the second treatment and 7, 14 days after the last treatment with roots being collected 7 days after each treatment. At maturity, 140 days after the last treatment, whole plants were separated into straw, roots, and panicles.

Leaves and shoots from plants grown in treated soil were sampled 3, 7, 14 and 56 days after treatment and roots were collected 7 and 56 days after treatment. At maturity (175 days after treatment), whole plants were separated into straw, roots, and panicles.

Selected samples from the foliar-treatment regime were surface washed with acetonitrile: water (9:1) immediately after sampling. Plant samples from both regimes were homogenised and residues extracted in acetonitrile:water (9:1 then 7:3). Where required, samples were subjected to

further sequential extraction using enzyme digestion $(2 \times 24$ hours with cellulose, glucosidase, drisealse), 1 M HCl (6 hours, 60 °C), 6 M HCl (6 hours, 90 °C) and 6 M NaOH (6 hours, 90 °C). The unextracted radioactivity in the post-extracted solids (PES) was determined by combustion analysis.

Extracts containing significant radioactivity ($\geq 0.01 \text{ mg/kg}$) were analysed by reversed phase HPLC and identification of ¹⁴C-residues was accomplished by HPLC and liquid chromatography mass spectrometry (LC-MS), with reference to authenticated reference standards. Samples were stored at ca –20 °C for up to 37 days before analysis.

In plants grown in <u>treated soil</u>, TRRs in immature leaves ranged from 0.4–0.42 mg/kg 56 days after treatment and were 0.28–0.37 mg/kg in roots. At maturity (175 days after treatment), TRRS were 0.28–0.3 mg/kg in straw and 0.01–0.03 mg/kg in grain.

Table 18 Total radioactive residues (mg/kg) in rice samples following granular soil treatments with $[^{14}C]$ -cyantraniliprole

	Foliage				Roots		Roots	Straw	Grain
Sample point	56 DAT	7 DAT	56 DAT	175 DAT					
[CN- ¹⁴ C]-cyantraniliprole	ND	0.076	0.15	0.404	< 0.017	0.253	0.282	0.278	0.012
[PC-14C]-cyantraniliprole	0.153	0.068	0.145	0.42	< 0.04	0.297	0.367	0.297	0.029

The majority of the radioactivity was extracted into aqueous acetonitrile with 85–87% TRR extracted from immature foliage, 79–80% TRR from straw and 61–67% TRR from grain.

Cyantraniliprole was the major radioactive residue in immature 56 DAT foliage extracts, found at up to 49% TRR and 0.2 mg/kg (PC-label), 57% TRR and 0.23 mg/kg (CN-label). The IN-J9Z78 metabolite was found in these samples at 22% TRR (PC-label) and 16% TRR (CN-label). Other metabolites (including IN-JCZ78, IN-N7B69, IN-K5A77, IN-MLA84 and IN-DBC80) did not exceed 0.011 mg/kg or 3% TRR. The unextracted residue accounted for 4.1-9.8% TRR (<0.02 mg/kg).

The major residue in straw was also cyantraniliprole (42–45% TRR, 0.125 mg/kg), with IN-J9Z38 (14–18% TRR) being the only significant metabolite, found at 14–18% TRR. Other minor metabolites, each present at less than 4% TRR or 0.01 mg/kg were IN-JCZ38, IN-K5A78, IN-K5A77, IN-MLA84 and IN-DBC80. The unextracted residue accounted for 8.9 % TRR (0.03 mg/kg).

In grain, cyantraniliprole accounted for 46–63% TRR, 0.007–0.014 mg/kg), with IN-J9Z38 (5.9–10.2 % TRR) being the only significant metabolite

Table 19 Distribution of radioactive residues in rice samples following granular soil treatments with $[^{14}C]$ -cyantraniliprole

	Foliage								Straw		Grain	
Sample point	3 DAT		7 DAT		14 DAT	,	56 DAT	,	175 DA	Т	175 DA	Т
	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg
CN-label												
Extracted	ND		96.1	0.073	90.9	0.136	86.8	0.351	79.7	0.222	61.1	0.007
Unextracted	ND		3.9	0.003	9.1	0.014	13.2 ^a	0.053	20.3 ^b	0.056	38.9	0.005
Cyantraniliprole			102	0.077	67.1	0.101	57.4	0.232	44.9	0.125	62.7	0.007
IN-J9Z38	ND		ND		16.9	0.025	16.2	0.066	18.4	0.051	10.2	0.001
IN-JCZ38			ND		ND		1.5	0.006	3.6	0.01	ND	
IN-K5A77			ND		ND		ND		3.0	0.008	ND	
IN-K5A78			ND		ND		ND		0.3	0.001	ND	
IN-MLA84			ND		ND		ND		1.4	0.004	ND	
IN-N7B69			ND		ND		1.7	0.007	ND		ND	
Unidentified			ND		ND		ND		8.0	0.023	6.9	< 0.001
PC-label												
Extracted	100	0.153	94.7	0.064	90.2	0.131	85.5	0.359	78.5	0.233	67	002
Unextracted	ND		5.3	0.004	9.8	0.014	14.5 ^c	0.061	21.5 ^d	0.064	32.9	0.01
Cyantraniliprole	107.8	0.165	86.2	0.059	58.6	0.085	48.7	0.205	42.1	0.125	46.2	0.014
IN-J9Z38	ND		12.3	0.008	27.9	0.041	22.1	0.093	14.3	0.042	5.9	0.002

	Foliage	oliage								Straw			
Sample point	3 DAT	3 DAT		7 DAT		14 DAT		56 DAT		175 DAT		175 DAT	
	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	
IN-JCZ38	ND		ND		ND		2.3	0.01	2.8	0.008	ND		
IN-K5A77	ND		ND		ND		0.8	0.003	3.7	0.011	ND		
IN-DBC80	ND		ND		ND		0.7	0.003	2.8	0.008	1.1	< 0.001	
IN-K5A78	ND		ND		ND		ND		0.6	0.002	ND		
IN-MLA84	ND		ND		ND		0.8	0.003	1.2	0.004	ND		
Unidentified	7.7	0.012	ND		ND		ND		3.0	0.01	3.4	< 0.001	

^a Further extraction released a total of 9.6% TRR (0.038 mg/kg)

^bFurther extraction released a total of 11.7% TRR (0.034 mg/kg)

 $^{\rm c}$ Further extraction released a total of 10.4% TRR (0.043 mg/kg)

^d Further extraction released a total of 10.7% TRR (0.032 mg/kg)

TRRs in foliage following <u>foliar treatments</u> with the 1:1 mixture of $[CN-^{14}C]$ -cyantraniliprole + $[PC-^{14}C]$ -cyantraniliprole were 2.13 mg/kg immediately after the first application, decreasing to 0.38 mg/kg after 7 days. TRRS 7 and 14 days after the last application were 1.56 mg/kg and 1.21 mg/kg respectively. At harvest, 140 days after the last application, TRRs in straw were 0.45 mg/kg and 0.02 mg/kg in grain. In roots, TRRs increased from 0.24 mg/kg seven days after the first application to 0.68 mg/kg seven days after the last application and were 0.45 mg/kg at harvest (140 DAT3).

In immature leaves, 92–99% TRR was removed by surface washing and/or extraction into aqueous acetonitrile (75% TRR in the 7 DAT3 surface wash and 47% TRR in the 14 DAT3 wash). In straw, aqueous acetonitrile extraction removed 87% TRR and further 10.9% TRR was recovered in enzyme, acid and alkali digests. In grain, 49% TRR (0.012 mg/kg) was extracted in aqueous acetonitrile.

Cyantraniliprole was the major residue in immature foliage, making up more that 75% TRR and 0.35-2.13 mg/kg). IN-J9Z38 was the predominant metabolite found at 0.6% TRR immediately after the first application and increasing to 10.9% TRR 14 days after the last application. IN-JCZ38, IN-JSE76, IN-K5A77, IN-K5A78 IN-MLA84, and IN-N7B69 were also detected, none exceeding 2% TRR. Multiple unknown metabolites were detected, none exceeding 2.3% TRR. Unextracted residues accounted for 0.1–7.8% TRR.

In straw, cyantraniliprole was the major extractable component, accounting for 24.4% TRR (0.11 mg/kg). Significant metabolites included IN-JCZ38 (9.4% TRR) and IN-JSE76 (9.0% TRR). Other metabolites were identified as IN-K5A77 (5.3% TRR), IN-DBC80 (3.2% TRR), IN-J9Z38 (4.0% TRR), and IN-K7H19 (2.4% TRR) and seven unidentified metabolites were present (including 2 highly polar metabolites) at 6.6–8.1% TRR. 5.5% TRR (0.02 mg/kg) were not extracted.

Cyantraniliprole was the main extractable component in grain, accounting for 21% TRR (0.01 mg/kg). Metabolites included IN-J9Z38, IN-N7B69 and IN-K5A78 made up 1.5–2.6% TRR and 17 unidentified metabolites were also detected, each at less than 8.0% TRR.). Unextracted residues accounted for 51.3% TRR (0.01 mg/kg).

Table 20	Distribution	of radioactive	residues in	rice	samples	following	three	foliar	applications	of a
1:1 mixtu	re of [CN- ¹⁴ C	C]-cyantranilip	role and [Po	$C^{-14}C$]-cyantra	niliprole				

	Foliage	age									Straw		Grain	
Sample point	0 DAT	AT1 7 DAT1 7 DAT2				7 DAT	7 DAT3 14 DAT3		140 DAT3		140 DAT3			
TRR (mg/kg)	2.126		0.383		1.0		1.56		1.207		0.446		0.024	
	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg
Surface wash							74.5	1.162	46.8	0.565				
Tissue extracts	99.9	2.124	92.1	0.353	99	0.99	20.0	0.311	51.5	0.623	83.7	0.374	48.7	0.012
Total extracted	99.9	2.124	92.1	0.353	99	0.99	96.6	1.506	95.3	1.151	83.7	0.374	48.7	0.012
Unextracted	0.1	0.002	7.8	0.03	1.0	0.01	3.4	0.053	4.7	0.057	16.3 ^(a)	0.073	51.3	0.012

Cyantraniliprole

	Foliage	;									Straw		Grain	
Sample point	0 DAT	1	7 DAT	1	7 DAT	2	7 DAT3 14 DAT3			140 DA	140 DAT3		140 DAT3	
TRR (mg/kg)	2.126		0.383		1.0		1.56		1.207		0.446		0.024	
	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg
Cyantraniliprole	100	2.127	90.7	0.347	95.5	0.956	75.6	1.179	81.1	0.98	24.4	0.109	20.9	0.005
IN-J9Z38	0.6	0.014	2.5	0.01	6.3	0.063	7.2	0.112	10.9	0.131	4.0	0.018	1.5	< 0.001
IN-JCZ38	ND		ND		ND		0.6	0.009	0.8	0.009	9.4	0.042	ND	
IN-JSE76	ND		ND		ND		ND		0.2	0.002	9.0	0.04	ND	
IN-K5A77	0.6	0.012	ND		ND		ND		0.8	0.01	5.3	0.024	ND	
IN-K5A78	ND		ND		ND		ND		0.2	0.005	ND		2.6	0.001
IN-DBC80	ND		ND		ND		ND		ND		3.2	0.014	ND	
IN-K7H19	ND		ND		ND		ND		ND		2.4	0.011	ND	
IN-MLA84	ND		ND		0.6	0.006	1.5	0.024	1.9	0.023	ND		ND	
IN-N7B69	ND		ND		ND		1.7	0.027	ND		ND		2.2	0.001
Unidentified	ND		ND		0.5	0.005	5.3 ^(b)	0.084	0.9	0.011	29.4 ^(c)	0.131	15.7	0.003

^a Further extraction released a total of 10.9% TRR (0.048 mg/kg)

 $^{\rm b}\,8$ components; none greater than 0.035 mg/kg (2.3%TRR)

^c 7 components; none greater than 0.036 mg/kg (8.1%TRR)

The metabolic fate of cyantraniliprole in rice growing under flooded conditions was complex with the formation of many low level metabolites. Metabolism following foliar and soil applications appear to be similar. The proposed metabolic pathway is outlined below.

Figure 6 Proposed metabolic pathway for [¹⁴C]-cyantraniliprole in rice

Environmental fate

The Meeting received information on the environmental fate and behaviour of cyantraniliprole, including hydrolytic stability, aerobic metabolism, photolysis and degradation in soil, water/sediment degradation and rotational crop metabolism and field studies.

Hydrolysis

The hydrolytic stability of cyantraniliprole in sterile buffer solutions was reported by Lowrie (2005) [Ref: DP-17058]. Sterile buffered solutions of 1 μ g/ml radiolabelled cyantraniliprole at pH 4, 7, and 9 were incubated in the dark at 15, 25 and 35 °C for up to 30 days and sampled for analysis by LSC and HPLC at selected time intervals.

Hydrolysis of cyantraniliprole was pH and temperature dependant. At lower pH and temperature, the rate of hydrolysis was significantly less than at high pH and temperature. At all pHs, the only hydrolysis product detected at more than 5% of applied radioactivity (AR) was the cyclisation product IN-J9Z38, which accounted for a maximum of 28% AR (pH 4), 89% AR (pH 7) and 98% AR in the pH 9 samples. Calculated DT50 and DT90 values for cyantraniliprole and the IN-J9Z38 metabolite are summarised below.

		Cyantraniliprole			IN-J9Z38		
pН	Temperature	Rate constant, K	DT ₅₀	DT ₉₀	Rate constant, K	DT ₅₀	DT ₉₀
	(°C)	(days)	(days)	(days)	(days)	(days)	(days)
4	15	0.0019	362	1204			
4	25	0.0033	212	705			
4	35	0.0126	55.2	183			
7	15	0.0055	126	417			
7	25	0.0229	30.3	101			
7	35	0.0923	7.51	25	0.0031	227	755
9	15	0.2234	3.1	10.3			
9	25	0.8152	0.85	2.82			
9	35	1.203	0.576	1.91	0.0018	376	1248

Table 21 Calculated DT50 and DT90 values for cyantraniliprole and the IN-J9Z38 metabolite

Aerobic soil metabolism

In a study reported by Malekani & Mattson (2006) [Ref: DP-15775], a loam soil (pH 7.9, 2% organic matter) and a silty clay loam soil (pH 6.2, 2.7 % organic matter) were treated with the equivalent of 0.4 kg ai/ha [CN-¹⁴C]-cyantraniliprole or [PC-¹⁴C]-cyantraniliprole and incubated at 22 ± 3 °C in the dark for 358 days. The moisture content of the soils was maintained at 40–60% maximum water holding capacity (MWHC).

Samples were taken immediately following application and at selected intervals up to 358 days after application, extracted with $CaCl_2$ (to assess aged sorption of cyantraniliprole in conjunction with degradation) and then triple-extracted with acetone:formic acid (9:1) for analysis by LSC and HPLC.

The extractability of cyantraniliprole from both soils was quantitative at Day 0, but extractability decreased while the non-extractable residues (NER) increased as the study progressed, reaching a peak of approximately 16 to 22% in both soils.

Volatile organics were not produced in significant amounts in either soil. The amount of ${}^{14}\text{CO}_2$ evolved was significant, up to 11.8% AR for systems involving with [CN- ${}^{14}\text{C}$]-cyantraniliprole and 4.1% AR for [PC- ${}^{14}\text{C}$]-cyantraniliprole systems.

Cyantraniliprole levels declined to less than 5% AR in the loam soil and to 30-40% of AR in the silty clay loam by Day 121. Degradation continued past Day 121, with the silty clay loam containing 11-12% AR as cyantraniliprole on Day 358 and was not detected in the loam soil.

Seven major transformation products were observed in the study, with IN-JSE76 being the major component (43% AR) at the end of the study period, with IN-K5A78 and IN-PLT97 also present at 23-29% AR at day 358.

Component	Maximum% AR [CN- ¹⁴ C]-cyantranili	prole	Maximum% AR [PC- ¹⁴ C]-cyantraniliprole			
	Loam (Nambsheim)	Silty clay loam (Tama)	Loam (Nambsheim)	Silty clay loam (Tama)		
Cyantraniliprole	100.0 (Day 0)	104.9 (Day 0)	101.7 (Day 0)	109.1 (Day 0)		
IN-J9Z38	16.0 (Day 16)	11.6 (Day 300)	12.9 (Day 100)	10.8 (Day 300)		
IN-JCZ38	16.6 (Day 7)	13.1 (Day 22)	16.1 (Day 22)	12.5 (Day 16)		
IN-JSE76	40.4 (Day 41)	42.6 (Day 358)	42.3 (Day 41)	42.9 (Day 358)		
IN-K5A77	8.6 (Day 100)	3.8 (Day 358)	8.9 (Day 100)	3.3 (Day 300)		
IN-K5A78	28.8 (Day 358)	5.4 (Day 358)	27.2 (Day 358)	4.0 (Day 358)		
IN-K5A79 ^a	8.4 (Day 63)	ND	9.3 (Day 41)	ND		
IN-PLT97 ^a	22.7 (Day 358)	ND	26.3 (Day 358)	ND		

Table 22 Maximum percent of each metabolite in route of degradation study

^a IN-K5A79 and IN-PLT97, observed as significant metabolites in Nambsheim soil, were not detected (ND) in Tama soil

Cyantraniliprole

In a similar study reported by Malekani (2008) [Ref: DP-17055], three additional soils (a silt loam—pH 7, 2.1% organic matter; a sandy loam soil—pH 4.6, 1.6 % organic matter and a silty clay loam—pH 8.05, 4.5% organic matter) were treated with the equivalent of 0.4 kg ai/ha [CN-¹⁴C]-cyantraniliprole or [PC-¹⁴C]-cyantraniliprole, the moisture content was adjusted to 45% MWHC and the soils were incubated at 20 \pm 2 °C in the dark for 120 days. One soil was also incubated at 10 \pm 2 °C for 120 days.

Observed degradation in all soils was similar to that described in the above study, with the major metabolites present at the end of the 120-day study period being IN-JSE76 and IN-JCZ38 (26-33% AR).

Component	Maximum% [CN- ¹⁴ C]-cy	antraniliprole	2		Maximum% [PC- ¹⁴ C]-cy	AR antraniliprole		
	Silt loam (Gross- Umstadt)	Sandy loam (Sassafras)	Silty clay loam (Lleida)	Silt loam (Gross- Umstadt)	Silt loam (Gross- Umstadt)	Sandy loam (Sassafras)	Silty clay loam (Lleida)	Silt loam (Gross- Umstadt)
Cyantraniliprole	98.5	97.6	101.3	104.6	101.1	98	97	102
	(Day 0)	(Day 0)	(Day 0)	(Day 0)	(Day 0)	(Day 0)	(Day 0)	(Day 0)
IN-J9Z38	16.7	11.9	16.4	19.4	17.9	6.2	18.3	13.3
	(Day 45)	(Day 45)	(Day 45)	(Day 120)	(Day 60)	(Day 91)	(Day 60)	(Day 90)
IN-JCZ38	18.2	11.9	16.4	19.4	14.3	32.8	11.5	13.7
	(Day 45)	(Day 45)	(Day 45)	(Day 120)	(Day 120)	(Day 120)	(Day 115)	(Day 60)
IN-JSE76	25.6	6.2	33.3	9.7	28.5	4.5	32.5	13.7
	(Day 120)	(Day 120)	(day 120)	(Day 120)	(Day 120)	(Day 120)	(Day 120)	(Day 120)
IN-K5A77	6.2	1.6	5.7	1.9	6.1	4.0	5.1	1.4
	(Day 30)	(Day 120)	(Day 60)	(Day 30	(Day 120)	(Day 91)	(Day 120)	(Day 30)
IN-K5A78	2.4 (Day 120)	ND	9.7 (Day 90)	ND	3.1 (Day 120)	0.15 (Day 30)	10.5 (Day 120)	ND
IN-K5A79	ND	ND	2.4 (Day 120)	ND	ND	ND	3.0 (Day 120)	2.4 (Day 120)
IN-K7H19	1.3 (Day 120	ND	ND	ND	1.6 (Day 120)	ND	ND	ND

Table 23 Maximum percent of each metabolite in the route of degradation study

The residue decline data for the various soils were analyzed using a number of kinetics models. The FOMC model provided the best visual and statistical fit for the observed data across the entire data range.

T 11 A 4 G	0		DT	1 D T	1	• •	1
I oblo 1/1 Summor	v ot ov	ontronilinrol	<u> </u>	and DT	11000	110 0.01	LC
1 and 24 annual	\mathbf{v} on \mathbf{c}	ami ami moror			vanies	III SOI	\mathbf{IS}
I dole 2 i Summan	,,	anterantipior	• • • · · · · ·	and D 1 90	, araco	111 001	10

Soil	Site	DT ₅₀ -P (days)	DT ₉₀ -P (days)	pH(water)	% OC	CEC	%Clay
Silt loam	Gross-Umstadt	43.7	235	7.04	1.2	8.7	6
Silty clay loam	Lleida	20.9	156	8.05	2.6	17.4	32
Loam	Nambsheim	8.7	66.2	7.9	1.2	6.7	10
Sandy loam	Sassafras	91.9	376	4.62	0.9	6.1	9
Silty clay loam	Tama	39.2	580	6.2	1.6	21.4	34

Degradation rates for all significant metabolites (found at more than 10% of total residue or exceeded 5% at multiple sampling intervals) were investigated in a series of studies. DT_{50} and DT_{90} values from these studies are summarised below.

Table 25 Summary of cyantraniliprole metabolite DT₅₀ and DT₉₀ values in soils

Compound	Site	DT ₅₀ -P	DT ₉₀ -P	pH(water)	% OC	CEC	%Clay
IN-JCZ38	Gross-Umstadt	12.1	63.4	6.98	1.0	11.1	12
IN-JCZ38	Lleida	5.0	29.9	7.93	2.0	17.5	38
IN-JCZ38	Nambsheim	3.6	19.4	8.12	1.2	7.0	15
IN-JCZ38	Sassafras	11.2	77.5	5.95	0.6	9.8	13

Cyantraniliprole

Compound	Site	DT ₅₀ -P	DT ₉₀ -P	pH(water)	% OC	CEC	%Clay
IN-JCZ38	Tama	9.1	237	6.38	2.2	23.4	34
IN-JSE76	Gross-Umstadt	219	726	6.98	1.0	11.1	12
IN-JSE76	Lleida	157	522	7.93	2.0	17.5	38
IN-JSE76	Nambsheim	86.3	1089	8.12	1.2	7.0	15
IN-JSE76	Sassafras	343	1319	5.95	0.6	9.8	13
IN-JSE76	Tama	1249	5929	6.38	2.2	23.4	34
IN-K5A79	Gross-Umstadt	42.8	142	7.6	1.2	10.2	20
IN-K5A79	Lleida	16.4	54.6	7.64	2	17.6	45
IN-K5A79	Nambsheim	25.4	84.3	7.55	1.6	7.7	13
IN-K5A79	Sassafras	105	350	6.8	1.7	7.1	11
IN-K5A79	Tama	130	432	7.67	1.9	17.1	41
IN-J9Z38	Gross-Umstadt	119	1117	6.99	1.1	8.67	6.8
IN-J9Z38	Lleida	104	346	7.89	1.63	15.74	32.8
IN-J9Z38	Nambsheim	76.8	255	7.95	1.57	7.57	9.6
IN-J9Z38	Sassafras	220	1168	5.37	1.4	7.39	7.6
IN-J9Z38	Tama	177	588	6.17	1.86	19.42	29.6
IN-K5A77	Gross-Umstadt	202	1216	6.99	1.1	8.67	6.8
IN-K5A77	Lleida	27.4	154	7.89	1.63	15.74	32.8
IN-K5A77	Nambsheim	24.0	109	7.95	1.57	7.57	9.6
IN-K5A77	Sassafras	328	1680	5.37	1.4	7.39	7.6
IN-K5A77	Tama	79	1460	6.17	1.86	19.42	29.6
IN-K5A78	Gross-Umstadt	305	1013	6.99	1.1	8.67	6.8
IN-K5A78	Lleida	500	1662	7.89	1.63	15.74	32.8
IN-K5A78	Nambsheim	977	3244	7.95	1.57	7.57	9.6
IN-K5A78	Sassafras	97.8	929	5.37	1.4	7.39	7.6
IN-K5A78	Tama	237	788	6.17	1.86	19.42	29.6
IN-PLT97	Gross-Umstadt	1744	5792	7.6	1.16	10.2	20
IN-PLT97	Lleida	439	1458	7.64	2	17.6	45
IN-PLT97	Nambsheim	711	2363	7.99	1.5	6.7	12
IN-PLT97	Sassafras	1837	6103	6.25	0.93	5.8	17
IN-PLT97	Tama	429	1426	6.71	2.5	22.5	35
IN-QKV54	Gross-Umstadt	215	714	6.9	1.4	9.8	13
IN-QKV54	Lleida	74	247	7.8	1.7	15.0	45
IN-QKV54	Nambsheim	138	457	7.3	2.0	11.7	11
IN-QKV54	Sassafras	179	595	5.3	0.8	5.4	3
IN-QKV54	Tama	161	536	6.7	3.3	17.3	31
IN-RNU71	Gross-Umstadt	107	356	6.9	1.4	9.8	13
IN-RNU71	Lleida	43	142	7.8	1.7	15.0	45
IN-RNU71	Nambsheim	42	139	7.3	2.0	11.7	11
IN-RNU71	Sassafras	175	580	5.3	0.8	5.4	3
IN-RNU71	Tama	46	152	6.7	3.3	17.3	31

Results for IN-JCZ38 reported by Wardrope (2007) [Ref: DP-17597]

Results for IN-JSE76 reported by McCorquodale & Wardrope (2007) [Ref: DP-17598]

Results for IN-K5A79 reported by Pedersen (2008) [Ref: DP-18868]

Results for IN-J9Z38 reported by McCorquodale (2006) [Ref: DP-17596]

Results for IN-K5A77 reported by Morriss (2006) [Ref: DP-17602]

Results for IN-K5A78 reported by McCorquodale & Wardrope (2007) [Ref: DP-17599]

Results for IN-PLT97 reported by Malekani (2008) [Ref: DP-19077]

Results for IN-QKV54 reported by Wardrope (2010) [Ref: DP-29555]

Results for IN-RNU71 reported by McCorquodale (2010) [Ref: DP-29801]

The aerobic degradation of cyantraniliprole in soil is outlined below.

Figure 7 Proposed degradation pathway for cyantraniliprole in aerobic soil

Soil photolysis

The meeting received two studies investigating the soil photolysis of cyantraniliprole on a sandy loam soil (Nambsheim, pH 7.51, 1.22% organic carbon) under continuous irradiation for up to 15 days at 20 ± 2 °C in the study on air-dried soil reported by Morriss (2005) [Ref DP-17056] and up to 30 days at 20 ± 2 °C in the study on moist soil reported by Wardrope (2010) [Ref: DP-28730].

In the 2005 study [Ref DP-17056] the moisture content of the air dried soil was about 14% and the radiolabels were applied to achieve a nominal concentration of 0.4 μ g ai/g soil (equivalent to 0.4 kg ai/ha soil) while in the 2010 study [Ref: DP-28730] a higher treatment rate equivalent to 1 kg ai/ha and the moisture level was maintained at about 75% field capacity throughout the study.

The experimental design of both studies were similar, with [CN-¹⁴C]-cyantraniliprole and [PC-¹⁴C]-cyantraniliprole being applied by pipette to thinly-layered soil and irradiated continuously in artificial irradiation (filtered to eliminate wavelengths of < 290 nm). Both studies included an NaOH trap for the collection of ¹⁴CO₂ and soil samples were extracted twice with acetone:formic acid (9:1)

followed by an extraction with acetone. The extracts were combined, concentrated to a small volume and analysed by reverse-phase HPLC. Identification of the degradation products was performed by HPLC and LC/MS/MS or TLC analysis.

No significant photolysis of cyantraniliprole was observed in the air-dried soil (2005) study, as the results from the irradiated and non-irradiated systems were very similar. One major degradation product, IN-J9Z38, was formed in both irradiated and non-irradiated systems, accounting for < 10% AR and three minor transformation products were observed, each of which were only observed at one sampling occasion and accounted for < 5% AR.

Using a first-order kinetic model, the DT_{50} and DT_{90} values for cyantraniliprole in nonirradiated samples were 115 days and 381 days, respectively. In irradiated samples the DT_{50} and DT_{90} values were 84 days and 278 days, respectively. Levels of IN-J9Z38 were rising at the end of the study.

To isolate the rate of degradation of cyantraniliprole due to photolysis only, the first order rate of degradation constant (k) in the non-irradiated samples was subtracted from the first order rate of degradation constant in the irradiated samples. The resulting corrected DT_{50} and DT_{90} values, extrapolated from this 15-day study, were 308 days and 1024 days, respectively.

In the 2010 moist soil study [Ref: DP-28730], cyantraniliprole residues decreased from a mean value of 102% AR at Day 0, to a mean of 1.2% AR after 30 days in the irradiated soil and to a mean of 33% AR in non-irradiated soil. Three significant degradation products were detected over the course of the study. One of these degradation products was identified as IN-J9Z38, reaching a maximum of 49% AR at Day 10 then declining to 34% AR in the irradiated soil and 49% AR in the non-irradiated soil by the end of the study. IN-J9Z38 was likely a result of non-photolytic reactions and has been seen earlier in all soil degradation studies in dark. Two additional degradation products were attributed to photo-degradations, and were identified as IN-RNU71 and IN-QKV54. IN-RNU71 reached a maximum mean value of 13% AR by the end of the study, while IN-QKV54 reached a maximum mean value of 14% AR at Day 10. A further six minor degradation products were also found at < 5% AR and with the exception of IN-NXX70 (3.8% AR), are likely due to non-photolytic reactions.

Using a simple first-order (SFO) model, the calculated DT_{50} and DT_{90} values for cyantraniliprole in irradiated soil were 6.9 days and 23 days, respectively and 16 days and 53.3 days, respectively in non-irradiated (dark control) samples.

To calculate the rate of degradation due to photolysis only, the first-order rate of degradation constant in the non-irradiated samples was subtracted from the first-order rate of degradation constant in the irradiated samples. The dark corrected DT50 and DT90 values were 12.2 days and 40.5 days respectively.

System	Kinetic model	Optimized parameters ± standard error	χ^2 error	r ²	DT ₅₀ (days)	DT ₉₀ (days)
Parent only irradiated soil	SFO	M0=97.01 ± 4.4 k_SFO=0.1001 ± 0.001	12	0.943	6.9	23.0
system						
	SFO ^a	k_photolysis=0.0567 ^b	—	-	12.2	40.6
Dark control system	SFO–SFO	M0 (AR)=95.44 \pm 5.27 k_cyantraniliprole (d ⁻¹)=0.0434 \pm 0.0056 k J9Z38=0.0234 \pm 0.0117	8	0.829	10.8	36
Parent plus four metabolites irradiated system	All SFO	M0= 96.2 ± 2.6 Fr_cyantraniliprole to J9Z38=0.66 ± 0.058 k cyantraniliprole=0.0976 ± 0.0059	12	0.94	7.1	23.6
		k IN-J9Z38=0.0269 ± 0.0072	25	0.716	25.8	85.6
		k IN-RNU71=0.065 ± 0.044	18	0.918	10.7	35.4
		k_IN-NXX70=0.442 ± 0.217	36	0.360	1.6	5.0
		k_IN-QKV54=0.091 ± 0.034	16	0.834	7.7	25.4

Table 26 Photodegradation, DT_{50} and DT_{90} for [¹⁴C]-cyantraniliprole in moist soil

^a Corrected first-order rate of degradation (k) calculated by subtracting the dark control sample

^bObtained by subtraction (0.1001–0.0434)

Kinetic modelling suggested that nearly 34% of the parent compound degraded via the photolysis pathway while ca 64% degraded via the soil degradation pathway, indicating that photolysis on the surface of moist soil may be a significant dissipation pathway for cyantraniliprole in the environment.

Significant degradation of cyantraniliprole in irradiated moist soil samples occurred primarily via the non-photolytic soil degradation transformations observed in the absence of light. IN-J9Z38 observed as a major metabolite along with IN-JCZ38, IN-JSE76, IN-K5A77, IN-K5A79, and IN-K7H19 were all identified in the aerobic soil metabolism study. Photodegradation products observed, IN-NXX70 and IN-QKV54, were derived sequentially from photolysis of cyantraniliprole; while IN-RNU71 is proposed to be generated from photolysis of IN-J9Z38. Similar light induced transformations have been observed in the aqueous photolysis and the outdoor water sediment study.

Degradation in soil

Ten field studies were conducted to investigate the degradation and mobility of cyantraniliprole under field conditions. In all of the trials a single application of 0.3 kg ai/ha or 0.45 kg ai/ha was made to bare soil in late spring or early summer.

Soil samples were collected, down to a maximum depth of 90 cm, immediately prior to application and at pre-determined intervals over an 18 month period. Samples were extracted in aqueous acetone, cleaned up via SPE columns and analysed using reverse phase HPLC separation coupled to tandem mass spectrometry (LC-MS/MS). The Limit of Quantification (LOQ) for all analytes was 0.001 mg/kg and mean recovery rates ranged from 74–96%. Analytes included the major soil metabolites (IN-J9Z38, IN-JCZ38, IN-JSE76, IN-K5A77, IN-K5A78, IN-K5A79, and IN-PLT97) in addition to the parent compound. In order to determine the extent of formation of photodegradation products, analysis of IN-NXX70, IN-QKV54, and IN-RNU71 was also carried out in a number of the studies and reported by Vogl & Sharma (2010) [Refs: DP-29556 and DP-29557].

The field studies demonstrated rapid degradation of the cyantraniliprole in field soils (17–51 day half lives). While laboratory studies suggested that pH had some effect on degradation rates, degradation rate under field conditions does not appear to be pH-dependent. Approximately 75% or more of the applied mass dissipated in most of the field studies during the study duration. Downward mobility of the parent compound as well as its metabolites was limited, with residues rarely found below 15 cm. Uptake of the test compound or its metabolites by the crop was generally very low, despite the systemic nature of cyantraniliprole. Soil metabolites, especially those from the IN-JCZ38 side of the degradation pathway (IN-JCZ38, IN-JSE76, and IN-K5A79) were not observed in the field studies to the extent that was expected based on the lab studies. Photochemical degradation was only a minor degradation mechanism (<< 5%) in the field.

Study Ref Location	kg ai/ha ^a	IN-J9Z38	IN-JCZ38	IN-JSE76	IN-K5A77	IN-K5A78	IN-K5A79	IN-PLT97
DP-17061 Spain	0.4	35.8	5.2	4.0	7.7	3.7	0.0	1.5
DP-17062 France	0.45	41.7	11.1	11.6	11.0	13.4	8.2	7.7
DP-17063 Germany	0.35	16.0	2.7	0.4	1.7	0.4	1.4	0.0
DP-17458 Italy	0.22	28.4	13.2	11.7	9.2	7.2	6.1	2.4
DP-17065 USA (WA)	0.43	33.3	9.8	5.6	10.2	7.9	3.5	4.4

Table 27 Maximum formation [%] of all metabolites in soil dissipation studies with cyantraniliprole

Study Ref Location	kg ai/ha ^a	IN-J9Z38	IN-JCZ38	IN-JSE76	IN-K5A77	IN-K5A78	IN-K5A79	IN-PLT97
DP-17066 USA (CA)	0.41	21.8	8.0	5.6	6.1	5.1	1.0	1.9
DP-17067 (USA (MO)	0.45	23.1	8.0	3.3	6.0	2.7	1.4	1.2
DP-17457 USA (TX)	0.23	36.2	5.5	13.7	7.0	16.8	2.1	6.7
DP-17064 USA (NY)	0.27	20.1	7.2	2.7	3.1	1.4	3.5	0.6
DP-17068 Canada (MB)	0.25	12.7	3.4	2.7	1.6	0.3	0.9	0.4
Overall max % -b	are soil	41.7	13.2	13.7	11.0	16.8	8.2	7.7
DP-17065 USA (WA) ^{CS}	0.45	26.9	10.9	8.7	6.4	4.0	3.3	2.4
DP-17066 USA (CA) ^{CS}	0.45	15.6	13.1	5.6	5.1	2.4	1.3	0.9
DP-17067 USA (MO) ^{CS}	0.45	14.7	8.2	5.3	3.1	2.4	3.8	2.3
Overall max % cr	opped soil	26.9	13.1	8.7	6.4	4.0	3.8	2.4

^a kg ai/ha used to compute % metabolite. Value is lower of either nominal applied or actual found on Day 0.

CS=cropped soil plot, all others bare soil plots

The mean temperature-normalized field DT_{50} value from all studies was 32.4 days, consistent with the mean laboratory derived value of 31.8 days.

Table28 Mean temperature-normalized field DT_{50} values from soil dissipation studies. (Snyder & White, 2010 [Ref: DP-31454].

Study location	Sand	Silt	Clay	Organic	pН	Soil Texture	DT ₅₀	Ref
	(%)	(%)	(%)	matter (%)			(days)	
Washington, USA	72	20	9	1.1	7.44	Sandy loam	31.4	DP-17065
California, USA	63	30	8	0.9	7.81	Sandy loam	20.9	DP-17066
Missouri, USA	16	60	24	2.3	6.2	Silt loam	50.8	DP-17067
Texas, USA	54	19	27	1.2	7.9	Sandy clay loam	22.9	DP-17457
New York, USA	80	16	4	3.2	6.5	Loamy sand	51.3	DP-17064
Manitoba, Canada	30	42	28	6.6	7.8	Clay loam	38.5	DP-17068
Nambsheim, France	22	48.8	29.2	3.6	7.93	Clay loam	16.9	DP-17062
Sevilla, Spain	84.4	6.8	8.8	2.5	8.22	Loamy sand	31.5	DP-17061
Goch, Germany	39	52	9	2.5	6.3	Silt loam	46.7	DP-17063
Milan, Italy	45	38	17	1.8	6	Loam	33.8	DP-17458
Geometric mean for all	field studie	es(based on	normalize	d best fit kineti	cs)		32.4	

Figure 8 Overall degradation pathway for cyantraniliprole in soil

Degradation in water/sediment systems

A study on the fate of $[{}^{14}C]$ -cyantraniliprole in the absence of light under anaerobic conditions in two aquatic sediment test systems was reported by McCorquodale & Wardrope, 2006 [Ref: DP-17059]. The sand sediment system, at a pH of 5.6 contained 2% organic carbon with overlying water at pH 6.1 and 56.4 mg/L organic carbon and the silt loam sediment system, at a pH of 7.7 contained 4.9% organic carbon with overlying water at pH 7.6 and 21.2 mg/L organic carbon. [CN-¹⁴C]-cyantraniliprole and [PC-¹⁴C]-cyantraniliprole were separately applied to the two sediment systems at a rate of 0.4 µg ai/g and incubated for up to 100 days in the dark at 20 ± 2 °C.

Under anaerobic conditions, cyantraniliprole degraded in the water phase and also partitioned to the sediment where it was further degraded to other metabolites that eventually were incorporated into the sediment organic fraction.

The major metabolite in both systems was IN-J9Z38 which increased to about 23% AR (0.09 ppm) at Day 28 before declining to 7.3% AR (0.03 ppm) in the sand system at the end of the study period (Day 100) and increased to about 40% AR (0.16 ppm) at Day 7 before declining to 5.1% AR (0.02 ppm) by day 100 in the silt loam system.

The IN-K5A77 metabolite accounted for greater than 5% AR at two non-subsequent sampling occasions in the silt loam sediment, but was a minor metabolite in the sand system and silt loam surface water. Additional minor metabolites IN-K5A78 and IN-JSE76 were also observed at $\leq 1.6\%$ and 0.8% AR, respectively. The remaining, combined, unidentified metabolites did not exceed *ca* 1.3% of the applied radioactivity.

The first-order DT_{50} and DT_{90} values for dissipation from the water phase and degradation in the water phase, sediment and total system are summarised below.

Compound	System	Endpoint type	DT ₅₀ (days)	DT ₉₀ (days)
Loamy sand sedime	ent	· · · · ·	·	
Cyantraniliprole	Water	Dissipation	15.9	53.0
	Total system	Degradation	25.1	83.4
	Water	Degradation	37.7	125
	Sediment	Dissipation	76.6	254
IN-J9Z38	Water	Dissipation	39.0	130
	Total system	Degradation	155	515
	Water	Degradation	324	1077
	Sediment	Degradation	122	405
Silt loam sediment	·			·
Cyantraniliprole	Water	Dissipation	2.74	9.09
	Total system	Degradation	3.87	12.8
	Water	Degradation	3.34	11.1
	Sediment	Dissipation	35.91	1191
IN-J9Z38	Water	Dissipation	17.8	59.1
	Total system	Degradation	272	905
	Water	Degradation	544	1807
	Sediment	Degradation	312	1036
IN-K5A77	Total system	Degradation	19.7	65.4

Table 29 Cyantraniliprole and metabolite DT_{50} and DT_{90} in anaerobic water sediment systems (in the absence of light)

The aerobic degradation of [¹⁴C]-cyantraniliprole in two irradiated water/sediment systems was studied by Wardrope & Sharma, 2010 [Ref: DP-24798]. A sand sediment system (pH 5.6 containing 2% organic carbon with overlying water at pH 6.1 and 56.4 mg/L organic carbon) and a silt loam sediment system (pH 7.7 containing 4.9% organic carbon with overlying water at pH 7.6 and 21.2 mg/L organic carbon) were treated with [PC-¹⁴C]-cyantraniliprole at a rate of 0.5 μ g ai/g and incubated outdoors for 14 days under natural sunlight at 23 ± 2 °C.

At zero time the majority of the radioactivity was detected in the surface water (92–94% AR) decreasing to about 16% AR (silt loam system) and 33% AR (sand system) by Day 14. Solvent extractable radioactivity in the sediment increased from 1% AR at Day 0, to a maximum value of 64% AR (silt loam system) and 55% AR (sand system) by Day 14. Non-extractable residues increased to a maximum value of 5–10% AR by the end of the study period. No radioactivity associated with ¹⁴CO₂ was detected throughout the study period.

HPLC analysis of irradiated water sediment systems demonstrated that $[^{14}C]$ -cyantraniliprole degraded rapidly in the water phase, from 90% AR at Day 0 to 1–2% AR at Day 14, through a combination of degradation and transfer into the sediment. One significant metabolite was identified as IN-J9Z38, found in the surface water at a maximum of about 15% AR at Day 3 (silt loam system) and 27% AR at Day 5 (sand system) then declining to 4.5% AR and 12% AR respectively on Day 14. Metabolite IN-RNU71 was present at about 4–10% AR and but not observed in dark controls, implying that it was a photolysis product of IN-J9Z38. Minor degradation products (14) accounted for a combined maximum of 6–11% AR and individually less than 3% AR.

The amount of $[{}^{14}C]$ -cyantraniliprole in the sediment of the irradiated silt loam system increased initially due to transfer from the water phase, from about 1% AR at Day 0 to a maximum of 22% AR at Day 2 (silt loam system) and 15% AR at Day 3 (sand system) before declining to 9% and 6% AR respectively at 14 days. Six to seven metabolites were detected in the sediment extracts including IN-J9Z38 which increased from about 2% AR at Day 1 to about 42% AR at Day 14. The IN-RNU71 metabolite was present at up to 5% AR and the remaining components each accounted for less than 3% AR.

Compound	System		% Applied Radioactivity Sampling Intervals (days) 0 1 2 3 5 7 10 14 .33 68.12 56.14 23.65 10.39 3.77 2.49 2.00 10 16.52 22.10 21.94 19.46 15.82 17.26 9.03 .43 84.64 78.24 45.59 29.85 19.59 19.75 11.03 .43 84.64 78.24 45.59 29.85 19.59 19.75 11.03 .43 84.64 78.24 45.59 29.85 19.59 19.75 11.03 .43 84.64 78.24 45.59 29.85 19.59 19.75 11.03 .43 84.64 78.24 45.59 29.85 19.59 19.75 11.03 .44 .50 3.11 14.75 14.53 13.42 8.65 4.50 D 1.57 3.16 22.48 32.57 35.28 <t< th=""></t<>							
			Sampling Intervals (days)							
		0	1	2	3	5	7	10	14	
Cyantraniliprole	Water	90.33	68.12	56.14	23.65	10.39	3.77	2.49	2.00	
	Sediment	1.10	16.52	22.10	21.94	19.46	15.82	17.26	9.03	
	Total	91.43	84.64	78.24	45.59	29.85	19.59	19.75	11.03	
	Water (dark)						17.55		9.67	
	Sediment (dark)						37.80		30.85	
	Total (dark)						55.35		40.52	
IN-J9Z38	Water	1.67	4.50	3.11	14.75	14.53	13.42	8.65	4.50	
	Sediment	ND	1.57	3.16	22.48	32.57	35.28	41.65	43.29	
	Total	1.67	6.07	6.27	37.23	47.10	48.70	50.30	47.79	
	Water (dark)						4.06		2.78	
	Sediment (dark)						21.04		39.01	
	Total (dark)						25.10		41.79	
IN-RNU71	Water	ND	ND	ND	1.53	4.27	3.71	3.78	2.52	
	Sediment	ND	ND	ND	ND	1.81	2.16	4.52	3.73	
	Total	ND	ND	ND	1.53	6.08	5.87	8.30	6.25	
Unidentified	Water	ND	1.96	2.76	1.89	3.04	4.00	6.20	6.11	
Radioactivity	Sediment	ND	1.09	ND	2.02	2.94	1.69	ND	8.11	
	Total	ND	3.05	2.76	3.91	5.98	5.69	6.20	14.22	
	Water (dark)						1.65		2.61	
	Sediment (dark)						1.93		2.46	
	Total (dark)						3.58		5.07	
Total extracted residues	Water	92.00	74.56	62.00	41.82	32.24	24.91	21.12	15.70	
	Sediment	1.10	19.19	25.26	46.44	56.78	54.96	63.44	64.15	
	Water (dark)						23.26		15.05	
	Sediment (dark)						60.77		72.31	

Table 30 Aerobic degradation of cyantraniliprole in an irradiated silt-loam sediment/water system

Table 31 Aerobic degrad	ation of cyantr	aniliprole in ar	irradiated sand	l sediment/water s	system
Table 51 Refoole degrad	anon or cyann	ampione m ai	i infautateu sant	i soument/water s	ystem

Compound	System				% Applie	ed Radioad	ctivity		
					Sampling	Intervals	(days)		
		0	1	2	3	5	7	10	14
Cyantraniliprole	Water	91.45	78.32	60.40	61.02	25.34	31.61	6.27	1.22
	Sediment	0.88	7.61	9.80	14.78	8.00	14.31	9.72	6.30
	Total	92.33	85.93	70.20	75.80	33.34	45.92	15.99	7.52
	Water (dark)						50.68		7.53
	Sediment (dark)						18.92		22.84
	Total (dark)						69.90		30.37
IN-J9Z38	Water	2.80	4.47	13.78	8.28	26.78	13.42	20.26	11.86
	Sediment	ND	2.06	7.31	7.16	20.88	15.05	34.86	41.71
	Total	2.80	6.53	21.09	15.44	47.66	28.47	55.12	53.57
	Water (dark)						9.91		8.03

Compound	System				% Applie	ed Radioad	ctivity		
		System % Applied Radioactivity Sampling Intervals (days) 0 1 2 3 5 7 10 1 Sediment (dark) 0 1 2 3 5 7 10 1 Sediment (dark) 1 2 3 5 7 10 1 Sediment (dark) ND ND 0.36 1.11 4.55 3.28 9.71 9. Sediment ND ND 0.36 1.11 4.55 3.28 9.71 9. Sediment ND ND ND ND ND ND 2.50 5. Total ND ND ND ND ND 2.50 5. Water ND 1.92 2.49 2.89 4.85 11.37 6.56 10 Sediment ND 1.86 0.73 ND 2.91 2.64 1.54 1. Water (dark) 0 0.60 2. </td <td></td>							
		0	1	2	3	5	7	10	14
	Sediment (dark)						13.78		48.27
	Total (dark)						23.69		56.30
IN-RNU71	Water	ND	ND	0.36	1.11	4.55	3.28	9.71	9.92
	Sediment	ND	ND	ND	ND	ND	ND	2.50	5.14
TT.:: 1 4:0° - 1	Total	ND	ND	0.36	1.11	4.55	3.28	12.21	15.06
Unidentified Radioactivity	Water	ND	1.92	2.49	2.89	4.85	11.37	6.56	10.16
Radioactivity	Sediment	ND	1.86	0.73	ND	2.91	2.64	1.54	1.59
	Total	ND	3.78	3.22	2.89	7.76	14.01	8.10	11.75
	Water (dark)						ND		1.75
	Sediment (dark)						0.60		2.85
	Total (dark)						0.60		4.60
Total extracted	Water	94.25	84.71	77.03	73.31	61.53	59.66	43.19	33.17
residues	Sediment	0.88	11.53	17.84	21.94	31.79	32.01	48.63	54.75
-	Water (dark)						60.59		17.32
	Sediment (dark)						33.30		73.96

The % AR for the silt loam and sandy irradiated sediment/water systems, the dark control systems and the pH 7 buffer system, were analyzed using ModelMaker to derive various degradation rates. The calculated DT_{50} and DT_{90} values for cyantraniliprole, IN-J9Z38 and IN-RNU71 are summarized below.

Table 32 Cyantraniliprole and metabolite DT_{50} and $\text{DT}_{90}\text{'s}$ in irradiated aerobic water sediment systems

Sediment/water system	Model (All SFO)	Component	$DT_{50}(days)$	DT90 (days)
Silt loam outdoor	Parent only, total system	cyantraniliprole	3.5	11.6
	Parent + 2 metabolites, total	cyantraniliprole	3.6	11.9
	system	IN-J9Z38	40.1	133
		IN-RNU71	13.5	45.0
	Parent + 2 metabolites, two	cyantraniliprole _sediment	2.6	8.3
	phase system	cyantraniliprole _water	6.7	
		IN-J9Z38_sediment	74.7	
		IN-J9Z38_water	3.9	
		IN-RNU71_water	3.1	
Sandy, outdoor	Parent only, total system	cyantraniliprole	4.4	14.8
	Parent + 2 metabolites, total	cyantraniliprole	4.5	14.9
	system	IN-J9Z38	40.8	135
	Parent + 2 metabolites, two	cyantraniliprole _sediment	2.3	7.6
	phase system	cyantraniliprole _water	10.1	33.4
		IN-J9Z38_sediment	49.4	
		IN-J9Z38_water	11.3	
		IN-RNU71_water	42.9	
Silt loam and sandy ^a dark control	Parent + 1 metabolite	cyantraniliprole	7.7	25.6
Buffer control outdoor	Parent + 3 metabolites	cyantraniliprole	14.1	47
		IN-J9Z38	2.5	8.4
		IN-RNU71	12.1	40.3

^a Both sediments modelled as replicates

In summary, cyantraniliprole degrades rapidly in outdoor water sediment systems, with total system DT_{50} values of 3.5 and 4.4 days in the silt loam and sand systems, respectively. The corresponding parent only total system DT_{90} values were 11.6 and 14.8 days in the silt loam and sand systems, respectively. The degradation rate was significantly faster than corresponding systems shielded from sunlight. The degradation rate was also faster than degradation observed in sterilized buffer exposed to sunlight.

Significant metabolites formed in the water/sediment system exposed to sunlight were IN-J9Z38 and IN-RNU71. While IN-J9Z38 was also identified in the silt loam and sand system dark controls, degradation was faster in the presence of light, suggesting that photodegradation is an important pathway. The formation of IN-RNU71, a photodegradate of IN-J9Z38 supports this conclusion.

Cyantraniliprole degradation in water/sediment systems involved a number of pathways and is outlined below.

Figure 9 Degradation of cyantraniliprole in outdoor water-sediment

Residues in rotational crops

Rotational crops metabolism

The Meeting received information on the fate of residues in lettuce, red beet, wheat, soya bean and wheat grown as rotational crops in cyantraniliprole-treated soil.

In a preliminary glasshouse study reported by Scott, Swain & Young (2006) [Ref: DP-15513], a sandy loam soil was treated with the equivalent of 0.3 kg ai/ha of $[PC^{-14}C]$ -cyantraniliprole (SC formulation) and wheat, soya bean, and red beet seeds were sown 25 and 120 days after treatment.

Crop samples from each soil-aging interval were taken, pulverised in dry ice and total radioactive residues (TRR) determined by combustion analysis and LSC. Samples were extracted using acetonitrile:water (9:1) followed by acetonitrile:water (7:3 or 1:1), cleaned up by SPE and analysed by HPLC, with confirmation by LC-MS and LC-MS/MS.

TRRs in wheat straw were 1.15 mg/kg and 0.75 mg/kg (cyantraniliprole equivalents) from the 25 and 120 day soil aging intervals, respectively. Lower TRRs were observed in the corresponding wheat chaff (0.37 and 0.21 mg/kg) and grain (0.02 mg/kg). Cyantraniliprole was the predominant residue in wheat straw (0.52 mg/kg) and chaff (0.23 mg/kg) after the 25-day soil aging period and 0.36 and 0.1 mg/kg respectively after the 120-day aging period. Components in straw from the 25-day aging period included IN-N7B69 (0.01 mg/kg), IN-N7B69 glucoside (0.07 mg/kg), IN-JCZ38 (0.08 mg/kg), IN-K5A77 (0.03 mg/kg), IN-JSE76 (0.1 mg/kg), IN-J9Z38 (0.05 mg/kg), IN-MLA84 (0.01 mg/kg), IN-K5A78 (0.01 mg/kg), IN-K5A79 (0.01 mg/kg) and polars (0.03 mg/kg). In general all the components (with the exception of IN-K5A78) were observed in the straw from the 120-day soil aging period but at lower concentrations. In grain, residues included cyantraniliprole, IN-N7B69, IN-N7B69 glucoside, IN-JSE76 and polars, each at ≤ 0.01 mg/kg.

Aging period	25 day						120 days					
	Grain		Chaff		Straw		Grain		Chaff		Straw	
Residue	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg
TRR		0.021		0.374		1.149		0.019		0.201		0.749
Extracted	90.5	0.019	87.7	0.328	94.6	0.966	97.6	0.019	106	0.213	92.4	0.692
Cyantraniliprole	9.7	0.002	61.6	0.23	45.3	0.521	14.6	0.003	47.4	0.101	47.9	0.359
Polars ^a	37.9	0.008	3.1	0.012	3.0	0.034	39.8	0.008	7.0	0.015	23.8	0.028
IN-K5A77	ND		ND		0.91	0.011	ND		ND		1.7	0.013
IN-K5A78	ND		ND		0.87	0.010	ND		5.9	0.013	ND	
IN-K5A79	ND		ND		2.5	0.029	ND		ND		ND	
IN-J9Z38	ND		4.1	0.015	4.6	0.053	ND		ND		5.7	0.043
IN-JCZ38	ND		5.0	0.019	6.5	0.075	ND		6.9	0.015	7.4	0.056
IN-JSE76	ND		3.3	0.012	9.2	0.105	3.5	0.001	8.3	0.018	9.4	0.07
IN-MLA84	ND		4.2	0.016	3.7	0.014	ND		ND		5.7	0.043
IN-N7B69	13.2	0.003	ND		1.1	0.013	25.1	0.005	ND		3.1	0.023
IN-N7B69gluc ^b	22.0	0.005	ND		6.7	0.07	ND		ND		1.9	0.014

Table 33 Distribution of residues in wheat planted as a rotational crop 25 days and 120 days after soil treatment with $[PC-^{14}C]$ -cyantraniliprole (0.3 kg ai/ha)

^a Polars are one or more components individually present at ≤ 0.02 mg/kg

^bIN-N7B69 glucoside

TRRs in soya bean foliage, pods, and seed grown in soil aged 25 days were 0.18, 0.09, and 0.04 mg/kg, respectively. TRRs in the corresponding soya bean fractions from the 120-day interval were 0.13, 0.07, and 0.02 mg/kg, respectively. Cyantraniliprole accounted for 0.07 and 0.02 mg/kg in soya bean foliage from the 25-day and 120-day soil aging periods, respectively. Other foliage components included IN-JCZ38 (0.01 mg/kg), IN-JSE76, IN-MLA84 (\leq 0.03 mg/kg) and IN-J9Z38 (0.02 mg/kg). Soya bean (seed) components included IN-JCZ38, IN-K5A78, IN-N7B69, and polar components, each at \leq 0.01 mg/kg. No cyantraniliprole was detected in the soya bean seed.

Aging period	25 day						120 day	s				
	Seed		Foliage		Pod		Seed		Foliage		Pod	
Residue	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg
TRR		0.038		0.185		0.094		0.018		0.127		0.073
Extracted	98.1	0.037	94.1	0.174	86.4	0.081	101	0.018	72.5	0.092	88.6	0.065
Cyantraniliprole	ND		36.3	0.067	14.0	0.013	ND		14.8	0.019	14.2	0.01
Polars ^a	ND		ND		ND		33.6	0.006	ND		11.2	0.008
IN-K5A77	ND		ND	ND		ND ND M		ND		ND		
IN-K5A78	ND		ND		ND		11.1	0.002	ND		ND	
IN-K5A79	ND		ND		ND		ND		ND		ND	
IN-J9Z38	ND		ND		ND		ND		15.6	0.02	ND	
IN-JCZ38	23.6	0.009	7.4	0.014	24.1	0.023	10.9	0.002	ND		9.4	0.007
IN-JSE76	ND		14.4	0.027	ND		ND		9.5	0.012	ND	
IN-MLA84			15.0	0.028	ND		ND		15.6	0.02	ND	
IN-N7B69	23.3	0.009	ND		ND		ND		ND		ND	
IN-N7B69gluc ^b	ND		ND		ND		ND		ND		ND	

Table 34 Distribution of residues in soya beans planted as a rotational crop 25 days and 120 days after soil treatment with [PC-¹⁴C]-cyantraniliprole (0.3 kg ai/ha)

^a Polars are one or more components individually present at \leq 0.02 mg/kg

^bIN-N7B69 glucoside

TRRs in red beet were 0.11 and 0.04 mg/kg for foliage samples; 0.02 mg/kg and 0.01 mg/kg in root samples taken from red beets grown in soil aged 25 and 120 days, respectively. No cyantraniliprole was found in beet foliage from either aging period. Foliage components included IN-N7B69 glucoside (≤ 0.05 mg/kg) and polars (0.01 mg/kg). Low levels (≤ 0.01 mg/kg) of cyantraniliprole, IN-N7B69 glucoside, IN-N7B69, IN-J9Z38, and IN-JCZ38 were found in beet roots.

Table 35 Distribution of residues in red beet planted as a rotational crop 25 days and 120 days after soil treatment with $[PC^{-14}C]$ -cyantraniliprole (0.3 kg ai/ha)

Aging period	25 day				120 days			
	Roots		Foliage		Roots		Foliage	
Residue	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg
TRR		0.021		0.107		0.008		0.039
Extracted	99	0.021	92	0.098	99	0.008	94	0.037
Cyantraniliprole	26.8	0.006	ND		16.9	0.001	ND	
Polars ^a	ND		ND		ND		12.9	0.005
IN-K5A77	ND		ND		ND		ND	
IN-K5A78	ND		ND		ND		ND	
IN-K5A79	ND		ND		ND		ND	
IN-J9Z38	11.5	0.002	ND		13.9	0.001	ND	
IN-JCZ38	ND		ND		9.6	0.001	ND	
IN-JSE76	ND		ND		ND		ND	
IN-MLA84	ND		ND		ND		ND	
IN-N7B69	24.8	0.005	ND		14.7	0.001	ND	
IN-N7B69gluc ^b	16.3	0.003	49.5	0.053	ND		40.0	0.015

^a Polars are one or more components individually present at \leq 0.02 mg/kg

^bIN-N7B69 glucoside

In a glasshouse study reported by Chapleo & Green (2012) [Ref: DP-15778], a sandy loam soil (pH 6.2, 1.4% organic matter) was treated with the equivalent of 0.45 kg ai/ha of either [CN-¹⁴C]-cyantraniliprole or [PC-¹⁴C]-cyantraniliprole (SC formulation) and wheat, lettuce, and red beet seeds were sown 30 and 120 days after treatment. After 365 days aging, a further sowing of spring wheat was made into the soil which had received the 30 day sowing.

Crop samples from each soil-aging interval were taken, pulverised in dry ice and total radioactive residues (TRR) determined by combustion analysis and LSC. Samples were extracted using either acetone:1N formic acid (9:1) or acetonitrile:water (9:1) followed by acetonitrile:water

(7:3) under ambient conditions, with further successive extractions conducted as necessary with enzymes (a mixture including β -glucosidase, cellulase and driselase), 1 M HCl (60 °C, 6 hours); 6 M HCl (90 °C, 6 hours), and 6 M NaOH (90 °C, 24 hours).

Samples were extracted and analysed within 4 weeks of harvest. Subsequent analysis of samples stored for (64 to 73 weeks at -20 °C) reported TRR values similar to the original levels and the residue compositions were also generally comparable.

Soil cores were taken from each soil-aging interval at the time of sowing and maturity (wheat), separated into 0 to 15 cm and 15 to 30 cm portions and each sample extracted with acetone:formic acid (9:1) followed by acetone.

Extracts were analysed using reversed phase HPLC eluted with a gradient of acetonitrile and water containing 0.1% formic acid. The effluent was passed through an UV detector (254 nm) to detect reference standards followed by fraction collection of the column eluate and subsequent LSC to quantify the radiolabelled materials present. LC/MS and also LC/MS/MS were conducted to confirm the presence of cyantraniliprole, IN-J9Z38 and IN-MLA84. LC/MS with multiple reaction monitoring (MRM) was conducted to confirm the presence of cyantraniliprole, IN-J8276, IN-K7H19, IN-MYX98, and IN-N7B69. Solid phase extraction and enzyme hydrolysis techniques were used to characterise the radioactivity in red beet foliage extracts.

Total radioactive residues in <u>wheat</u> from soil treated with $[^{14}C]$ -cyantraniliprole ranged from < 0.01 to 0.06 mg/kg for wheat grain, 0.09 to 0.31 mg/kg for early forage, 0.31 to 1.62 mg/kg for hay, and 0.27 to 0.97 mg/kg for straw. In <u>beet</u> roots, TRRs ranged from 0.01 to 0.03 mg/kg and were 0.01 to 0.14 mg/kg in foliage. In <u>lettuce</u>, TRRs ranged from 0.02 to 0.11 mg/kg.

TRR	Wheat				Lettuce	Red beet	
[mg/kg]	forage	hay	straw	grain		foliage	roots
[CN-14C]-cyantraniliprole							
1st rotation (30 days)	0.313	1.463	0.973	0.056	0.114	0.063	0.021
2nd rotation (120 days)	0.129	0.312	0.347	0.004	0.036	0.013	0.007
3rd rotation (365 days)	0.128	0.561	0.429	0.014			
[PC-14C]-cyantraniliprole							
1st rotation (30 days)	0.287	1.625	0.966	0.054	0.078	0.145	0.031
2nd rotation (120 days)	0.103	0.449	0.272	0.008	0.023	0.045	0.009
3rd rotation (365 days)	0.089	0.555	0.482	0.018			

Table 36 Total radioactive residues (TRRs), expressed as parent compound equivalents in wheat, lettuce and red beet from three rotations in soil treated with [CN-¹⁴C]-cyantraniliprole

Concentrations of total radioactivity in <u>soil</u> from the upper 0 to 15 cm horizon varied throughout the study but remained similar to values measured at 30 days post-application (0.21 to 0.38 mg/kg). Concentrations of total radioactivity in soil from the lower 15 to 30 cm horizon were < 0.01 mg/kg.

Table 37 Total radioactive residues in soil sampled from containers sown with wheat following single applications of 0.45 kg ai/ha [14 C]-cyantraniliprole, mg/kg (% TRR)

	Sowing	Maturity	Sowing	Maturity	Sowing	Maturity
Days after soil treatment	30	146	120	263	365	493
[CN- ¹⁴ C]-cyantraniliprole						
Extracted	0.353 (93.2%)	0.092 (79.0%)	0.166 (81.6%)	0.218 (70.9%)	0.217 (73.5%)	0.236 (67.4%)
Unextracted	0.026 (6.8)	0.025 (20.9)	0.037 (18.3)	0.089 (29.0)	0.078 (26.5)	0.114 (32.6)
Total	0.379	0.117	0.203	0.307	0.295	0.350
[PC-14C]-cyantraniliprole						

	Sowing	Maturity	Sowing	Maturity	Sowing	Maturity
Days after soil treatment	30	146	120	263	365	493
Extracted	0.195	0.158	0.167	0.150	0.109	0.141
	(93.5%)	(81.3%)	(83.1)	(74.2%)	(66.7%)	(63.3%)
Unextracted	0.014	0.036	0.034	0.052	0.054	0.081
	(6.5)	(18.7)	(16.9)	(25.8)	(33.3)	(36.7)
Total	0.209	0.194	0.201	0.202	0.163	0.222

The predominant residue was cyantraniliprole, contributing 14–36% TRR ($\leq 0.02 \text{ mg/kg}$) in wheat grain, 21–24% TRR (< 0.01 mg/kg) in red beet roots, and 40–69% TRR (0.01 to 0.08 mg/kg) in lettuce. Cyantraniliprole was also the principal radioactive component (0.01 to 0.85 mg/kg, 6 to 73% TRR) in wheat forage (71–73% TRR, 0.2–0.23 mg/kg), hay (52–53% TRR, 0.78–0.85 mg/kg) and straw 941–45% TRR, 0.4–0.44 mg/kg). Unchanged cyantraniliprole in the beet foliage accounted for no more than 0.005 mg/kg (4.1% TRR).

The IN-MYX98 metabolite was found in lettuce at up to 16% TRR (0.007 mg/kg in the 120 day rotation. Minor components individually present at \leq 0.01 mg/kg (< 10% TRR) included IN-J9Z38, IN-JCZ38, IN-K5A79, IN-K7H19, IN-MLA84, and IN-N7B69 in grain; IN-DBC80, IN-J9Z38, IN-K5A77, IN-MYX98, and IN-N7B69 in red beet roots; and IN-J9Z38, IN-JCZ38, IN-MLA84 in lettuce. Uncharacterised fractions accounted for \leq 0.01 mg/kg.

The main metabolites detected in wheat forage, hay and straw were IN-J9Z38 (≤ 0.18 mg/kg, 12% TRR), IN-K7H19 (≤ 0.06 mg/kg, 11% TRR), and IN-MLA84 (≤ 0.11 mg/kg, 6.6% TRR) and IN-JCZ38 (≤ 0.05 mg/kg),; concentrations of minor metabolites (IN-DBC80, IN-HGW87 IN-JSE76, IN-K5A77, IN-K5A78, IN-K5A79, IN-MYX98, IN-N7B69, and IN-NBC94) were individually ≤ 0.02 mg/kg. Unextracted residues in the wheat feed samples accounted for no more than 10% TRR.

Red beet foliage contained low level ($\leq 0.01 \text{ mg/kg}$) metabolites, IN-DBC80, IN-HGW87, IN-J9Z38, IN-JCZ38, IN-JSE76, IN-K5A77, IN-K5A78, IN-K5A79, IN-K7H19, IN-MLA84, IN-MYX98, IN-N7B69, and IN-NBC94. Unidentified components accounted for up to 0.03 mg/kg. Following enzyme treatment, these unidentified components decreased and levels of cyantraniliprole and IN-N7B69 increased, indicating that both IN-N7B69 and cyantraniliprole were present in conjugated form or associated with soluble natural products. Unextracted residues accounting for no more 9.1% TRR and did not exceed 0.01 mg/kg.

	[CN- ¹⁴ C]	-cyantranilip	orole		[PC- ¹⁴ C]-	cyantranilip	role	
Planting interval:	30 DAT		365 DAT	,	30 DAT		365 DAT	
	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg
TRR (mg/kg) ^a	0.056		0.014		0.054		0.018	
Solvent extractable	43.3	0.024	56.5	0.008	54.5	0.03	71.2	0.013
Cyantraniliprole	20.0	0.011	33.0	0.005	36.3	0.02	13.6	0.003
IN-J9Z38	2.9	0.002	2.8	< 0.001	5.1	0.003	ND	
IN-JCZ38	5.7	0.003	ND		0.8	< 0.001	ND	
IN-K5A79	ND	•	ND		ND	•	3.4	0.001
IN-K7H19	ND		ND		ND		7.2	0.002
IN-MLA84	1.9	0.001	ND		1.2	0.001	ND	
IN-N7B69	ND		ND		ND		5.2	0.001
Total unidentified metabolites	1.3	< 0.001	ND		2.3	0.001	23.8	0.005
Total solubilized fractions ^b	48.2	0.026			35.1	0.019		
Total extractable ^c	91.5	0.050	56.5	0.008	89.6	0.049	71.2	0.013
Terminal unextracted ^d	14.1	0.008	43.6	0.006	8.1	0.004	28.8	0.005

Table 38 Nature of residue in wheat grain from plants sown in soil treated with 0.45 kg ai/ha [¹⁴C]-cyantraniliprole

^a Solvent extractable + solubilised fractions + unextracted

^b Sum of residues released in enzyme, acid and alkaline digests; no digest contained > 0.01 mg/kg

^c Values include losses or gains incurred during processing of samples.

^d Residues remaining in the PES after exhaustive extraction

	[CN-14C]-cyantranilip	orole	[PC-14C]-cyantranili	prole
	% TRR	mg/kg	% TRR	mg/kg
TRR (mg/kg ^a	0.021		0.031	
Solvent extractable ^b	83.3	0.017	87.2	0.027
Cyantraniliprole	21.0	0.005	23.8	0.007
IN-DBC80			4.1	< 0.001
IN-J9Z38	3.2	< 0.001	5.5	0.002
IN-K5A77	1.2	< 0.001	2.2	< 0.001
IN-MYX98	ND	ND	2.4	0.001
IN-N7B69	6.3	< 0.001	2.9	< 0.001
Total unidentified metabolites	10.3	< 0.001	8.6	0.001
Unextracted	16.4	0.003	15.4	0.005

Table 39 Nature of residue in red	beet roots	from	plants	sown	in sc	oil 30	days	after	treatment	with
0.45 kg ai/ha [¹⁴ C]-cyantraniliprole										

^a Solvent extractable + unextracted

^b Values include losses or gains incurred during processing of samples.

Table 40 Nature of residue in lettuce foliage from plants sown in soil treated with 0.45 kg ai/ha [¹⁴C]-cyantraniliprole

	[CN- ¹⁴ C]-0	cyantranilip	orole		[PC- ¹⁴ C]-cyantraniliprole			
Planting interval:	30 DAT		120 DAT		30 DAT		120 DAT	
	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg
TRR (mg/kg) ^a	0.114		0.036		0.078		0.023	
Solvent extractable ^b	89.4	0.103	97.9	0.035	90.2	0.070	102.4	0.024
Cyantraniliprole	68.1	0.079	69.1	0.025	60.0	0.047	39.6	0.009
IN-J9Z38	4.5	0.005	1.4	0.001	1.2	0.001	ND	ND
IN-JCZ38	3.7	0.005	1.6	0.001	ND	ND	ND	ND
IN-MLA84	4.3	0.005	2.3	0.001	3.5	0.003	2.1	< 0.001
IN-MYX98	0.7	0.001	16.4	0.007	ND	ND	9.1	0.003
Total unidentified metabolites	0.6	0.001	1.5	0.001	6.7	0.002	15.8	0.004
Unextracted	6.5	0.007	4.7	0.002	8.2	0.006	4.1	0.001

^a Solvent extractable + unextracted

^b Values include losses or gains incurred during processing of samples.

Planting interval:	30 DAT		120 DAT		365 DAT	
	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg
[CN- ¹⁴ C]-cyantraniliprole						
TRR (mg/kg) ^a	0.313		0.129		0.128	
Solvent extractable	84.4	0.263	95.3	0.122	81.8	0.105
Cyantraniliprole	72.7	0.226	70.5	0.090	25.2	0.032
IN-J9Z38	4.0	0.013	11.0	0.015	3.9	0.005
IN-JCZ38	1.8	0.006	1.1	0.001	6.2	0.008
IN-MLA84	3.9	0.012	4.8	0.006	6.8	0.008
Total unidentified metabolites	ND		ND		5.1	0.006
Total solubilized fractions ^b					4.7	0.006
Total extractable ^c	84.4	0.263	95.3	0.122	86.5	0.111
Terminal unextracted ^d	7.6	0.024	9.8	0.013	8.5	0.011
[PC- ¹⁴ C]-cyantraniliprole						
TRR (mg/kg) ^a	0.287		0.103		0.089	
Solvent extractable	93.0	0.267	88.7	0.092	86.7	0.077
Cyantraniliprole	71.0	0.205	34.6	0.036	6.4	0.006
IN-J9Z38	3.8	0.011	11.5	0.011	ND	
IN-JCZ38	1.6	0.004	0.5	0.001	ND	

Table 41 Nature of residue in wheat forage from plants sown in soil treated with 0.45 kg ai/ha $[^{14}C]$ -cyantraniliprole

Planting interval:	30 DAT		120 DAT		365 DAT	
	% TRR	mg/kg	% TRR	mg/kg	% TRR n	ng/kg
IN-JSE76	0.2	0.001	6.2	0.007	1.2	0.001
IN-HGW87	0.5	0.002	ND		3.4	0.003
IN-K7H19	1.4	0.005	ND		1.2	0.001
IN-K5A79	ND		ND		2.1	0.002
IN-MYX98	ND		ND		1.5	0.001
IN-MLA84	5.0	0.015	1.5	0.002	ND	
IN-N7B69	ND		3.3	0.004	4.4	0.004
Total unidentified metabolites	2.9	0.008	12.3	0.012	27.0	0.023
Total solubilized fractions ^b			4.2	0.004	4.7	0.004
Total extractable ^c	93.0	0.267	92.9	0.096	91.4	0.081
Terminal unextracted ^d	9.0	0.026	7.1	0.007	8.7	0.008

 a Solvent extractable + solubilised fractions + unextracted

^b Total solubilized fractions= residues released by enzymes

^c Values include losses or gains incurred during processing of samples.

^dResidues remaining in the PES after enzyme extraction

Table 42 Nature of residue in wheat hay from plants sown in soil treated with 0.45 kg ai/ha $[^{14}C]$ -cyantraniliprole

	[CN- ¹⁴ C	C]-cyantr	aniliprole	e			[PC- ¹⁴ C]-cyantra	aniliprole	;		
Planting interval:	30 DAT		120 DA	Т	365 DA	Т	30 DAT		120 DA	Т	365 DA	Т
	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg
TRR (mg/kg) ^a	1.463		0.312		0.561		1.625		0.449		0.555	
Solvent extracted	60.0	0.88	77.4	0.241	79.4	0.447	83.8	1.361	81.5	0.366	77.2	0.429
Cyantraniliprole	53.4	0.78	50.0	0.155	40.8	0.23	52.2	0.848	35.8	0.161	29.5	0.163
IN-DBC80		•					1.5	0.025	ND		1.5	0.008
IN-HGW87	ND		ND		0.6	0.004	0.3	0.005	ND		ND	•
IN-J9Z38	12.3	0.18	7.2	0.022	12.9	0.073	10.9	0.178	6.6	0.03	7.1	0.039
IN-JCZ38	2.3	0.03	ND		3.7	0.021	2.7	0.044	5.1	0.022	4.0	0.022
IN-JSE76	ND		1.7	0.005	1.0	0.006	0.6	0.01	ND		2.6	0.015
IN-K5A77	ND		ND		0.8	0.004	ND		ND		0.2	0.001
IN-K5A78	0.1	0.001	ND		0.2	0.001	ND		ND		0.3	0.001
IN-K5A79	ND		ND		0.7	0.004	ND		0.8	0.004	0.2	0.001
IN-K7H19	ND		ND		1.3	0.007	0.9	0.014	ND		10.9	0.060
IN-MLA84	6.1	0.09	3.8	0.012	5.5	0.031	6.6	0.108	2.7	0.012	2.9	0.016
IN-MYX98	0.8	0.01	1.2	0.004	3.3	0.018	ND		5.1	0.024	ND	
IN-N7B69	1.3	0.02	ND		1.6	0.01	0.3	0.005	ND		0.7	0.004
IN-NBC94	ND	•	ND		0.3	0.002	ND		ND		ND	•
Total unidentified	1.4	0.02	4.9	0.015	3.3	0.017	3.5	0.057	6.2	0.027	9.7	0.054
Total solubilized b	35.4	0.52	11.5	0.036	12.6	0.08	9.8	0.152	10.9	0.049	7.0	0.038
Total extractable ^(c)	95.4	1.4	88.9	0.277	92.0	0.517	93.6	1.521	92.4	0.415	84.2	0.467
Unextracted (d)	2.1	0.03	7.6	0.024	7.0	0.039	4.3	0.07	5.6	0.025	7.9	0.044

^a Solvent extractable + solubilised fractions + unextracted

^b Sum of residues released by enzyme, acid and/or alkali digestion

^c Values include losses or gains incurred during processing of samples.

^dResidues remaining in the PES after exhaustive extraction

	[CN- ¹⁴	C]-cyanti	aniliprol	le			[PC- ¹⁴ C]-cyantrai	niliprole			
Planting interval	30 DA	Г	120 DA	T	365 DA	Т	30 DAT		120 DA	Т	365 DA	Т
	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg	%TRR	mg/kg
TRR (mg/kg) ^a	0.973		0.347		0.429		0.966	·	0.272	·	0.482	
Solvent extracted	81.9	0.797	80.2	0.278	66.9	0.288	79.8	0.771	72.2	0.196	93.2	0.448
Cyantraniliprole	44.8	0.437	38.4	0.133	33.0	0.141	41.3	0.399	22.9	0.062	35.1	0.153
IN-DBC80							ND		ND		1.8	0.008
IN-HGW87	ND		ND		ND	0.6	0.006	8.1	0.021	ND		
IN-J9Z38	10.9	0.108	4.5	0.016	8.9	0.038	9.5	0.091	2.2	0.006	8.1	0.035
IN-JCZ38	4.3	0.040	4.7	0.017	1.8	0.007	5.5	0.053	0.6	0.001	5.5	0.024
IN-JSE76	1.5	0.013	ND	ND	4.8	0.021	0.8	0.008	0.2	< 0.001	3.9	0.017
IN-K5A77	0.3	0.002	0.6	0.002	1.2	0.005	0.3	0.003	ND		1.3	0.007
IN-K5A78	0.2	0.002	ND		ND		ND		ND		0.4	0.002
IN-K5A79	1.6	0.015	6.4	0.024	1.5	0.007	ND		1.1	0.003	ND	
IN-K7H19	0.3	0.003	ND	ND	0.8	0.003	ND		0.1	< 0.001	10.1	0.043
IN-MLA84	5.8	0.056	3.6	0.012	5.1	0.022	5.5	0.053	0.6	0.002	4.5	0.019
IN-MYX98	1.2	0.012	5.8	0.02	ND		1.5	0.014	0.1	< 0.001	1.6	0.007
IN-N7B69	ND	ND	0.5	0.002	4.2	0.018	ND		2.2	0.006	ND	
IN-NBC94	ND		ND		ND		0.5	0.004	ND		0.1	0.001
Total unidentified	1.5	0.013	4.4	0.018	1.7	0.007	5.9	0.054	12.4	0.029	12.7	0.057
Total solubilised b	10.7	0.103	10.7	0.037	13.3	0.057	9.9	0.095	4.2	0.011	6.4	0.031
Total extractable ^c	92.6	0.9	90.9	0.315	80.2	0.345	89.7	0.866	75.6	0.205	99.6	0.436
Unextracted d	6.9	0.067	8.2	0.028	8.0	0.034	5.8	0.056	8.1	0.022	9.7	0.047

Table 43 Nature of residue in wheat straw from plants sown in soil treated with 0.45 kg ai/ha $[^{14}C]$ -cyantraniliprole

^a Solvent extractable + solubilised fractions + unextracted

^b Sum of residues released by enzyme, acid and/or alkali digestion

^c Values include losses or gains incurred during processing of samples.

^d Terminal unextracted=Residues remaining in the PES after exhaustive extraction

Table 44	Nature	of	residue	in	red	beet	foliage	from	plants	sown	in	soil	treated	with	0.45	kg a	ıi/ha
[¹⁴ C]-cya	ntranilip	orol	e													-	

	[CN- ¹⁴ C]	-cyantranilip	orole		[PC- ¹⁴ C]- cyantraniliprole			
Planting interval:	30 DAT	30 DAT		120 DAT			120 DAT	
	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg
TRR (mg/kg) ^a	0.063		0.013		0.145		0.045	
Solvent extractable ^b	94.1	0.059	95.3	0.012	94.0	0.136	85.5	0.038
Cyantraniliprole	3.0	0.003	2.1	< 0.001	4.1	0.005	0.8	< 0.001
IN-DBC80	ND	•	ND		1.7	0.002	ND	
IN-HGW87	ND		ND		0.2	< 0.001	ND	
IN-J9Z38	ND		ND		ND		0.7	< 0.001
IN-JCZ38	1.5	0.001	2.0	< 0.001	1.8	0.003	ND	
IN-JSE76	ND	•	ND		1.0	0.001	3.8	0.002
IN-K5A77	ND		ND		0.2	< 0.001	ND	
IN-K5A78	ND		ND		0.6	< 0.001	ND	
IN-K5A79	1.1	0.001	ND		5.0	0.007	ND	
IN-K7H19	0.7	< 0.001	ND		3.2	0.006	ND	
IN-MLA84	ND	•	ND		1.7	0.002	ND	
IN-MYX98	ND		ND		0.5	< 0.001	ND	
IN-N7B69	0.7	< 0.001	ND		1.4	0.002	ND	
IN-NBC94	ND	•	ND		ND		0.7	< 0.001
Total unidentified metabolites	79.9 ^(c)	0.048	52.3	0.006	66.2 ^(d)	0.095	37.2	0.012
Unextracted	7.7	0.005	9.1	0.001	6.8	0.010	5.6	0.003

^a Solvent extractable + unextracted

^b Values include losses or gains incurred during processing of samples for HPLC.

 $^{\rm c}$ Comprised of 12 components, none > 0.01 mg/kg

^d Comprised of 12 components, individually ≤ 0.03 mg/kg

The metabolic fate of cyantraniliprole in the confined rotational crop study was complex with the formation of over 20 metabolites. A proposed pathway for the metabolism of cyantraniliprole in confined rotational crops is presented below:

Figure 10 Proposed metabolic pathway for cyantraniliprole in confined rotational crops

Rotational crop field studies

In one European (Scotland) study reported by Haigh & Woodmansey, 2010 [Ref: DP-21447], bare soil plots were treated with two applications of 0.1 kg ai/ha cyantraniliprole (OD formulation) about 7 days apart to achieve a total application rate of 0.2 kg ai/ha and spinach, spring barley and radish were planted as rotational crops, 14, 30, 120, and 270 days after the last application.

In a further European study (Spain), reported by Old & Woodmansey, 2010 [Ref: DP-19678], bare soil plots were treated with three applications of 0.15 kg ai/ha cyantraniliprole (OD formulation) about 7 days apart to achieve a total application rate of 0.45 kg ai/ha and lettuce, spring oats, soya bean and radish were planted as rotational crops, 14, 30, 120, and 365 days after the last application.

All crop samples were harvested at normal maturity, with immature samples also being taken for some leafy crops. Samples were stored for up to 39 months before extraction and analysis (within 72 days after extraction) for cyantraniliprole and six metabolites using analytical method DP15736, with reported LOQs of 0.01 mg/kg. Mean recovery rates ranged from 76–102% (cyantraniliprole) and 71–109% (metabolites) in samples spiked with 0.01 to 0.5 mg/kg.

With the exception of soya bean (seeds and forage) and radish tops, residues of cyantraniliprole and metabolites were not found in succeeding crops following bare ground applications of 0.2-0.45 kg ai/ha.

Table 45 Cyantraniliprole residues in rotational crops (30-day plantback interval) following bare ground applications of cyantraniliprole in Europe

Commodity		Total application	Plant back interval	cyantraniliprole	IN-N7B69
		rate	(days)		
		(kg ai/ha)			
Root/tubers	Radish roots	0.2-0.45	14	ND	ND
			30	ND	ND
			120	ND	ND
			275-365	ND	ND
Root/tubers	Radish tops	0.2-0.45	14	0.005	ND
			30	0.007	ND
			120	0.006	ND
			275-365	ND	ND
Legume	Soya bean seeds	0.45	14	ND	0.006
			30	ND	0.008
			120	ND	ND
			365	ND	ND
Legume	Soya bean forage	0.45	14	0.027	ND
			30	0.024	ND
			120	0.018	ND
			365	ND	ND
Cereal	Oat, barley ears	0.45	14	ND	ND
	-		30	ND	ND
			120	ND	ND
			365	ND	ND
Cereal	Oat, barley grain	0.2-0.45	14	ND	ND
			30	ND	ND
			120	ND	ND
			275-365	ND	ND
Cereal	Oat, barley forage	0.2-0.45	14	ND	ND
			30	ND	ND
			120	ND	ND
			275-365	ND	ND
Cereal	Oat, barley hay	0.2	14	ND	ND
			30	ND	ND
			120	ND	ND
			275	ND	ND
Cereal	Oat, barley straw	0.2-0.45	14	ND	ND
			30	ND	ND
			120	ND	ND
			275-365	ND	ND
Leafy	Immature leaves	0.2-0.45	14	ND	ND
vegetables	(spinach, lettuce)		30	ND	ND
-			120	ND	ND
			275-365	ND	ND
Leafy	Mature leaves	0.2-0.45	14	ND	ND
vegetables	(spinach, lettuce)		30	ND	ND
-	/		120	ND	ND
			275-365	ND	ND

Note: Residues of other metabolites (IN-J9Z38, IN-JCZ38, IN-K7H19, IN-MLA84 and IN-MYX98) not detected in any samples

Five field rotational crop studies were conducted in North America and two studies were conducted in Europe, all involving bare soil treatments with cyantraniliprole prior to planting a wide range of representative rotational crops.

In three North American studies, bare soil plots were treated with 2–3 applications of cyantraniliprole (OD formulation) about 5 days apart to achieve a total application rate of 0.45 kg ai/ha and four rotational crops (lettuce/spinach, oat, radishes and soya bean) were planted 14, 30, 120, and 365 days after the last application. These studies were reported by Thiel, 2009 and 2010 [Ref: DP-19640][Ref: DP-19639][Ref: DP-21446].

Table 46 Cyantraniliprole residues in rotational crops following bare ground applications of 0.45 kg ai/ha cyantraniliprole in North America. [Ref DP-19640, DP-19639, DP-21446]

Commodity	PBI (days)	Residues (mg/kg)					
	` . ´	Cyantraniliprole	IN-J9Z38	IN-JCZ38	IN-MLA84		
Study DP-19640 (Loamy sand, 1.0%	6 OM, pH 7.4, C	EC 12.4)					
Lettuce, mature leaves	14	0.033	ND	0.007	0.004		
	30	0.011	ND	0.008	ND		
	120	ND	ND	ND	ND		
	365	ND	ND	ND	ND		
Lettuce, immature leaves	14	0.039	ND	0.006	0.005		
	30	0.029	ND	0.006	ND		
	120	ND	ND	ND	ND		
	365	ND	ND	ND	ND		
Oat forage	14	0.036	0.007	0.014	ND		
-	30	0.032	0.008	0.019	ND		
	120	0.048	0.003	0.015	ND		
	365	ND	ND	ND	ND		
Oat grain	14	0.007	ND	ND	ND		
-	30	0.005	ND	ND	ND		
	120	ND	ND	ND	ND		
	365	ND	ND	ND	ND		
Oat hay	14	0.13	0.035	0.04	ND		
Ş	30	0.063	0.019	0.056	ND		
	120	0.021	0.008	0.029	ND		
	365	ND	ND	ND	ND		
Oat straw	14	0.045	0.029	0.018	ND		
	30	0.022	0.01	0.019	ND		
	120	0.015	0.015	0.029	ND		
	365	ND	ND	ND	ND		
Radish root	14	0.003	ND	ND	ND		
	30	ND	ND	ND	ND		
	120	ND	ND	ND	ND		
	365	ND	ND	ND	ND		
Radish top	14	0.046	0.006	0.005	ND		
	30	0.041	0.005	0.006	ND		
	120	ND	ND	ND	ND		
	365	ND	ND	ND	ND		
Sova bean forage	14	0.18	0.008	0.022	0.023		
ooyu ooun lorugo	30	0.14	0.009	0.024	0.02		
	12.0	0.048	ND	0.025	0.005		
	365	ND	ND	ND	ND		
Sova bean hay	14	0.023	ND	0.023	0.012		
	30	0.012	ND	0.037	0.007		
	12.0	0.018	ND	0.013	0.008		
	365	ND	ND	0.007	ND		
Sova bean seed	14	ND	ND	ND	ND		
	30	ND	ND	ND	ND		
	120	ND	ND	ND	ND		
	365	ND	ND	ND	ND		
DP-19639 (Loamy sand 0.6% OM	pH 7.5)	1.12	1.12	11.0			
Spinach mature leaves	14	ND	ND	ND	ND		
Spinicelly mature reaves	30	ND	ND	ND	ND		
	119	ND	ND	ND	ND		
	367	ND	ND	ND	ND		
Spinach immature leaves	14	ND	0.003	ND	ND		
	A 1 1				· · · · · · · · · · · · · · · · · · ·		

Commodity	PBI (days)	Residues (mg/kg)			
·		Cyantraniliprole	IN-J9Z38	IN-JCZ38	IN-MLA84
	30	0.003	0.005	ND	ND
	119	ND	0.004	ND	ND
	367	ND	ND	ND	ND
Oat grain	14	0.008	ND	ND	ND
0	30	0.01	ND	ND	ND
	119	ND	ND	ND	ND
	365	ND	ND	ND	ND
Oat hav	14	0.066	0.014	0.039	ND
	30	0.096	0.021	0.048	ND
	119	0.006	0.008	0.004	ND
	365	ND	ND	ND	ND
Oat spring forage	14	0.018	ND	0.005	ND
I B B	30	0.015	ND	0.007	ND
	119	ND	ND	ND	ND
	365	ND	ND	ND	ND
Oat straw	14	0.052	0.02	0.023	ND
	30	0.073	0.033	0.029	ND
	119	0.008	0.017	0.007	ND
	365	ND	ND	ND	ND
Oat winter forage	14	0.014	ND	0.006	ND
out whiter forage	30	0.022	0.003	0.01	ND
	119	ND	ND	ND	ND
	365	ND	ND	ND	ND
Radish root	14	ND	0.003	ND	ND
	31	ND	0.003	ND	ND
	119	ND	0.004	ND	ND
	367	ND	ND	ND	ND
Radish ton	14	0.019	0.008	0.007	ND
Kuulsh top	31	0.019	0.008	0.005	ND
	119	ND	0.005	ND	ND
	367	ND	ND	ND	ND
Sova bean forage	14	0.043	0.005	0.014	0.015
boya bean lolage	31	0.013	ND	0.015	0.015
	119	ND	ND	ND	ND
	365	ND	ND	ND	ND
Sova bean hay	14	0.1	0.023	0.054	0.062
Soya bean nay	31	0.058	0.023	0.034	0.002
	119	ND	ND	ND	ND
	365	ND	ND	ND	ND
Sova hean seed	14	ND	ND	ND	ND
boya bean seed	31	ND	ND	ND	ND
	119	ND	ND	ND	ND
	365	ND	ND	ND	ND
DP-21446 (Loam 1.8% OM pH 6.9	CEC 12 8)	11D	ND	11D	ND
Lettuce immature leaves	16	0.026	0.006	0.005	ND
Lettuce, miniature reaves	29	0.020	0.000	0.003	ND
	366	ND	ND	ND	ND
Lettuce mature leaves	16	0.011	0.003	ND	ND
Lettuce, mature reaves	29	0.011	0.003	0.004	ND
	366	ND	ND	ND	ND
Radish top	16	0.039	0.005	0.007	ND
radion top	29	0.011	0.007	0.005	ND
	121	0.01	0.007	0.003	ND
	366	ND	ND	ND	ND
Radish root	16	0.005	ND	ND	ND
1/2015111001	20	0.005	0.01	0.003	ND
	29 121	0.015	0.01	0.003	ND
	366	ND	ND	ND	ND
Oat forage	14	0.011	ND	0.004	ND
Val 101 age	21	0.011		0.004 ND	
	51	0.000	ND	IND.	IND .

Commodity	PBI (days)	Residues (mg/kg)	Residues (mg/kg)					
		Cyantraniliprole	IN-J9Z38	IN-JCZ38	IN-MLA84			
	188	0.004	ND	ND	ND			
	365	ND	ND	ND	ND			
Oat hay	14	0.034	0.011	0.012	ND			
	31	0.02	0.006	0.01	ND			
	188	0.012	0.009	0.006	ND			
	365	0.003	0.003	ND	ND			
Oat grain	14	0.021	0.016	0.009	ND			
	31	0.011	0.014	0.005	ND			
	188	0.007	0.01	0.004	ND			
			0.004	ND	ND			
Oat straw	14	0.003	ND	ND	ND			
	31	ND	ND	ND	ND			
	188	ND	ND	ND	ND			
	365	ND	ND	ND	ND			
Soya bean forage	15	0.023	ND	0.003	ND			
	29	0.007	ND	ND	ND			
	195	ND	ND	ND	ND			
	366	ND	ND	ND	ND			
Soya bean hay	15	0.061	0.004	0.01	0.01			
	29	0.017	ND	0.005	ND			
	195	0.011	ND	0.003	ND			
	366	0.004	ND	ND	ND			
Soya bean seed	15	ND	ND	ND	ND			
	29	ND	ND	ND	ND			
	195	ND	ND	ND	ND			
	366	ND	ND	ND	ND			

Note: Residues of other metabolites (IN-K7H19, IN-MYX98 and IN-N7B69) not detected in any samples

In the fourth North American study reported by Thiel, 2010 [Ref: DP-27972], bare soil plots were treated with three applications of cyantraniliprole (SE formulation), 5 days apart to achieve a total application rate of 0.45 kg ai/ha and seventeen rotational crops (turnip, sugar beet, garden beet, carrot, bean, pea, soya bean, field corn, sweet corn, sorghum, rice, wheat, Bermuda grass, alfalfa, brome-grass, clover, and bluegrass) were planted 30 days after the last application.

Table 47 Cyantraniliprole residues in rotational crops (30-day plantback interval) following bare ground applications of 0.45 kg ai/ha cyantraniliprole in North America. [Ref DP-27972]

Commodity	Residues (mg/kg)							
	Cyantraniliprole	IN-J9Z38	IN-JCZ38	IN-MLA84	IN-N7B96			
Alfalfa forage	0.054	0.006	0.006	0.02	ND			
Alfalfa hay	0.14	0.02	0.011	0.051	ND			
Bean dry seed	ND	ND	ND	ND	ND			
Bean forage	0.029	ND	ND	0.003	ND			
Bean hay	0.14	0.014	0.008	0.017	0.007			
Bean seed	0.003	ND	ND	ND	ND			
Bean succulent seed	ND	ND	ND	ND	ND			
Bermuda grass forage	0.011	0.005	0.006	ND	ND			
Bermuda grass hay	0.025	0.008	0.01	ND	ND			
Bluegrass forage	0.092	0.008	ND	0.004	ND			
Bluegrass hay	0.23	0.028	0.007	0.006	ND			
Brome grass forage	0.011	ND	0.006	ND	ND			
Brome grass hay	0.024	0.005	0.008	ND	ND			
Carrot root	0.011	ND	ND	ND	ND			
Clover forage	0.009	0.011	0.003	0.005	ND			
Clover hay	0.034	0.028	0.019	0.012	0.01			
Field corn forage	0.006	0.003	ND	ND	ND			
Field corn stover	0.012	0.012	ND	ND	ND			
Garden beet root	0.003	ND	ND	ND	ND			
Garden beet top	0.008	ND	ND	ND	ND			

Commodity	Residues (mg/kg)						
	Cyantraniliprole	IN-J9Z38	IN-JCZ38	IN-MLA84	IN-N7B96		
Pea dry seed	ND	ND	ND	ND	ND		
Pea forage	0.035	0.003	0.004	ND	ND		
Pea hay	0.13	0.01	0.016	ND	ND		
Pea seed	ND	ND	ND	ND	ND		
Pea succulent seed	ND	ND	ND	ND	ND		
Rice straw	0.005	0.009	0.003	ND	ND		
Sorghum forage	0.01	0.005	0.004	0.004	ND		
Sorghum stover	0.008	0.009	ND	0.006	ND		
Soya bean forage	0.091	ND	0.009	0.014	ND		
Soya bean hay	0.63	0.012	0.029	0.069	ND		
Soya bean seed	ND	ND	ND	ND	ND		
Sugar beet root	ND	ND	ND	ND	ND		
Sugar beet top	ND	ND	ND	ND	ND		
Sweet corn forage	0.009	ND	ND	ND	ND		
Sweet corn stover	0.01	0.013	ND	ND	ND		
Turnip root	ND	0.005	ND	ND	ND		
Turnip top	ND	ND	ND	ND	ND		
Wheat forage	0.11	0.007	0.006	0.004	ND		
Wheat hay	0.21	0.017	0.014	0.012	ND		
Wheat straw	0.081	0.012	0.015	0.012	ND		

Note: Residues of other metabolites (IN-K7H19, IN-MYX98, and IN-N7B69) not detected in any samples

In the fifth North American study, reported by Thiel, 2011 [Ref: DP-29456], bare soil plots were treated with three applications of cyantraniliprole (SE formulation), 5 days apart to achieve a total application rate of 0.45 kg ai/ha and ten rotational crops (turnip, sugar beet, radish, carrot, pea, soya bean, alfalfa, clover, peanut, and strawberries) were planted 30 days after the last application.

Table 48 Cyantraniliprole residues in rotational crops (30-day plantback interval) following bare ground applications of 0.45 kg ai/ha cyantraniliprole in North America. [Ref DP-29456]

Commodity	Residues (mg/kg)								
-	Cyantraniliprole	IN-J9Z38	IN-JCZ38	IN-K7H19	IN-MLA84	IN-N7B96			
Alfalfa forage	0.008	ND	ND	ND	ND	ND			
Alfalfa hay	0.021	0.004	0.008	0.006	ND	ND			
Carrot root	0.005	0.01	ND	ND	ND	ND			
Clover forage	0.023	ND	0.013	ND	ND	0.007			
Clover hay	0.046	0.013	0.034	0.011	0.008	ND			
Pea forage	ND	0.005	ND	ND	ND	ND			
Pea hay	0.008	0.017	ND	ND	ND	ND			
Pea seed	ND	ND	ND	ND	ND	ND			
Peanut hay	0.009	0.015	0.004	0.005	ND	ND			
Peanut nutmeat	ND	ND	ND	ND	ND	ND			
Radish root	0.004	ND	ND	ND	ND	ND			
Soya bean forage	0.039	ND	0.005	0.005	ND	ND			
Soya bean hay	0.19	0.021	0.026	0.025	ND	ND			
Soya bean pod	ND	ND	ND	ND	ND	ND			
Soya bean seed	ND	ND	ND	ND	ND	ND			
Strawberry fruit	0.005	ND	ND	ND	ND	ND			
Sugar beet root	ND	ND	ND	ND	ND	ND			
Sugar beet top	ND	ND	ND	ND	ND	ND			
Turnip top	0.02	0.008	0.004	ND	ND	ND			

Residues of IN-MYX98 were not detected in any samples

In the North American studies, residues of cyantraniliprole and metabolites in the first rotation crops (30 day plant-back interval were below 0.05 mg/kg in commodities for human consumption (cereal grains, root crops, legumes and pulses, leafy vegetables). Higher residues were

reported in animal feed commodities, up to 0.2 mg/kg in forage crops and 0.3 mg/kg in most hays and straws. Highest residues were found in soya bean hay, up to 0.63 mg/kg.

Table 49 Summary of highest residues of cyantraniliprole and metabolites in rotational crops (30-day plantback interval) following bare ground applications of 0.45 kg ai/ha cyantraniliprole (North America)

Commodity group	Sample	Cyantraniliprole	Total (parent plus metabolites)
Root/tubers (roots)	carrot roots	0.01	0.02
	beet roots	< 0.01	< 0.01
	radish roots	0.02	0.03
	sugar beet roots	ND	ND
	turnip roots	ND	ND
Root/tubers (tops)	beet tops	< 0.01	< 0.01
	radish tops	0.04	0.05
	sugar beet tops	ND	ND
	turnip tops	0.02	0.03
Legume seeds	bean seed (dry)	ND	ND
-	pea seed (dry)	ND	ND
	bean seed (succulent)	< 0.01	< 0.01
	pea seed (succulent)	ND	ND
	soya bean seed	ND	ND
Legume forage	alfalfa forage	0.05	0.09
	bean forage	0.03	0.03
	clover forage	0.02	0.04
	pea forage	0.04	0.04
	soya bean forage	0.14	0.19
Legume hay	alfalfa hay	0.14	0.22
· ·	bean hay	0.14	0.19
	clover hay	0.05	0.11
	pea hay	0.13	0.16
	peanut hay	< 0.01	0.03
	soya bean hay	0.63	0.74
Leafy vegetables	Lettuce (immature leaves)	0.03	0.04
	Spinach (immature leaves)	< 0.01	< 0.01
	Lettuce (mature leaves)	0.02	0.03
	spinach (mature leaves)	ND	ND
Cereal grains	oat grain	0.01	0.03
Cereal forage	corn forage	< 0.01	< 0.01
-	oat forage	0.03	0.06
	sorghum forage	0.01	0.02
	wheat forage	0.11	0.13
Cereal hay	oat hay	0.1	0.17
-	wheat hay	0.21	0.25
Cereal stover	corn stover	0.01	0.02
	sorghum stover	< 0.01	0.02
Cereal straw	oat straw	0.07	0.14
	rice straw	< 0.01	0.02
	wheat straw	0.08	0.12
Grass forage	Bermuda grass forage	0.01	0.02
-	Bluegrass forage	0.09	0.1
	Brome grass forage	0.01	0.02
Grass hay	Bermuda grass hay	0.03	0.04
, , , , , , , , , , , , , , , , , , ,	Bluegrass hay	0.23	0.27
	Brome grass hay	0.02	0.04
Peanut	nutmeat	ND	ND
Strawberry	fruit	< 0.01	< 0.01

Total residues are the sum of cyantraniliprole and metabolites IN-J9Z38, IN-JCZ38, IN-MLA84 and IN-N7B96.

METHODS OF RESIDUE ANALYSIS

Analytical methods

The meeting received analytical method descriptions and validation data for cyantraniliprole and major metabolites in crop and animal commodities and in soil and water. A summary of the analytical methods for plant and animal commodities is provided below.

Table 50 Summary of cyantraniliprole analytical methods devel	loped for plant and animal matrices
---	-------------------------------------

Matrix	Analyte	Method	Principle	LOQ	Reference
tomato	cyantraniliprole	21328	DFG S19 extraction	0.01 mg/kg	DP-21328
wheat grain			(aqueous acetone)		
orange			LC-MS/MS analysis		
almond					
cucumber	cyantraniliprole	15736	Aqueous acetonitrile	0.05 mg/kg	DP-15736
tomato	IN-J9Z38	[1187]	extraction	(wheat straw)	DP-18846
lime	IN-JCZ38		LC-MS/MS analysis		DP-2600
almond	IN-K5A79			0.01 mg/kg	DP-15736-S1
wheat straw	IN-K7H19			(other matrices)	
grape	IN-MLA84				
apple	IN-MYX98				
peach	IN-N7B69				
almond (nutmeat)					
lettuce					
wheat grain	IN-F6L99				
potato					
lemon					
oilseed rape					
onion					
tomato (paste)					
tomato (dried)					
meat	cyantraniliprole	25544	DFG S19 extraction	0.01 mg/kg	DP-25544
liver			(aqueous acetone)		DP17942
milk			SPE clean-up		
eggs			LC-MS/MS		
milk	cyantraniliprole	25544	DFG S19 extraction	0.01 mg/kg	DP-25544
	IN-HGW87		(aqueous acetone)		
	IN-J9Z38		SPE clean-up		
	IN-JCZ38		LC-MS/MS		
	IN-K5A79				
	IN-K7H19				
	IN-MLA84				
	IN-MYX98				
	IN-N7B69				
muscle	cyantraniliprole	18844	aqueous acetonitrile		DP-18844
fat	IN-J9Z38	[1552]	extraction		DP-25543
liver	IN-JCZ38		SPE clean-up		DP-26458
kidney	IN-K5A79		LC-MS/MS analysis		
milk	IN-K7H19				
skim milk	IN-MLA84				
heavy cream	IN-MYX98				
eggs	IN-N7B69				

Data collection methods

Method 21328 (plant matrices)

The analytical method 21328, based on the German method DFG S19, was described and reported by Bacher, 2009 [Ref: DP-21328] as suitable for as a data-collection method to measure residues of cyantraniliprole in plant commodities, with an LOQ of 0.01 mg/kg.

Cyantraniliprole was extracted from the plant tissue according to extraction module E 1 (tomato), E 2 (wheat grain), E 3 (orange), and E 7 for (almond) of the DFG Method S 19 method. Extracts of tomato, orange, wheat grain, and almond were analyzed by liquid chromatography with electrospray ionization and tandem mass spectrometry detection. The report noted that degradation of cyantraniliprole was observed under GC/MS conditions.

The E1 extraction module involved the addition of water and acetone prior to homogenization for 2 minutes and then the addition of 1:1 ethyl acetate:cyclohexane and NaCl. The sample was homogenized a second time for 1 minute, allowed to separate and the organic phase was removed and filtered through a cellulose folded filter, which was coated with Na₂SO₄. The extract was evaporated until only aqueous remained and a mixture of ethyl acetate and 1:1 Na₂SO₄:NaCl was added. An additional aliquot of cyclohexane was added to adjust the volume of the organic layer.

The E2 extraction module involved the addition of water and a 30-minute soaking period before the addition of acetone and homogenization. After the addition of 1:1 ethyl acetate:cyclohexane and 35 g NaCl, the sample was homogenized a second time for 1 minute and the phases were allowed to separate. The organic phase was removed and filtered through a cellulose folded filter coated with Na_2SO_4 . The extract was evaporated until only aqueous remained and a mixture of ethyl acetate and 1:1 Na_2SO_4 :NaCl was added. An additional aliquot of cyclohexane was added to adjust the volume of the organic layer.

The E3 extraction module involved mixing with NaHCO₃, the addition of water and after allowing the sample to stand for about 30 minutes, the addition of acetone prior to homogenization. This was followed by an addition of 1:1 ethyl acetate:cyclohexane and 35 g NaCl and a second homogenization. After the phases were allowed to separate, the organic phase was removed and filtered through a cellulose folded filter coated with Na₂SO₄. The extract was evaporated until only aqueous remained and a mixture of ethyl acetate and 1:1 Na₂SO₄:NaCl was added. An additional aliquot of cyclohexane was added to adjust the volume of the organic layer.

The E7 extraction module involved the addition of acetone, acetonitrile, Calflo E and Celite before homogenization and vacuum filtration through a Buchner porcelain funnel. The filtrate was then passed through a dry fluted cellulose filter paper coated with Calflo E and rotary evaporated into an oil residue and bathed at 40 °C. The samples were then mixed with ethyl acetate, sonicated until completely dissolved and after the addition of a 1:1 mixture of Na₂SO₄:NaCl, cyclohexane was added to adjust the volume of the organic layer.2

The extracts were purified using gel permeation chromatography using 1:1 ethyl acetate:cyclohexane as the eluant. The eluate was evaporated to dryness using a rotary evaporator, reconstituted in ethyl acetate, evaporated to dryness in a gentle stream of nitrogen and re-constituted in methanol/water.

The final extracts were analysed by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS) using a C18 column gradient elution using 0.1% formic acid in water to 0.1% formic acid in acetonitrile as the mobile phase. MS/MS detection in the positive ionization mode was used to monitor ion transitions $475 \rightarrow 286$ and $475 \rightarrow 112$ for cyantraniliprole.

Average (n=2) recovery rates in tomato, orange, wheat grain and almond (nutmeat) ranged from 92-104% (RSD $\le 8\%$) in samples spiked with 0.01 mg/kg cyantraniliprole and from 93-115% (RSD $\le 7\%$) in samples spiked with 0.1 mg/kg. The LOQ was 0.01 mg/kg.

Method 21328 was independently validated in a study by Weber, 2010 [Ref: DP-21326] with similar average (n=5) recovery rates (94–107%, $\leq 11\%$ RSD) in tomatoes, oranges, wheat grain and almond nutmeat spiked with 0.01 mg/kg or 0.1 mg/kg cyantraniliprole, demonstrating the reproducibility of this method.

While the DFG S 19 extraction procedures used in Method 21328 include a pre-soak in water followed by an acetone extraction, the cyantraniliprole metabolism study [Ref: DP-16986] demonstrated that incurred residues could be completely extracted using an acetonitrile:water, 9:1 extraction. Based on the physicochemical properties of cyantraniliprole, including the higher

solubility in acetone (6.45 g/L) than in acetonitrile (2.45 g/L), acetone is considered a suitable solvent for the extraction of incurred cyantraniliprole residues.

Method 15736 (plant matrices)

The analytical method 15736, described and reported by McClory, Stevens-Shreve & Hense, 2011, [Ref DP-15736] was developed to measure residues of cyantraniliprole and seven metabolites (IN-J9Z38, IN-JCZ38, IN-K5A79, IN-K7H19, IN-MLA84, IN-MYX98 and IN-N7B69) in representative commodities with a high water content (cucumber and tomato), a high acid content (lime), a high oil content (almond nutmeat) and a low water content (wheat straw). This method is also known as DuPont method 1187.

A supplement to this study, reported by McClory, Stevens-Shreve & Hense, 2011, [Ref DP-15736-S1] also validated this method for tomato paste and sun-dried tomato for the above analytes and for the IN-N5M09 and IN-F6L99 metabolites as potential breakdown products formed during processing.

Samples were extracted twice with 9:1 acetonitrile:water by high-speed shaking (2 minutes at 700 cycles/minute in the presence of ball bearings) and centrifugation. The supernatants from the two extracts were combined, diluted with acetonitrile:water and mixed vigorously. Aliquots of these extracts were filtered (0.2 μ m PTFE) and after the addition of methanol and de-ionized water, were analyzed using LC/MS/MS.

The final extracts were analysed by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS) using a C18 column gradient elution using formic acid/ammonuim formate in water to formic acid/ammonium formate in methanol as the mobile phase. MS/MS detection in the positive ionization mode was used to monitor the following ion transitions:

Cyantraniliprole $475 \rightarrow 286$ and $475 \rightarrow 443.9$ IN-J9Z38 $457 \rightarrow 188$ and $457 \rightarrow 290$	
IN-J9Z38 457→188 and 457→290	
IN-JCZ38 $493 \rightarrow 286$ and $493 \rightarrow 462$	
IN-K5A79 480→286 and 480→463	
IN-K7H19 479→286 and 479→462	
IN-MLA84 443→298 and 443→407.4	
IN-MYX98 491→444 and 491→473	
IN-N7B69 491→285.7 and 491→473	
IN-F6L99 204→173 and 204→66	

Average (n=2) recovery rates in samples spiked with 0.01 mg/kg ranged from 74–121% (RSD \leq 15) and in samples spiked with 0.1 mg/kg were 67–96% (RSD \leq 13). The method LOQ was 0.01 mg/kg.

This method was validated under GLP by two additional laboratories. One of the additional validations reported by Kinney, 2008 [Ref: DP-18846] investigated the performance of Method 15376 for grapes, apples, peaches, tomatoes, almonds (nutmeat), lettuce, wheat grain, wheat straw, potatoes, lemons, and rape seed and the second validation, reported by Seal, 2010 [Ref: DP-26000] evaluated the performance of the method for almonds, onions, tomato paste, and sun-dried tomatoes.

Average (n=5) recovery rates in all matrices and for all analytes in samples spiked with 0.01 mg/kg, 0.05 mg/kg (wheat straw), 0.1 mg/kg or 0.5 mg/kg (wheat straw) were within the range 70–111% (RSD \leq 13).

Extraction efficiency of this method was demonstrated in a study reported by Lowrie and MacKinnon, 2009 [Ref: DP-24754] where samples of lettuce leaf, beet foliage, wheat grain, and wheat hay from the confined rotational crop metabolism study [Ref: DP-15778] containing weathered residues of radiolabelled parent and metabolites were extracted using the Method 15736 extraction procedure. The levels of the parent and metabolites obtained using the residue method were within 89–100% of those found in the metabolism study, which indicates that the residue method provides acceptable extraction efficiency.

Method 15736 was shown to be suitable for the purposes of residue data collection and enforcement of MRLs, with an LOQ of 0.05 mg/kg for wheat straw and 0.01 mg/kg for all other matrices.

Method 25544 (animal matrices)

The analytical Method 25544, based on the German multi-residue method DFG S19 (module E1 extraction and module GPC clean-up) with LC-MS/MS detection, was described and reported by Bacher, 2010 [Ref: DP-25544] as suitable for use as a data-collection method to measure residues of cyantraniliprole in animal commodities, with an LOQ of 0.01 mg/kg and was also suitable to measure residues of the metabolites IN-J9Z38, IN-JCZ38, IN-HGW87, IN-K7H19, IN-MLA84, IN-MYX98, and IN-N7B69 in milk (but not other animal commodities.

Samples of meat, milk, egg and liver were mixed with water and after the addition of acetone, were homogenized for 2 minutes before the addition of 1:1 ethyl acetate:cyclohexane and NaCl and further homogenization for 1 minute. The phases were allowed to separate and the organic phase was filtered through cellulose folded filter coated with Na₂SO₄. After repeat rinsing with ethyl acetate:cyclohexane the filtrate was evaporated to an aqueous remainder (not to dryness), re-dissolved in ethyl acetate, mixed with 1:1 Na₂SO₄:NaCl and the volume adjusted with cyclohexane.

Extracts were cleaned up by gel permeation chromatography using a 1:1 mixture of ethyl acetate:cyclohexane as eluant (5.0 mL/min) and an automated gel permeation chromatograph. The collected eluate was evaporated to dryness, reconstituted in ethyl acetate, evaporated to dryness in a gentle stream of nitrogen and re-constituted in 1:1 methanol:water.

The final extracts were analysed by liquid chromatography with electrospray ionisation and tandem mass spectrometric detection (LC-MS/MS) using a C18 column gradient elution using formic acid in water to formic acid in methanol as the mobile phase. MS/MS detection in the positive ionization mode was used to monitor the following ion transitions:

Cyantraniliprole	475→444	and	475→286
IN-J9Z38	457→188	and	457→112
IN-JCZ38	493→462	and	493→286
IN-K7H19	479→462	and	479→286
IN-MLA84	443→298	and	443→407
IN-MYX98	491→444	and	491→442
IN-N7B69	491→286	and	491→473
IN-HGW87	459→284	and	459→112

Average (n=5) recovery rates in samples spiked with 0.01 mg/kg ranged from 74–107% (RSD \leq 14%) and in samples spiked with 0.1 mg/kg were 70–103% (RSD \leq 14%). The method LOQ was 0.01 mg/kg.

This method was independently validated for the detection, quantitative analysis, and confirmation of cyantraniliprole in milk, eggs, meat, and liver in a study reported by Weber, 2010

[Ref: DP-17942]. Average (n=5) recovery rates in all matrices spiked with 0.01 mg/kg ranged from 98-106% (RSD < 6%) and were 95-108% (RSD < 7%) in the 0.1 mg/kg spiked samples.

While the DFG S 19 extraction procedures used in Method 25544 include a pre-soak in water followed by an acetone extraction, the cyantraniliprole metabolism study [Ref: DP-16987] demonstrated that incurred residues could be completely extracted using an acetonitrile:water, 9:1 extraction. Based on the physicochemical properties of cyantraniliprole, including the higher solubility in acetone (6.45 g/L) than in acetonitrile (2.45 g/L), acetone is considered a suitable solvent for the extraction of incurred cyantraniliprole residues in animal commodities.

The residue Method 25544, is suitable for the determination of cyantraniliprole in milk, eggs, meat, and liver, with an LOQ of 0.01 mg/kg for animal commodities.

Method 18844 (animal matrices)

The analytical method 18844, also reported as DuPont method 1552, was described and reported by Henze and McClory, 2010 [Ref: DP-18844] as suitable for use as a data-collection method to measure residues of cyantraniliprole and the metabolites IN-J9Z38, IN-JCZ38, IN-HGW87, IN-K5A79, IN-K7H19, IN-MLA84, IN-MYX98, and IN-N7B69 in muscle, fat, kidney, liver, egg, whole milk, skim milk and heavy cream, with an LOQ of 0.01 mg/kg.

In this method, samples were extracted twice with acetonitrile, cleaned up by shaking with hexane and centrifugation, with the hexane fractions then being discarded. The extracts were then evaporated to near-dryness in a gentle stream of nitrogen and after the addition of methanol, made up to volume with water, vortexed, sonicated and filtered.

Residues of cyantraniliprole, IN-HGW87, IN-J9Z38, IN-JCZ38, IN-K5A79, IN-K7H19, IN-N7B69, IN-MLA84, and IN-MYX98 were separated from co-extracts by reversed phase liquid chromatography (C18 column gradient elution using formic acid/ammonium formate in water to formic acid/ammonium formate in methanol as the mobile phase) and detected by mass spectrometry/mass spectrometry (MS/MS) using positive ion atmospheric pressure chemical ionization to monitor the following ion transitions:

Cvantranilinrole	475->443	and	475 → 286
Cyantraminprote		and	-75 7280
IN-J9Z38	457→298	and	457→188
IN-JCZ38	493→462		
IN-K7H19	479→462	and	479→286
IN-K5A79	480→463	and	480→286
IN-MLA84	443→298	and	443→407
IN-MYX98	491→444		
IN-N7B69	491→286		
IN-HGW87	459→284	and	459→112

Average (n=5) recovery rates in samples spiked with 0.01 mg/kg ranged from 80-116% (RSD $\leq 20\%$ except 34% RSD for IN-JCZ38 in eggs) and in samples spiked with 0.1 mg/kg were 74–116% (RSD < 13%). The method LOQ was 0.01 mg/kg.

This method was validated in a study reported by Ward, 2010 [Ref: DP-25543] on the detection and measurement of cyantraniliprole and metabolites (except IN-K5A79) in bovine muscle, fat, kidney, liver, milk and in eggs. An independent validation study was also conducted by Schwartz, 2010 [Ref: DP-26458] for cyantraniliprole, IN-J9Z38, IN-MLA84 and IN-N7B69 in whole milk, kidney and muscle.

In these studies, average (n=5) recovery rates in all matrices spiked with 0.01 mg/kg ranged from 72-131% (RSD < 13%) and were 71-112% (RSD < 12%) in the 0.1 mg/kg spiked samples.

Extraction efficiency of this method was demonstrated in a study reported by Kinney and Melville, 2010 [Ref: DP-27356] where samples of muscle, milk, liver, egg yolks, and egg whites from the cattle metabolism study [Ref: DP-16987] containing weathered residues of radiolabelled parent and metabolites were extracted using the Method 18844 procedure. The levels of extracted radioactivity obtained using the residue method were equivalent to those found in the metabolism extraction; 75.5% (liver), 92.7% (muscle), 103.7% (milk), 99.5% (egg white), and 125.1% (egg yolk), indicating that the method 18844 provides acceptable extraction efficiency.

The residue method 18844 for the determination of cyantraniliprole, IN-N7B69, IN-K7H19, IN-K5A79, IN-JCZ38, IN-MYX98, IN-HGW87, IN-J9Z38, and IN-MLA84 in muscle, fat, kidney, liver, heavy cream, skim milk, whole milk, and eggs involves simple extraction, clean-up, and analytical determination by HPLC/MS/MS detection. A limit of quantification of 0.01 mg/kg can be achieved consistently for all tissues.

Method 25544 (soil)

The analytical Method 15440, involving acetone extraction, SPE clean-up and LC-MS/MS analysis was reported by Henze, Devine and McClory, 2006 [Ref: DP-15440] as suitable for use as a data-collection method to measure residues of cyantraniliprole and metabolites IN-J9Z38, IN-JCZ38, IN-JSE76, IN-K5A77, IN-K5A78 IN-K5A79, IN-K7H19, and IN-PLT97 in soil.

Soil samples were extracted twice with 9:1 acetone:formic acid by shaking at high speed on a platform shaker. After dilution with water, extracts were passed through an NH₂ and an ENV SPE column. The NH₂ removed co-extracts with cyantraniliprole and or its photoproducts being retained on the ENV SPE column. Cyantraniliprole and its photoproducts were eluted from the ENV column with ammonium hydroxide in acetonitrile. The extracts were evaporated to dryness, reconstituted in methanol:formic acid, filtered and analyzed by LC/MS/MS.

Average (n=5) recovery rates in samples spiked with 0.001 mg/kg ranged from 75–102% (RSD < 17% and in samples spiked with 0.01 mg/kg were 72–96% (RSD < 9%). The method LOQ was 0.001 mg/kg.

The method 15440 was independently validated in a study reported by Schwartz, 2010 [Ref: DP-18847] with average (n=5) recovery rates in sandy loam soil samples spiked with 0.001 mg/kg ranging from 81-99% (RSD < 10%) and were 78–118% (RSD < 15%) in samples spiked with 0.01 mg/kg. The method LOQ was 0.001 mg/kg.

Method 29747 (soil)

Method 29747, an extension of the above method 15440 to include the measurement of the cyantraniliprole photoproducts IN-NXX70, IN-QKV54, and IN-RNU71, was described in a report by Vogl, 2010 [Ref: DP-29747], with average (n=5) recovery rates of 93–116% (RSD \leq 12%) in a sandy clay loam soil spiked with 0.001 mg/kg or 0.01 mg/kg.

Enforcement methods

Multi-residue method DFG S19

Method 21328, the German method DFG S19 with LC-MS/MS analysis is suitable for enforcement of the MRL for cyantraniliprole in plant commodities, based on the method validation for tomato (representing high water content), orange (high acid content), wheat grain (high starch content) and almond (high oil content).

Method 26459, a GC/ECD procedure for crops was developed and validated in DuPont-26459. This method is intended for monitoring purposes in regions where LC/MS/MS is not readily available.

FDA PAM Multi-residue method

Rockwell, 2010 [Ref: DP-21329] evaluated the suitability of the FDA PAM Multi-residue methods for measuring residues of cyantraniliprole and six metabolites. The test substances were naturally fluorescent (with the exception of IN-MLA84-000, which was not soluble in methanol) but were not capable of being evaluated further without modifying the methods outlined in Protocol A. IN-JCZ38-004 and IN-K7H19-001 were found to chromatograph according to one Module DG 18, Level II, in Protocol C. However the two analytes were insoluble in the solvents required for the methods outlined in Protocols D, E, and F and further testing was suspended. Based on these results, none of the FDA multi-residue method test procedures are suitable for the regulatory analysis of DPX-HGW86-307 and its metabolites.

Analytical (concurrent) recoveries in supervised crop trials

Analytical recovery rates were measured in all the supervised crop field trials, with control samples being fortified with cyantraniliprole and metabolites at 0.01 mg/kg and at higher levels that generally reflected the range of expected residues. In most trials analysis was with Method 15736.

For each study, average recoveries per fortification level generally fell within the 70–120% range, with a relative standard deviation of 20% or less). Information on the concurrent recovery rates for individual commodities are summarised in the relevant supervised crop field trial sections.

Stability of residues in stored analytical samples

Plant matrices

The Meeting received information on the stability of residues of cyantraniliprole and metabolites in various substrates with a high water content (apple), a high starch content (potato), a high protein content (dry bean seed), a high oil content (peanut) and a high acid content (grape) stored at freezer temperatures for 24 months.

In a study by Rodgers, 2010, [Ref: DP-16990], samples of the test commodities were fortified at 0.2 mg/kg of each analyte. Spiked and the control samples were sealed and stored in the dark at -20 \pm 10 °C. Samples were taken for extraction and analysis after 0, 1, 3, 6, 12, 18 and 24 months (and also peanuts after 63 days), with the stored control samples being freshly fortified with each analyte and analysed concurrently to determine the procedural recovery efficiency. Analysis was by LC-MS/MS (Method 15736), with mean procedural recovery rates of 83–94% for all analytes and matrices (fortified at 0.2 mg/kg and also at 0.01 mg/kg in peanuts.

After 24 months storage the measured residues of cyantraniliprole and major metabolites in stored samples of representative plant matrices with high water, acid, starch and protein content were greater than 80% of the spiked levels.

For peanut (high oil content), 24-month stability was demonstrated for cyantraniliprole, IN-F6L99, IN-J9Z38, IN-MLA84, IN-MYX98 and IN-N5M09, with measured residues also greater than 80% of the spiked levels. However, for the IN-JCZ38, IN-K7H19, and IN-N7B69 metabolites, the results showed reduced recoveries, attributed to extractability issues associated with the higher lipid content of this matrix.

Table 51 Stability of cyantraniliprole residues in plant matrices spiked at 0.2 mg/kg and stored at -20 \pm 10 °C

Commodity	Storage interval	Residues remaining (mg/kg)	% Residues	Procedural recovery
	(months)		remaining	(%)
Apples	0			100.5
	1	0.18, 0.18	89.5	96.5
	3	0.17, 0.18	87	89
	6	0.16, 0.16	81.5	86.5
	12	0.17, 0.18	86	81.5
	18	0.18, 0.18	88.5	94
	24	0.19, 0.2	96	98.5

Commodity	Storage interval	Residues remaining (mg/kg)	% Residues	Procedural recovery
	(months)		remaining	(%)
Peanuts	0			93.5
	1	0.16, 0.15	78.5	93.5
	2	0.17, 0.17	84.5	87
	3	0.16, 0.16	80.5	100
	6	0.16, 0.15	77.5	82.5
	12	0.14, 0.14	71.5	75
	18	0.14, 0.16	75	88.5
	24	0.13, 0.13	66	79.5
Dried beans	0			94
	1	0.19, 0.17	88	89
	3	0.19, 0.18	91	92.5
	6	0.16, 0.14	75.5	88.5
	12	0.15, 0.15	75	78.5
	18	0.19, 0.19	94.5	103.5
	24	0.13, 0.13	65.5	71
Potatoes	0			98.5
	1	0.16, 0.17	83.5	87.5
	3	0.19, 0.19	96.5	97.5
	6	0.16, 0.17	83.5	87
	12	0.17, 0.17	85.5	87.5
	18	0.19, 0.18	92	93
	24	0.18, 0.19	91.5	94.5
Grapes	0			107
	1	0.17, 0.17	85	83
	3	0.18, 0.19	93.5	93.5
	6	0.17, 0.18	86	86
	12	0.18, 0.17	87	80
	18	0.19, 0.18	92.5	95
	24	0.2, 0.19	98	105.5

Table 52 Stability of cyantraniliprole metabolite IN-F6L99 residues in plant matrices spiked at 0.2 mg/kg and stored at -20 \pm 10 °C.

Commodity	Storage interval	Residues remaining (mg/kg)	% Residues	Procedural recovery
-	(months)		remaining	(%)
Apples	0			106.5
	1	0.16, 0.16	79.5	85
	3	0.15, 0.16	77	80
	6	0.16, 0.17	83	83.5
	12	0.16, 0.17	82.5	78.5
	18	0.19, 0.19	94	94.5
	24	0.17, 0.17	83	84.5
Peanuts	0			89
	1	0.19, 0.18	92	107.5
	2	0.19, 0.19	93	96.5
	3	0.18, 0.17	86.5	103
	6	0.18, 0.17	87.5	90.5
	12	0.17, 0.17	83.5	84.5
	18	0.15, 0.15	75	85
	24	0.15, 0.13	73	82.5
Dried beans	0			94
	1	0.2, 0.18	93.5	96.5
	3	0.18, 0.17	89.5	92
	6	0.19, 0.17	91	95
	12	0.17, 0.16	83	87.5
	18	0.17, 0.17	86	86
	24	0.14, 0.14	70	90.5

Commodity	Storage interval	Residues remaining (mg/kg)	% Residues	Procedural recovery
	(months)		remaining	(%)
Potatoes	0			103
	1	0.19, 0.21	100	96.5
	3	0.18, 0.18	91	89.5
	6	0.18, 0.18	90.5	90
	12	0.17, 0.17	85.5	87
	18	0.21, 0.21	104	103.5
	24	0.17, 0.17	85.5	89
Grapes	0			103
	1	0.18, 0.19	93.5	92
	3	0.18, 0.18	91	89
	6	0.17, 0.18	88.5	83
	12	0.17, 0.17	85.5	80
	18	0.2, 0.19	96.5	97
	24	0.16, 0.16	81	85

Table 53 Stability of cyantraniliprole metabolite IN-J9Z38 residues in plant matrices spiked at 0.2 mg/kg and stored at -20 \pm 10 °C

Commodity	Storage interval	Residues remaining (mg/kg)	% Residues	Procedural recovery
	(months)		remaining	(%)
Apples	0			95.5
	1	0.2, 0.19	96.5	102.5
	3	0.17, 0.17	85	85
	6	0.16, 0.15	77	83.5
	12	0.15, 0.16	79.5	73
	18	0.16, 0.16	80.5	89.5
	24	0.17, 0.17	85	85
Peanuts	0			88.5
	1	0.18, 0.17	86.5	103
	2	0.15, 0.16	78.5	82
	3	0.14, 0.15	72	94
	6	0.15, 0.13	75	77
	12	0.14, 0.14	70.5	73
	18	0.14, 0.15	76	92.5
	24	0.15, 0.17	80.5	90
Dried beans	0			88.5
	1	0.19, 0.16	88	92
	3	0.18, 0.17	86	87
	6	0.14, 0.12	72	80.5
	12	0.15, 0.14	72.5	73
	18	0.16, 0.16	78.5	88
	24	0.18, 0.18	91	105.5
Potatoes	0			92
	1	0.17, 0.17	84.5	87.5
	3	0.18, 0.19	93.5	94.5
	6	0.14, 0.15	74	77.5
	12	0.16, 0.17	83	80.5
	18	0.18, 0.18	90	94
	24	0.16, 0.16	81.5	82.5
Grapes	0			102
-	1	0.18, 0.18	88.5	88
	3	0.18, 0.18	89.5	86.5
	6	0.16, 0.17	81.5	80
	12	0.17, 0.16	80.5	73
	18	0.18, 0.18	89.5	92
	24	0.18, 0.17	86.5	93

Table 54 Stability of cyantraniliprole metabolite IN-JCZ38 residues in plant matrices spiked at 0.2 mg/kg and stored at -20 \pm 10 °C

Commodity	Storage interval	Residues remaining (mg/kg)	% Residues	Procedural recovery
	(months)		remaining	(%)

Commodity	Storage interval	Residues remaining (mg/kg)	% Residues	Procedural recovery
	(months)		remaining	(%)
Apples	0			99
	1	0.18, 0.18	89.5	97.5
	3	0.17, 0.18	86	88
	6	0.16, 0.17	81.5	86
	12	0.16, 0.16	81	76.5
	18	0.17, 0.17	86.5	91.5
	24	0.18, 0.18	90.5	93
Peanuts	0			88.5
	1	0.13, 0.12	62.5	94.5
	2	0.15, 0.15	75.5	88.5
	3	0.13, 0.12	62	98
	6	0.14, 0.13	66.5	82
	12	0.12, 0.11	59	78
	18	0.11, 0.12	58	89.5
	24	0.11, 0.097	51.5	86.5
Dried beans	0			92.5
Direct occurs	1	0 19 0 18	92	92.5
	3	0.17. 0.17	86.5	90
	6	0.16. 0.14	76.5	89.5
	12	0.14, 0.14	70.5	76.5
	18	0.17, 0.17	86.5	97
	24	0.14, 0.14	71.5	89.5
Potatoes	0			94.5
i otatoes	1	0.18.0.18	90.5	94
	3	0 19 0 19	96	98
	6	0.16, 0.16	80.5	91
	12	0.16, 0.16	81	85.5
	18	0.19, 0.2	95.5	97.5
	24	0.17, 0.17	86.5	92.5
Granes	0			106
Grapes	1	0 17 0 18	86	86
	3	0.18 0.19	93.5	91
	6	0.17, 0.17	85	85
	12	0.16.0.16	80	76
	18	0.18, 0.18	89.5	92.5
	24	0.19, 0.18	92	100
	- '	,	-	

Table 55 Stability of cyantraniliprole metabolite IN-K7H19 residues in plant matrices spiked at 0.2 mg/kg and stored at -20 \pm 10 $^{\circ}{\rm C}$

Commodity	Storage interval	Residues remaining (mg/kg)	% Residues	Procedural recovery
-	(months)		remaining	(%)
Apples	0			99
	1	0.18, 0.18	91	96.5
	3	0.16, 0.18	85	86.5
	6	0.16, 0.16	81	83.5
	12	0.16, 0.18	85	79
	18	0.17, 0.17	84	90.5
	24	0.19, 0.19	94	96
Peanuts	0			90
	1	0.12, 0.1	55.5	92
	2	0.14, 0.14	70.5	89.5
	3	0.12, 0.1	55	98.5
	6	0.13, 0.12	63	82.5
	12	0.12, 0.11	56	77.5
	18	0.097, 0.097	49	85.5
	24	0.087, 0.072	39.5	76

Commodity	Storage interval	Residues remaining (mg/kg)	% Residues	Procedural recovery
	(months)		remaining	(%)
Dried beans	0			93
	1	0.18, 0.17	87	87.5
	3	0.17, 0.17	84.5	90
	6	0.16, 0.14	76	89.5
	12	0.14, 0.15	73	78.5
	18	0.19, 0.19	94	103.5
	24	0.2, 0.21	103.5	111.5
Potatoes	0			97.5
	1	0.17, 0.18	88	89
	3	0.19, 0.18	93	95
	6	0.16, 0.16	79	92
	12	0.17, 0.17	83.5	85
	18	0.17, 0.18	88.5	92
	24	0.18, 0.17	87.5	91.5
Grapes	0			107
	1	0.17, 0.18	87.5	87
	3	0.18, 0.19	93	92
	6	0.16, 0.17	82.5	83
	12	0.18, 0.18	91.5	83.5
	18	0.18, 0.18	90	92
	24	0.19, 0.19	93.5	96.5

Table 56	Stability	of	cyantraniliprole	metabolite	IN-MLA84	residues	in	plant	matrices	spiked	at
0.2 mg/k	g and store	ed a	t -20 \pm 10 °C								

Commodity	Storage interval	Residues remaining (mg/kg)	% Residues	Procedural recovery
	(months)		remaining	(%)
Apples	0			92
11	1	0.19, 0.17	88.5	95
	3	0.16, 0.17	83.5	86
	6	0.15, 0.15	74	80
	12	0.15, 0.16	78	77
	18	0.17, 0.16	81.5	90
	24	0.16, 0.16	79	82
Peanuts	0			90
	1	0.16, 0.15	78	97
	2	0.17, 0.17	86	88
	3	0.15, 0.15	75	100
	6	0.15, 0.14	72.5	75
	12	0.13, 0.13	63.5	68c
	18	0.14, 0.16	74.5	96
	24	0.14, 0.16	75	90
Dried beans	0			87
	1	0.18, 0.16	86	86
	3	0.17, 0.17	84	84
	6	0.15, 0.13	72	74
	12	0.14, 0.14	70	75
	18	0.16, 0.16	80.5	86
	24	0.2, 0.19	97.5	113
Potatoes	0			86
	1	0.16, 0.17	82.5	87
	3	0.18, 0.18	88.5	92
	6	0.17, 0.18	88	85
	12	0.15, 0.16	77.5	80
	18	0.18, 0.19	93.5	94
	24	0.15, 0.15	74	75
Grapes	0			98
•	1	0.16, 0.17	81	77
	3	0.18, 0.18	89	91
	6	0.15, 0.16	78	82
	12	0.16, 0.16	80	76
	18	0.18, 0.17	87.5	88
	24	0.17, 0.16	81	83

Commodity	Storage interval	Residues remaining (mg/kg)	% Residues	Procedural recovery
	(months)		remaining	(%)
Apples	0			106
	1	0.18, 0.18	89	97
	3	0.17, 0.18	87	90.5
	6	0.17, 0.17	85.5	87
	12	0.19, 0.19	94.5	83
	18	0.22, 0.23	112.5	106
	24	0.22, 0.21	107	97.5
Peanuts	0			102
	1	0.14, 0.14	70	93
	2	0.16, 0.16	80	90.5
	3	0.14, 0.14	72	101
	6	0.16, 0.15	79	84.5
	12	0.16, 0.15	77	80.5
	18	0.16, 0.18	85.5	99.5
	24	0.14, 0.12	67	81
Dried beans	0			99
	1	0.19, 0.17	88	90.5
	3	0.18, 0.17	87.5	94
	6	0.17, 0.15	81	90
	12	0.17, 0.17	84	83.5
	18	0.24, 0.24	121	114
	24	0.14, 0.15	73	71
Potatoes	0			103
	1	0.17, 0.18	85.5	89.5
	3	0.19, 0.19	96.5	96
	6	0.18, 0.18	89.5	93
	12	0.19, 0.19	95.5	90
	18	0.22, 0.23	112	103.5
	24	0.2, 0.2	101.5	95
Grapes	0			111
	1	0.16, 0.17	83	84
	3	0.19, 0.19	94	96.5
	6	0.18, 0.19	91	89
	12	0.19, 0.19	96.5	83.5
	18	0.23, 0.23	114.5	109.5
	24	0.23, 0.22	112	105.5

Table 57 Stability of cyantraniliprole metabolite IN-MYX98 residues in plant matrices spiked at 0.2 mg/kg and stored at -20 \pm 10 °C

Table 58 Stability of cyantraniliprole metabolite IN-N7B69 residues in plant matrices spiked at 0.2 mg/kg and stored at -20 \pm 10 $^{\circ}{\rm C}$

Commodity	Storage interval	Residues remaining (mg/kg)	% Residues	Procedural
	(months)		remaining	recovery (%)
Apples	0			105.5
	1	0.19, 0.18	92	97
	3	0.17, 0.17	87	90.5
	6	0.17, 0.17	83.5	88
	12	0.18, 0.19	92.5	85
	18	0.18, 0.18	90	96.5
	24	0.18, 0.19	92.5	100
Peanuts	0			97.5
	1	0.14, 0.13	68.5	93.5
	2	0.15, 0.16	77.5	88
	3	0.14, 0.14	70.5	99.5
	6	0.15, 0.13	69	77
	12	0.15, 0.15	75.5	81
	18	0.13, 0.14	67	78.5
	24	0.11, 0.081	46.5	67

Commodity	Storage interval	Residues remaining (mg/kg)	% Residues	Procedural
	(months)		remaining	recovery (%)
Dried beans	0			96.5
	1	0.18, 0.16	85	88
	3	0.18, 0.18	89.5	94
	6	0.15, 0.13	71	83
	12	0.17, 0.17	86	86.5
	18	0.23, 0.23	117	119.5
	24	0.17, 0.18	86	89.5
Potatoes	0			104.5
	1	0.17, 0.17	85	91
	3	0.19, 0.2	98.5	101
	6	0.16, 0.16	78	86.5
	12	0.19, 0.2	97.5	99.5
	18	0.17, 0.14	77.5	79
	24	0.16, 0.17	82	91
Grapes	0			116
	1	0.17, 0.17	84.5	84.5
	3	0.19, 0.2	97.5	95.5
	6	0.17, 0.17	86	87
	12	0.19, 0.2	98.5	85.5
	18	0.19, 0.2	97	98.5
	24	0.2, 0.2	99.5	105.5

Table 59 Stability of cyantraniliprole metabolite IN-N5M09 residues in plant matrices spiked at 0.2 mg/kg and stored at -20 \pm 10 $^{\circ}{\rm C}$

Commodity	Storage interval	Residues remaining (mg/kg)	% Residues	Procedural recovery
-	(months)	- · · ·	remaining	(%)
Apples	0			97
11	1	0.18, 0.18	90	92
	3	0.17, 0.18	87.5	89
	6	0.16, 0.17	84	87
	12	0.16, 0.18	84.5	79.5
	18	0.19, 0.19	95.5	97
	24	0.2, 0.2	102	100
Peanuts	0			88
	1	0.16, 0.16	80.5	94
	2	0.19, 0.19	93.5	95
	3	0.15, 0.15	76	96.5
	6	0.15, 0.14	72.5	79.5
	12	0.14, 0.14	71	77
	18	0.15, 0.16	79.5	96
	24	0.15, 0.15	75.5	92
Dried beans	0			88
	1	0.18, 0.16	84.5	89
	3	0.18, 0.17	86	91
	6	0.15, 0.13	72	89.5
	12	0.14, 0.14	70	78.5
	18	0.18, 0.17	87.5	101.5
	24	0.16, 0.16	79	96.5
Potatoes	0			91.5
	1	0.17, 0.17	86	89.5
	3	0.19, 0.19	94.5	99
	6	0.18, 0.17	87	83.5
	12	0.17, 0.17	84	86.5
	18	0.2, 0.2	100.5	101
	24	0.17, 0.19	91	97.5
Commodity	Storage interval	Residues remaining (mg/kg)	% Residues	Procedural recovery
-----------	------------------	----------------------------	------------	---------------------
	(months)		remaining	(%)
Grapes	0			102.5
	1	0.16, 0.16	80	80
	3	0.18, 0.19	91	90
	6	0.16, 0.18	87	86.5
	12	0.17, 0.16	84	79
	18	0.2, 0.2	99	97.5
	24	0.21, 0.2	100.5	102.5

Animal matrices

The stability of residues in animal matrices during frozen storage (at ca. -80 °C) was measured in the both milk and egg matrices as part of the cattle feeding study, reported by Ward & Vance, 2011 [Ref: DP-27180] in support of analyses conducted as part of the cattle and hen feeding studies

Cyantraniliprole and its seven metabolites (IN-HGW87, IN-J9Z38, IN-JCZ38, IN-K7H19, IN-MLA84, IN-MYX98, and IN-N7B69) were shown to be stable for at least 3 months in milk and eggs. Storage stability testing was not performed for residues in other cow or hen tissues given that all analysis was carried out within 30 days of sampling.

Table 60 Stability of cyantraniliprole and metabolite residues in milk stored at -80 °C

Analyte	% Residues remaining		Procedural recovery (%)
	Day 0	Day 99	
Cyantraniliprole	96	99	100
IN-HGW87	102	113	108
IN-J9Z38	94	69	77
IN-JCZ38	90	93	96
IN-K7H19	98	99	100
IN-MLA84	93	56	58
IN-MYX98	103	98	96
IN-N7B69	116	87	93

Table 61 Stabilit	y of c	yantranilij	orole and	l metabolite	residues	in eggs	stored at	-80	°C
		~ .				00			

Analyte	% Residues remain	ning	Procedural recovery (%)
	Day 0	Day 99	
Cyantraniliprole	98	101	100
IN-HGW87	99	104	96
IN-J9Z38	98	84	85
IN-JCZ38	92	91	93
IN-K7H19	95	95	95
IN-MLA84	103	81	73
IN-MYX98	105	98	97
IN-N7B69	109	79	81

USE PATTERNS

Information on GAP in Canada, Columbia, Malaysia, New Zealand, Vietnam and West Africa was provided to the Meeting. Proposed uses in Australia, Europe, and USA that are currently being progressed under an OECD Joint Review exercise and in Brazil, China and India were also provided but are not reported.

Cyantraniliprole is intended for use to control of larval stages of lepidopteran insects, thrips, aphids, and some other chewing and sucking insects in a wide range of fruit and vegetable crops, tree crops and oil seed crops as foliar applications and as seed treatments (potato seed pieces, oil seed crops) and as pre-plant soil 'in-furrow' treatments (potatoes and brassica vegetables).

Table 62 Registered	uses of cyar	traniliprole ((foliar ap	plications)
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · /

Crop (Group)	Country		Application Max/s		ax/season	PHI	Comments		
		kg ai/ha	g ai/hL	water L/ha	RTI (days)	no	kg ai/ha	(days)	
Pome fruits (002)			1		I				
Pome fruit	Canada	0.05- 0.15		min 450	7	4	0.45	3	
Stone fruits (003)		1	1		1	1	11		
Stone fruit	Canada	0.05- 0.15		min 450	7	4	0.45	3	
Bush berries (004B)		1	1		1		11		
Bush berries	Canada	0.05- 0.15		200 50 (air)	5–7	4	0.45	3	
Bulb vegetables (009))	•			•		•		
Bulb vegetables	Canada	0.1-0.15		200 50 (air)	5	4	0.45	1	
Onions (bulb)	Columbia	0.1– 0.125				2	0.3	1	
Welsh onion	Columbia	0.1– 0.125				2	0.3	1	
Brassica (cole or cabl	bage) vegetable	es (010)	•			•	•		
Brassica vegetables	Canada	0.025- 0.15		100 50 (air)	5-7	4	0.45	1	
Fruiting vegetables, C	Cucurbits (011)	•	•			•	•		
Cucurbit vegetables	Canada	0.025– 0.15		100 50 (air)	5–7	4	0.45	1	
Cucumber	Malaysia	0.075- 0.1	10-13	750	7	3		1	
Fruiting Vegetables,	other than Cucu	urbits (012))		I				
Fruiting Vegetables, (except Cucurbits)	Canada	0.025- 0.15		100 50 (air)	5–14	4	0.45	1	
Tomatoes	Malaysia	0.075- 0.1	10-13	750	7	3		1	
Eggplant (Brinjal)	Malaysia	0.04– 0.01	5-13	750	7	3		1	
Chili pepper	Malaysia	0.04-0.1	5-13	750	7	3		1	
Leafy vegetables (inc	luding Brassica	a leafy vege	etables)	(013)					
Leafy vegetables Brassica vegetables	Canada	0.025– 0.15		100 50 (air)	5–7	4	0.45	1	
Legume vegetables ((014)								
Long bean	Malaysia	0.04– 0.075	5-10	750	7	2		1	
Root and tuber vegeta	ables (016)					_			
Tuber & corm vegetables	Canada	0.1-0.15		100 50 (air)	5–14	4	0.45	7	
Potato	Canada	0.05– 0.15		100 50 (air)	7–14	4	0.45	7	
Stalk and stem vegeta	ables (017)		•			•			
Leafy vegetables	Canada	0.025-		100	5–7	4	0.45	1	includes celery

Crop (Group) Country			Application			Max/season		PHI	Comments
		kg ai/ha	g ai/hL	water L/ha	RTI (days)	no	kg ai/ha	(days)	
		0.15		50 (air)					
Cereal grains (020)									
Rice	Vietnam	0.05-0.1		500-600				5	
Tree nuts (022)									
Tree nuts	Canada	0.05-0.1		min 450	7	4	0.45	5	
Oilseed (023)									
Oil seed group	Canada	0.025– 0.1		100 50 (air)	7	4	0.11	7	includes rape seed, sunflower
Cotton	CILSS	0.05		150	14	3	0.15	7	
Seeds for beverages a	and sweets (024)			•				
Coffee	Columbia	0.125– 0.175	50-70	50 ml/tree		1	0.3	28	based on 5000 trees/ha @ 2.5- 3.5 g ai/100 trees
Miscellaneous Fodde	er and Forage cr	ops (052)							
Fodder brassicas	New Zealand	0.015			14–21	3		28 (stock)	with surfactant

Canada: GAP includes a general recommendation to not apply cyantraniliprole following a soil or seed treatment of a Group 28 Insecticide (including cyantraniliprole).

CILSS: Regional (Sahel) group, of countries—Benin, Côte d'Ivoire, Gambia, Guinea Bissau, Mauritania, Senegal, Togo, Burkina Faso, Mali, Niger, Chad and Cape Verde.

Table 63 Registered u	uses of cyanti	aniliprole (soil	and seed treatments)
0			

Crop (Group)	Country			Application		Max/season		Comments		
		form	type	rate	kg ai/ha	no	kg ai/ha			
	Brassica (cole or cabbage) vegetables (010)									
Brassica vegetables	Canada	200SC	furrow		0.15-0.2	1	0.2	Band spray in-furrow		
Brassica vegetables	Canada	200SC	drench	45 mL drench solution/plant	0.15-0.2	1		At transplanting		
Brassica vegetables	Canada	200SC	surface		0.15-0.2	1		5 cm band spray at planting with soil incorporation by irrigation		
	-	Leafy ve	getables (including Brassica	leafy vegetal	oles) ((013)			
Leafy vegetables Brassica vegetables	Canada	200SC	furrow		0.15-0.2	1	0.2	Band spray in-furrow		
Leafy vegetables Brassica vegetables	Canada	200SC	drench	45 mL drench solution/plant	0.15-0.2	1		At transplanting		
Leafy vegetables Brassica vegetables	Canada	200SC	surface		0.15-0.2	1		5 cm band spray at planting with soil incorporation by irrigation		
			Roo	t and tuber vegetabl	les (016)		-			
Potato	Canada	200SC	seed	9 g ai/100 kg seed	0.2 (equiv)	1	0.3	Based on sowing rate of 2200 kg seed/ha		
Potato	Canada	200SC	furrow	1.35– 1.8 g ai/100 m row	0.15–0.2 (equiv)	1		Band spray in-furrow to cover seed pieces Based on 90 cm row spacing		

Crop (Group)	Country		Application			Ma	x/season	Comments
		form	type	rate	kg ai/ha	no	kg ai/ha	
Oilseed (023)								
Oilseed rape	Canada	625SC	seed	0.3–				
rapeseed			1	1.0 kg ai/100 kg			!	
Oilseed mustard			1	seed				

Canada: GAP includes a general recommendation to not apply any subsequent soil or foliar treatments of a Group 28 Insecticide (including cyantraniliprole).

RESIDUES RESULTING FROM SUPERVISED TRIALS

The Meeting received information on supervised field trials involving foliar, drip irrigation or seed treatment applications of cyantraniliprole to the following crops.

Group	Crop	Countries	Table no
Citrus	Orange	Brazil, USA, Europe	64–67
	Mandarin	Europe	68
	Grapefruit	USA	69
	Lemons	USA	70–71
Pome fruit	Apple	Europe, Nth America	72–73
	Pear	Europe, Nth America	74–75
Stone fruit	Apricot,	Europe	76
	Cherry	Nth America	77
	Peach	Nth America, Europe	78–79
	Plum	Nth America, Europe	80–81
Small fruit	Blueberry	Nth America	82
	Grape	Europe	83
Other fruit	Olive	Europe	84
	Pomegranate	India	85
Bulb vegetables	Onion, bulb Spring onion	North America	86 87
Brassica vegetables	Broccoli	Nth America	88
	Cauliflower	Nth America	89
	Cabbage	Nth America	90
Cucurbits	Cucumber	Nth America, Europe, Australia	91–94
	Summer squash	Nth America, Europe, Australia	95–98
	Melon	Nth America, Europe, Australia	99–102
Fruiting vegetables	Tomato	Nth America, Europe, Australia	103–107
	Peppers	Nth America, Europe, Australia	108–113
Leafy vegetables	Head lettuce	Nth America, Europe	114–119
	Leaf lettuce	Nth America, Europe	120–125
	Lamb's lettuce	Europe	126–127
	Spinach	USA	128–129
	Mustard greens	USA	130
	Scarole	Europe	131–134
Legume vegetables	Common bean	Europe	135–136

436

Group	Crop	Countries	Table no
Tuber vegetables	Potato	North America, Europe	137–139
Stem vegetables	Celery	Nth America	140–141
Cereals	Rice	China	142
Tree nuts	Almond Pecan	USA USA	143 144
Oilseeds	Cotton Oil-seed rape	Australia, Nth America Australia, Nth America	145–146 147–148
	Sunflower	North America	149
Others	Coffee	Brazil	150

The supervised trials were well documented with laboratory and field reports. Laboratory reports included method validation including procedural recoveries with spiking at residue levels similar to those occurring in samples from the supervised trials. Dates of analyses or duration of residue sample storage were also provided. Although trials included control plots, no control data are recorded in the tables unless residues in control samples exceeded the LOQ. In such cases, the residues found are noted as "c=nn mg/kg" in the Reference and Comments columns. Residue data are recorded unadjusted for recovery.

Results from replicated field plots are presented as individual values. When residues were not detected they are shown as ND. Residues and application rates have been reported as provided in the study reports, although the results from trials used for the estimation of maximum residue levels (underlined) have been rounded to two significant digits (or if close to the LOQ, rounded to one significant digit) in the Appraisal.

In some trials, samples were taken just before the final application and then, again on the same day after the spray had dried. In the data tables the notation for these two sampling times is '-0' and '0' respectively.

When multiple applications were made to a crop, the application rate, spray concentration and spray volume were not always identical from one application to the next. In most trials, the actual treatment rates were within 10% of the listed 'target' application rates, but if not, the actual treatment rates are listed.

The analytical methods used in the field trials were capable of analysing both cyantraniliprole and from 1 to 7 metabolites. In most cases, residues of these metabolites were not detected (LOD of 0.003 mg/kg in most trials) or in some cases were reported at levels below the LOQ of 0.01 mg/kg. Where metabolite residues were present at levels above the LOQ, these values are recorded in the following tables using the abbreviations listed below:

M1	IN-J9Z38	2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> -pyrazol-5-yl]-3,4-dihydro-3,8- dimethyl-4-oxo-6-quinazolinecarbonitrile
M2	IN-MYX98	3-Bromo-1-(3-chloro-2-pyridinyl)-N-[4-cyano- 2[[(hydroxymethyl)amino]carbonyl]-6-methylphenyl]-1 <i>H</i> -pyrazole-5- carboxamide
M3	IN-N7B69	3-Bromo-1-(3-chloro-2-pyridinyl)-N-[4-cyano-2-(hydroxymethyl)-6- [(methylamino)carbonyl]phenyl]-1 <i>H</i> -pyrazole-5-carboxamide

M4	IN-MLA84	2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> -pyrazol-5-yl]-1,4-dihydro-8-methyl-4- oxo-6-quinazolinecarbonitrile
M5	IN-JCZ38	4-[[[3-Bromo-1-(3-chloro-2-pyridinyl)-1 <i>H</i> -pyrazol-5-yl]carbonyl]amino]- N'3',5-dimethyl-1,3-benzenedicarboxamide
M6	IN-N5M09	6-Chloro-4-methyl-11-oxo-11H-pyrido[2,1-b]quinazoline-2-carbonitrile
M7	IN-F6L99	3-Bromo-N-methyl-1H-pyrazole-5-carboxamide

Citrus fruits

438

Results from supervised trials from Brazil, Europe and USA on oranges, grapefruit, lemons and mandarins were provided to the Meeting.

Brazil

In four Brazilian trials on <u>oranges</u>, one plot was treated with two soil drench applications of cyantraniliprole (200 g ai/L SC), 30 days apart, using 1.4 g ai in 200 mL water/tree (equivalent to 0.7 kg ai/ha for a tree density of 500 trees/ha) and a second plot was treated with two foliar applications of cyantraniliprole (100 g/L OD) using 0.3 kg ai/ha in 1500 L water/ha. No adjuvants were used.

Samples were frozen within 4 hours of sampling, stored at -20 °C for up to 84 days before whole fruit analysis for cyantraniliprole and metabolite IN-J9Z38 using an adaptation of method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 108% (cyantraniliprole) and 99% (IN-J9Z38) in samples spiked with 0.01 and 0.1 mg/kg.

North America

In trials conducted in the USA on oranges, grapefruit and lemons, three foliar applications of 0.15 kg ai/ha cyantraniliprole (SE formulation) were applied at 7 day intervals, either as high volume, concentrate or ultra-low-volume treatments, with adjuvant added. Band treatment plots also included in three trial sites, where band spray applications (200 SC formulation) were made on one side of the tree rows, targeting 950 mL spray solution per tree.

Duplicate samples were frozen within 5 hours of sampling, stored at -20 °C for up to 5 months 12 months for Test 2 peel) before extraction and analysis of pulp and peel for cyantraniliprole and metabolites (within 46 days of extraction) using an adaptation of method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries in peel and pulp were 91–96% (cyantraniliprole) and 75–110% (metabolites) in samples spiked with 0.01, 0.1 and 1.0 mg/kg (peel). Whole fruit residues were calculated from the pulp and peel analysis results.

Europe

In trials conducted in Europe on oranges and mandarins, 2-3 foliar applications of 0.15 kg ai/ha cyantraniliprole (SE formulation) were applied at 7 day intervals, either as high volume or concentrate treatments, with added surfactant.

Samples were stored at -18 °C for up to 12 months before extraction and analysis of pulp and peel for cyantraniliprole and six metabolites (within 7 days of extraction) using method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries in peel and pulp were 88–98% (cyantraniliprole) and 80–102% (metabolites) in samples spiked with 0.01, 0.1 and 1.0 mg/kg (peel). Whole fruit residues were calculated from the pulp and peel analysis results.

ORANGE		Ар	plication		RTI	DAT,	Matrix	Residues (mg/kg)	Reference &
Country, year					(days)	(days)				Comments
Location	no	kg ai/ha ^a	g ai/tree	water				cyantraniliprole	metabolites	
(variety)				(mL/tree)						
Jaguariuna, SP	2	0.7	1.4	200	28	7	whole fruit	ND		BRI-09/10-
Brazil, 2010						14		ND		014
(Valencia)						21		ND		Test A
						28		ND		(357
										trees/ha)
Conchal, SP	2	0.7	1.4	200	28	7	whole fruit	ND		BRI-09/10-
Brazil, 2010						14		< 0.01		014
(Valencia)						21		ND		Test B
						28		ND		(357
										trees/ha)
Botucatu	2	0.7	1.4	200	28	21	whole fruit	ND		BRI-09/10-
(Valencia)										014
										Test C
										(332
										trees/ha)
Espirito Santo	2	0.7	1.4	200	28	21	whole fruit	< 0.01		BRI-09/10-
do Pinhal, SP										014
Brazil, 2010										Test D
(Valencia)										(446
										trees/ha)

Table 64 Residues in oranges from supervised trials in Brazil involving soil drench applications of cyantraniliprole (OD formulation)

^a Calculated application rate/ha based on a planting density of 500 trees/ha

Table	65	Residues	in	oranges	from	supervised	trials	in	Brazil	involving	foliar	applications	of
cyantr	anili	iprole (SC	for	mulation))								

ORANGE		Ар	plication		RTI	DAT,	Matrix	Residues (mg/kg)	Reference &
Country, year	no	kg ai/ha	g ai/hL	water	(days)	(days)		cyantraniliprole	metabolites	Comments
Location				(L/ha)						
(variety)										
Jaguariuna, SP	2	0.3	20	1500	28	7	whole fruit	0.15		BRI-09/10-014
Brazil, 2010						14		0.05		Test A
(Valencia)						21		0.05		(357 trees/ha)
						28		0.04		
Conchal, SP	2	0.3	21	1430	28	7	whole fruit	0.62		BRI-09/10-014
Brazil, 2010						14		0.33		Test B
(Valencia)						21		0.33		(357 trees/ha)
						28		0.23		
Botucatu	2	0.3	23	1330	28	21	whole fruit	0.1		BRI-09/10-014
Brazil, 2010										Test C
(Valencia)										(332 trees/ha)
Espirito Santo	2	0.3	21	1430	28	21	whole fruit	0.23		BRI-09/10-014
do Pinhal, SP										Test D
Brazil, 2010										(446 trees/ha)
(Valencia)										

ORANGE		1	Application	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year		-	-	L/ha	(days)						
(variety)											
Clermont, FL	3	0.15	535	28	7	1	peel	0.37, 0.19	0.28		DP-27554
USA, 2009							pulp	0.033, 0.028	0.03		Test 01
(Hamlin)							whole	0.19, 0.11	0.15		
Clermont, FL	3	0.15	535	28	7	1	peel	0.56, 0.69	0.63		DP-27554
USA, 2009							pulp	0.054, 0.074	0.064		Test 02
(Mid Sweet)							whole	0.31, 0.38	0.35		
Mascotte, FL	3	0.15	535	28	7	1	peel	0.54, 0.39	0.46		DP-27554
USA, 2009							pulp	0.08, 0.092	0.086		Test 03
(Valencia-Early)							whole	0.31, 0.24	0.28		
Oviedo, FL	3	0.15	11	1400	7	1	peel	0.36, 0.36	0.36		DP-27554
USA, 2009							pulp	0.053, 0.039	0.046		Test 04
(Navel)							whole	0.17, 0.17	0.17		
Oviedo, FL	3	0.15	11	1400	7	1	peel	0.27, 0.14	0.21		DP-27554
USA, 2009							pulp	0.026, 0.029	0.027		Test 05
(Hamlin)							whole	0.15, 0.085	0.12		
Mims, FL	3	0.15	20	700	7	1	peel	0.48, 0.64	0.56		DP-27554
USA, 2009							pulp	0.036, 0.043	0.04		Test 06
(Hamlin)							whole	0.26, 0.35	0.3		
Holopaw, FL	3	0.15	21	700	7	1	peel	0.34, 0.47	0.41		DP-27554
USA, 2009							pulp	0.041, 0.045	0.043		Test 07
(Valencia)							whole	0.18, 0.24	0.21		
Chuluota, FL	3	0.15	11	1400	7	1	peel	0.69, 0.7	0.7		DP-27554
USA, 2009							pulp	0.081, 0.092	0.086		Test 08
(Hamlin)							whole	0.37, 0.4	0.39		
Alamo, TX	3	0.15	25	610	7	1	peel	0.86, 0.91	0.88		DP-27554
USA, 2009							pulp	0.071, 0.066	0.069		Test 09
(Valencia)							whole	0.22, 0.23	0.22		
Sanger, CA	3	0.15	25	610	7	1	peel	0.23, 0.28	0.25	M1=0.01	DP-27554
USA, 2009							pulp	0.016, 0.02	0.018		Test 10
(Fisher)							whole	0.087, 0.11	0.098		
Sanger, CA	3	0.15	25	610	7	1	peel	0.45, 0.35	0.4		DP-27554
USA, 2009)							pulp	0.017, 0.01	0.013		Test 14
(Campbell)							whole	0.14, 0.1	0.12		
Sanger, CA	3	0.15	8	1870	7	1	peel	0.21, 0.21	0.21		DP-27554
USA, 2009)							pulp	0.038, 0.035	0.036		Test 25
(Navel)							whole	0.1, 0.1	0.1		
Sanger, CA	3	0.15	0.01	1550	7	1	peel	0.7, 0.64	0.67		DP-27554
USA, 2009)							pulp	0.019, 0.024	0.021		Test 26
(Washington Navel)							whole	0.2, 0.2	0.2		

Table 66 Residues in oranges from supervised trials in the USA involving foliar applications of cyantraniliprole (SE formulation)

M1: Average residues of metabolite IN-J9Z38 reported in peel

ORANGE			Applicatio	on		DAT	DAT Matrix Residues (mg/kg)				Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)		-	-	L/ha	(days)						
Andalucia	2	0.15	0.01	1500	7	-0	peel	0.27			DP-27716
Spain, 2010							pulp	0.023			Test 14
(Navelina)							whole	0.093			Orange
						0	peel	0.33			
							pulp	0.017			
							whole	0.11			
						1	peel	0.074			
							pulp	0.021			
							whole	0.036			
						3	peel	0.84			
							pulp	0.012			
							whole	0.26			
						7	peel	0.51			
							pulp	ND			
							whole	0.16			
Andalucia	2	0.15	0.01	1500	7	-0	peel	0.24			DP-27716
Spain, 2010							pulp	0.012			Test 15
(Navelina)							whole	0.067			Orange
						0	peel	0.56			
							pulp	0.046			
							whole	0.17			
						1	peel	0.73			
							pulp	0.034			
							whole	0.18			
						3	peel	0.56			
							pulp	ND			
							whole	0.13			
						7	peel	0.86			
							pulp	0.018			
							whole	0.22			
Kostaki	2	0.15	0.01	1500	7	7	peel	0.26			DP-27716
Greece, 2010							pulp	0.023			Test 08
(Salustiana)							whole	0.09			Orange

Table 67 Residues in oranges from supervised trials in Europe involving foliar applications of cyantraniliprole (SE formulation)

ORANGE Application DAT Matrix Residues (mg/kg) F	Reference &	
Location (days)	Comments	
Country, year no kg ai/ha kg ai/hL water RTI cyantraniliprole mean metabolites		
(variety) L/ha (days)		
Sicily 2 0.15 0.01 1500 7 -0 peel 0.49 I	DP-27716	
Italy, 2010 pulp ND 7	Test 16	
(Tarocco) whole 0.1	Orange	
0 peel 0.96		
pulp 0.011		
whole 0.21		
1 peel 1.2		
pulp 0.01		
whole 0.26		
3 peel 0.73		
pulp ND		
whole 0.15		
7 peel 0.66		
pulp ND		
whole 0.14		
Tortosa 2 0.15 0.01 1500 7 -0 peel 0.28	DP-27716	
Spain, 2009 pulp 0.018 7	Test 06	
(Navelina) whole 0.091	Orange	
0 peel 0.53		
pulp 0.041		
whole 0.17		
whole 0.16		
whole 0.10		
3 peel 0.47		
whole 0.15		
7 peel 0.76		
pulp 0.023		
whole 0.21		
Xerta 2 0.15 0.01 1500 7 7 peel 0.54 I	DP-27716	
Spain, 2010 pulp 0.016	Test 07	
(Navelate) 0.13	Orange	
Kostaki 3 0.15 0.01 1500 7 -0 peel 0.65 II	DP-27716	
Greece, 2009 pulp 0.043	Test 01	
(Salustiana) whole 0.23	Orange	
	č	
1 peel 0.79		
pulp 0.041		
whole 0.26		

ORANGE			Applicatio	on		DAT	Matrix	Residu	Residues (mg/kg)		
Location						(days)					Comments
Country, year	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Sicily	3	0.15	0.01	1500	7	-0	peel	0.85			DP-27716
Italy, 2009							pulp	0.004			Test 02
(Tarocco)							whole	0.2			Orange
						1	peel	0.9			
							pulp	0.007			
							whole	0.23			

Table 68 Residues in mandarins from supervised trials in Europe involving foliar applications of cyantraniliprole (SE formulation)

MANDARIN			Applicatio	on		DAT	Matrix	Residu	ies (mg/	kg	Reference
Location	no	kg ai/ha	kg ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	&
Country, year		8	0	(L/ha)	(davs)			· · · · · · · · · · · · · · · · · · ·			Comments
(variety)				X · · · · ·	(
Andaluci	2	0.15	0.01	1500	7	-0	peel	0.37			DP-27716
Spain, 2009							pulp	0.01			Test 04
(Clementina)							whole	0.079			Mandarin
						0	peel	0.6			
							pulp	0.025			
							whole	0.14			
						1	peel	0.78			
							pulp	ND			
							whole	0.17			
						3	peel	0.61			
							pulp	0.008			
							whole	0.15			
						7	peel	0.14			
							pulp	0.006			
							whole	0.036			
Andalucia,	2	0.15	0.01	1500	7	-0	peel	0.56			DP-27716
Spain, 2010							pulp	0.041			Test 11
(Clementina)							whole	0.16			Mandarin
						0	peel	1.2		M1=0.013	
							pulp	0.086			
							whole	0.35			
						1	peel	1.0		M1=0.013	
							pulp	0.063			
							whole	0.3			
						3	peel	0.73			
							pulp	0.026			
							whole	0.22			
						7	peel	0.54		M1=0.011	
							pulp	0.028			
							whole	0.16			

MANDARIN			Applicatio	on		DAT	Matrix	Residu	ies (mg/	kg	Reference
Location	no	kg ai/ha	kg ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	&
Country, year		U	U	(L/ha)	(days)			5 1			Comments
(variety)											
Kostaki	2	0.15	0.01	1500	7	7	peel	0.54		M1=0.01	DP-27716
Greece, 2010							pulp	0.017			Test 09
(Nova)							whole	0.14			Mandarin
Sant Jordi	2	0.15	0.03	510		-0	peel	0.24			DP-27716
Spain, 2010							pulp	0.023			Test 10
(Ortanike)							whole	0.073			Mandarin
						0	peel	0.54			
							pulp	0.11			
							whole	0.19			
						1	peel	0.67			
							pulp	ND			
							whole	0.15			
						3	peel	0.74			
							pulp	0.035			
							whole	0.19			
						7	peel	0.55			
						,	pulp	0.033			
							whole	0.16			
Sicily	2	0.15	0.01	1500	7	-0	neel	0.58			DP-27716
Italy, 2010	-	0110	0101	1000		Ũ	pulp	0.004			Test 12
(Clementine							whole	0.17			Mandarin
Comune)								0117			
comune)						0	neel	14			
						Ŭ	nulp	0.014			
							whole	0.39			
							whole	0.57			
						1	neel	0.9			
						1	pulp	0.007			
							whole	0.25			
							whole	0.25			
						2	naal	1.2			
						5	peer	0.000			
							puip whole	0.009			
							whole	0.33			
						7	meal	0.01			
						/	peer	0.01			
							puip	0.006			
							whole	0.23			

MANDARIN			Applicatio	on		DAT	Matrix	Residu	ies (mg/	kg	Reference
Location	no	kg ai/ha	kg ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	&
Country, year		-	-	(L/ha)	(days)						Comments
(variety)	2	0.157	0.01	15(0	7	0	1	0.57			DD 0771(
Sicily	2	0.157	0.01	1560	1	-0	peel	0.57			DP-2//16
Italy, 2010							pulp	0.006			Test 13
(Nova)							whole	0.13			Mandarin
						0		1.0			
						0	peer	1.0			
							puip	0.013			
							whole	0.24			
						1	neel	1.1			
						1	pulp	0.043			
							whole	0.043			
							whole	0.29			
						3	neel	0.84			
						5	nulp	0.009			
							whole	0.2			
								0.2			
						7	peel	0.64			
							pulp	0.008			
							whole	0.16			
Tivenys	2	0.15	0.03	500	7	-0	peel	1.5			DP-27716
Spain, 2009							pulp	0.06			Test 05
(Nules)							whole	0.42			Mandarin
						0	peel	1.6			
							pulp	0.1			
							whole	0.49			
						1	peel	1.9			
							pulp	0.07			
							whole	0.51			
						3	peel	2.0			
							pulp	0.09			
							whole	0.56			
						_		2.5		M1 0.01	
						1	peel	2.7		M1=0.01	
							pulp	0.03			
	-	0.45	0.01	1.500	_		whole	0.71			
Kostaki	3	0.15	0.01	1500	1	-0	peel	1.1		M1=0.01	DP-27/16
Greece, 2009							pulp	0.08			Test 03
(Clementine)							whole	0.38			Mandarın
						1	meal	1 1		M1-0.014	
						1	peer	1.1		W11=0.014	
							puip	0.2			
							whole	0.47			

M1: Average residues of metabolite IN-J9Z38 reported in peel

GRAPEFRUIT			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Mims, FL	3	0.15	21	700	7	1	peel	0.35, 0.34	0.35		DP-27554
USA, 2009							pulp	0.022, 0.019	0.021		Test 11
(White Marsh)							whole	0.14, 0.14	0.14		
Oviedo, FL	3	0.15	11	1400	7	1	peel	0.41, 0.43	0.42		DP-27554
USA, 2009							pulp	0.028, 0.037	0.032		Test 12
(Flame)							whole	0.18, 0.2	0.19		
Holopaw, FL	3	0.15	10	1500	7	1	peel	0.77, 0.67	0.72		DP-27554
USA, 2009							pulp	0.043, 0.055	0.049		Test 13
(White)							whole	0.33, 0.3	0.31		
Alamo, TX	3	0.15	6	2400	7	1	peel	0.45, 0.28	0.36	M1=0.015	DP-27554
USA, 2009							pulp	0.032, 0.019	0.026		Test 15
(Rio Red)							whole	0.11, 0.21	0.16		
Elderwood, CA	3	0.15	32	470	7	1	peel	0.26, 0.18	0.22		DP-27554
USA, 2009							pulp	0.035, 0.03	0.033		Test 16
Duncan							whole	0.11, 0.076	0.091		
Sanger, CA	3	0.15	0.025	620	7	1	peel	0.32, 0.29	0.3		DP-27554
USA, 2009							pulp	0.02, 0.039	0.029		Test 17
(Rio Red)							whole	0.12, 0.12	0.12		
Sanger, CA	3	0.15	0.01	1560	7	1	peel	0.31, 0.34	0.33		DP-27554
USA, 2009							pulp	0.012, 0.016	0.014		Test 18
(Marsh White)							whole	0.11, 0.13	0.12		

Table 69 Residues in grapefruit from supervised trials in the USA involving foliar applications of cyantraniliprole (SE formulation)

M1: Average residues of metabolite IN-J9Z38 reported in peel

Table	70	Residues	in	lemons	from	supervised	trials	in	the	USA	involving	foliar	applications	of
cyantr	anil	iprole (SE	for	rmulation	n.									

LEMON		1	Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year				L/ha	(days)						
(variety)											
Newman, CA	3	0.15	8	1870	7	1	peel	0.42, 0.44	0.43		DP-27554
USA, 2009/2010							pulp	0.11, 0.11	0.11		Test 19
(Lisbon)							whole	0.21, 0.22	0.21		
Sanger, CA	3	0.15	25	610	7	1	peel	0.3, 0.45	0.37		DP-27554
USA, 2009							pulp	0.022, 0.024	0.023		Test 20
(Lisbon)							whole	0.13, 0.2	0.16		
Sanger, CA	3	0.15	10	1560	7	1	peel	0.62, 0.63	0.63		DP-27554
USA, 2009							pulp	0.068, 0.057	0.063		Test 21
(Frost Lisbon)							whole	0.31, 0.3	0.3		
Sanger, CA	3	0.15	33	470	7	1	peel	0.34, 0.39	0.36		DP-27554
USA, 2009/2010							pulp	0.069, 0.071	0.07		Test 22
(Eureka)							whole	0.18, 0.2	0.19		
Sanger, CA	3	0.16	8	1870	7	1	peel	0.32, 0.39	0.35		DP-27554
USA, 2009							pulp	0.059, 0.066	0.063		Test 23
(Lizbon 8A)							whole	0.14, 0.17	0.16		
Elderwood, CA	3	0.15	32	470	7	1	peel	0.24, 0.42	0.33		DP-27554
USA, 2009							pulp	0.037, 0.077	0.057		Test 24
(Lizbon)							whole	0.11, 0.21	0.16		

LEMON			Application	on		DAT	С	yantranilipi	ole Residues ((mg/kg)	Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	water		peel	pulp	whole fruit	metabolites	
(variety)				L/ha	L/tree						
Sanger, CA	1	0.45	117	390	0.95	1	< 0.01	ND	< 0.01		DP-27554
USA,						7	ND	ND	ND		Test 22
2009/2010						14	ND	ND	ND		
(Eureka)											
Sanger, CA	1	0.45	0.16	280	0.95	1	ND	ND	ND		DP-27554
USA, 2009						7	< 0.01	ND	< 0.01		Test 23
(Lizbon 8A)						14	ND	ND	ND		
Elderwood,	1	0.45	0.17	260	0.95	1	ND	ND	ND		DP-27554
CA						7	ND	ND	ND		Test 24
USA, 2009						14	ND	ND	ND		
(Lizbon)											

Table 71 Residues in lemons from supervised trials in the USA involving soil band applications of cyantraniliprole (200 SC formulation)

Pome fruits

Results from supervised trials from Europe and North America on apples and pears were provided to the Meeting.

North America

In trials conducted in North America on <u>apples</u> and <u>pears</u>, three foliar applications of 0.15 kg ai/ha cyantraniliprole (SE formulation) were applied at 7 day intervals, either as high volume or concentrate airblast applications, with adjuvant added (except in the processing study trials).

Duplicate samples were stored at -20 °C for up to 7 months before analysis (within 76 days of extraction) for cyantraniliprole and six metabolites using analytical method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 93–97% (cyantraniliprole) and 83–102% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg.

Europe

In trials conducted in Europe on <u>apples</u> and <u>pears</u>, two foliar applications of 6–15 g ai/hL cyantraniliprole (SE or WG formulations) were applied at 7 day intervals, either as high volume or concentrate treatments, with and without added adjuvant. These trials included a number of reverse decline studies, where different plots were treated at staggered intervals so that the sampling dates co-incided with normal commercial harvest.

Samples were stored at -18 °C for up to 4–5 months before analysis of whole fruit for cyantraniliprole and 6–7 metabolites (within 2–24 hours after extraction) using analytical method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 90–94% (cyantraniliprole) and 88–99% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg.

Table 72 Residues in apples from supervised trials in North America involving foliar applications of cyantraniliprole (SE formulation)

APPLE		1	Applicati	on		DAT	Matrix	Residu	es (mg/	/kg)	Reference
Location Country, year (variety)	no	kg ai/ha	g ai/hL	water L/ha	RTI (days)	(days)		cyantraniliprole	mean	metabolites	& Comments
Beldenville, WI USA, 2009 (Connell Red)	3	0.15	31	490	7	3 7	whole fruit	0.13, 0.13 0.08, 0.12	<u>0.13</u> 0.099		DP-27438 Trial 20

APPLE		L	Applicati	on		DAT	Matrix	Residu	es (mg/	'kg)	Reference
Location Country, year (variety)	no	kg ai/ha	g ai/hL	water L/ha	RTI (days)	(days)		cyantraniliprole	mean	metabolites	& Comments
Berwick, NS, CAN, 2009 (Coatland)	3	0.15	34	450	6,9	3 7	whole fruit	0.086, 0.056 0.066, 0.052	<u>0.071</u> 0.059		DP-27438 Test 02
Branchton, ON, CAN, 2009 (Northern Spy)	3	0.15	12	1260	7	3 7	whole fruit	0.2, 0.21 0.19, 0.17	<u>0.21</u> 0.18		DP-27438 Trial 05
Cana, VA USA, 2009 (Yellow Delicious)	3	0.15	27	560	7	3 7	whole fruit	0.25, 0.26 0.29, 0.21	<u>0.26</u> 0.25		DP-27438 Trial 04
Centralia, IL USA, 2009 (Golden Delicious)	3	0.15	38	400	7,6	3 7	whole fruit	0.2, 0.16 0.13, 0.13	<u>0.18</u> 0.13		DP-27438 Trial 08
Conklin, MI USA, 2009 (Golden Delicious)	3	0.15	8	1900	4,7	3 7	whole fruit	0.15, 0.19 0.099, 0.12	<u>0.17</u> 0.11		DP-27438 Trial 16
Ephrata, WA USA, 2009 (Red Delicious)	3	0.15	7	1880	7	3 7	whole fruit	0.31, 0.27 0.26, 0.27	<u>0.29</u> 0.27		DP-27438 Trial 10
Hart, MI USA, 2009 (Golden Delicious)	3	0.15	30	500	7	3 7	whole fruit	0.31, 0.31 0.29, 0.31	<u>0.31</u> 0.3		DP-27438 Trial 07
Hood River, OR USA, 2009 (Gingergold)	3	0.15	8	1900	7	3 6	whole fruit	0.15, 0.16 0.1, 0.089	<u>0.15</u> 0.096		DP-27438 Trial 13
Hood River, OR USA, 2009 (Jonagold)	3	0.15	13	550	7	3 7	whole fruit	0.046, 0.057 0.072, 0.055	0.052 <u>0.064</u>		DP-27438 Trial 15
North Rose, NY USA, 2009 (Ida Red)	3	0.15	7	2100	7,6	3 8	whole fruit	0.15, 0.086 0.073, 0.072	<u>0.12</u> 0.072		DP-27438 Trial 03
Payette, ID USA, 2009 (Early Spur Rome)	3	0.15	13	1180	7	3 7	whole fruit	0.23, 0.28 0.17, 0.13	<u>0.26</u> 0.15		DP-27438 Trial 14
Perry, UT USA, 2009 (Gala)	3	0.15	8	2000	7	3 7	whole fruit	0.13, 0.17 0.11, 0.12	<u>0.15</u> 0.12		DP-27438 Trial 11
Sanger, CA USA, 2009 (Pink Lady)	3	0.15	32	480	7	3 7	whole fruit	0.072, 0.062 0.094, 0.11	0.067 <u>0.1</u>		DP-27438 Trial 12
Santa Maria, CA USA, 2009 (Starkrimson)	3	0.15	7	2250	6	3 7	whole fruit	0.1, 0.15 0.14, 0.12	<u>0.13</u> 0.13		DP-27438 Test 01
Wyoming, IL USA, 2009 (Imperial Gala)	3	0.15	12	1290	7	$ \begin{array}{c} -0 \\ 0 \\ 1 \\ 3 \\ 6 \end{array} $	whole fruit	0.066, 0.097 0.16, 0.18 0.2, 0.17 0.16, 0.15 0.12, 0.16	0.081 0.17 0.19 <u>0.16</u> 0.14		DP-27438 Trial 06

APPLE Location Country, year (variety)		Ap	oplicati	on		DAT (days)	Matrix	Residue	es (mg	/kg	Reference & Comments
Country, year (variety)	no	kg ai/ha	g ai/hL	water (L/ha)	RTI (days)			cyantraniliprole	mean	metabolites	
Bentley, Suffolk, UK South, 2010 (Spartan)	2	0.045	6	750	6–8	$ \begin{array}{c} -0 \\ 0 \\ 7 \\ 14 \\ 27 \\ 55 \end{array} $	whole fruit	0.042 0.06 0.052 0.041 0.02 ND			DP-27714 Test 21 [reverse decline]
KR Groesbeek, Limburg, Netherlands, 2010 (Elstar)	2	0.05	6	900	6–8	$ \begin{array}{r} -0 \\ 0 \\ 7 \\ 14 \\ 28 \\ 56 \end{array} $	whole fruit	0.034 0.13 0.06 0.041 0.026 0.015			DP-27714 Test 32 [reverse decline]
Dommartin, Rhone Alpes, S France, 2010 (Golden)	2	0.06	15	400	6	8	whole fruit	0.011			DP-27714 Test 30
Herlies, NordPas de Calais, N France, 2010 (Elstar)	2	0.06	15	400	7	7	whole fruit	0.058			DP-27714 Test 17
Herlies, NordPas de Calais, N France, 2010 (Jonagored)	2	0.06	6	1000	6-7	-0 0 7 13 28 55	whole fruit	0.039 0.14 0.052 0.042 0.013 ND			DP-27714 Test 25 [reverse decline]
Thurins, Rhone Alpes, S France, 2010 (Braeburn)	2	0.06	6	1000	6–8	$ \begin{array}{r} -0 \\ 0 \\ 7 \\ 15 \\ 28 \\ 56 \end{array} $	whole fruit	0.025 0.059 0.027 0.052 0.021 0.005			DP-27714 Test 23 [reverse decline]
Calatorao, Aragon Spain, 2009 (Starking)	2	0.07	5	1400	10	0 0 1 3 7 14	whole fruit	0.05 0.12 0.13 0.06 0.1 0.07			S09-01572 Test 04 [400 WG]
Meauzac, Midi Pyrénées S. France, 2010 (Pink Lady)	2	0.07	5	1400	10	0 1 3 7 14	whole fruit	0.06 0.07 0.04 0.04 <loq< td=""><td></td><td></td><td>S10-01052 Test 04 [400 WG]</td></loq<>			S10-01052 Test 04 [400 WG]
Meauzac, Midi Pyrénées S. France, 2010 (Pink Lady)	2	0.07 (adjuvant)	5	1400	10	0 1 3 7 14	whole fruit	0.12 0.12 0.07 0.08 0.09			S10-01052 Test 04 [400 WG]

Table 73 Residues in apples from supervised trials in Europe involving foliar applications of cyantraniliprole (SE formulation unless specified)

APPLE Location	Application					DAT (days)	Matrix	Residue	es (mg	/kg	Reference & Comments
Country, year (variety)	no	kg ai/ha	g ai/hL	water (L/ha)	RTI (days)			cyantraniliprole	mean	metabolites	
Fuilla, Languedoc Roussillon S. France, 2010 (Golden)	2	0.075	5	1500	10	0 1 3 7 14	whole fruit	0.07 0.12 0.08 0.03 0.05			S10-01052 Test 03 [400 WG]
Hechthausen, Lower Saxony, Germany, 2009 (Delba)	2	0.075	5	1500	11	0 0 1 3 7 14	whole fruit	0.05 0.17 0.15 0.18 0.1 0.08			S09-01571 Test 02 [400 WG]
Heidelberg, BadenWürttemberg Germany, 2010 (Gala)	2	0.075	5	1500	10	0 1 3 7 14	whole fruit	0.08 0.07 0.06 0.05 0.03			S10-01051 Test 01
Heidelberg, BadenWürttemberg Germany, 2010 (Gala)	2	0.075 (adjuvant)	5	1400	10	0 1 3 7 14	whole fruit	0.1 0.07 0.04 0.03 0.02			S10-01051 Test 01 [400 WG]
Innenheim, Alsace N. France, 2009 (Elstar)	2	0.075	5	1500	10	0 1 3 7 14	whole fruit	0.1 0.09 0.08 0.06 0.03			S09-01571 Test 01 [400 WG]
Languedoc Roussillon S. France, 2010 (Golden)	2	0.075 (adjuvant)	5	1500	10	0 1 3 7 14	whole fruit	0.13 0.17 0.08 0.04 0.08			S10-01052 Test 03 [400 WG]
Ressen, Gelderland Netherlands, 2010 (var)	2	0.075	6	1260	7	7	whole fruit	0.045			DP-27714 Test 22
Stotzheim, Alsace N. France, 2010 (Ambassy)	2	0.075	5	1400	10	0 1 3 7 14	whole fruit	0.16 0.13 0.09 0.04 0.04			S10-01051 Test 02 [400 WG]
Stotzheim, Alsace N. France, 2010 (Ambassy)	2	0.075 (adjuvant)	5	1500	10	0 1 3 7 14	whole fruit	0.12 0.1 0.09 0.08 0.02			S10-01051 Test 02 [400 WG]
Castelnaudary, Languedoc Roussillon S. France, 2009 (Fuji)	2	0.08	5	1600	10	0 1 3 7 14	whole fruit	0.04 0.03 0.02 0.01 0.02			S09-01572 Test 03 [400 WG]

APPLE Location		Aj	pplicatio	on		DAT (days)	Matrix	Residue	es (mg	/kg	Reference & Comments
Country, year (variety)	no	kg ai/ha	g ai/hL	water (L/ha)	RTI (days)			cyantraniliprole	mean	metabolites	
Arbeca, Catalunya, N Spain, 2010 (Golden)	2	0.11	7.6	1500	7	-0 0 7 14 28 56	whole fruit	0.051 0.11 0.079 0.087 0.11 0.025			DP-27714 Test 26 [reverse decline]
Monleale, Piemonte, Italy, 2010 (Stark)	2	0.11	7.6	1500	7	$ \begin{array}{r} -0 \\ 0 \\ 7 \\ 14 \\ 29 \\ 56 \end{array} $	whole fruit	0.094 0.11 0.13 0.076 0.015 0.017			DP-27714 Test 24 [reverse decline]
Nea Trapezounda, Central Macedonia, Greece, 2010 (Fuji)	2	0.11	7.6	1500	7	7	whole fruit	0.12			DP-27714 Test 18
Calatorao, Aragon Spain, 2009 (Starking)	2	0.125	8.3	1500	10	0 0 1 3 7 14	whole fruit	0.12 0.22 0.13 0.21 0.19 0.1			S09-01572 Test 04 [400 WG]
Calatorao, Aragon Spain, 2009 (Starking)	2	0.125 (adjuvant)	8.3	1500	10	0 0 1 3 7 14	whole fruit	0.06 0.33 0.2 0.23 0.28 0.21			S09-01572 Test 04 [400 WG]
Castelnaudary, Languedoc Roussillon S. France, 2009 (Fuji)	2	0.125	8.6	1600	10	0 1 3 7 14	whole fruit	0.12 0.06 0.04 0.03 0.02			S09-01572 Test 03 [400 WG]
Castelnaudary, Languedoc Roussillon S. France, 2009 (Fuji)	2	0.125 (adjuvant)	8.3	1500	10	0 1 3 7 14	whole fruit	0.06 0.05 0.04 0.02 0.02			S09-01572 Test 03 [400 WG]
Hechthausen, Lower Saxony, Germany, 2009 (Delba)	2	0.125	8.3	1500	11	0 0 1 3 7 14	whole fruit	0.08 0.38 0.31 0.39 0.26 0.16			S09-01571 Test 02 [400 WG]
Hechthausen, Lower Saxony, Germany, 2009 (Delba)	2	0.125 (adjuvant)	8.3	1500	11	0 0 1 3 7 14	whole fruit	0.09 0.29 0.27 0.23 0.22 0.13			S09-01571 Test 02 [400 WG]

APPLE	Application					DAT	Matrix	Residue	es (mg	/kg	Reference & Comments
Location						(days)					
Country, year (variety)	no	kg ai/ha	g ai/hL	water (L/ha)	RTI (days)			cyantraniliprole	mean	metabolites	
Innenheim, Alsace N. France, 2009 (Elstar)	2	0.125	8.6	1600	10	0 1 3 7 14	whole fruit	0.24 0.14 0.17 0.13 0.08			S09-01571 Test 01 [400 WG]
Innenheim, Alsace N. France, 2009 (Elstar)	2	0.125 (adjuvant)	8.3	1500	10	0 1 3 7 14	whole fruit	0.18 0.18 0.18 0.09 0.09			S09-01571 Test 01 [400 WG]

Table 74 Residues	in pears	from	supervised	trials in	n North	America	involving	foliar	applications	of
cyantraniliprole (S	E formula	tion)								

PEAR			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)	Reference
Location Country, year (variety)	no	kg ai/ha	g ai/hL	water L/ha	RTI (days)	(days)		cyantraniliprole	mean	metabolites	Comments
Alton, NY USA, 2009 (Clapps Favorite)	3	0.15	13	1100	6, 7	3 7	whole fruit	0.21, 0.24 0.18, 0.15	<u>0.23</u> 0.16		DP-27438 Trial 17
Beamsville, ON CAN, 2009 (D'Anjou)	3	0.15	15	1000	7	3 7	whole fruit	0.078, 0.074 0.058, 0.071	<u>0.077</u> 0.065		DP-27438 Trial 18
Ephrata, WA USA, 2009 (Bartlett)	3	0.15	32	470	7, 8	3 7	whole fruit	0.56, 0.6 0.45, 0.46	<u>0.58</u> 0.45		DP-27438 Trial 26
Ephrata, WA USA, 2009 (Concord)	3	0.15	32	470	7	3 7	whole fruit	0.39, 0.48 0.37, 0.39	<u>0.44</u> 0.38		DP-27438 Trial 25
Hood River, OR USA, 2009 (Bartlett)	3	0.15	27	550	7	3 6	whole fruit	0.13, 0.11 0.12, 0.12	<u>0.12</u> 0.12		DP-27438 Trial 24
Hood River, OR USA, 2009 (Red Clapp)	3	0.15	7	2200	7	3 6	whole fruit	0.13, 0.15 0.11, 0.098	<u>0.14</u> 0.1		DP-27438 Trial 23
Lindsay, CA USA, 2009 (Olympic)	3	0.15	9	1700	7	3 8	whole fruit	0.16, 0.14 0.14, 0.17	0.15 <u>0.16</u>		DP-27438 Trial 21
Marysville, CA USA, 2009 (Bartlett)	3	0.15	11	1400	7	3 7	whole fruit	0.54, 0.3 0.39, 0.3	<u>0.42</u> 0.35		DP-27438 Trial 22
Shelby, MI USA, 2009 (Bartlett)	3	0.15	31	500	7	3 7	whole fruit	0.42, <u>0.65</u> 0.59, 0.54	0.54 <u>0.56</u>		DP-27438 Trial 19
Simcoe, ON CAN, 2009 (Bartlett)	3	0.15	26	600	7	3 7	whole fruit	0.1, 0.09 0.034, 0.049	<u>0.095</u> 0.042		DP-27438 Trial 09

PEAR Location			Application	on		DAT Matrix Residues (mg/kg			đa	Reference &	
Location Country, year (variety)	no	kg ai/ha	g ai/hL	water (L/ha)	RTI (days)	(days)		cyantraniliprole	mean	metabolites	Comments
Bentley, Suffolk, UK South, 2010 (Conference)	2	0.045	6	750	6–8	-0 0 7 14 27 55	whole fruit	0.025 0.056 0.075 0.052 0.044 0.01			DP-27714 Test 31 [reverse decline]
Dommartin, Rhone Alpes, S France, 2010 (William)	2	0.06	6	1000	6–8	-0 0 6 14 28 55	whole fruit	0.038 0.084 0.081 0.033 0.02 0.013			DP-27714 Test 34 [reverse decline]
Herlies, NordPas de Calais, N France, 2010 (Angelys)	2	0.06	6	1000	6–7	-0 0 7 13 28 55	whole fruit	0.03 0.083 0.021 0.019 0.008 0.004			DP-27714 Test 33 [reverse decline]
Herlies, NordPas de Calais, N France, 2010 (Comice)	2	0.06	15	400	7	7	whole fruit	0.13			DP-27714 Test 28
Höhnstedt, SaxonyAnhalt, Germany, 2010 (Williams)	2	0.06	6	1000	8	7	whole fruit	0.063			DP-27714 Test 19
KR Groesbeek, Limburg, Netherlands, 2009 (Conference)	2	0.06	7.5	800	7	7	whole fruit	0.055			DP-27714 Test 10
Le Marne, Rhone Alpes, S France, 2010 (Packham)	2	0.06	15	400	6	7	whole fruit	0.081			DP-27714 Test 20
Elne, Languedoc Roussillon S. France, 2010 (Williams)	2	0.07	5	1400	10	0 1 3 7 14	whole fruit	0.12 0.1 0.13 0.11 0.06			S10-01054 Test 07 [400 WG]
Altedo Bologna Italy, 2010 (Decana)	2	0.075	5	1500	10	0 1 3 7 14	whole fruit	0.13 0.13 0.1 0.1 0.05			S10-01054 Test 08 [400 WG]

Table 75 Residues in pears from supervised trials in Europe involving foliar applications of cyantraniliprole (SE formulation)

PEAR			Applicati	on		DAT	Matrix	Residue	es (mg/l	cg	Reference &
Location Country, year (variety)	no	kg ai/ha	g ai/hL	water (L/ha)	RTI (days)	(days)		cyantraniliprole	mean	metabolites	Comments
Altedo Bologna Italy, 2010 (Decana)	2	0.075 (adjuvant)	5	1500	10	0 1 3 7 14	whole fruit	0.12 0.13 0.09 0.04 0.05			S10-01054 Test 08 [400 WG]
Bradfield Combust, Suffolk UK South, 2009 (Conference)	2	0.075	7.5	1000	6-9	-0 0 7 13 27 56	whole fruit	0.068 0.11 0.076 0.12 0.022 0.015			DP-27714 Test 14 [Reverse decline]
Calatorao, Aragon Spain, 2009 (Conference)	2	0.075	5	1500	10	0 0 1 3 7 14	whole fruit	0.03 0.11 0.12 0.11 0.04 0.05			S09-01574 Test 08 [400 SG]
Elne, Languedoc Roussillon S. France, 2010 (Williams)	2	0.075 (adjuvant)	5	1500	10	0 1 3 7 14	whole fruit	0.15 0.15 0.01 0.1 0.03			S10-01054 Test 07 [400 WG]
Elne, Languedoc Roussillon S. France, 2009 (Williams)	2	0.075	5	1500	10	0 1 3 7 14	whole fruit	0.04 0.04 0.02 0.02 0.02 0.02			S09-01574 Test 07 [400 WG]
Herlies, NordPas de Calais, N France, 2009 (Conference)	2	0.075	19	400	6	9	whole fruit	0.11			DP-27714 Test 09
Herlies, NordPas de Calais, N France, 2009 (Angelys)	2	0.075	7.5	1000	5-7	-0 0 5 12 26 54	whole fruit	0.027 0.044 0.019 0.029 0.01 ND			DP-27714 Test 13 [Reverse decline]
Jork, Lower Saxony Germany, 2009 (Condo)	2	0.075	5	1500	10	0 0 1 3 7 14	whole fruit	0.02 0.13 0.13 0.08 0.05 0.04			S09-01573 Test 06 [400 WG]
Neuenschleuse, Niedersachsen Germany, 2010 (Hollandische Zuckerbirne)	2	0.075 (adjuvant)	5	1500	10	0 1 3 7 14	whole fruit	0.16 0.13 0.14 0.08 0.03			S10-01053 Test 05 [400 WG]

PEAR		Application					DAT Matrix Residues (mg/kg			rg	Reference &
Location Country, year (variety)	no	kg ai/ha	g ai/hL	water (L/ha)	RTI (days)	(days)		cyantraniliprole	mean	metabolites	Comments
Stotzheim, Alsace N. France, 2009 (Williams)	2	0.075	5	1500	10	0 1 3 7 14	whole fruit	0.06 0.04 0.03 0.02 0.02			S09-01573 Test 05 [400 WG]
Stotzheim, Alsace N. France, 2010 (Williams)	2	0.075	5	1500	10	0 1 3 7 14	whole fruit	0.12 0.16 0.08 0.04 0.03			S10-01053 Test 06 [400 WG]
Stotzheim, Alsace N. France, 2010 (Williams)	2	0.075 (adjuvant)	5	1500	10	0 1 3 7 14	whole fruit	0.19 0.12 0.08 0.05 0.04			S10-01053 Test 06 [400 WG]
Vergers des 4 Loups, Lot en Garonne, S France, 2009 (Passe Ciassome)	2	0.075	7.5	1000	6–8	-0 0 7 13 27 55	whole fruit	0.031 0.044 0.06 0.035 0.018 0.006			DP-27714 Test 15 [Reverse decline]
Dommartin, Rhône Alpes, S France, 2009 (William)	2	0.076	19	410	7	7	whole fruit	0.092			DP-27714 Test 12
Ablass, Saxony, Germany, 2010 (Williams)	2	0.08	6	1300	7	$ \begin{array}{c} -0 \\ 0 \\ 7 \\ 14 \\ 28 \\ 56 \end{array} $	whole fruit	0.04 0.097 0.042 0.029 0.023 0.004			DP-27714 Test 27 [reverse decline]
Neuenschleuse, Niedersachsen Germany, 2010 (Hollandische Zuckerbirne)	2	0.08	5	1600	10	0 1 3 7 14	whole fruit	0.08 0.06 0.08 0.06 0.01			S10-01053 Test 05 [400 WG]
Agia Triada, Central Macedonia, Greece, 2009 (Kristalia)	2	0.11	7.5	1450	7	7	whole fruit	0.099			DP-27714 Test 11
Akrolimni, Central Macedonia, Greece, 2010 (Williams)	2	0.11	7.6	1500	7	7	whole fruit	0.18			DP-27714 Test 29

PEAR Location		Application					DAT Matrix Residues (mg/kg			g	Reference &
Location Country, year (variety)	no	kg ai/ha	g ai/hL	water (L/ha)	RTI (days)	(days)		cyantraniliprole	mean	metabolites	Comments
Bellvis, Catalunya, N Spain, 2010 (Ercolini)	2	0.11	7.6	1500	7	-0 0 7 14 28 56	whole fruit	0.095 0.17 0.16 0.11 0.045 0.009			DP-27714 Test 36 [reverse decline]
Bellvis, Catalunya, N Spain, 2009 (Conference)	2	0.11	7.5	1500	7–8	$ \begin{array}{c} -0 \\ 0 \\ 7 \\ 14 \\ 29 \\ 55 \end{array} $	whole fruit	0.12 0.26 0.15 0.071 0.067 0.017			DP-27714 Test 16 [Reverse decline]
Carpi, Emilia Romagna, Italy, 2010 (William)	2	0.11	7.6	1500	7	$ \begin{array}{c} -0 \\ 0 \\ 7 \\ 14 \\ 28 \\ 56 \end{array} $	whole fruit	0.037 0.1 0.048 0.032 0.057 0.004			DP-27714 Test 35 [reverse decline]
Calatorao, Aragon Spain, 2009 (Conference)	2	0.125	8.3	1500	10	0 0 1 3 7 14	whole fruit	0.02 0.2 0.19 0.08 0.09 0.03			S09-01574 Test 08 [400 SG]
Calatorao, Aragon Spain, 2009 (Conference)	2	0.125 (adjuvant)	8.3	1500	10	0 0 1 3 7 14	whole fruit	0.07 0.13 0.29 0.16 0.09 0.13			S09-01574 Test 08 [400 SG]
Elne, Languedoc Roussillon S. France, 2009 (Williams)	2	0.125	8.3	1500	10	0 1 3 7 14	whole fruit	0.08 0.08 0.02 0.02 0.02 0.05			S09-01574 Test 07 [400 WG]
Elne, Languedoc Roussillon S. France, 2009 (Williams)	2	0.125 (adjuvant)	8.3	1500	10	0 1 3 7 14	whole fruit	0.15 0.08 0.07 0.06 0.04			S09-01574 Test 07 [400 WG]
Jork, Lower Saxony Germany, 2009 (Condo)	2	0.125	8.3	1500	10	0 0 1 3 7 14	whole fruit	0.04 0.24 0.17 0.18 0.11 0.12			S09-01573 Test 06 [400 WG]

PEAR Location		-	Applicati	on		DAT	Matrix	x Residues (mg/kg			Reference &
Country, year (variety)	no	kg ai/ha	g ai/hL	water (L/ha)	RTI (days)	(days)		cyantraniliprole	mean	metabolites	Comments
Jork, Lower	2	0.125	8.3	1500	10	0	whole	0.06			S09-01573
Saxony		(adjuvant)				0	fruit	0.21			Test 06
Germany, 2009						1		0.26			[400 WG]
(Condo)						3		0.17			
						7		0.16			
						14		0.11			
Stotzheim,	2	0.125	8.3	1500	10	0	whole	0.09			S09-01573
Alsace						1	fruit	0.06			Test 05
N. France, 2009						3		0.07			[400 WG]
(Williams)						7		0.06			
						14		0.04			
Stotzheim,	2	0.125	8.3	1500		0	whole	0.09			S09-01573
Alsace		(adjuvant)				1	fruit	0.07			Test 05
N. France, 2009						3		0.06			[400 WG]
(Williams)						7		0.07			
						14		0.04			

Stonefruit

Results from supervised trials from Europe and North America on peaches, plums and cherries were provided to the Meeting.

North America

In trials conducted in North America, three foliar applications of 0.15 kg ai/ha cyantraniliprole (SE formulation) were applied at 7 day intervals, either as high volume (1000–2000 L/ha) or concentrate (100–800 L/ha) airblast applications, with adjuvant added.

Duplicate samples were stored at -20 °C for up to 7 months before analysis of flesh (within 101 days of extraction) for cyantraniliprole and six metabolites using analytical method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 100–104% (cyantraniliprole) and 91–109% (metabolites) in samples spiked with 0.01, 0.1, 0.5 and/or 2 mg/kg. Residues in whole fruit were calculated from the flesh residue results and the relative flesh:stone weights.

Europe

In trials conducted in Europe on <u>apricots</u>, <u>peaches</u> and <u>plums</u>, two foliar applications of 0.15 kg ai/ha (10–30 g ai/hL) cyantraniliprole (SE or WG formulations) were applied 7 days apart, using 500–1500 L/ha, with and without added adjuvant. These trials included a number of reverse decline studies, where different plots were treated at staggered intervals so that the sampling dates coincided with normal commercial harvest.

Samples were stored at -18 °C for up to 9 months before analysis for cyantraniliprole and six to seven metabolites (within 1–23 days after extraction) using analytical method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 82–96% (cyantraniliprole) and 79–96% (metabolites) in samples spiked with 0.01, 0.1 and 0.5 or 1.0 mg/kg. Residues in whole fruit were calculated from residues measured in the flesh, and the relative weights of flesh and stones.

APRICOT		Application DAT Matrix Residues (mg/kg)				Reference &					
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year				L/ha	(days)						
(variety)											
Mandalo	2	0.15	10	1500	8	7	flesh	0.36		M1=0.01	DP-27717
Greece, 2009							whole	0.34		M1=0.01	Test 02
(Bebeku)							fruit				
La Granja	2	0.15	30	500		-0	flesh	0.17			DP-27717
d'Escarp						0		0.17			Test 04
Spain, 2010						7		0.34			[reverse
(Pinkoot)						14		0.25			decline]
						28		0.19			
						56		0.065			
						-0	whole	0.16			
						0	fruit	0.16			
						7		0.32			
						14		0.24			
						28		0.18			
						56		0.062			
Seros	2	0.15	10	1500		7	flesh	0.083			DP-27717
Spain, 2010						15		0.066			Test 09
(Traver)						21		0.06			[reverse
						34		0.05			decline]
						63		0.012			
						7	whole	0.08			
						15	fruit	0.064			
						21		0.058			
						34		0.048			
						63		0.012			

Table 76 Residues in apricots from supervised trials in Europe involving foliar applications of cyantraniliprole (SE formulation)

M1: Residues of metabolite IN-J9Z38

Table 7	7 Residues	in cherries	from s	upervised	trials in	North	America	involving	foliar	applicat	ions o	of
cyantrai	niliprole (S	E formulat	ion).									

CHERRY	Application				DAT	Matrix	Residu	es (mg/	kg)	Reference	
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year				L/ha	(days)						
(variety)											
Denair, CA	3	0.15	10	1500	7,8	3	flesh	0.32, 0.4	0.36	M1=0.03	DP-27437
USA, 2009						7		0.31, 0.36	0.34	M1=0.04	Trial 28
Sweet Cherry											
(Bing)						3	whole	0.28, 0.35	<u>0.32</u>	M1=0.03	
						7	fruit	0.28, 0.32	0.3	M1=0.04	
Hart, MI	3	0.15	28	500	7	3	flesh	0.99, 0.79	0.89		DP-27437
USA, 2009						7		0.75, 0.91	0.83		Trial 26
Tart Cherry											
(Montmorency)						3	whole	0.89, 0.71	0.8		
						7	fruit	0.66, 0.81	0.74		

CHERRY			Application	on		DAT	Matrix	Residu	Reference		
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year				L/ha	(days)						
(variety)											
Hood River, OR	3	0.15	26	600	7	3	flesh	0.37, 0.29	0.33		DP-27437
USA, 2009						7		0.21, 0.19	0.2		Trial 29
Sweet Cherry											
(Selah)						3	whole	0.33, 0.26	<u>0.3</u>		
						7	fruit	0.19, 0.17	0.18		
Orefield, PA	3	0.15	6	2300	7,6	3	flesh	1.1, 0.87	0.96	M1=0.01	DP-27437
USA, 2009						7		0.96, 0.95	0.96	M1=0.01	Test 23
Tart Cherry											
(Montmorency)						3	whole	1.0, 0.8	<u>0.9</u>	M1=0.01	
						7	fruit	0.87, 0.87	0.87	M1=0.01	
Pentwater, MI	3	0.15	30	500	7	3	flesh	3.9, 3.6	3.8	M1=0.03	DP-27437
USA, 2009						7		1.3, 3.1	2.2	M1 = 0.03 +	Trial 25
Tart Cherry										M2=0.01	
(Montmorency)						3					
						7	whole	<u>3.5</u> , 3.2	<u>3.4</u>	M1=0.02	
							fruit	1.2, 2.9	2.1	M1=0.03	
Perry, UT	3	0.15	7	2000	6,7	3	flesh	1, 0.93	0.98	M1=0.05	DP-27437
USA, 2009						7		1, 0.73	0.88	M1=0.05	Trial 27
Tart Cherry											
(Montmorency)						3	whole	0.92, 0.85	0.89	M1=0.05	
						7	fruit	0.92, 0.67	0.8	M1=0.05	
Ridgeville, ON,	3	0.15	12	1200	7,6	3	flesh	0.93, 0.93	0.93	M1=0.04	DP-27437
Canada, 2009						7		0.72, 0.83	0.77	M1=0.04	Trial 24
Tart Cherry											
(Montmorency)						3	whole	0.67, 0.72	0.7	M1=0.03	
						7	fruit	0.58, 0.65	0.62	M1=0.03	

M1: Average residues of metabolite IN-J9Z38

M2: Average residues of metabolite IN-MYX98

Table 78 Residues in p	peaches from	supervised	trials in 1	North .	America	involving	foliar	application	ns of
cyantraniliprole (SE fc	ormulation)								

РЕАСН	Application			DAT	Matrix	Residu	es (mg/	kg)	Reference		
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year				L/ha	(days)						
(variety)											
Alexandria, LA	3	0.15	9	1750	7	3	flesh	0.17, 0.17	0.17	M1=0.01	DP-27437
USA, 2009						7		0.18, 0.22	0.2	M1=0.015	Trial 06
(June Prince)											
						3	whole	0.16, 0.16	0.16		
						7	fruit	0.17, 0.21	<u>0.19</u>	M1=0.01	
Branchton, ON	3	0.15	13	1200	7	3	flesh	0.16, 0.21	0.19		DP-27437
Canada, 2009						7		0.15, 0.11	0.13		Trial 07
(Reliance)											
						3	whole	0.13, 0.18	0.16		
						7	fruit	0.13, 0.1	0.12		
Clanton, AL	1 +	0.15+	120+	120+	7	3	flesh	0.47, 0.66	0.56		DP-27437
USA, 2009	2	0.15	60	250		7		0.32, 0.4	0.36		Trial 04
(Bounty)											
						3	whole	0.43, 0.58	<u>0.51</u>		
						7	fruit	0.3, 0.38	0.34		

PEACH			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)	Reference
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year				L/ha	(days)						
(variety)											
Hart, MI	3	0.15	30	500	7	3	flesh	1.4, 0.47	0.94	M1=0.01	DP-27437
USA, 2009						7		0.44, 0.67	0.56		Trial 08
(Baby Gold)											
						3	whole	<u>1.2</u> , 0.41	<u>0.81</u>		
		0.15		6.00		7	fruit	0.4, 0.61	0.51		
Hickman, CA	3	0.15	23	650	6,7	3	flesh	0.31, 0.39	0.35		DP-27437
USA, 2009						/		0.35, 0.33	0.34		Irial 10
(Summerset)						2	whole	0.2 0.27	0.24		
						5	fruit	0.3, 0.37	0.34		
Handa TV	2	0.15	25	450	7	2	flach	0.34, 0.32	0.55	M1-0.02	DD 27427
10100, 1X	3	0.15	33	430	/	5	nesn	0.75, 0.47	0.0	M1=0.02 M1=0.03	DF-2/45/ Trial 00
(Tex Royal)						0		0.85, 0.95	0.09	W11-0.03	11101 09
(Tex Royal)						3	whole	0.66, 0.43	0.55	M1=0.02	
						6	fruit	0.75 0.82	0.79	M1=0.02	
Live Oak CA	3	0.15	23	650	7	3	flesh	0.41.0.27	0.34	1111 0.05	DP-27437
USA 2009	5	0.15	25	050	,	7	mesn	0.11, 0.1	0.1		Trial 11
(Halfords)						,		0.11, 0.1	0.1		111ul 11
(114110140)						3	whole	0.34, 0.22	0.28		
						7	fruit	0.09, 0.09	0.09		
Madera, CA	3	0.15	11	1400	7	-0	flesh	0.17, 0.17	0.17		DP-27437
USA, 2009						0		0.25, 0.27	0.26		Trial 12
(Springcrest)						1		0.29, 0.21	0.25		
						3		0.22, 0.17	0.19		
						7		0.2, 0.15	0.18		
						-0	whole	0.15, 0.15	0.15		
						0	fruit	0.22, 0.24	0.23		
						1		0.26, 0.19	0.23		
						3		0.2, 0.15	<u>0.18</u>		
						7		0.18, 0.13	0.16		
Monetta, SC	3	0.15	20	700	7	3	flesh	0.25, 0.22	0.23		DP-27437
USA, 2009						7		0.18, 0.19	0.18		Trial 03
(Red Globe)											
						3	whole	0.19, 0.18	0.19		
<u></u>		0.15		1000		7	fruit	0.16, 0.15	0.16		
Oliver, BC,	3	0.15	15	1000	6	3	flesh	0.33, 0.52	0.42	M1=0.01	DP-2/43/
(Dad Hawar)						0		0.34, 0.31	0.32		Irial 13
(Red Haven)							whole	0.2 0.47	0.20		
							fruit	0.3, 0.47	0.39		
Orofield PA	2	0.15	8	1800	6.8	2	flash	0.3, 0.28	0.29		DB 27/27
	5	0.15	0	1800	0, 8	7	110511	0.27, 0.23	0.23		Dr-2/43/ Trial 01
(Glen Glo)						,		0.24, 0.21	0.23		11101 01
						3	whole	0.24.0.21	0.23		
						7	fruit	0.22, 0.19	$\frac{0.23}{0.21}$		
Pikeville NC	3	0.15	13	1200	7.6	2	flech	0.52.0.47	0.40	M1=0.02	DP-27437
USA 2009		0.15	1.5	1200	/,0	6	110311	0 37 0 46	0.41	M1=0.02	Trial 02
(New Haven)								0.57, 0.70	0.71	1111 0.02	11101-02
						3	whole	0.47.0.42	0.45	M1=0.02	
						6	fruit	0.33. 0.41	0.37	M1=0.02	
					1	1	l	1 /		1	1

РЕАСН			Application	on		DAT	Matrix	Residues (mg/kg)			Reference
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year				L/ha	(days)						
(variety)											
Ridge Spring,	3	0.15	24	630	7	3	flesh	0.3, 0.23	0.27		DP-27437
SC						7		0.13, 0.2	0.17		Trial 05
USA, 2009											
(Contender)						3	whole	0.27, 0.21	0.24		
						7	fruit	0.12, 0.19	0.16		

M1: Average residues of metabolite IN-J9Z38

Table	79	Residues	in	peaches	from	supervised	trials	in	Europe	involving	foliar	applications	of
cyantra	anili	iprole (SE	for	mulation)								

PEACH Location			Applicati	on		DAT (days)	T Matrix (s)	x Residues (mg/kg)			Reference & Comments	
Country, year (variety)	no	kg ai/ha	g ai/hL	water L/ha	RTI (days)			cyantraniliprole	mean	metabolites		
Altedo	2	0.075	5	1500	7	0	whole	0.07			S09-01576	
Italy, 2009						1	fruit	0.13			Test 04a	
(Red Coast)						3		0.08			400 WG	
						7		0.06				
						14		0.04				
Barbiano	2	0.075	5	1500	7	0	whole	0.12			S10-01055	
Italy, 2010						1	fruit	0.07			Test 2a	
(Big top)						3		0.05			400 WG	
						7		0.05				
						14		0.02				
Calatorao	2	0.075	5	1500	7	0	whole	0.08			S09-01576	
Spain, 2009						0	fruit	0.13			Test 03a	
(Miraflores)						1		0.13			400 WG	
						3		0.13				
						7		0.13				
						14		0.05				
Calatorao	2	0.075	5	1500	7	0	whole	0.06			S09-01576	
Spain, 2009						0	fruit	0.13			Test 02a	
(Sudanell)						1		0.12			400 WG	
						3		0.12				
						7		0.09				
						14		0.05				
Corbère	2	0.075	5	1500	7	0	whole	0.32			S10-01055	
S France, 2010						1	fruit	0.31			Test 1a	
(Corindon)						3		0.24			400 WG	
						7		0.13				
						14		0.1				
Corbère	2	0.075	5	1500	7	0	whole	0.02			S09-01576	
S. France, 2009						1	fruit	0.12			Test 01a	
(Corindon)						3		0.11			400 WG	
						7		0.05				
						14		0.08				
El Coronil	2	0.075	5	1500	7	0	whole	0.29			S10-01055	
Spain, 2010						1	fruit	0.19			Test 4a	
(Red Robin)						3		0.16			400 WG	
						7		0.1				
						14		0.05				

PEACH Location			Applicati	on		DAT (days)	Matrix	Residu	es (mg/	kg)	Reference & Comments
Country, year (variety)	no	kg ai/ha	g ai/hL	water L/ha	RTI (days)			cyantraniliprole	mean	metabolites	
37-14-14-		0.075	5	1500	7	0		0.49			G10 01055
Valdelacalzada	2	0.075	2	1500	/	0	whole	0.48			S10-01055
Spain, 2010						1	II uI t	0.25			100 WC
(Spring lady)						5		0.1			400 WG
						14		0.13			
Darbiano	2	0.125	8.2	1500	7	0	whole	0.09			\$10.01055
Italy 2010	2	0.125	0.5	1300	/	1	fruit	0.2			Tost 2h
(Big top)						3	nun	0.19			400 WG
(Big top)						7		0.1			400 WG
						14		0.1			
Corbère	2	0.125	83	1500	7	0	whole	0.39			\$10-01055
S France 2010	2	0.125	0.5	1500		1	fruit	0.53			Test 1h
(Corindon)						3	nun	0.05			400 WG
(connuon)						7		0.26			100 11 3
						14		0.20			
El Coronil	2	0.125	8.3	1500	7	0	whole	0.42			S10-01055
Spain, 2010	_	0.120	0.0	1000		1	fruit	0.26			Test 4b
(Red Robin)						3		0.37			400 WG
()						7		0.26			
						14		0.09			
Valdelacalzada	2	0.125	8.3	1500	7	0	whole	0.48			S10-01055
Spain, 2010						1	fruit	0.34			Test 3b
(Spring lady)						3		0.28			400 WG
						7		0.18			
						14		0.14			
Barbiano	2	0.125+	8.3	1500	7	0	whole	0.19			S10-01055
Italy, 2010		surfact				1	fruit	0.18			Test 2c
(Big top)						3		0.15			400 WG
						7		0.11			
						14		0.06			
Corbère	2	0.125+	8.3	1500	7	0	whole	0.56			S10-01055
S France, 2010		surfact				1	fruit	0.29			Test 1c
(Corindon)						3		0.25			400 WG
						7		0.35			
						14		0.14			
El Coronil	2	0.125+	8.3	1500	7	0	whole	0.3			S10-01055
Spain, 2010		surfact				1	fruit	0.25			Test 4c
(Red Robin)						3		0.36			400 WG
						7		0.22			
						14		0.1			
Valdelacalzada	2	0.125+	8.3	1500	7	0	whole	0.59			S10-01055
Spain, 2010		surfact				1	fruit	0.35			Test 3c
(Spring lady)						3		0.33			400 WG
						7		0.21			
					ļ	14		0.17			
Alcarras	2	0.15	10	1500	6	7	flesh	0.2		M1=0.01	DP-27717
Spain 2009							whole	0.19		M1=0.01	Test 01
(Romestart)							truit				

PEACH Location			Applicati	on		DAT	Matrix	Residues (mg/kg)			Reference & Comments	
Country year	no	ko ai/ha	σ ai/hI	water	RTI	(uays)		cvantraniliprole	mean	metabolites	comments	
(variety)	no	ng ui/ilu	5 11/112	L/ha	(days)			eyunuunnprote	mean	metuoontes		
Altedo	2	0.15	10	1500	7	0	whole	0.11			S09-01576	
Italy, 2009						1	fruit	0.2			Test 04b	
(Red Coast)						3		0.14			400 WG	
						7		0.19				
						14		0.14				
Calatorao	2	0.15	10	1500	7	0	whole	0.12			S09-01576	
Spain, 2009						0	fruit	0.2			Test 03b	
(Miraflores)						1		0.35			400 WG	
						3		0.3				
						7		0.19				
						14		0.15				
Calatorao	2	0.15	10	1500	7	0	whole	0.17			S09-01576	
Spain, 2009						0	fruit	0.47			Test 02b	
(Sudanell)						1		0.49			400 WG	
						3		0.23				
						7		0.19				
						14		0.29				
Corbère	2	0.15	10	1500	7	0	whole	0.19			S09-01576	
S. France, 2009						1	fruit	0.36			Test 01b	
(Corindon)						3		0.12			400 WG	
						7		0.08				
						14		0.1				
Galatades	2	0.15	10	1500		7	flesh	0.3		M1=0.01	DP-27717	
Greece, 2010							whole	0.28		M1=0.01	Test 05	
(Katerina)							fruit					
Lizac	2	0.15	10	1500		7	flesh	0.023			DP-27717	
S France, 2009							whole	0.02			Test 06	
(Plat)							fruit					
Poulariot	2	0.15	15	1000		-0	flesh	0.034			DP-27717	
S France, 2010						0		0.055			Test 07	
(Plat Sweetcap)						6		0.032			[reverse	
						14		0.026			decline]	
						28		0.035				
						56		0.014				
						-0	whole	0.031				
						0	truit	0.05				
						6		0.029				
						14		0.024				
						28		0.032				
						56		0.013				

PEACH Location			Applicati	on		DAT (days)	T Matrix (s)	x Residues (mg/kg)			Reference & Comments	
Country year	no	kσ ai/ha	σ ai/hI	water	RTI	(uays)		cvantraniliprole	mean	metabolites	comments	
(variety)	110	K5 ui/iiu	5 01/112	L/ha	(days)			cyantrainiprote	mean	metabolites		
((allosy)				2,110	(((())))							
Volpedo	2	0.15	10	1500		-0	flesh	0.089			DP-27717	
Italy, 2010						0		0.31			Test 08	
(Cresthaven)						7		0.14			[reverse	
						15		0.058			decline]	
						29		0.078				
						56		0.027				
						-0	whole	0.081				
						0	fruit	0.28				
						7		0.13				
						15		0.053				
						29		0.07				
						56		0.024				
Volpedo	2	0.15	10	1500	5-7	-0	flesh	0.096			DP-27717	
Italy, 2009						0		0.18			Test 03	
(Cresthaven)						7		0.18			[reverse	
						14		0.13			decline]	
						28		0.074				
						56		0.046				
						-0	whole	0.092				
						0	fruit	0.17				
						7		0.17				
						14		0.12				
						28		0.07				
						56		0.044				
Altedo	2	0.15+	10	1500	7	0	whole	0.15			S09-01576	
Italy, 2009		surfact				1	fruit	0.31			Test 04c	
(Red Coast)						3		0.16			400 WG	
						7		0.18				
						14		0.14				
Calatorao	2	0.15+	10	1500	7	0	whole	0.18			S09-01576	
Spain, 2009		surfact				0	fruit	0.16			Test 03c	
(Miraflores)						1		0.34			400 WG	
						3		0.21				
						7		0.31				
<u>a</u> 1.		0.1.5	10			14		0.16			200 01 55 (
Calatorao	2	0.15+	10	1500	7	0	whole	0.15			S09-01576	
Spain, 2009		surfact				0	fruit	0.33			Test 02c	
(Sudanell)						1		0.54			400 WG	
						3		0.29				
						14		0.25				
						14		0.14				
Corbère	2	0.15+	10	1500	7	0	whole	0.2			S09-01576	
S. France, 2009		surfact				1	fruit	0.13			Test 01c	
(Corindon)						3		0.09			400 WG	
						7		0.11				
						14		0.12				
		1			L	L	l	l		1		

M1: Residues of metabolite IN-J9Z38

PLUM			Applicati	on		DAT	Matrix	Residues (mg/kg)			Reference
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year				L/ha	(days)						
(variety)											
Beamville, ON,	3	0.15	26	600	6,7	3	flesh	0.065, 0.077	0.07		DP-27437
Canada, 2009						7		0.061, 0.057	0.06		Trial 15
(Vibrant											
V70034)						3	whole fruit	0.06, 0.07	0.07		
						7		0.06, 0.05	0.06		
Conklin, MI	3	0.15	7	2000	7	3	flesh	0.23, 0.17	0.2		DP-27437
USA, 2009						7		0.17, 0.14	0.15		Trial 14
(Vision)											
						3	whole fruit	0.22, 0.16	<u>0.19</u>		
						7		0.16, 0.14	0.15		
Hughson, CA	3	0.15	11	1300	7	3	flesh	0.3, 0.26	0.28		DP-27437
USA, 2009						7		0.29, 0.3	0.29		Trial 16
(French Plum)											
						3	whole fruit	0.28, 0.24	0.26		
						7		0.27, 0.28	<u>0.28</u>		
Live Oak, CA	3	0.15	9	1700	7	3	flesh	0.043, 0.046	0.04		DP-27437
USA, 2009						7		0.046, 0.055	0.05		Trial 20
(French)											
						3	whole fruit	0.041, 0.044	0.04		
						7		0.043, 0.052	<u>0.05</u>		
Madera, CA	3	0.15	23	650	7	2	flesh	0.065, 0.063	0.06		DP-27437
USA, 2009						7		0.059, 0.062	0.06		Trial 17
(Fortune)											
						2	whole fruit	0.063, 0.059	<u>0.06</u>		
						7		0.056, 0.058	0.06		
Madera, CA	3	0.15	23	650	6	3	flesh	0.028, 0.035	0.03		DP-27437
USA, 2009						7		0.028, 0.028	0.03		Trial 18
(Red Beauty)											
						3	whole fruit	0.026, 0.032	<u>0.03</u>		
						7		0.025, 0.025	0.03		
Monmouth, OR	3	0.15	10	1500	6,7	3	flesh	0.059, 0.073	0.07		DP-27437
USA, 2009						7		0.06, 0.051	0.06		Trial 22
(Moyer)											
						3	whole fruit	0.056, 0.07	<u>0.06</u>		
						7		0.058, 0.049	0.05		
Payette, ID	3	0.15	11	1400	6,7	3	flesh	0.13, 0.13	0.13		DP-27437
USA, 2009						7		0.11, 0.12	0.12		Trial 21
(Empress)											
						3	whole truit	0.12, 0.12	0.12		
a ~ .		0.1-		10		1/		0.11, 0.11	0.11		DD 4-11
Sanger, CA	3	0.15	12	1250	7	3	tlesh	0.043, 0.06	0.05		DP-27437
USA, 2009						7		0.073, 0.048	0.06		Trial 19
(Santa Rosa)						2	mile al c. front	0.027.0.054	0.05		
						3	whole fruit	0.037, 0.054	0.05		
						/		0.067, 0.045	<u>0.06</u>		

Table 80 Residues in plums from supervised trials in North America involving foliar applications of cyantraniliprole (SE formulation)

Table 81 Residues in plums from supervised trials in Europe involving foliar applications of cyantraniliprole (SE formulation)

PLUM			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year		-	-	L/ha	(days)						
(variety)											
Calatorao	2	0.075	5	1500	7	0	whole	0.01			S09-01578
Spain, 2009						0	fruit	0.02			Test 10a
(Anaspar)						1		0.03			400 WG
						3		0.01			
						7		0.01			
						14		0.01			
Dirmstein	2	0.075	5	1500	7	0	whole	0.33			S10-01056
Germany, 2010						1	fruit	0.02			Test 6a
(Czadczaks						3		0.03			400 WG
Schöne)						7		0.02			
						14		0.01			
Innenheim	2	0.075	5	1500	7	0	whole	0.12			S10-01056
N France, 2010						1	fruit	0.12			Test 7a
(Quetsches						3		0.12			400 WG
d'Alsace)						7		0.09			
						14		0.06			
Innenheim	2	0.075	5	1500	7	0	whole	0.13			S09-01577
N. France, 2009						1	fruit	0.15			Test 05a
(Quetsche)						3		0.14			400 WG
						7		0.13			
						14		0.11			
Jork	2	0.075	5	1500	7	0	whole	< 0.01			S10-01056
Germany, 2010						1	fruit	< 0.01			Test 5a
(Bühler)						3		ND			400 WG
						7		ND			
						14		ND			
Moissac	2	0.075	5	1500	7	0	whole	0.06			S09-01578
S. France, 2009						1	fruit	0.03			Test 09a
(Royal)						3		0.03			400 WG
						7		0.02			
						14		0.02			
Ortenberg	2	0.075	5	1500	7	0	whole	< 0.01			S09-01577
Germany, 2009						0	fruit	0.01			Test 08a
(Presenta)						1		0.03			400 WG
						3		0.02			
						7		0.01			
						14		0.01			
Quatretonda La	2	0.075	5	1500	7	0	whole	0.02			S10-01057
Costera						1	fruit	0.02			Test 10a
Spain, 2010						3		< 0.01			400 WG
(Black						7		< 0.01			
Diamond)						14		< 0.01			
Saint Aignan	2	0.075	5	1500	7	0	whole	ND			S10-01057
S France, 2010						1	fruit	ND			Test 9a
(Golden Japan)						3		ND			400 WG
						7		ND			
						14		ND			

PLUM			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year				L/ha	(days)						
(variety)											
Stade	2	0.075	5	1500	7	0	whole	0.02			S09-01577
Germany, 2009						0	fruit	0.06			Test 07a
(Schoneberger)						1		0.06			400 WG
						3		0.06			
						7		0.04			
						14		0.02			
Stotzheim	2	0.075	5	1500	7	0	whole	0.06			S10-01056
N France, 2010						1	fruit	0.07			Test 8a
(Elena)						3		0.09			400 WG
						7		0.06			
						14		0.03			
Stozheim	2	0.075	5	1500	7	0	whole	0.08			S09-01577
N. France, 2009						1	fruit	0.1			Test 06a
(Elena)						3		0.11			400 WG
						7		0.1			
						14		0.08			
Dirmstein	2	0.125	8.3	1500	7	0	whole	0.15			S10-01056
Germany, 2010						1	fruit	0.08			Test 6b
(Czadczaks						3		0.07			400 WG
Schöne)						7		0.04			
						14		0.04			
Innenheim	2	0.125	8.3	1500	7	0	whole	0.25			S10-01056
N France, 2010						1	fruit	0.22			Test 7b
(Quetsches						3		0.23			400 WG
d'Alsace)						7		0.15			
						14		0.12			
Jork	2	0.125	8.3	1500	7	0	whole	0.02			S10-01056
Germany, 2010						1	fruit	< 0.01			Test 5b
(Bühler)						3		< 0.01			400 WG
						7		< 0.01			
						14		ND			
Quatretonda La	2	0.125	8.3	1500	7	0	whole	0.04			S10-01057
Costera						1	fruit	0.02			Test 10b
Spain, 2010						3		0.02			400 WG
(Black						7		0.02			
Diamond)						14		0.02			
Saint Aignan	2	0.125	8.3	1500	7	0	whole	ND			S10-01057
S France, 2010						1	fruit	ND			Test 9b
(Golden Japan)						3		ND			400 WG
						7		ND			
						14		ND			
Stotzheim	2	0.125	8.3	1500	7	0	whole	0.18			S10-01056
N France, 2010						1	fruit	0.16			Test 8b
(Elena)						3		0.16			400 WG
						7		0.1			
						14		0.08			
Dirmstein	2	0.125+	8.3	1500	7	0	whole	0.05			S10-01056
Germany, 2010		surfact				1	fruit	0.23			Test 6c
(Czadczaks						3		0.15			400 WG
Schöne)						7		0.11			
						14		0.09			

PLUM			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year				L/ha	(days)						
(variety)											
Innenheim	2	0.125+	8.3	1500	7	0	whole	0.43			S10-01056
N France, 2010		surfact				1	fruit	0.34			Test 7c
(Quetsches						3		0.37			400 WG
d'Alsace)						7		0.18			
						14		0.17			
Jork	2	0.125+	8.3	1500	7	0	whole	0.03			S10-01056
Germany, 2010		surfact				1	fruit	0.01			Test 5c
(Bühler)						3		0.02			400 WG
						7		0.01			
						14		0.02			~
Quatretonda La	2	0.125+	8.3	1500	7	0	whole	0.06			S10-01057
Costera		surfact				1	fruit	0.06			Test 10c
Spain, 2010						3		0.06			400 WG
(Black						7		0.07			
Diamond)						14		0.05			
Saint Aignan	2	0.125+	8.3	1500	7	0	whole	< 0.01			S10-01057
S France, 2010		surfact				1	fruit	ND			Test 9c
(Golden Japan)						3		ND			400 WG
						7		ND			
						14		ND			
Stotzheim	2	0.125+	8.3	1500	7	0	whole	0.21			S10-01056
N France, 2010		surfact				1	fruit	0.24			Test 8c
(Elena)						3		0.27			400 WG
						7		0.12			
						14		0.17			
Calatorao	2	0.15	10	1500	7	0	whole	0.02			S09-01578
Spain, 2009						0	fruit	0.09			Test 10b
(Anaspar)						1		0.06			400 WG
						3		0.04			
						7		0.05			
	-					14		0.06			~~~~~
Innenheim	2	0.15	10	1500	7	0	whole	0.33			S09-01577
N. France, 2009						1	fruit	0.4			Test 05b
(Quetsche)						3		0.32			400 WG
						14		0.26			
	2	0.15	10	1.500		14	1 1	0.3			G00.01550
Moissac	2	0.15	10	1500	1	0	whole	0.1			S09-01578
S. France, 2009							fruit	0.1			Test 09b
(Royal)						3		0.08			400 WG
						14		0.06			
Out out to a	2	0.15	10	1500	7	14		0.06			000 01577
Ortenberg	2	0.15	10	1500	/	0	whole	0.01			S09-015//
(December 2009						0	Iruit	0.07			1 est 08b
(Presenta)						1		0.05			400 WG
						3		0.02			
						14		0.03			
G 1	2	0.15	1.0	1.500		14	1 1	0.05			G00 01555
Stade	2	0.15	10	1500	/	0	whole	0.05			SU9-01577
Germany, 2009						0	fruit	0.11			Test U/b
(Schoneberger)								0.12			400 WG
						3		0.15			
						1 /		0.07			
						14		0.03			
PLUM			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
-----------------	----	----------	-----------	-------	--------	--------	--------	------------------	---------	-------------	-------------
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year				L/ha	(days)						
(variety)											
Stozheim	2	0.15	10	1500	7	0	whole	0.17			S09-01577
N. France, 2009						1	fruit	0.17			Test 06b
(Elena)						3		0.13			400 WG
						7		0.11			
						14		0.19			
Calatorao	2	0.15+	10	1500	7	0	whole	0.04			S09-01578
Spain, 2009		surfact				0	fruit	0.13			Test 10c
(Anaspar)						1		0.13			400 WG
						3		0.13			
						7		0.08			
						14		0.08			
Innenheim	2	0.15+	10	1500	7	0	whole	0.57			S09-01577
N. France, 2009		surfact				1	fruit	0.59			Test 05c
(Quetsche)						3		0.51			400 WG
						7		0.42			
						14		0.49			
Moissac	2	0.15+	10	1500	7	0	whole	0.19			S09-01578
S. France, 2009		surfact				1	fruit	0.17			Test 09c
(Royal)						3		0.14			400 WG
						7		0.23			
						14		0.16			
Ortenberg	2	0.15+	10	1500	7	0	whole	0.04			S09-01577
Germany, 2009		surfact				0	fruit	0.17			Test 08c
(Presenta)						1		0.17			400 WG
						3		0.13			
						7		0.1			
						14		0.03			
Stade	2	0.15+	10	1500	7	0	whole	0.07			S09-01577
Germany, 2009		surfact				0	fruit	0.17			Test 07c
(Schoneberger)						1		0.23			400 WG
						3		0.21			
						7		0.12			
						14		0.09			
Stozheim	2	0.15+	10	1500	7	0	whole	0.3			S09-01577
N. France, 2009		surfact				1	fruit	0.39			Test 06c
(Elena)						3		0.45			400 WG
						7		0.31			
						14		0.17			

Blueberries

In trials conducted on <u>blueberries</u> in North America, three foliar applications of 0.15 kg ai/ha cyantraniliprole (SE formulation) were applied at 4–7 day intervals, using between 200 and 650 L/ha (with one trial at 50 L/ha), with adjuvant added.

Duplicate samples were stored at -20 °C for up to 6 months before analysis (within 23 days of extraction) for cyantraniliprole and six metabolites using analytical method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 101–104% (cyantraniliprole) and 95–109% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg.

BLUEBERRY	Y Application					DAT	Matrix	x Residues (mg/kg)			Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Aldergrove,	3	0.15	34	440	6,5	3	berries	0.53, 0.5	0.52		AAFC09-025R
BC, CAN,											Trial 268
2009											
(Briggitta)											
East Gove, NS,	3	0.15	50	300	5,4	3	berries	1.9, 2.0	2.0		AAFC09-025R
CAN, 2009											Trial 264
(Wild Clones)											
Frelighsburg,	3	0.15	50	300	6,4	3	berries	0.73, 0.87	0.8		AAFC09-025R
QC, CAN,											Trial 266
2009											early treatments
(Bluecrop)											
Frelighsburg,	3	0.15	50	300	5	4	berries	0.64, 0.85	0.75		AAFC09-025R
QC, CAN,											Trial 267
2009											late treatments
(Bluecrop)	-										
Kinston NC,	3	0.15	330	47	5	3	berries	0.61, 0.43	0.52		DP-27971
USA, 2009											Trial 02
(Blue Haven)	2	0.15	-0	200						251 0.01	
Rawdon, NS,	3	0.15	50	300	5,4	3	berries	1.4, 1.6	1.5	M1=0.01	AAFC09-025R
CAN, 2009										M2=0.01	Trial 261
(Wild Clones)	2	0.15	50	200	4.2	4	1	0.27.0.46	0.42	11 0 02	early treatments
Rawdon, NS,	3	0.15	50	300	4, 3	4	berries	0.37, 0.46	0.42	M1=0.02	AAFC09-025K
CAN, 2009										M2=0.01	I rial 263
(Wild Clones)	2	0.15	75	200	6.4	0	1	10.11	1 1		late treatments
Scotland, UN,	3	0.15	/5	200	6,4	1	berries	1.0, 1.1	1.1		AAFC09-025K
CAN, 2009						4		0.4/, 0.55	0.21		1 riai 205
(Duke)						10		0.31, 0.3	0.31		
Shoffiold Mills	2	0.15	50	200	5.6	10	borrios	0.23, 0.23	0.24		A A ECO0 025P
Merineia minis,	э	0.15	50	300	3,0	2	Dernes	0.74, 0.30	0.00		Trial 262
1NS, CAIN,						2 7		0.00, 0.33	0.00	M1 = 0.01	11181 202
2009 (Wild Clones)						8		0.22, 0.23	0.23	M1=0.01	
Wetumpka AI	3	0.15	24	630	78	3	barrias	15 15	1.5	M1=0.01	DP 27071
	5	0.15	∠¬	050	7,0	5	UCITICS	1.3, 1.3	1.5	$M_{2=0.01}$	Trial 01
(Tifblue)										1012 0.01	iiiui oi

Table 82 Residues in blueberries from supervised trials in North America involving foliar applications of cyantraniliprole (SE formulation)

M1: Average residues of metabolite IN-J9Z38

M2: Average residues of metabolite IN-MYX98

Grapes

In trials on wine <u>grapes</u> conducted in Europe, two foliar applications of 0.12–0.15 kg ai/ha cyantraniliprole (SE formulation) were applied at 14 day intervals, using 1500 L/ha (300 L/ha in two trials), with no added adjuvant. These trials were reverse decline studies, where treatments were applied at staggered intervals to align the sampling times with the commercial harvest date.

Samples were stored at -18 °C for up to 10 months before analysis of berries (within 5 days of extraction) for cyantraniliprole and six metabolites using analytical method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 92–94% (cyantraniliprole) and 88–96% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg.

GRAPES			Application	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year				L/ha	(days)						
(variety)											
Boxted	2	0.12	8	1500	14-15	-0	grapes	0.053			DP-27718
UK, 2010						0		0.13			Trial 19
(Baccus)						10		0.096			[reverse
						22		0.059			decline]
						29		0.039			
						56		0.034			
Höhnstedt	2	0.12	8	1500	14	-0	grapes	0.033			DP-27718
Germany, 2010						0		0.34			Trial 20
(Müller-						10		0.11			[reverse
Thurgau)						21		0.14			decline]
						28		0.12			
						56		0.045			
Kesten	2	0.12	8	1500	14-15	-0	grapes	0.16			DP-27718
Germany, 2010						0		0.23			Trial 21
(Riesling)						10		0.24			[reverse
						21		0.22			decline]
						28		0.21			
						56		0.12			
La Roche	2	0.12	40	300	13-15	-0	grapes	0.061			DP-27718
Vineuse						0		0.13			Trial 15
N France, 2010						10		0.16			[reverse
(Gamay)						21		0.16			decline]
						28		0.047			
						56		0.047			
Miradolo Terme	2	0.12	8	1500	13-14	-0	grapes	0.45			DP-27718
Italy, 2009						0		0.99			Trial 16
(Bonarda)						10		0.8			[reverse
						21		0.63			decline]
						28		0.45			
						56		0.21			
Veldenz	2	0.12	8	1500	13-15	-0	grapes	0.22			DP-27718
Germany, 2010						0		0.64			Trial 22
(Müller-						10		0.49			[reverse
Thurgau)						21		0.19			decline]
						28		0.22			
						56		0.14			
Verdu	2	0.12	8	1500	13–14	-0	grapes	0.06			DP-27718
Spain, 2010						0		0.16			Trial 18
(Macabeu)						10		0.48			[reverse
						21		0.14			decline]
						28		0.19			
						56		0.056			
Verdu	2	0.12	8	1500	14	-0	grapes	0.13			DP-27718
Spain, 2010						0		0.4			Trial 17
(Ull de Llebre)						10		0.13			[reverse
						21		0.19			decline]
						28		0.074			
						56		0.024			

Table 83 Residues in grapes from supervised trials in Europe involving foliar applications of cyantraniliprole (SE formulation)

GRAPES			Application	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year				L/ha	(days)						
(variety)											
Villié Morgon	2	0.12	8	1500	13-15	-0	grapes	0.021			DP-27718
S France, 2010						0		0.073			Trial 14
(Gamay)						10		0.071			[reverse
						21		0.036			decline]
						28		0.028			
						56		0.032			
Guimera	2	0.15	10	1500	13–14	-0	grapes	0.062			DP-27718
Spain, 2009						0		0.065			Trial 07
(Tempranillo)						10		0.21			[reverse
						21		0.18			decline]
						28		0.079			
						56		0.077			
Höhnstedt	2	0.15	10	1500	14	-0	grapes	0.29			DP-27718
Germany, 2009						0		0.42			Trial 03
(Gutedel)						10		0.33			[reverse
						21		0.27			decline]
						28		0.15			
						56		0.17			
Kato Milia	2	0.15	10	1500	14	-0	grapes	0.14			DP-27718
Greece, 2009						0		0.32			Trial 01
(Muscat)						10		0.28			[reverse
						21		0.076			decline]
						28		0.11			
						56		0.029			
Kato Milia	2	0.15	10	1500	14	-0	grapes	0.15			DP-27718
Greece, 2010						0		0.33			Trial 13
(Muscat)						10		0.41			[reverse
						21		0.31			decline]
						28		0.18			
						56		0.071			
Marfaux	2	0.15	50	300	14–15	-0	grapes	0.023			DP-27718
N France, 2009						0		0.071			Trial 08
(Chardonnay)						10		0.07			[reverse
						21		0.034			decline
						28		0.04			
		0.15	1.0	4.500		56		0.047			DD 45510
Mersea Island	2	0.15	10	1500	14	-0	grapes	0.11			DP-27/18
UK, 2009 (Deislemetsing)						0		0.23			I rial 04
(Reichensteiner)						10		0.3			Ireverse
						21		0.16			decline
						28		0.16			
	2	0.15	10	1500	10 15	56		0.1			DD 07710
wiiradolo Terme	2	0.15	10	1500	13-15	-0	grapes	0.34			DP-27/18
(Domend)						10		0.65			I rial 06
(Bonarda)						10		0.56			Ireverse
						21		0.48			declinej
						20 54		0.67			
			l			50		0.05			

GRAPES			Application	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year				L/ha	(days)						
(variety)											
Veldenz	2	0.15	10	1500	13-15	-0	grapes	0.16			DP-27718
Germany, 2009						0		0.46			Trial 05
(Kerner)						10		0.36			[reverse
						21		0.3			decline]
						28		0.68			
						56		0.19			
Villié Morgon	2	0.15	10	1500	14	-0	grapes	0.05			DP-27718
S France, 2009						0		0.24			Trial 02
(Gamay)						10		0.14			[reverse
						21		0.11			decline]
						28		0.096			
						56		0.05			

Olives

In trials on <u>olives</u> conducted in Europe, two foliar applications of 0.15 kg ai/ha cyantraniliprole (SE formulation) were applied at 10 day intervals, using 2000 or 3000 L/ha with added adjuvant.

After the olive samples were weighed and and the stoned removed in the field, flesh samples were stored at -18 °C for up to 17 months before analysis (within 7 days of extraction) for cyantraniliprole and six metabolites using analytical method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 88–94% (cyantraniliprole) and 86–108% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg. Whole fruit residues were calculated from the relative flesh:stone weights.

Table 84 Residues in olives from supervised trials in Europe involving foliar applications of cyantraniliprole (SE formulation)

OLIVES			Application	on		DAT			Reference		
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)	cyantra	aniliprole	metab	olites	&
Country, year				L/ha	(days)		flesh	whole fruit	flesh	whole fruit	Comments
(variety)											
Agios Mamas	2	0.15	7.5	2000	9	14	0.47	0.36	M1=0.013	M1=0.01	DP-27709
Greece, 2009											Trial 1
(Chondrolia											
Chalkidikis)											
Aguadulce	2	0.15	5	3000	10	14	0.3	0.25			DP-27709
Spain, 2010											Trial 10
(Hojiblanca)											
Aguadulce	2	0.15	7.5	2000	14	-0	0.17	0.11			DP-27709
Spain,						0	0.53	0.34			Trial 4
(Hojiblanca)						3	0.53	0.35			
						7	0.64	0.41			
						14	0.41	0.26	M1=0.012		
Bardolino	2	0.15	7.5	2000	9	-0	0.39	0.26			DP-27709
Italy, 2009						0	0.84	0.53			Trial 3
(Casaliva)						3	0.18	0.14			
						7	0.19	0.13			
						14	0.3	0.21			
Bardolino	2	0.15	5	3100	13	14	0.39	0.27			DP-27709
Italy, 2010											Trial 9
(Leccino)											

OLIVES			Applicati	on		DAT			Reference		
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)	cyantra	miliprole	metab	oolites	&
Country, year				L/ha	(days)		flesh	whole fruit	flesh	whole fruit	Comments
(variety)											
Fuente de	2	0.15	5	3000	9	-0	0.26	0.2			DP-27709
Piedra						0	0.82	0.57			Trial 6
Spain, 2010						3	0.62	0.47			
(Hojiblanca)						7	0.54	0.41	M1=0.1	M1=0.075	
						14	0.63	0.47	M1=0.02	M1=0.015	
Nea Skion,	2	0.15	5	3000	11	-0	0.29	0.21			DP-27709
Greece, 2010						0	0.64	0.44			Trial 5
(Chondroelia						3	0.49	0.36	M1=0.011		
Chalkidikis)						7	0.41	0.31			
						14	0.27	0.21	M1=0.013	M1=0.1	
Venterol	2	0.15	5	3000	10	14	0.66	0.38			DP-27709
S France,											Trial 7
2010											
(Tanche)											
Venterol	2	0.15	7.5	2000	11	-0	0.85	0.49			DP-27709
S France,						0	2.3	1.4			Trial 2
(Tanche)						3	2.4	1.5			
						7	2.3	1.3			
						14	1.9	1.1			

M1: Residues of metabolite IN-J9Z38

Pomegranate

In trials on <u>pomegranates</u> conducted in India, two to five foliar applications of 0.075–0.18 kg ai/ha cyantraniliprole (OD formulation) were applied at 10 day intervals, using 400–1000 L/ha with added adjuvant

Samples were stored at -20 °C for up to 1 month before analysis for cyantraniliprole and the IN-J9Z38 metabolite using analytical method DP-15736, with reported LOQs of 0.005 mg/kg. Average concurrent recoveries were 83–93% (cyantraniliprole) and 85–92% (IN-J9Z38) in samples spiked with 0.005, 0.025 and 0.05 mg/kg.

Table 85 Residues in pomegranates from supervised trials in India involving foliar applications of cyantraniliprole (OD formulation)

POMEGRANATE	E Application DAT Cyantraniliprole residues (mg/kg)								g/kg)	Reference &	
Location						(days)				Comments	
Country, year	no	kg ai/ha	g ai/hL	water	RTI		rind	rind	seed	juice	
(variety)				L/ha	(days)		(parent)	M1			
Raichur	2	0.075	12.5-19	400-	10	0	0.05		ND	ND	DP-1104829
India, 2011				600		1	0.03	0.03	ND	ND	Trial 1
						3	0.006		ND	ND	
						5	ND		ND	ND	
Raichur	2	0.09	15-23	400-	10	0	0.07		ND	ND	DP-1104829
India, 2011				600		1	0.03	M1=0.035	ND	ND	Trial 1
						3	0.008		ND	ND	
						5	ND		ND	ND	
Raichur	2	0.18	30-45	400-	10	0	0.14		ND	ND	DP-1104829
India, 2011				600		1	0.07	M1=0.065	ND	ND	Trial 1
						3	0.01		ND	ND	
						5	ND		ND	ND	

POMEGRANATE		L	Applicatio	on		DAT	Cyantr	g/kg)	Reference &		
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI		rind	rind	seed	juice	
(variety)				L/ha	(days)		(parent)	M1			
Medhak	3	0.075	7.5	1000	10	0	0.04		ND	ND	DP-1104829
India, 2011						1	0.03	M1=0.02	ND	ND	Trial 3
						3	0.005		ND	ND	
						5	ND		ND	ND	
Medhak	3	0.09	9	1000	10	0	0.05		ND	ND	DP-1104829
India, 2011						1	0.02	M1=0.02	ND	ND	Trial 3
						3	0.006		ND	ND	
						5	ND		ND	ND	
Medhak	3	0.18	18	1000	10	0	0.09		ND	ND	DP-1104829
India, 2011						1	0.04	M1=0.04	ND	ND	Trial 3
						3	0.009		ND	ND	
						5	ND		ND	ND	
Rahuri	5	0.075	15	500	10	0	0.07		ND	ND	DP-1104829
India, 2011						1	0.05	M1=0.02	ND	ND	Trial 2
						3	0.01		ND	ND	
						5	ND		ND	ND	
Trichy	5	0.075	12.5	600	10	0	0.06		ND	ND	DP-1104829
India 2011						1	0.03		ND	ND	Trial 4
						3	0.01		ND	ND	
						5	ND		ND	ND	
Rahuri	5	0.09	18	500	10	0	0.08		ND	ND	DP-1104829
India, 2011						1	0.06	M1=0.03	ND	ND	Trial 2
						3	0.01		ND	ND	
						5	ND		ND	ND	
Trichy	5	0.09	15	600	10	0	0.08		ND	ND	DP-1104829
India 2011						1	0.03		ND	ND	Trial 4
						3	0.01		ND	ND	
						5	ND		ND	ND	
Rahuri	5	0.18	36	500	10	0	0.17		ND	ND	DP-1104829
India, 2011						1	0.12	M1=0.05	ND	ND	Trial 2
						3	0.03	M1=0.02	ND	ND	
						5	ND		ND	ND	
Trichy	5	0.18	30	600	10	0	0.16		ND	ND	DP-1104829
India 2011						1	0.06	M1=0.02	ND	ND	Trial 4
						3	0.03	M1=0.01	ND	ND	
						5	ND		ND	ND	

M1: Residues of metabolite IN-J9Z38

Bulb vegetables

Onion, bulb, Spring onion

In trials conducted in North America on dry <u>bulb onions</u> and on <u>green onions</u>, three foliar applications of 0.15 kg ai/ha cyantraniliprole (OD formulation) were applied at 4–6 day intervals, using 300–400 L/ha, with adjuvant added. In one trial on green onions, an additional plot was treated with two soil treatments of 0.23 kg ai/ha cyantraniliprole (SC formulation) applied through the drip-line irrigation system, 7 days apart using about 100 L/ha, without added surfactant.

Duplicate samples of dry onion bulbs and green onion plants (without roots) were stored frozen at -20 °C for up to 1 year before analysis for cyantraniliprole and six metabolites (within 55 days of extraction) using method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent

recoveries were 92% (cyantraniliprole) and 81-97% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg.

Table 86 Residues in bulb onions from supervised trials in North America involving foliar applications of cyantraniliprole (OD formulation)

	-										
ONION, BULB			Appli	cation		DAT	Matrix	Residu	кg)	Reference	
Location						(days)					&
Country, year											Comments
(variety)	no	kg	g	water	RTI			cyantraniliprole	mean	metabolites	
		ai/ha	ai/hL	L/ha	(days)						
Arlington, WI	3	0.15	38	400	6,4	1	bulb	0.03, 0.02	0.02		DP-27436
USA, 2009											WI09
(Yellow Stuttgarten)											
Freeville, NY	3	0.15	42-46	350-320	5,4	1	bulb	0.01, 0.02	0.01	1	DP-27436
USA, 2009											NY09
(EX 18368)											
Harrow, ON	3	0.15	50	300	4, 5	1	bulb	0.03, 0.03	0.03	1	DP-27436
CAN, 2009											ON06
(Joliet)											
Harrow, ON	3	0.15	50	300	4, 5	1	bulb	0.02, 0.02	0.02		DP-27436
CAN, 2009											ON07
(Pulsar)											
Las Cruces, NM	3	0.15	53-44	290-380	4	1	bulb	0.01, 0.02	0.015	1	DP-27436
USA, 2009											NM15
(NuMex Freedom)											
Parma, ID	3	0.15	47	330	6	1	bulb	ND, ND	ND		DP-27436
USA, 2009											ID10
(Granero)											
Salem, OR	3	0.15	42	380	4	1	bulb	ND, ND	ND		DP-27436
USA, 2009											OR13
(Red Bull)											
Ste-Clotilde, QC	3	0.15	39	370	5,6	1	bulb	< 0.01, < 0.01	< 0.01	1	DP-27436
CAN, 2009						4		ND, ND	ND		QC02
(Champlain)						10		ND, ND	ND		
						15		ND, ND	ND		
Ste-Clotilde, QC	3	0.15	41	370	5,6	1	bulb	< 0.01, < 0.01	< 0.01	1	DP-27436
CAN, 2009											QC03
(Ricochet)											
Westlaco, TX	3	0.15	40	390	5,6	1	bulb	0.02, 0.02	0.02		DP-27436
USA, 2009											TX07
(Sweet Sunrise)											

SPRING	Application					DAT	Matrix	Residues (mg/kg)			Reference
ONION		-	"PPresent	511		(days)	171000100		00 (ĸ6)	Comments
Location Country, year (variety)	no	kg ai/ha	g ai/hL	water L/ha	RTI (days)			cyantraniliprole	mean	metabolites	
Willard, OH USA, 2009 (Feast)	3	0.15	47	320	4	1	trimmed plant	0.71, 0.55	0.63		DP-27436 OH11
Westlaco, TX USA, 2009 (Sweet Sunrise)	3	0.15	39	390	4	1	trimmed plant	4.1, 4.1	<u>4.1</u>	M1=0.016 M2=0.01 M3=0.08	DP-27436 TX28
						3		1.4, 1.4	1.4	M1=0.014 M3=0.09	
						7		0.84, 0.85	0.85	M2=0.01 M3=0.04	
						13		0.16, 0.16	0.16	M3=0.04	
Charleston, SC USA, 2009 (Red Baron Bunching)	3	0.15	43	350	4, 5	1	trimmed plant	1.6, 1.6	1.6	M3=0.024	DP-27436 SC08
Salinas, CA USA, 2009 (White Spear)	3	0.15	36	420	5,6	1	trimmed plant	0.35, 0.42	0.38		DP-27436 CA118
Ste-Clotilde, QC CAN, 2009 (Tokyo Long White)	3	0.15	42	370	6	1	trimmed plant	1.3, 1.4	1.3		DP-27436 QC04
Westlaco, TX USA, 2009 (Sweet Sunrise)	2	0.225	24	94	7	1 3 7 13	trimmed plant	0.04, 0.03 0.03, 0.03 0.05, 0.06 0.06, 0.05	0.03 0.03 0.05 0.05		DP-27436 TX28 Soil dripline
											treatment

Table 87 Residues in spring onions (green onion) from supervised trials in North America involving foliar applications of cyantraniliprole (OD formulation) or soil (dripline) treatments (SC formulation)

M1: Average residues of metabolite IN-J9Z38

M2: Average residues of metabolite IN-MYX98

M3: Average residues of metabolite IN-N7B69

Brassica vegetables

In trials conducted in North America on <u>broccoli, cauliflower</u> and <u>head cabbage</u>, two or three foliar applications of 0.15 kg ai/ha cyantraniliprole (OD and SE formulations) were applied at 4–6 day intervals, using 200–500 L/ha, with adjuvant added. In several trials, separate plots were also treated with the equivalent of 0.2 kg ai/ha as a soil injection (soil shank) treatment at planting (without added surfactant).

Duplicate samples of broccoli florets, cauliflower heads, cabbage heads (incuding wrapper leaves) and trimmed cabbage heads (washed after removing the wrapper leaves) were stored at -20 °C for up to 8 months before extraction and analysis for cyantraniliprole and six metabolites (within 5 months of extraction) using method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 90–94% (cyantraniliprole) and 80–103% (metabolites) in samples spiked with 0.01, 0.05, 0.1 and 1.0 mg/kg.

BROCCOLI Location			Applicati	on		DAT (days)	Matrix	Residu	les (mg/	kg)	Reference & Comments
Country, year (variety)	no	kg ai/ha	g ai/hL	water L/ha	RTI (days)			cyantraniliprole	mean	metabolites	
Guadalupe, CA, USA, 2008 (Bay Meadows) Broccoli	2	0.15	65	230	5	1	florets	0.15, 0.15	0.15		DP-25641 Trial 1
Santa Maria, CA, USA, 2008 (Green Magic) Broccoli/	2	0.15	54	280	5	1	florets	0.28, 0.23	0.26		DP-25641 Trial 2
Terra Bella, CA, USA, 2008-09 (Heritage) Broccoli/	2	0.15	73	210	5	1	florets	0.61, 0.54	0.58		DP-25641 Trial 3
Terra Bella, CA, USA, 2008-09 (Heritage) Broccoli/	2	0.15	73	210	5	-0 0 1 3 5	florets	0.12, 0.13 0.4, 0.63 0.57, 0.34 0.4, 0.24 0.19, 0.23	0.13 0.52 0.45 0.32 0.21		DP-25641 Trial 3
Albany, OR, USA, 2009 (Arcadia) Broccoli/	3	0.15	53	280	5	1	florets	0.59, 0.42	0.51		DP-25641 Trial 17
Branchton, ON, CAN, 2009 (Windsor) Broccoli/	3	0.15	50	300	5	1	florets	0.73, 0.91	0.82	M1=0.01	DP-25641 Trial 14
Branchton, ON, CAN, 2009 (Windsor) Broccoli/	3	0.15	50	300	5	1	florets	0.8, 0.77	0.79	M1=0.015	DP-25641 Trial 14 [100 SE]
Conklin, MI, USA, 2009 (Everest) Broccoli/	3	0.15	53	280	5	1	florets	1.1, 1	1.0	M1=0.02	DP-25641 Trial 16
Conklin, MI, USA, 2009 (Everest) Broccoli/	3	0.15	53	280	5	1	florets	1.1, 1.1	1.1	M1=0.02	DP-25641 Trial 16 [100 SE]
Delavan, WI, USA, 2009 (Patron) Broccoli/	3	0.15	75	200	5	1	florets	0.56, 0.62	0.59		DP-25641 Trial 15
Delavan, WI, USA, 2009 (Patron) Broccoli/	3	0.15	75	200	5	1	florets	0.43, 0.51	0.47		DP-25641 Trial 15 [100 SE]
Guadalupe, CA, USA, 2008 (Bay Meadows) Broccoli	3	0.15	65	230	6, 5	1	florets	0.23, 0.21	0.22		DP-25641 Trial 1

Table 88 Residues in broccoli from supervised trials in North America involving two or three foliar applications of cyantraniliprole (OD formulation unless specified)

BROCCOLI			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Santa Maria,	3	0.15	54	280	5	1	florets	0.3, 0.26	0.28		DP-25641
CA, USA, 2008											Trial 2
(Green Magic)											
Broccoli/											
Terra Bella, CA,	3	0.15	73	210	5	1	florets	0.46, 0.92	0.69		DP-25641
USA, 2008-09											Trial 3
(Heritage)											
Broccoli/											
Wyoming, IL,	3	0.15	75	200	5,4	1	florets	0.51, 0.59	0.55		DP-25641
USA, 2009											Trial 13
(Premium Crop)											[100 OD]
Broccoli/											
Wyoming, IL,	3	0.15	75	200	5,4	1	florets	0.59, 0.62	0.61		DP-25641
USA, 2009											Trial 13
(Premium Crop)											[100 SE]
Broccoli/											
Terra Bella, CA,	1 +	0.2 (soil)	97	210	116	1	florets	0.49, 0.47	0.48		DP-25641
USA, 2008-09	1 +	0.1+	49	210	5						Trial 3
(Heritage)	1	0.15	73								soil inject at
Broccoli/											planting+ 2
											foliar sprays

M1: Average residues of metabolite IN-J9Z38

Soil injection (shank) treatment rate was 2.13 g ai/100 m of row

Table 89	Residues	cauliflowers	from	supervised	trials i	n North	America	involving	two	or thr	ee i	foliar
application	ons of cya	ntraniliprole	(OD f	formulation)							

CAULIFLOWER			Applicati	on		DAT	Matrix	Residu	.es (mg/	kg)	Reference
Location					I	(days)					&
Country, year					I						Comments
(variety)	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
				L/ha	(days)						
Santa Maria, CA,	2	0.15	54	280	5	1	flower-	0.006, 0.012	0.01		DP-25641
USA, 2008						!	head				Trial 4
(Apex)											
Cauliflower/											
Terra Bella, CA,	2	0.15	70	220	5	1	flower-	0.12, 0.14	0.13		DP-25641
USA, 2008							head				Trial 5
(Symphony)						!					
Cauliflower/			<u> </u>		<u> </u>	<u> </u>					
		I	<u> </u>		<u> </u>	<u> </u>					
Santa Maria, CA,	3	0.15	54	280	5	1	flower-	0.007, 0.009	0.01		DP-25641
USA, 2008							head				Trial 4
(Apex)											
Cauliflower/			<u> </u>		<u> </u>	<u> </u>					
Terra Bella, CA,	3	0.15	70	220	5	1	flower-	0.079, 0.086	0.08		DP-25641
USA, 2008							head				Trial 5
(Symphony)											
Cauliflower/											

Table 90 Residues in cabbage	s from	supervised	trials in	North	America	involving	two o	or three	foliar
applications of cyantraniliprol	e (OD	formulation)						

CABBAGE			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location						(days)					Comments
Country, year (variety)	no	kg ai/ha	g ai/hL	water L/ha	RTI (days)			cyantraniliprole	mean	metabolites	
Bradenton, FL, USA, 2008 (Copenhagen) Cabbage/	2	0.15	50	300	5	1	head trimmed	0.22, 0.22 0.016, 0.013	0.22 0.01		DP-25641 Trial 06
King City, CA, USA, 2008 (Romanov) Cabbage/	2	0.15	65	230	5	1	head trimmed	0.72, 0.64 0.024, 0.005	0.68 0.01		DP-25641 Trial 8
Porterville, CA, USA, 2008 (Supreme Vantage) Cabbage/	2	0.15	70	220	5	1	head	0.82, 0.54	0.68		DP-25641 Trial 9
Raymondville, TX, USA, 2008 (Cheers) Cabbage/	2	0.15	40	380	5	1	head trimmed	0.46, 0.28 0.027, 0.01	0.37 0.02		DP-25641 Trial 7
Alton, NY, USA, 2009 (Fario) Cabbage/	3	0.15	53	280	5	1	heads	0.68, 0.74	0.71		DP-25641 Trial 18
Bradenton, FL, USA, 2008 (Copenhagen) Cabbage/	3	0.15	50	300	5	1	head trimmed	0.29, 0.28 0.035, 0.097	<u>0.29</u> 0.07		DP-25641 Trial 06
Branchton, ON, CAN, 2009 (Red Dynasty) Cabbage/	3	0.15	52	290	4, 5	1	heads	0.78, 0.94	0.86		DP-25641 Trial 21
Carlyle, IL, USA, 2009 (Stonehead) Cabbage/	1+ 1+ 1	0.15	46 52 72	340 290 220	5	1	heads	0.42, 0.52	0.47		DP-25641 Trial 20
Conklin, MI, USA, 2009 (Megaton) Cabbage/	3	0.15	53	280	5	1	heads	0.38, 0.45	0.42		DP-25641 Trial 23
Corvallis, OR, USA, 2009 (Late Flat Dutch) Cabbage/	3	0.15	53	280	5,4	1	heads	0.3, 0.34	0.32		DP-25641 Trial 24
Delavan, WI, USA, 2009 (Vantage Point) Cabbage/	3	0.15	70	220	5, 6	1	heads	0.36, 0.27	0.32		DP-25641 Trial 22
King City, CA, USA, 2008 (Romanov) Cabbage/	3	0.15	70	220	5	1	head trimmed	0.64, 0.67 0.007, 0.006	<u>0.65</u> 0.01		DP-25641 Trial 8

CABBAGE			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Porterville, CA,	3	0.15	70	220	5	1	head	0.66, 0.47	0.56		DP-25641
USA, 2008											Trial 9
(Supreme											
Vantage)											
Cabbage/											
Raymondville,	3	0.15	40	380	5	1	head	0.6, 0.54	0.57		DP-25641
TX, USA, 2008							trimmed	0.028, 0.015	0.02		Trial 7
(Cheers)											
Cabbage/											
Seven Springs,	3	0.15	70	220	6,4	1	heads	0.93, <u>0.98</u>	0.95	M1=0.01	DP-25641
NC, USA, 2009											Trial 19
(Early Jersey											
Wakefield)											
Cabbage/											
Porterville, CA,	1 +	0.2 (soil)	110	190	69	1DAA	head	0.59, 0.4	0.49		DP-25641
USA, 2008	1 +	0.1	47	220	5	3					Trial 9
(Supreme	1	0.15	70	220							soil inject at
Vantage)											planting+ 2
Cabbage/											foliar sprays

M1: Average residues of metabolite IN-J9Z38

Soil injection (shank) treatment rate was 2.13 g ai/100 m of row

Trimmed=cabbage heads without wrapper leaves

Fruiting vegetable, Cucurbits

Results from supervised trials from Australia, Europe and North America on cucumber, summer squash and melons were provided to the Meeting.

North America

In trials conducted in North America on <u>cucumber</u>, <u>melons</u> and <u>summer squash</u>, two or three foliar applications of 0.15 kg ai/ha cyantraniliprole (OD formulation) were applied at 5–7 day intervals, using 200–500 L/ha with adjuvant added. Soil treatment plots were also included in three trial sites, where two soil treatments of 0.15 kg ai/ha cyantraniliprole (SC formulation) were applied through drip-line irrigation systems (adjusted to pH 4–5, with no added adjuvant).

Duplicate samples were stored at -20 °C for up to 9 months before analysis of whole fruit or pulp and peel for cyantraniliprole and six metabolites analysis (within 70 days of extraction) using an adaptation of method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 90–94% (cyantraniliprole) and 82–100% (metabolites) in samples spiked with 0.01, 0.1, 0.2 and 0.6 mg/kg.

Europe

In trials conducted in Europe on melons, cucumbers and summer squash (courgettes), two applications of 0.09 kg ai/ha cyantraniliprole (OD formulation) were applied to field crops using 800 L/ha or four applications of 0.12 kg ai/ha cyantraniliprole (OD formulation) using 1200 L/ha were applied to crops grown under protection. The retreatment intervals in all trials was 7 days and all foliar treatments included added surfactant. Soil treatment plots were also included in a number of trial sites, where 2–4 soil treatments of 0.075–0.1 kg ai/ha cyantraniliprole (SC formulation) were applied through the drip-line irrigation systems, with no added adjuvants.

Samples were stored at -18 °C for up to 8 months before analysis of whole fruit or pulp and peel for cyantraniliprole and six metabolites analysis (within 10 days of extraction) using an adaptation of method DP-15736, with reported LOQs of 0.01 mg/kg. For melons, the peel and pulp (minus seeds) weights were used to calculate whole fruit residues. Average concurrent recoveries were 91–101% (cyantraniliprole) and 93–104% (metabolites) in samples spiked with 0.01, 0.1, and 0.5 mg/kg.

Australia

In trials conducted in Australia on rockmelons, cucumbers and summer squash (zucchini), two applications of 0.05, 0.075 and 0.15 kg ai/ha cyantraniliprole (OD formulation) were applied to field crops using 400 L/ha. The retreatment intervals in all trials was 7 days and all treatments included added surfactant.

Samples were stored at -20 °C for up to 6 months before analysis of whole fruit for cyantraniliprole and six metabolites analysis (within 1 day of extraction) using method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 76–77% (cyantraniliprole) and 75–92% (metabolites) in samples spiked with 0.01–2.0 mg/kg.

Table 91 Residues in field cucumbers from supervised trials in the USA with cyantraniliprole as foliar applications (OD formulation) or applied via dripline irrigation systems (SC formulation)

CUCUMBER			Applica	ation		DAT	Matrix	Residu	es (mg	/kg)	Reference&
Location Country, year (variety)	no	kg ai/ha	g ai/hL	water L/ha	RTI (days)	(days)		cyantraniliprole	mean	metabolites	Comments
Hinton, OK USA, 2008 (Poinsett 76)	2	0.15	75	200	5	1	whole fruit	0.037, 0.035	0.036		DP-25642 Trial 3
Oviedo, FL USA, 2008 (Park's Bush Whopper II)	2	0.15	53	280	5	1	whole fruit	0.032, 0.034	0.033		DP-25642 Trial 1
Clewiston, FL USA, 2009 (Speedway)	2	0.16	58	260	5	1	whole fruit	0.1, 0.12	0.11		DP-25642 Trial 2
(Branchton, ON, Canada, 2009) (Thunder)	3	0.15	75	200	5, 4	1	whole fruit	0.026, 0.032	0.029		DP-25642 Trial 15
(Corvallis, OR USA, 2009 (Genuine F1)	3	0.15	54	280	5	1	whole fruit	0.027, 0.02	0.023		DP-25642 Trial 18
Carlyle, IL USA, 2009 (Talladega)	3	0.15	65	230	5	1	whole fruit	0.082, 0.057	0.07		DP-25642 Trial 14
Conklin, MI USA, 2009 (Dasher II)	3	0.15	68	220	5	1	whole fruit	0.1, 0.13	0.12		DP-25642 Trial 17
Delavan, WI USA, 2009 (Marketmore 76)	3	0.15	75	200	5	1	whole fruit	0.019, 0.024	0.021		DP-25642 Trial 16
Elko, SC USA, 2009 (Talladega)	3	0.15	75	200		1	whole fruit	0.038, 0.052	0.045		DP-25642 Trial 13

CUCUMBER			Applica	ation		DAT	Matrix	Residu	es (mg/	/kg)	Reference&
Location	no	kg	g	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year		ai/ha	ai/hL	L/ha	(days)						
(variety)											
Hinton, OK	3	0.15	75	200	5,7	1	whole	0.042, 0.049	0.045		DP-25642
USA, 2008							fruit				Trial 3
(Poinsett 76)											
Oviedo, FL	3	0.15	53	280	5,4	1	whole	0.02, 0.016	0.018		DP-25642
USA, 2008							fruit				Trial 1
(Park's Bush											
Whopper II)											
Seven Springs,	3	0.15	60	250	5	1	whole	0.039, 0.044	0.041		DP-25642
NC							fruit				Trial 12
USA, 2009											
(Ashley)											
Clewiston, FL	2+	0.16	58+	260+	5	1	whole	0.2, 0.12	0.16		DP-25642
USA, 2009	1	0.115	50	230			fruit				Trial 2
(Speedway)											
Clewiston, FL	2+	0.15	4.4	3400	7	-0	whole	ND, ND	ND		DP-25642
USA, 2009	1	0.15	60	250	7	0	fruit	0.086, 0.095	0.09		Trial 2
(Speedway)						1		0.058, 0.12	0.089		2 drip
						3		0.044, 0.053	0.049		applications
						5		0.055, 0.064	0.06		(2.3 g
						6		0.048, 0.048	0.048		ai/100m
											row) + 1
											foliar spray

Table 92 Residues in field cucumbe	ers from supervised trials	s in Europe with	n cyantraniliprole as	foliar
applications (OD formulation) or ap	plied via dripline irrigati	on systems (SC	formulation)	

CUCUMBER		A	Applicat	ion		DAT	Matrix	Residu	es (mg/	kg)	Reference
Location						(days)					Comment
Country, year											s
(variety)											
	no	kg	g	water	RTI			cyantraniliprole	mean	metabolites	
		ai/ha	ai/hL	L/ha	(days)						
Torrevecchia Pia	2	0.09	11	800	7	1	whole	0.022			DP-27711
Italy, 2009							fruit				Test 05
(Gemini)											
cucumber											
Mediglia	2	0.09	11	800	7	1	whole	0.099			DP-27711
Italy, 2010							fruit				Test 11
(Unspecified)											
Cucumber											
Aguadulce	2	0.09	11	800	7	1	whole	0.04			DP-27711
Spain, 2010							fruit				Test 12
(Unspecified)											
Cucumber											
Llieda	2	0.09	11	800	7	1	whole	0.032			DP-27711
Spain, 2010							fruit				Test 13
(Unspecified)											
Cucumber											

CUCUMBER		A	Applicat	ion		DAT	Matrix	Residu	es (mg/	kg)	Reference
Location						(days)					Comment
Country, year											s
(variety)											
	no	kg	g	water	RTI			cyantraniliprole	mean	metabolites	
		ai/ha	ai/hL	L/ha	(days)						
Torrevecchia Pia	2	0.075	3.8	2000	7	-0	whole	ND			DP-27711
Italy, 2009						0	fruit	ND			Test 05
(Gemini)						1		ND			200 SC
						3		ND			soil
						7		ND			dripline
											irrigation

Table 93 Residues in cucumbers from supervised trials in Australia involving foliar applications of cyantraniliprole (OD formulation)

CUCUMBER			Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)	Reference
Location						(days)					Comment
Country, year											s
(variety)	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
				L/ha	(days)						
Bowen, QLD	2	0.05	0.0125	400	7	-0	whole fruit	0.01			DP-31413
Australia, 2009						1		0.05			Site 2
(Gremlin)											
Cucumber											
Bowen, QLD	2	0.075	0.019	400	7	-0	whole fruit	0.04			DP-31413
Australia, 2009						1		0.09			Site 2
(Gremlin)											
Cucumber											
Bowen, QLD	2	0.15	0.0375	400	7	-0	whole fruit	0.08			DP-31413
Australia, 2009						1		0.22			Site 2
(Gremlin)											
Cucumber											

Table 94 Residues in protected cucumbers from supervised trials in Europe with cyantraniliprole as foliar applications (OD formulation) or applied via dripline irrigation systems (SC formulation)

CUCUMBER			Application	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location						(days)					Comments
Country, year											
(variety)	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
				L/ha	(days)						
Oirlo	4	0.12	10	1200	7	1	whole	0.089			DP-28201
Netherlands,							fruit				Test 01
2009											
(Cratos)											
Cucumber											
Nea Magnisia	4	0.12	10	1200	7	1	whole	0.053			DP-28201
Greece, 2009							fruit				Test 02
(Gallileo)											
Cucumber											

CUCUMBER			Application	on		DAT	Matrix	Residu	kg)	Reference &	
Location						(days)					Comments
Country, year											
(variety)	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
				L/ha	(days)						
Castenray	4	0.12	10	1200	6-8	-0	whole	0.11			DP-28201
Netherlands,						0	fruit	0.12			Test 05
2009						1		0.11			
(Sheilla)						3		0.091			
Cucumber						7		0.13			
						14		0.18			
Puente del Rio	4	0.12	10	1200	7-8	-0	whole	0.019			DP-28201
Spain, 2009						0	fruit	0.076			Test 06
(Estrada)						1		0.077			
Cucumber						3		0.18			
						7		0.044			
						14		0.013			
Castenray	4	0.1	5	2000	6–8	-0	whole	0.015			DP-28201
Netherlands,						0	fruit	0.01			Test 05
2009						1		0.003			200 SC soil
(Sheilla)						3		0.009			dripline
						7		0.019			irrigation
						14		0.019			
Puente del Rio	4	0.1	5	2000	7–8	-0	whole	ND			DP-28201
Spain, 2009						0	fruit	ND			Test 06
(Estrada)						1		ND			200 SC soil
						3		ND			dripline
						7		ND			irrigation
						14		ND			

Table 95 Residues in summer squash from supervised trials in North America with cyantraniliprole as foliar applications (OD formulation) or applied via dripline irrigation systems (SC formulation)

SUMMER			Application	on		DAT	Matrix	Residu	es (mg/	kg)	Reference
SQUASH	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	&
Location				L/ha	(days)						Comments
Country, year											
(variety)											
Fresno, CA	2	0.15	54	280	5	1	whole	0.074, 0.1	0.089		DP-25642
USA, 2008							fruit				Trial 11
(Jackpot F1)											
Oviedo, FL	2	0.15	52	290	5	1	whole	0.14, 0.086	0.11		DP-25642
USA, 2008							fruit				Trial 9
(Early											
Summer											
Crookneck)											
Porterville,	2	0.15	38	400	6	1	whole	0.1, 0.083	0.094		DP-25642
CA							fruit				Trial 10
USA, 2008											
(Early											
Summer											
Yellow											
Crookneck)											

SUMMER			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)	Reference
SQUASH	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	&
Location				L/ha	(days)						Comments
Country, year											
(variety)											
Alton, NY	3	0.15	54	280	5	1	whole	0.059, 0.06	0.059		DP-25642
USA, 2009							fruit				Trial 19
(Meteor)											
Branchton,	3	0.15	75	200	5	1	whole	0.012, 0.01	0.011		DP-25642
ON							fruit				Trial 22
Canada, 2009											
(Senator)	2	0.15	50	200		1	1 1	0.000.0.07	0.00		DD 05(40
Conklin, MI	3	0.15	50	300	5,7	1	whole	0.093, 0.067	0.08		DP-25642
USA, 2009							fruit				I rial 23
(Spineless											
Beauty)											
Campallia OD	2	0.15	52	280	5	1	hala	0.05.0.055	0.052		DD 25642
	3	0.15	33	280	3	1	fmuit	0.05, 0.055	0.055		DP-23042
(Nacha)							Iruit				1 mai 24
	2	0.15	5.4	280	5	1	hala	0.1.0.12	0.11		DD 25642
$\frac{1100}{110}$	3	0.15	54	280	5	1	fruit	0.1, 0.12	0.11		DF-23042
(Jackpot F1)							nun				11141 1 1
(Jackpot FI)	3	0.15	52	200	5.4	1	whole	0.001.0.084	0.088		DP 25642
	5	0.15	52	290	5, 4	1	fruit	0.091, 0.004	0.088		Trial 9
(Farly							nun				111di y
Summer											
Crookneck)											
Porterville.	3	0.15	38	400	6.4	1	whole	< 0.01, 0.06	0.034		DP-25642
CA	-				-, -		fruit	,			Trial 10
USA, 2008											
(Early											
Summer											
Yellow											
Crookneck)											
Seven	3	0.15	60	250	5	1	whole	0.071, 0.072	0.072		DP-25642
Springs, NC							fruit				Trial 20
USA, 2009											
(Yellow											
Straight-Neck)											
Wyoming, IL	3	0.15	75	200	5	1	whole	0.044, 0.041	0.043		DP-25642
USA, 2009)							fruit				Trial 21
(Spineless											
Beauty F1)											
Zucchini											
Porterville.	2+	0.15	1.5	10200	7	1	whole	0.031.0.029	0.03		DP-25642
CA	1	0.15	38	400	-		fruit				Trial 10
USA, 2008											2 drip
(Early											applications
Summer											(2.3 g
Yellow											ai/100m
Crookneck)											row) + 1
											foliar spray

SUMMER			Applicati	on		DAT	Matrix	x Residues (mg/kg)		kg)	Reference
SQUASH						(days)					&
Location											Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)		C	e	L/ha	(days)			· ·			
St Vincent	2	0.09	11	800	8	1	whole	< 0.01			DP-27711
S France, 2009							fruit	ND			Test 04
(Mirza)								ND			
Courgette											
Nea Magnisia	2	0.09	11	800	6	1	whole	0.025			DP-27711
Greece, 2009							fruit				Test 06
(Ezra)											
Courgette											
Le Mas Rillier	2	0.09	11	800	6	-0	whole	< 0.01			DP-27711
S France, 2009						0	fruit	0.046			Test 09
(Mirza)						1		0.022			
Courgette						3		0.014			
						7		0.025			
Los Palacios	2	0.09	11	800	6	-0	whole	< 0.01			DP-27711
Spain, 2009	-	0.05		000	Ũ	0	fruit	0.054			Test 10
(Amalia)						1		0.039			
Courgette						3		< 0.01			
courgent						7		< 0.01			
Perea	2	0.09	11	800	8	1	whole	0.1			DP-27711
Greece 2010	2	0.09		000	0	1	fruit	0.1			Test 14
(Unspecified)							nun				105011
Courgette											
Mediglia	2	0.09	11	800	7	1	whole	0.1			DP-27711
Italy, 2010							fruit				Test 15
(Unspecified)							11 0110				100010
Courgette											
Aguadulce	2	0.09	11	800	7	1	whole	< 0.01			DP-27711
Spain, 2010							fruit				Test 16
(Unspecified)											
Courgette											
Le Mas Rillier	2	0.075	3.8	2000	7	-0	whole	ND			DP-27711
S France, 2009						0	fruit	ND			Test 09
(Mirza)						1		ND			(soil
						3		ND			dripline)
						7		ND			
Los Palacios	2	0.075	3.8	2000	7	-0	whole	ND			DP-27711
Spain, 2009						0	fruit	ND			Test 10
(Amalia)						1		ND			(soil
Courgette						3		ND			dripline)
						7		ND			
Nea Magnisia	2	0.075	3.8	2000	7	-0	whole	ND			DP-27711
Greece, 2009						0	fruit	ND			Test 06
(Ezra)						1		ND			(soil
						3		ND			dripline)
						7		ND			

Table 96 Residues in field summer squash from supervised trials in Europe with cyantraniliprole as foliar applications (OD formulation) or applied via dripline irrigation systems (SC formulation)

SUMMER			Applicati	on		DAT	Matrix	Residues (mg/kg)			Reference
SQUASH						(days)					&
Location											Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
St Vincent	2	0.075	3.8	2000	8	-0	whole	ND			DP-27711
S France, 2009						0	fruit	ND			Test 04
(Mirza)						1		ND			(soil
						3		ND			dripline)
						7		ND			

Table 97 Residues in summer squash (zucchini) from supervised trials in Australia involving foliar applications of cyantraniliprole (OD formulation)

SUMMER			Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)	Reference
SQUASH						(days)					Comments
Location											
Country, year	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Bowen, QLD	2	0.05	0.0125	400	7	-0	whole fruit	0.02			DP-31413
Australia, 2009						1		0.04			Site 3
(Crowbar)											
Zucchini											
Bowen, QLD	2	0.075	0.019	400	7	-0	whole fruit	0.02			DP-31413
Australia, 2009						1		0.05			Site 3
(Crowbar)											
Zucchini											
Bowen, QLD	2	0.15	0.0375	400	7	-0	whole fruit	0.07			DP-31413
Australia, 2009						1		0.15			Site 3
(Crowbar)											
Zucchini											

Table 98 Residues in protected summer squash from supervised trials in Europe with cyantraniliprole as foliar applications (OD formulation) or applied via dripline irrigation systems (SC formulation)

SUMMER			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
SQUASH						(days)					Comments
Location											
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Dirillo	4	0.12	10	1200	7	1	whole	0.22			DP-28201
Italy, 2009							fruit				Test 03
(Richgreen)											
Courgette											
Berja	4	0.12	10	1200	7	1	whole	0.033			DP-28201
Spain, 2009							fruit				Test 04
(Otelo)											
Courgette											
Mediglia	4	0.12	10	1200	7	-0	whole	ND			DP-28201
Italy, 2009						0	fruit	0.051			Test 07
(President)						1		0.035			
Courgette						3		0.015			
						7		0.005			
						14		ND			

SUMMER			Application	on		DAT	Matrix	Residues (mg/kg)			Reference &
SQUASH						(days)					Comments
Location											
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Utrera	4	0.12	10	1200	6-7	-0	whole	0.022	1		DP-28201
Spain, 2009						0	fruit	0.084			Test 08
(Nieves)						1		0.08			
Courgette						3		0.07			
						7		0.059			
						14		0.021			
Puente del Rio	4	0.12	10	1200	7-8	-0	whole	0.016			DP-28201
Spain, 2009						0	fruit	0.051			Test 09
(Sinatra)						1		0.06			
Courgette						3		ND			
						7		0.008			
						14		ND			
Mediglia	4	0.1	5	2000	7	-0	whole	ND			DP-28201
Italy, 2009						0	fruit	ND			Test 07
(President)						1		ND			(soil
						3		ND			dripline)
						7		ND			
						14		ND			
Puente del Rio	4	0.1	5	2000	7-8	-0	whole	0.004			DP-28201
Spain, 2009						0	fruit	ND			Test 09
(Sinatra)						1		ND			(soil
						3		0.004			dripline)
						7		ND			
						14		ND			
Utrera	4	0.1	5	2000	6-7	-0	whole	ND			DP-28201
Spain, 2009						0	fruit	ND			Test 08
(Nieves)						1		ND			(soil
						3		ND			dripline)
						7		ND			
						14		ND			

Table 99 Residues in melons from supervised trials in North America with cyantraniliprole as foliar applications (OD formulation) or applied via dripline irrigation systems (SC formulation).

MELON		Application				DAT	Matrix	Residues (mg/kg)			Reference
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year				L/ha	(days)						
(variety)											
Fresno, CA	2	0.15	54	280	5	1	flesh	ND, ND	ND		DP-25642
USA, 2008							skin	0.22, 0.22	0.22		Trial 6
(Athena)							whole fruit	0.075, 0.091	0.083		
Cantaloupe											
Hinton, OK	2	0.15	80	200	6	1	flesh	ND, ND	ND		DP-25642
USA, 2008							skin	0.17, 0.13	0.15		Trial 4
(PMR 45)							whole fruit	0.106, 0.085	0.095		
Cantaloupe											
Paso Robles,	2	0.15	50	300	5	1	flesh	ND, ND	ND		DP-25642
CA							skin	0.35, 0.24	0.3		Trial 8
USA, 2008							whole fruit	0.12, 0.088	0.11		
(Hale's Best)											
Cantaloupe											

Lacation (variety) no kg ai/ha (b) wate (b) RTI (days) (days) (days) contramiliprote (sint whole fruit (b) mean (b) metabolites (b) Comments (b) Porterville, (lale's heat Jumbo) 2 0.15 3.8 400 5 1 flesh (b) 0.12,0.096 (0.061,0.049) 0.015 0.01 DP-25642 Canatloupe - </th <th>MELON</th> <th></th> <th></th> <th>Application</th> <th>on</th> <th></th> <th>DAT</th> <th>Matrix</th> <th>Residu</th> <th>es (mg/l</th> <th>kg)</th> <th>Reference</th>	MELON			Application	on		DAT	Matrix	Residu	es (mg/l	kg)	Reference
Country, year (yariety) Image: Country (Sample (CA Cha (days) Image: Country (skin Country (0,12,0096 ND DP-25642 CA Sample (Sample (CA) 0.15 38 400 5 1 flesh ND, ND ND DP-25642 Canatoupe Porterville, CA 2 0.15 60 250 5 1 flesh -0.01, <0.01	Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
(variety) I I I Issin Issin I Issin Issin <thissin< th=""></thissin<>	Country, year				L/ha	(days)						
Porterville, CA 2 0.15 38 400 5 1 flesh ND, ND ND DP-25642 USA, 2008 (flale's Best Jumbo) 0.15 60 250 5 1 flesh 0.01, 0.049 0.055 11 flesh 0.061, 0.049 0.055 0.01 Colit Trial 5 Operterville, CA 2 0.15 60 250 5 1 flesh 0.03, 0.049 0.04 0.04 (Koneydew) -	(variety)											
CA USA, 2008 (Hale's Best Jumbo) Cantaloope Image: Set Porterville, CA Set Porterville, CA Image: CA Porterville, CA Set Porterville, CA Image: CA Porterville, CA	Porterville,	2	0.15	38	400	5	1	flesh	ND, ND	ND		DP-25642
USA, 2008 (Hale's Best Jumbo) Cantaloupe 2 0.15 60 250 5 1 flesh skin 0.061, 0.049 0.055 Cantaloupe 0 0.15 60 250 5 1 flesh <0.01, <0.01	CA							skin	0.12, 0.096	0.11		Trial 5
(flate's Best Jumbo) Cantaloupe 2 0.15 60 250 5 1 flesh whole fruit <0.01, <0.01 <0.044 0.035, 0.054 DP-25642 CA 3 0.15 75 200 5 1 flesh whole fruit 0.035, 0.054 0.044 Trial 7 CA 3 0.15 75 200 5 1 flesh whole fruit 0.12, 0.08 0.04 DP-25642 Canada, 2009 Apbrodie - - - 0.12, 0.08 0.21 - Trial 27 Canatloupe - - - - - 0.12, 0.08 0.11 0.12 0.09 0.11 0.12 0.01 0.11 0.12 0.01 Trial 28 0.11 0.14 0.03 0.02 0.01 Trial 28 0.11 0.14 0.03 0.02 0.01 DP-25642 Trial 4 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.	USA, 2008							whole fruit	0.061, 0.049	0.055		
Jumbo) Cantaloupe I	(Hale's Best											
Cantaloupe Image: Canada (Canada (Cana	Jumbo)											
Porterville, CA 2 0.15 60 250 5 1 flesh skin <0.01 <0.01 0.04 USA, 2008 3 0.15 75 200 5 1 flesh skin <0.01	Cantaloupe											
CA USA, 2008 (Honeydew) Solution (Index) Solution (Porterville.	2	0.15	60	250	5	1	flesh	< 0.01. < 0.01	< 0.01		DP-25642
USA, 2008 Image of the stress of	CA							skin	0.035, 0.054	0.044		Trial 7
Honeydew) Image: Constraint of the strain of the straint	USA, 2008							whole fruit	0.03, 0.049	0.04		
Branchton, ON 3 0.15 75 200 5 1 flesh skin <0.01, <0.01 <0.01 DP-25642 Canada, 2009 (Primo) a 0.15 52 290 5 1 flesh skin 0.12, 0.098 0.11 DP-25642 Conklin, MI 3 0.15 52 290 5 1 flesh skin 0.17, 0.19 0.18 DP-25642 USA, 2009 3 0.15 54 280 5 1 flesh skin 0.17, 0.19 0.18 DP-25642 USA, 2008 0.15 54 280 5 1 flesh skin 0.3, 0.093 0.2 DP-25642 USA, 2008 0.15 80 200 6, 4 1 flesh skin 0.14, 0.039 0.02 DP-25642 CA 1 flesh skin 0.23, 0.25 0.24 Trial 4 Mohole fruit 0.18, 0.15 0.15 0 200 5 1 flesh skin 0.54, 0.43 0.48 0.48	(Honevdew)								,			
Antenion, J. S. 0.15 1.5 2.00 1.6 1.6 1.001	Branchton	3	0.15	75	200	5	1	flesh	< 0.01 < 0.01	< 0.01		DP-25642
Oranada, 2009 (Primo) Cantaloupe Image of the second constin, MI 3 0.15 52 290 5 1 fiesh skin ND, ND ND DP-25642 CAN 2009 (Aphrodite VIP (8793)) 3 0.15 52 290 5 1 fiesh skin 0.17, 0.19 0.18 DP-25642 USA, 2009 (Aphrodite VIP (8793)) 3 0.15 54 280 5 1 fiesh skin 0.3, 0.093 0.2 DP-25642 USA, 2008 (Athena) 0.15 54 280 5 1 fiesh skin 0.3, 0.093 0.2 Trial 6 Cantaloupe -	ON	5	0.15	15	200	5		skin	0.22 0.18	0.2		Trial 27
Canada per constraint 2007 Canada per constraint 2007	Canada 2009							whole fruit	0.12, 0.098	0.11		11101 27
Cantaloupe ND ND ND ND ND DP-25642 Conklin, MI 3 0.15 52 290 5 1 flesh ND, ND ND ND DP-25642 USA, 2009 (Aphrodite	(Primo)							whole if all	0.12, 0.090	0.11		
Canadia (P) 3 0.15 52 290 5 1 flesh skin ND, ND ND ND DP-25642 USA, 2009 0.15 54 280 5 1 flesh ND, ND 0.18 0.17 0.19 0.18 Trial 28 VPIP (5793) 0 0.15 54 280 5 1 flesh 0.096, 0.11 0.1 0.1 DP-25642 USA, 2008 0.15 54 280 5 1 flesh 0.0303 0.2 Trial 6 Cantaloupe 0.15 80 200 6, 4 1 flesh ND, ND ND DP-25642 USA, 2008 3 0.15 50 300 5, 4 1 flesh ND, ND ND DP-25642 USA, 2008 1 flesh ND, ND ND DP-25642 Trial 8 USA, 2008 O.15 50 300 5, 4 1 flesh ND, ND ND DP-25642 Trial 8	(Timo) Cantaloune											
Column, with (Aphrodite (Aphrodite Cantaloupe 0.15 3.2 2.20 3 1 itesh 7.07, ND MD DF 2.5042 Cantaloupe - <td>Conklin MI</td> <td>2</td> <td>0.15</td> <td>52</td> <td>200</td> <td>5</td> <td>1</td> <td>flach</td> <td></td> <td>ND</td> <td></td> <td>DD 25642</td>	Conklin MI	2	0.15	52	200	5	1	flach		ND		DD 25642
Skin O.17, 0.19 O.18 Itial 26 VIP (8793)) Cantaloupe - - - 0.17, 0.19 0.1 0.1 Fresno, CA 3 0.15 54 280 5 1 flesh <0.096, 0.11		3	0.15	32	290	5	1	alcin	ND, ND	ND 0.18		DF-23042
(Approduce) (Approduce) (Approduce) <th(approduce)< th=""> <th(approduce)< th=""></th(approduce)<></th(approduce)<>	OSA, 2009							SKIII	0.17, 0.19	0.18		111ai 20
VIP (975) Cantaloupe Image: Cantaloupe	(Apinoune							whole if uit	0.090, 0.11	0.1		
Cantaloupe Image: Cantaloupe <thi< td=""><td>VIP(8/93))</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thi<>	VIP(8/93))											
Presno, CA 3 0.15 54 280 5 1 Itesh < 0.01, 0.03		2	0.15	5.4	200	-	1	CI 1	(0.01 ND	< 0.01		DD 05(40
USA, 2008 (Athena) Image of the stand (Athena) Skin 0.3, 0.033 0.14, 0.039 0.2 0.087 Image of the stand (Athena) Hinton, OK (Athena) 3 0.15 80 200 6, 4 1 flesh ND, ND ND Hinton, OK (PMR 45) 3 0.15 80 200 6, 4 1 flesh ND, ND ND Cantaloupe - - - 1 flesh ND, ND ND DP-25642 CA - <	Fresno, CA	3	0.15	54	280	5	1	Tiesh	< 0.01, ND	< 0.01		DP-25642
(Attena)	USA, 2008							SKIN	0.3, 0.093	0.2		I rial 6
Cantaloupe 3 0.15 80 200 6,4 1 flesh skin whole fruit ND, ND 0.15, 0.16 ND 0.15 DP-25642 0.44 Paso Robles, CA 3 0.15 50 300 5,4 1 flesh skin whole fruit ND, ND ND DP-25642 CA VSA, 2008	(Athena)							whole fruit	0.14, 0.039	0.087		
Hinton, OK 3 0.15 80 200 6, 4 1 fiesh ND, ND ND ND ND (PAC5042 Trial 4 Whole fruit 0.15, 0.16 0.15 0.24 O.15 0.24 ND ND (PAC45) Cantaloupe 2 200 5, 4 1 fiesh ND, ND ND ND ND ND ND (PAC4504 0.15 0.16 0.15 0.17 ND ND ND (PAC4504 0.15 0.17 ND ND ND ND (PAC4504 0.18 0.18 0.15 0.17 ND ND (PAC4504 0.18 0.18 0.19 0.21 0.2 ND ND (PAC4504 0.18 0.19 0.12 0.13 0.14 0.09 ND (PAC4504 0.14 0.18 0.19 0.21 0.2 ND (PAC4504 0.14 0.18 0.19 0.21 0.2 ND (PAC4504 0.14 0.18 0.11 0.09 ND (PAC4504 0.14 0.18 0.11 0.09 ND (PAC4504 0.14 0.13 0.12 0.13 0.14 0.058 0.024 0.04 ND (PAC4504 0.14 0.13 0.12 0.13 0.13 0.12 0.13 ND ND (PAC4504 0.14 0.13 0.12 0.13 0.13 0.12 0.13 ND (PAC4504 0.14 0.13 0.12 0.13 0.12 0.13 ND (PAC4504 0.14 0.15 0.14 0.13 0.12 0.13 0.14 0.13 0.12 0.13 0.14 0.13 0.12 0.13 0.14 0.13 0.12 0.13 0.14 0.13 0.12 0.13 0.14 0.13 0.12 0.13 0.14 0.14 0.15 0.14 0.1	Cantaloupe	2	0.15	0.0	200	6.4	1	CI 1		ND		DD 05(40
USA, 2008 Image: Skin product of the section of the sect	Hinton, OK	3	0.15	80	200	6,4	1	flesh	ND, ND	ND		DP-25642
(PMR 45) Image: Cantaloupe Image: Cantaloupe (PMR 45) (PM	USA, 2008							SKIN	0.23, 0.25	0.24		I rial 4
Cantaloupe Image: Cantaloupe <thi< td=""><td>(PMR 45)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>whole fruit</td><td>0.15, 0.16</td><td>0.15</td><td></td><td></td></thi<>	(PMR 45)							whole fruit	0.15, 0.16	0.15		
Pass Robles, 3 0.15 50 300 5,4 1 flesh skin ND, ND ND DP-25642 CA Skin 0.54, 0.43 0.48 Trial 8 USA, 2008 Image: Signal Amplitude (Hale's Best) 0.15 38 400 5 1 flesh skin 0.15 0.17 DP-25642 CA 3 0.15 38 400 5 1 flesh skin 0.19, 0.21 0.2 Trial 5 USA, 2008 Image: Signal Amplitude (Hale's Best) 0.15 60 250 5 1 flesh skin 0.19, 0.21 0.2 0.2 Trial 5 USA, 2008 Image: Signal Amplitude (Hale's Best) 0.15 60 250 5 1 flesh skin 0.046, 0.023 0.034 0.041 VISA, 2008 Image: Signal Amplitude (Honeydew) 3 0.15 37 400 4, 6 1 flesh skin 0.13, 0.12 0.13 0.13 Trial 7 VSA, 2009 Image: Signal Amplitude (Hales Best) 0.15 37 400 4, 6 1 flesh skin 0.13, 0.12 0.13	Cantaloupe	_	0.4.5	= 0				<i>a</i> 1				
CA skin 0.54, 0.43 0.48 Trial 8 USA, 2008 (Hale's Best) a 0.15 38 400 5 1 flesh ND, ND ND DP-25642 CA a a 0.15 38 400 5 1 flesh ND, ND ND DP-25642 CA a a 0.15 60 250 5 1 flesh ND, ND 0.09 DP-25642 CA a a 0.15 60 250 5 1 flesh ND, ND 0.09 DP-25642 CA a a 0.15 60 250 5 1 flesh 0.01, < 0.01	Paso Robles,	3	0.15	50	300	5,4	1	flesh	ND, ND	ND		DP-25642
USA, 2008 (Hale's Best) CA 0.15 38 400 5 1 flesh skin ND, ND 0.19, 0.21 ND 0.2 DP-25642 Trial 5 CA USA, 2008 (Hale's Best Jumbo) Cantaloupe 0.15 38 400 5 1 flesh skin 0.19, 0.21 0.2 Trial 5 VSA, 2008 (Hale's Best Jumbo) 0.15 60 250 5 1 flesh skin 0.01 0.09 DP-25642 CA Seven Springs, NC 0.15 60 250 5 1 flesh skin 0.046, 0.023 0.034 DP-25642 Seven Springs, NC 3 0.15 37 400 4, 6 1 flesh skin ND, ND ND DP-25642 NC NSA, 2009 3 0.15 37 400 4, 6 1 flesh skin 0.13, 0.12 0.13 DP-25642 NC NA Seven Springs, 3 0.15 37 400 4, 6 1 flesh skin 0.13, 0.12 0.13 DP-25642 Nmbo) <td< td=""><td>CA</td><td></td><td></td><td></td><td></td><td></td><td></td><td>skin</td><td>0.54, 0.43</td><td>0.48</td><td></td><td>Trial 8</td></td<>	CA							skin	0.54, 0.43	0.48		Trial 8
(Hale's Best) Cantaloupe 3 0.15 38 400 5 1 flesh skin ND, ND ND 0.19, 0.21 0.2 Porterville, CA 3 0.15 38 400 5 1 flesh skin 0.19, 0.21 0.2 Trial 5 USA, 2008 (Hale's Best Jumbo) Cantaloupe 3 0.15 60 250 5 1 flesh skin 0.01, < 0.01	USA, 2008							whole fruit	0.18, 0.15	0.17		
CantaloupeII	(Hale's Best)											
Porterville, CA 3 0.15 38 400 5 1 flesh skin ND, ND ND DP-25642 USA, 2008 (Hale's Best Jumbo) Cantaloupe 0.15 60 250 5 1 flesh skin 0.19, 0.21 0.2 0.09 0.04 0.01 0.01 0.01 0.01 0.023 0.034 0.041 0.041 0.05 0.044 0.041 0.05 0.041 0.05 0.04 0.013 0.013 0.013 0.013	Cantaloupe							~ .				
CA Skin 0.19, 0.21 0.2 Trial 5 USA, 2008 Whole fruit 0.081, 0.1 0.09 0.09 1 Male's Best Jumbo) 0 <	Porterville,	3	0.15	38	400	5	1	flesh	ND, ND	ND		DP-25642
USA, 2008 (Hale's Best Jumbo) Cantaloupe Image: Set of the set	СА							skin	0.19, 0.21	0.2		Trial 5
(Hale's Best Jumbo) Cantaloupe 3 0.15 60 250 5 1 flesh skin 0.01, < 0.01	USA, 2008							whole fruit	0.081, 0.1	<u>0.09</u>		
Jumbo) Cantaloupe 3 0.15 60 250 5 1 flesh skin <0.01, <0.01 0.046, 0.023 <0.01 0.034 DP-25642 Trial 7 CA A A A A A A DP-25642 Trial 7 USA, 2008 (Honeydew) A A A A A A DP-25642 Seven Springs, 3 0.15 37 400 4, 6 1 flesh skin ND, ND ND NC NC A A A A A A A A DP-25642 NC A A A A A A A B B DD DP-25642 Trial 25 USA, 2009 (Hales Best Jumbo) A A A A A A B A A B D D D D A A A A B A D D D D D A A D	(Hale's Best											
Cantaloupe Image: Cantaloupe <thi< td=""><td>Jumbo)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thi<>	Jumbo)											
Porterville, CA 3 0.15 60 250 5 1 flesh skin < 0.01, < 0.01 < 0.01 < 0.01 DP-25642 Trial 7 USA, 2008 (Honeydew) 1 0.046, 0.023 0.034 0.041 1 0.058, 0.024 0.041 1 </td <td>Cantaloupe</td> <td></td>	Cantaloupe											
CA USA, 2008 Image: CA <	Porterville,	3	0.15	60	250	5	1	flesh	< 0.01, < 0.01	< 0.01		DP-25642
USA, 2008 (Honeydew) whole fruit 0.058, 0.024 0.041 Seven Springs, NC 3 0.15 37 400 4, 6 1 flesh skin ND, ND ND USA, 2009 (Hales Best Jumbo) 1 1 flesh skin 0.05, 0.047 0.048 Trial 25 Wyoming, IL USA, 2009 (Atlantis F1) Muskmelon 3 0.15 68 220 5 1 flesh skin ND, ND 0.072, 0.095 ND 0.084 DP-25642	CA							skin	0.046, 0.023	0.034		Trial 7
(Honeydew) Image: Constraint of the section of the secti	USA, 2008							whole fruit	0.058, 0.024	<u>0.041</u>		
Seven Springs, 3 0.15 37 400 4, 6 1 flesh skin ND, ND ND DP-25642 NC USA, 2009 (Hales Best Jumbo) 0.013 0.12 0.13 0.048 Trial 25 Wyoming, IL 3 0.15 68 220 5 1 flesh skin ND, ND ND DP-25642 Wyoming, IL 3 0.15 68 220 5 1 flesh skin ND, ND ND DP-25642 USA, 2009 (Atlantis F1) Muskmelon 0.15 68 220 5 1 flesh whole fruit 0.072, 0.095 0.084 Trial 26	(Honeydew)											
NC skin 0.13, 0.12 0.13 Trial 25 USA, 2009 (Hales Best whole fruit 0.05, 0.047 0.048 Trial 25 Jumbo) Cantaloupe ND ND DP-25642 Trial 26 Wyoming, IL 3 0.15 68 220 5 1 flesh ND, ND ND (Atlantis F1) Muskmelon Nuskmelon ND 0.072, 0.095 0.084 Trial 26	Seven Springs,	3	0.15	37	400	4, 6	1	flesh	ND, ND	ND		DP-25642
USA, 2009 (Hales Best Jumbo) Cantaloupe Wyoming, IL 3 0.15 68 220 5 1 flesh (Atlantis F1) Muskmelon	NC							skin	0.13, 0.12	0.13		Trial 25
(Hales Best Jumbo) CantaloupeImage: Constraint of the second	USA, 2009							whole fruit	0.05, 0.047	<u>0.048</u>		
Jumbo) CantaloupeImage: CantaloupeImage: Cantaloupe <t< td=""><td>(Hales Best</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	(Hales Best											
CantaloupeImage: Ca	Jumbo)											
Wyoming, IL 3 0.15 68 220 5 1 flesh skin ND, ND ND DP-25642 USA, 2009 (Atlantis F1) Muskmelon 0 0 0.15 0.14 Trial 26	Cantaloupe											
USA, 2009 (Atlantis F1) skin 0.12, 0.15 0.14 Trial 26 Muskmelon Muskmelon 0.072, 0.095 0.084 0.072 0.095 0.084 0.000	Wyoming, IL	3	0.15	68	220	5	1	flesh	ND, ND	ND		DP-25642
(Atlantis F1) whole fruit 0.072, 0.095 0.084 Muskmelon	USA, 2009							skin	0.12, 0.15	0.14		Trial 26
Muskmelon	(Atlantis F1)							whole fruit	0.072, 0.095	<u>0.084</u>		
	Muskmelon											

MELON			Application	on		DAT	Matrix	Residu	es (mg/	kg)	Reference
Location	no	kg ai/ha	g ai/hL	water	RTI	(days)		cyantraniliprole	mean	metabolites	Comments
Country, year				L/ha	(days)						
(variety)											
Porterville,	2+	0.15	1.47	10200	7	1	flesh	ND, ND	ND		DP-25642
CA	1	0.15	38	400	7		skin	0.039, 0.045	0.042		Trial 5
USA, 2008							whole fruit	0.022, 0.024	0.023		2 drip
(Hale's Best											applicatio
Jumbo)											ns (4.2 g
Cantaloupe											ai/100m
											row) + 1
											foliar
											spray

Table 100 Residues in outdoor melons from supervised trials in Europe with cyantraniliprole as foliar applications (OD formulation) or applied via dripline irrigation systems (SC formulation)

MELON Logation			Applicatio	on		DAT (dava)	Cyantranili	prole Residu	ues (mg/kg)	Reference &
Country, year (variety)	no	kg ai/ha	g ai/hL	water L/ha	RTI (days)	(days)	whole fruit	peel	pulp	Comments
Svoronos Greece, 2009 (Lavigal) Melon	2	0.09	11	800	6	1	0.069	0.12	ND	DP-27711 Test 01
Casteldidone Italy, 2009 (Sogno) Melon	2	0.09	11	800	8	1	0.041	0.093	ND	DP-27711 Test 02
Puerto Serrano Spain, 2009 (Anasta) Cantaloupe Melon	2	0.09	11	800	7	1	0.05	0.12	ND	DP-27711 Test 03
Villamartin Spain, 2009 (Alonso) Cantaloupe Melon	2	0.09	11	800	7	$-0 \\ 0 \\ 1 \\ 3 \\ 7$	0.039 0.051 0.015 0.039 0.046	0.086 0.11 0.031 0.096 0.12	ND < 0.01 ND ND ND	DP-27711 Test 07
Los Palacios Spain, 2009 (Linord) Melon	2	0.09	11	800	6	$\begin{array}{c} -0 \\ 0 \\ 1 \\ 3 \\ 7 \end{array}$	0.016 0.021 0.016 0.03 0.013	0.042 0.058 0.04 0.076 0.035	ND ND ND ND ND	DP-27711 Test 08
Svoronos Greece, 2009 (Lavigal)	2	0.075	3.8	2000	7	$\begin{array}{c} -0 \\ 0 \\ 1 \\ 3 \\ 7 \end{array}$	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	DP-27711 Test 01 (soil dripline)
Casteldidone Italy, 2009 (Sogno)	2	0.075	3.8	2000	7	$ \begin{array}{c} -0 \\ 0 \\ 1 \\ 3 \\ 7 \end{array} $	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	DP-27711 Test 02 (soil dripline)

MELON			Applicatio	on		DAT	Cyantranili	prole Residu	ies (mg/kg)	Reference &
Location						(days)				Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI		whole fruit	peel	pulp	
(variety)				L/ha	(days)					
Puerto Serrano	2	0.075	3.8	2000	7	-0	ND	ND	ND	DP-27711
Spain, 2009						0	ND	ND	ND	Test 03
(Anasta)						1	ND	ND	ND	(soil dripline)
Cantaloupe						3	ND	ND	ND	
						7	ND	ND	ND	
Villamartin	2	0.075	3.8	2000	8	-0	ND	ND	ND	DP-27711
Spain, 2009						0	ND	ND	ND	Test 07
(Alonso)						1	ND	ND	ND	(soil dripline)
Cantaloupe						3	ND	ND	ND	
						7	ND	ND	ND	
Los Palacios	2	0.075	3.8	2000	7	-0	ND	ND	ND	DP-27711
Spain, 2009						0	ND	ND	ND	Test 08
(Linord)						1	ND	ND	ND	(soil dripline)
						3	ND	ND	ND	
						7	ND	ND	ND	

Table 101 Residues in melons (rockmelon) from supervised trials in Australia involving foliar applications of cyantraniliprole (OD formulation)

MELON			Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)	Reference
Location						(days)					Comments
Country, year											
(variety)											
	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
				L/ha	(days)						
Bowen, QLD	2	0.05	0.0125	400	7	0	whole fruit	0.08			DP-31413
Australia, 2009						1		0.06			Site 1
(Northern Sky)						7		0.02			
Rockmelon						14		ND			
						21		ND			
Bowen, QLD	2	0.075	0.019	400	7	0	whole fruit	0.18			DP-31413
Australia, 2009						1		0.1			Site 1
(Northern Sky)						7		0.03			
Rockmelon						14		< 0.01			
						21		ND			

Table 102 Residues in protected melons from supervised trials in Europe with cyantraniliprole as foliar applications (OD formulation) or applied via irrigation dripline systems (SC formulation)

MELON			Applicatio	on		DAT	Cyantranil	es (mg/kg)	Reference &	
Location						(days)				Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI		whole fruit	peel	pulp	
(variety)				L/ha	(days)					
Contrada	4	0.12	10	1200	7	1	0.044	0.066	ND	DP-28186
Randello										Test 01
Italy, 2009										
(Cabrero)										
Melon										

MELON	Application DAT Cyantraniliprole residues (mg/kg)							es (mg/kg)	Reference &	
Location						(days)				Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI		whole fruit	peel	pulp	
(variety)				L/ha	(days)					
Contada	4	0.12	10	1200	7	1	0.06	0.11	ND	DP-28186
Randello										Test 02
Italy, 2009										
(Cabrero)										
Melon										
Svoronos	4	0.12	10	1200	6-8	1	0.031	0.064	ND	DP-28186
Greece, 2009										Test 03
(Lavigas)										
Melon										
Mea Magnisia	4	0.12	10	1200	7	1	0.038	0.068	ND	DP-28186
Greece, 2009										Test 04
(Galia F1)										
Melon										
Mezin	4	0.12	10	1200	6-8	-0	0.038	0.068	< 0.01	DP-28186
S France, 2009						0	0.1	0.19	ND	Test 05
(Charentais)						1	0.035	0.083	ND	
Melon						3	0.05	0.13	ND	
						7	0.029	0.069	ND	
						14	0.034	0.06	ND	
Adra	4	0.12	10	1200	6-7	-0	0.048	0.13	ND	DP-28186
Spain, 2009						0	0.07	0.18	ND	Test 07
(Valverde)						1	0.078	0.21	ND	
Melon						3	0.077	0.2	ND	
						7	0.018	0.054	ND	
						14	0.059	0.17	ND	
Adra	4	0.12	10	1200	6-7	-0	0.023	0.079	ND	DP-28186
Spain, 2009						0	0.026	0.08	ND	Test 08
(Galia)						1	0.049	0.14	ND	
Melon						3	0.064	0.21	ND	
						7	0.005	0.013	ND	
						14	0.019	0.053	ND	
Adra	4	0.12	10	1200		-0	0.051	0.13	ND	DP-28186
Spain, 2009						0	0.066	0.17	ND	Test 09
(Cantaloupe)						1	0.096	0.24	ND	
Melon						3	0.062	0.16	ND	
						7	0.035	0.072	ND	
						14	0.024	0.056	< 0.01	
Mezin	4	0.1	5	2000	6–8	-0	ND	ND	ND	DP-28186
S France, 2009						0	ND	ND	ND	Test 05
(Charentais)						1	ND	ND	ND	(soil dripline)
						3	ND	ND	ND	
						7	< 0.01	0.012	ND	
						14	ND	ND	ND	
Adra	4	0.1	5	2000	6–7	-0	ND	ND	ND	DP-28186
Spain, 2009						0	ND	ND	ND	Test 07
(Valverde)						1	ND	ND	ND	(soil dripline)
						3	ND	ND	ND	May–Jun
						7	ND	ND	ND	
						14	ND	ND	ND	

MELON			Applicatio	on		DAT	Cyantranili	iprole residu	es (mg/kg)	Reference &
Location						(days)				Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI		whole fruit	peel	pulp	
(variety)				L/ha	(days)					
Adra	4	0.1	5	2000	6–7	-0	ND	ND	ND	DP-28186
Spain, 2009						0	ND	ND	ND	Test 08
(Galia)						1	ND	ND	ND	(soil dripline)
						3	ND	< 0.01	ND	May–Jun
						7	ND	ND	ND	
						14	ND	ND	ND	
Adra	4	0.1	5	2000		-0	ND	0.004	ND	DP-28186
Spain, 2009						0	ND	ND	ND	Test 09
(Cantaloupe)						1	ND	ND	ND	(soil dripline)
						3	ND	ND	ND	October
						7	ND	ND	ND	
						14	ND	ND	ND	

Fruiting vegetables, other than Cucurbits

Results from supervised trials from Australia, Europe and North America on tomatoes and peppers were provided to the Meeting.

North America

In trials conducted in North America on <u>field tomatoes</u> and <u>peppers</u> (bell and non-bell), two or three foliar applications of 0.15 kg ai/ha cyantraniliprole (OD formulation) were applied at 4–6 day intervals, using 200–500 L/ha, with adjuvant added. Soil treatment plots were also included in three trial sites, where two soil treatments of 0.15 kg ai/ha cyantraniliprole (SC formulation) were applied through drip-line irrigation systems (adjusted to pH 4–5, with no added adjuvant).

Duplicate samples of fruit were stored at -20 °C for up to 8 months before extraction and analysis for cyantraniliprole and six metabolites (within 3 months of extraction) using method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 88–92% (cyantraniliprole) and 83–99% (metabolites) in samples spiked with 0.01–1.0 mg/kg and also 4 mg/kg for tomatoes.

Europe

In trials conducted in Europe on protected sweet peppers, <u>chilli peppers</u> and <u>tomatoes</u>, four applications of 10 g ai/hL cyantraniliprole were applied using 1200 L/ha as foliar sprays (OD formulation) or four applications of 5 g ai/hL using 2000 L/ha as soil treatments (SC formulation), applied through the dripline irrigation systems. The retreatment intervals in all trials was 7 days and all foliar treatments included added surfactant.

In outdoor tomatoes, sweet and chilli peppers in Southern Europe, two foliar applications of 0.09 kg ai/ha cyantraniliprole (OD formulation) were applied using 800 L water/ha at 6-7 day intervals with added surfactant.

Samples were stored at -18 C for up to 8 months before extraction and analysis for cyantraniliprole and six metabolites analysis (within 7 days of extraction) using method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 75–101% (cyantraniliprole) and 77–101% (metabolites) in samples spiked with 0.01, 0.1, 1.0 and 5.0 (peppers) mg/kg.

Australia

In trials conducted in Australia on <u>outdoor tomatoes</u> and <u>sweet peppers</u> (capsicums), two foliar applications of 0.05, 0.075 or 0.15 kg ai/ha cyantraniliprole (OD formulation) were applied 7 days apart to separate plots using 400 L water/ha with added surfactant.

Samples were stored at or below -18 °C for up to 7 months before extraction and analysis for cyantraniliprole and six metabolites analysis (within 1 day of extraction) using method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 80–91% (cyantraniliprole) and 77–94% (metabolites) in samples spiked with 0.01–2.0 mg/kg.

Table 103 Residues in field tomatoes	from supervised trials in North	America involving two or three
foliar applications of cyantraniliprole	OD formulation)	

TOMATO	Application					DAT	Matrix	Residu	Reference		
Location						(days)					Comments
Country, year	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)			-	L/ha	(days)						
Bradenton, FL	2	0.15	34	450	5	1	whole	0.05, 0.047	0.048		DP-25643
USA, 2008							fruit	,			Trial 1
(FL-47)											
Tomato/											
Fresno, CA	2	0.15	54	280	5	1	whole	0.074.0.1	0.089		DP-25643
USA, 2008	-	0110		200		-	fruit	01071,011	0.009		Trial 8
(H8004)											11101 0
Tomato/											
Fresno, CA	2	0.15	53	280	5	1	whole	0.047.0.076	0.061		DP-25643
USA 2008	2	0.15	55	200	5	1	fruit	0.017, 0.070	0.001		Trial 9
(H8004)							nun				111ul y
(110004) Tomato/											
Hickman CA	2	0.15	52	280	5	1	whole	0.14.0.13	0.14		DP 25642
HICKIIIAII, CA	2	0.15	55	280	5	1	fmuit	0.14, 0.15	0.14		DF-23045
(6268)							nun				That to
(0308) Temete/											
Tomato/	2	0.15	20	200	5	1		0.041.0.044	0.042		DD 25(42
Huron, CA	2	0.15	39	390	5	1	whole	0.041, 0.044	0.042		DP-25643
USA, 2008							Iruit				I riai 6
(Sun 6117)											
Tomato/		0.4.5			-			0.10.01	0.10		DD 05640
Lemore, CA	2	0.15	39	390	5	1	whole	0.13, 0.1	0.12		DP-25643
USA, 2008							fruit				Trial 4
(Shady Lady)											
Tomato/											
Oviedo, FL	2	0.15	53	280	5	1	whole	0.037, 0.022	0.03		DP-25643
USA, 2008							fruit				Trial 2
(Burpee Big											
Boy)											
Tomato/											
Paso Robles,	2	0.15	54	280	5	1	whole	0.19, 0.12	0.16		DP-25643
CA							fruit				Trial 7
USA, 2008											
(Red Cherry)											
Tomato/											
Porterville,	2	0.15	66	230		1	whole	0.13, 0.082	0.1		DP-25643
CA			77	200			fruit				Trial 5
USA, 2008											
(Sun 6117)											
Tomato/											
San Ardo, CA	2	0.15	55	270	5	0	whole	0.017, 0.032	0.024		DP-25643
USA, 2008						0	fruit	0.07, 0.036	0.053		Trial 3
(Shady Lady)						1		0.044, 0.044	0.044		
Tomato/											

TOMATO		1	Applicatio	n		DAT	Matrix	Residu	Reference		
Location						(days)					Comments
Country, year (variety)	no	kg ai/ha	kg ai/hL	water L/ha	RTI (days)			cyantraniliprole	mean	metabolites	
Alton, NY USA, 2009 (Polbig F1) Tomato/	3	0.15	53	280	5, 6	1	whole fruit	0.091, 0.072	0.082		DP-25643 Trial 20
Bradenton, FL USA, 2008 (FL-47) Tomato/	3	0.15	34	450	5	1	whole fruit	0.037, 0.045	0.041		DP-25643 Trial 1
Branchton, ON, CAN 2009 (9909) Tomato/	3	0.15	60	250	4, 5	1	whole fruit	0.075, 0.096	0.086		DP-25643 Trial 22
Conklin, MI USA, 2009 (Supersweet 100 VF) Tomato (Cherry)/	3	0.15	50	300	5	1	whole fruit	0.2, 0.14	0.17		DP-25643 Trial 28
Delavan, WI USA, 2009 (Rutgers) Tomato/	3	0.15	75	200	7, 4	1	whole fruit	0.063, 0.078	0.071		DP-25643 Trial 25
Fresno, CA USA, 2008 (H8004) Tomato/	3	0.15	53	290	5	1	whole fruit	0.12, 0.16	0.14		DP-25643 Trial 8
Fresno, CA USA, 2008 (H8004) Tomato/	3	0.15	53	280	5	1	whole fruit	0.055, 0.06	0.058		DP-25643 Trial 9
Hickman, CA USA, 2008 (6368) Tomato/	3	0.15	53	280	5	1	whole fruit	0.16, 0.17	0.16		DP-25643 Trial 10
Huron, CA USA, 2008 (Sun 6117) Tomato/	3	0.15	39	390	5	1	whole fruit	0.08, 0.053	0.067		DP-25643 Trial 6
Lemore, CA USA, 2008 (Shady Lady) Tomato/	3	0.15	41	360	5	1	whole fruit	0.14, 0.15	0.14		DP-25643 Trial 4
Oviedo, FL USA, 2008 (Burpee Big Boy) Tomato/	3	0.15	53	280	5,4	1	whole fruit	0.052, 0.041	0.046		DP-25643 Trial 2

TOMATO		A	Application DAT Matrix Residues (mg/kg) Re						Reference		
Location						(days)					Comments
Country, year	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)		e	C	L/ha	(days)			<i>v</i> 1			
Paso Robles.	3	0.15	53	290	5	1	whole	0.28, 0.25	0.26		DP-25643
CA	-						fruit				Trial 7
USA 2008											11101 /
(Red Cherry)											
Tomato/											
Diskland IA	2	0.15	66	220	6.5	1	h.a.l.a	0.001.0.062	0.072		DD 25642
Kichland, IA	3	0.15	00	220	0, 3	1	whole	0.081, 0.062	0.072		DP-23043
USA, 2009							Iruit				I rial 26
(Supersweet)											
Tomato											
(Cherry)/											
Rockville, IN	3	0.15	48	310	5	1	whole	0.066, 0.05	0.058		DP-25643
USA, 2009							fruit				Trial 24
(Mountain											
Spring)											
Tomato/											
San Ardo, CA	3	0.15	55	270	5	1	whole	0.076, 0.054	0.065		DP-25643
USA, 2008							fruit				Trial 3
(Shady Lady)											
Tomato/											
Seven Springs.	1+	0.15	59	250	5	1	whole	0.086, 0.066	0.076		DP-25643
NC	2		73	210			fruit	,			Trial 21
USA 2009	_		, -								
(Rutgers)											
Tomato/											
Sparta MI	3	0.15	50	300	5	1	whole	0.000.0.088	0.003		DP 25643
$\frac{15}{100}$	5	0.15	50	500	5	1	fruit	0.099, 0.088	0.095		Trial 20
(Sunama)							nun				111d1 29
(Suiioilia)											
(Dama)/											
(Koma)/	2	0.15	67	260	-	1	1 1	0.004.0.11	0.1		DD 05(42
Verona, WI	3	0.15	57	260	5	1	whole	0.094, 0.11	0.1		DP-25643
USA, 2009							fruit				Trial 27
(Red											
Defender)											
Tomato/											
Porterville,	1+	0.15	66	230		1	whole	0.08, 0.074	0.077		DP-25643
CA	2	0.15	77	200			fruit				Trial 5
USA, 2008											
(Sun 6117)											
Tomato/											
Caryle, IL	1 +	0.15	60	250	5	1	whole	0.14, 0.091	0.12		DP-25643
USA, 2009	1 +	0.15	58	260			fruit				Trial 23
(Burpee Big	1	0.15	44	340							
Boy)											
Tomato/											
San Ardo, CA	2+	0.15 (soil)	2	7700	7	1	whole	0.044, 0.052	0.048		DP-25643
USA, 2008	1	0.15	54	280			fruit				Trial 3
(Shady Lady)											2 soil
Tomato/											dripline +
											1 foliar

Soil (dripline irrigation) treatment rate of 2.7 g ai/100 metres of row

TOMATO			Application	on		DAT	Matrix	Residues (mg/kg)			Reference
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Perea	2	0.09	11	800	7	1	whole fruit	ND	1		DP-27712
Greece, 2009											Test 05
(Meteor)											
Tomato/											
Fiorenzuola	2	0.09	11	800	7	1	whole fruit	0.079			DP-27712
d'Arda											Test 06
Italy, 2009											
(Heinz 690)											
Tomato/											
Aguadulce	2	0.09	11	800	7	1	whole fruit	0.018			DP-27712
Spain, 2009											Test 07
(Manitu)											
Tomato/											
Les	2	0.09	11	800	7	-0	whole fruit	0.038			DP-27712
Massonnes						0		0.071			Test 12
S France, 2009						1		0.077			
(Perfect Peel)						3		0.068			
Tomato											
Villalba del	2	0.09	11	800	6	-0	whole fruit	0.013			DP-27712
Alcor						0		< 0.01			Test 13
Spain, 2009						1		0.02			
(Lidia)						3		0.01			
Tomato/											

Table 1 Residues in field tomatoes from supervised trials in Europe involving foliar applications of cyantraniliprole (OD formulation)

Table 105 Residues in field tomatoes	from supervised	trials in Australia	a involving foliar	applications
of cyantraniliprole (OD formulation)				

TOMATO		1	Applicati	on		DAT	Matrix	Residu	es (mg/	kg)	Reference
Location						(days)					Comments
Country, year											
(variety)											
	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
				L/ha	(days)						
Bowen, QLD	2	0.05	0.0125	400	7	0	whole fruit	0.11			DP-31520
Australia, 2009						1		0.09			Site 1
(Danika)						7		0.03			
Tomato						14		ND			
						21		ND			
Bowen, QLD	2	0.075	0.019	400	7	0	whole fruit	0.19			DP-31520
Australia, 2009						1		0.16			Site 1
(Danika)						7		0.09			
Tomato						14		0.02			
						21		ND			
Bowen, QLD	2	0.05	0.0125	400	7	0	whole fruit	ND			DP-31520
Australia, 2009						1		0.01			Site 2
(Pinacle)											
Tomato											

TOMATO		1	Applicati	on		DAT	Matrix	Residu	es (mg/	kg)	Reference
Location						(days)					Comments
Country, year											
(variety)											
	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
				L/ha	(days)						
Bowen, QLD	2	0.075	0.019	400	7	0	whole fruit	0.01			DP-31520
Australia, 2009						1		0.02			Site 2
(Pinacle)											
Tomato											
Bowen, QLD	2	0.15	0.0375	400	7	0	whole fruit	0.01			DP-31520
Australia, 2009						1		0.03			Site 2
(Pinacle)											
Tomato											

Table 106 Residues in protected tomatoes from supervised trials in Europe involving soil (drip irrigation) applications of cyantraniliprole (SC formulation)

TOMATO		L	Application	on		DAT	Matrix	Residu	es (mg/	'kg)	Reference
Location						(days)					Comment
Country, year		1			DET				, 		S
(variety)	no	kg ai/ha	g ai/hL	water L/ha	RTI (days)			cyantraniliprole	mean	metabolites	
Birac Sur Trec	4	0.1	5	2000	7	-0	whole fruit	ND			DP-28187
S France, 2009			l			0		ND			Test 09
(Carnegie)			1			1		ND			[SC soil
Tomato			1			3		ND			drip]
			i			7		ND			1.7
Mediglia	4	0.1	5	2000	7	-0	whole fruit	ND			DP-28187
Italy, 2009			1			0		ND			Test 05
(Naram)			1			1		ND			[SC soil
Tomato			1			3		ND			drip]
			1			7		ND			
Puente del Rio	4	0.1	5	2000	7	-0	whole fruit	ND			DP-28187
Spain, 2009			1			0		ND			Test 06
(HA 04077)			1			1		ND			[SC soil
Tomato			1			3		ND			drip]
			1			7		ND			
Wellerlooi	4	0.1	5	2000	7	-0	whole fruit	< 0.01			DP-28187
Netherlands,			1			0		ND			Test 07
2009			1			1		0.02			[SC soil
(Capricia RZ)			1			3		ND			drip]
Tomato			1			7		0.029, ND			
Wellerlooi	4	0.1	5	2000	6-8	-0	whole fruit	0.003			DP-28187
Netherlands,			1			0		ND			Test 10
2009			1			1		0.005			[SC soil
(Capricia RZ)			1			3		0.007			drip]
Tomato			l			7		0.01			
Nea Magnisia	4	0.1	5	2000	7,8	-0	whole fruit	ND			DP-28187
Greece, 2009			1			0		ND			Test 08
(Winner F1)			1			1		ND			[SC soil
Cherry Tomato			l			3		ND			drip]
			i '			7		ND			

TOMATO			Application	on		DAT	Matrix	Residu	es (mg/	kg)	Reference
Location						(days)					Comment
Country, year											s
(variety)	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
				L/ha	(days)						
Puente del Rio	4	0.1	5	2000	7,8	-0	whole fruit	ND			DP-28187
Spain, 2009						0		ND			Test 11
(Sirtaki)						1		ND			[SC soil
Cherry Tomato						3		ND			drip]
						7		ND			
La Mojonera	4	0.1	5	2000	7	-0	whole fruit	ND			DP-28187
Spain, 2009						0		ND			Test 12
(Foster)						1		ND			[SC soil
Cherry Tomato						3		0.008			drip]
						7		ND			

Table 107 Residues in protected tomatoes from supervised trials in Europe involving foliar applications of cyantraniliprole (OD formulation)

TOMATO			Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)	Reference
Location						(days)					Comment
Country, year											s
(variety)	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
				L/ha	(days)						
Birac Sur Trec	4	0.12	10	1200	7	-0	whole fruit	0.038			DP-28187
S France, 2009						0		0.058			Test 09
(Carnegie)						1		0.053			
Tomato/						3		0.049			
Indoor						7		0.053			
La Mojonera	4	0.12	10	1200	7	1	whole fruit	0.14			DP-28187
Spain, 2009											Test 04
(Ikram)											
Tomato/											
Indoor											
Mediglia	4	0.12	10	1200	7,6	1	whole fruit	0.072			DP-28187
Italy, 2009											Test 05
(Naram)											
Tomato/											
Indoor											
Nea Magnisia	4	0.12	10	1200	7	1	whole fruit	0.043			DP-28187
Greece, 2009											Test 01
(Optima)											
Tomato/											
Indoor											
Puente del Rio	4	0.12	10	1200	7	1	whole fruit	0.18			DP-28187
Spain, 2009											Test 06
(HA 04077)											
Tomato/											
Indoor											
Vittoria	4	0.12	10	1200	7	1	whole fruit	0.14			DP-28187
Italy, 2009											Test 03
(Arawak)											
Tomato/											
Indoor											

TOMATO			Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)	Reference
Location						(days)					Comment
Country, year											s
(variety)	no	kg ai/ha	g ai/hL	water L/ha	RTI (days)			cyantraniliprole	mean	metabolites	
Vittoria	4	0.12	10	1200	7	1	whole fruit	0.18			DP-28187
Italy, 2009											Test 02
(Rovente)											
Tomato/											
Indoor											
Wellerlooi	4	0.12	10	1200	7	1	whole fruit	0.15			DP-28187
Netherlands,											Test 07
2009											
(Capricia RZ)											
Tomato/											
Indoor											
Wellerlooi	4	0.12	10	1200	6–8	-0	whole fruit	0.14			DP-28187
Netherlands.						0		0.26			Test 10
2009						1		0.19			
(Capricia RZ)						3		0.18			
Tomato/						7		0.22			
Indoor						,		0			
Nea Magnisia	4	0.12	10	1200	7	1	whole fruit	0.14			DP-28187
Greece, 2009											Test 08
(Winner F1)											
Cherry Tomato/											
Indoor											
Puente del Rio	4	0.12	10	1200	7,8	-0	whole fruit	0.095			DP-28187
Spain, 2009						0		0.68			Test 11
(Sirtaki)						1		0.57			
Cherry Tomato/						3		0.62			
Indoor						7		ND			
La Mojonera	4	0.12	10	1200	7	_0	whole fruit	0.099			DP-28187
Spain 2009		0.12	10	1200	,	0	whole if all	0.16			Test 12
(Foster)						1		0.42			1050 12
(Loster) Cherry Tomato/						3		0.16			
Indoor						7		0.10			
indoor						,		0.17			
Belfeld	4	0.12	10	1200	7	-0	whole fruit	0.42			DP-28187
Netherlands.						0		0.49			Test 13
2009						1		0.59			
(Cabbricia)						3		0.44			
Cherry Tomato/						7		0.41			
Indoor											
Caphan	4	0.1	5	2000	6,7	-0	whole fruit	0.35			DP-28187
France, 2009						0		0.49			Test 14
(Amorouso)						1		0.37			
Cherry Tomato/						3		0.4			
Indoor						7		0.36			

PEPPERS,		1	Applicatio	n		DAT	Matrix	Residu	es (mg/	kg)	Reference
SWEEL						(days)					Comment
Location			1								S
Country, year	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Arrovo Grande	2	0.15	70	220	5	1	whole	0.031.0.052	0.041		DP-25643
CA	2	0.15	64	220	5	1	fruit	0.051, 0.052	0.041		Trial 15
			01	210			nun				11101 15
(Crusader)											
Bell Penner/											
Bradenton FI	2	0.15	38	300	5	1	whole	0.14.0.14	0.14		DP 25643
	2	0.15	50	390	5	1	fruit	0.14, 0.14	0.14		DI -25045
(Camelot)							nun				11141 1 1
Rell Penner/											
Eresno CA	2	0.15	53	280	5	1	whole	0.19.0.2	0.2		DP-25643
	2	0.15	55	200	5	1	fruit	0.17, 0.2	0.2		Trial 14
(Indra)							nun				11101 17
Bell Penner/											
Raymondville	2	0.15	40	380	5	1	whole	0.17.0.12	0.15		DP-25643
TX	2	0.15	40	500	5	1	fruit	0.17, 0.12	0.15		Trial 12
USA 2008							nun				11101 12
(Camelot)											
Bell Penner/											
San Ardo, CA	2	0.15	53	290	4	1	whole	0.11.0.097	0.1		DP-25643
USA, 2008	-	0.15	55	270		1	fruit	0.11, 0.057	0.1		Trial 13
(Moody)											
Bell Pepper/											
Bradenton, FL	3	0.15	38	390	5	1	whole	0.26, 0.23	0.24		DP-25643
USA, 2008							fruit				Trial 11
(Camelot)											
Bell Pepper/											
Branchton, ON	3	0.15	73	210	6	1	whole	0.082, 0.068	0.075		DP-25643
CAN, 2009							fruit				Trial 32
(Permit)											
Bell Pepper/											
Carlyle, IL	3	0.15	68	230	5	1	whole	0.1, 0.064	0.082		DP-25643
USA, 2009							fruit				Trial 31
(California											
Wonder)											
Bell Pepper/											
Conklin, MI	3	0.15	52	290	5	1	whole	0.074, 0.061	0.067		DP-25643
USA, 2009							fruit				Trial 34
(Aristotle X3R)											
Bell Pepper/											
Delavan WI	3	0.15	76	2.00	5	1	whole	0.033 0.03	0.032		DP-25643
USA, 2009	Ĩ	5.15	, , ,	200			fruit	0.000, 0.00	0.052		Trial 33
(Keystone)											
Bell Pepper/											
Fresno. CA	3	0.15	53	280	5	1	whole	0.28. 0.28	0.28		DP-25643
USA, 2008							fruit				Trial 14
(Indra)											
Bell Pepper/											

Table 108 Residues in sweet peppers from supervised trials in North America involving two or three foliar applications of cyantraniliprole (OD formulation)

PEPPERS,		A	Applicatio	n		DAT	Matrix	Residu	es (mg/	kg)	Reference
SWEET						(days)					Comment
Location											s
Country, year	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Raymondville,	3	0.15	40	380	5	1	whole	0.22, 0.2	0.21		DP-25643
TX							fruit				Trial 12
USA, 2008											
(Camelot)											
Bell Pepper/											
San Ardo, CA	3	0.15	53	290	4, 5	1	whole	0.12, 0.17	0.15		DP-25643
USA, 2008							fruit				Trial 13
(Moody)											
Bell Pepper/											
Seven Springs,	1+	0.15	59	250	5	1	whole	0.066, 0.05	0.058		DP-25643
NC	2	0.15	73	210			fruit				Trial 30
USA, 2009											
(California											
Wonder)											
Bell Pepper/											
Verona, WI	2+	0.15	42	370	6, 5	1	whole	0.078, 0.071	0.074		DP-25643
USA, 2009	1	0.15	57	260			fruit				Trial 35
(King Arthur)											
Bell Pepper/											
Arroyo Grande,	1 +	0.15	70	220	5	1	whole	0.046, 0.042	0.044		DP-25643
CA	1+	0.15	64	240			fruit				Trial 15
USA, 2008	1	0.14	58	240							
(Crusader)											
Bell Pepper/											
Bradenton FL	2+	0.15 (soil)	4	3800	7	1	whole	0.088.0.095	0.092		DP-25643
USA 2008	1	0.15	39	380	,	1	fruit	0.000, 0.075	0.072		Trial 11
(Camelot)	1	0.15	57	500			11 1111				2 soil
Bell Penner/											drinline +
Ben i oppen											1 foliar
	1										1 IOIIul

Soil (dripline irrigation) treatment rate was 2.3 g ai/100 metres of row

Table	109	Residues	in	non-bell	peppers	from	supervised	trials	in	North	America	involving	two	or
three f	oliar	applicatio	ons	of cyantr	aniliprol	e (OD	formulation	n)						

PEPPERS			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)	Reference
Location						(days)					Comments
Country, year	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Fresno, CA	2	0.15	53	280	5	1	whole	0.39, 0.34	0.36		DP-25643
USA, 2008							fruit				Trial 18
(Jalafuego											
NonBell Pepper/											
Paso Robles,	2	0.15	51	290	5	1	whole	0.19, 0.28	0.24		DP-25643
CA							fruit				Trial 19
USA, 2008											
(Jalapeno											
NonBell Pepper/											

PEPPERS			Application	on		DAT	Matrix	Residu	es (mg/	kg)	Reference
Location						(days)					Comments
Country, year	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Porterville, CA USA, 2008 (Anaheim TMR 23) NonBell Pepper/	2	0.15	39	390	5	1	whole fruit	0.33, 0.41	0.37		DP-25643 Trial 17
Raymondville, TX USA, 2008 (TAM Mild Jalapeno NonBell Pepper/	2	0.15	40	380	5	1	whole fruit	0.22, 0.18	0.2		DP-25643 Trial 16
Branchton, ON CAN, 2009 (Sweet Banana) NonBell Pepper/	3	0.15	72	220	4, 5	1	whole fruit	0.069, 0.071	0.07		DP-25643 Trial 37
Carlyle, IL USA, 2009 (Jalapeno) NonBell Pepper/	3	0.15	57	270	5	1	whole fruit	0.071, 0.066	0.068		DP-25643 Trial 36
Conklin, MI USA, 2009 (New Park) NonBell Pepper/	3	0.15	50	300	5	1	whole fruit	0.098, 0.091	0.095		DP-25643 Trial 40
Delavan, IL USA, 2009 (Poblano Ancho) NonBell Pepper/	3	0.15	75	200	5	1	whole fruit	0.083, 0.074	0.079		DP-25643 Trial 38
Fresno, CA USA, 2008 (Jalafuego NonBell Pepper/	3	0.15	53	280	5	1	whole fruit	0.38, 0.47	0.42		DP-25643 Trial 18
Paso Robles, CA USA, 2008 (Jalapeno NonBell Pepper/	3	0.15	51	290	5	1	whole fruit	0.24, 0.37	0.31		DP-25643 Trial 19
Porterville, CA USA, 2008 (Anaheim TMR 23) NonBell Pepper/	3	0.15	39	390	5, 6	1	whole fruit	0.09, 0.091	0.09		DP-25643 Trial 17
Raymondville, TX USA, 2008 (TAM Mild Jalapeno NonBell Pepper/	3	0.15	40	380	5	1	whole fruit	0.23, 0.28	0.25		DP-25643 Trial 16
Richland, IA USA, 2009 (Early Jalapeno) NonBell Pepper/	3	0.15	70	220	5	1	whole fruit	0.16, 0.25	0.2		DP-25643 Trial 39
PEPPERS			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)	Reference
-----------------	----------------------	----------	-----------	-------	--------	--------	--------	------------------	---------	-------------	------------
Location						(days)					Comments
Country, year	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Porterville, CA	2+ 0.15 0.74 20400 7				7	1	whole	0.21, 0.15	0.18		DP-25643
USA, 2008	1	(soil)	39	380			fruit				Trial 17
(Anaheim TMR		0.15									2 soil
23)											dripline +
NonBell Pepper/	,										1 foliar

Soil (dripline irrigation) treatment rate was 2.3 g ai/100 metres of row

Table 110 Residues	in field peppers	from su	pervised	trials in	Europe	involving	foliar	applications	s of
cyantraniliprole (OE) formulation)								

PEPPERS	Application					DAT	Matrix	Residues (mg/kg)			Reference
Location						(days)					Comment
Country, year											s
(variety)	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
		_	-	L/ha	(days)						
Poirino	2	0.09	11	800	7	1	whole fruit	0.077			DP-27712
Italy, 2009											Test 01
(Corno di											
Cramagnola)											
Pepper/											
Los Palacios	2	0.09	11	800	7	1	whole fruit	0.096			DP-27712
Spain, 2009											Test 02
(Negrillo)											
Pepper/											
Chalkidona	2	0.09	11	800	7	1	whole fruit	0.081			DP-27712
Greece, 2009											Test 03
(Raiko)											
Pepper/											
Clairac	2	0.09	11	800	7	-0	whole fruit	0.062			DP-27712
S France, 2009						0		0.067			Test 08
(Alléla)						1		0.068			
Pepper/						3		0.059			
Villalba del	2	0.09	11	800	6	-0	whole fruit	0.031			DP-27712
Alcor						0		0.09			Test 09
Spain, 2009						1		0.066			
(Italico)						3		0.047			
Pepper/											
Contrada	2	0.09	11	800	7	1	whole fruit	0.82			DP-27712
Gelso Bianco											Test 04
Italy, 2009											
(Pyros)											
Hot pepper/											
Perea	2	0.09	11	800	7	-0	whole fruit	0.13			DP-27712
Greece, 2009						0		0.35			Test 10
(Magnisia)						1		0.32			
Hot pepper						3		0.23			
Utrera	2	0.09	11	800	7	-0	whole fruit	0.19			DP-27712
Spain, 2009						0		0.61			Test 11
(Fire Flame)						1		0.59			
Hot pepper						3		0.58			

PEPPERS	Application					DAT	Matrix	Residu	es (mg/	kg)	Reference
Location						(days)					Comment
Country, year											s
(variety)	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
				L/ha	(days)						
Contrada	2	0.09	11	800	7	-0	whole fruit	0.13			DP-27712
Gelso, Bianco,						0					Test 14
Sicily						1					
Italy, 2010						3					
(Not specified)											
Hot pepper											
Aguadulce	2	0.09	11	800	7	1	whole fruit	0.24			DP-27712
Spain 2010											Test 15
(Not specified)											
Hot pepper											

Table	111	Residues	in	field	sweet	peppers	from	supervised	trials	in	Australia	involving	foliar
applica	ation	s of cyantr	anil	iprole	(OD f	ormulatic	n)						

PEPPER	Application					DAT	Matrix	Residu	es (mg/	kg)	Reference
Location						(days)					Comment
Country, year											s
(variety)											
	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
				L/ha	(days)						
Bowen, QLD	2	0.05	0.0125	400	7	0	whole fruit	ND			DP-31520
Australia, 2009						1		< 0.01			Site 3
(Warlock)											
Capsicum											
Bowen, QLD	2	0.075	0.019	400	7	0	whole fruit	ND			DP-31520
Australia, 2009						1		0.02			Site 3
(Warlock)											
Capsicum											
Bowen, QLD	2	0.15	0.0375	400	7	0	whole fruit	0.01			DP-31520
Australia, 2009						1		0.02			Site 3
(Warlock)											
Capsicum											

Table 112 Res	idues in protecte	ed sweet and	l chilli pepp	ers from	supervised	trials in	Europe	involving
involving soil ((drip irrigation)	pplications	of cyantrani	liprole (S	SC formulat	ion)		

PEPPERS			Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)	Reference
Location						(days)					&
Country, year											Comments
(variety)	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
				L/ha	(days)						
Los Palacios,	2	0.1	5	2000	7	-0	whole fruit	ND			DP-23885
Andalucia,						0		ND			Test 03a
Spain, 2008						1		ND			[soil
(Palermo)						3		ND			dripline]
Pepper						7		ND			
						14		ND			

PEPPERS	Application					DAT	Matrix	x Residues (mg/kg)			Reference
Location						(days)					&
Country, year											Comments
(variety)	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
				L/ha	(days)						
Los Palacios,	2	0.1	5	2000	7	-0	whole fruit	ND			DP-23885
Andalucia,						0		ND			Test 03b
Spain, 2008						1		ND			[soil
(Palermo)											dripline]
Pepper											
NK Belfeld	2	0.1	5	2000	8	-0	whole fruit	ND			DP-23885
Netherlands,						0		ND			Test 01a
2008						1		ND			[soil
(Sensation)						3		ND			dripline]
Sweet Pepper						7		ND			1 3
11						14		0.009			
NK Belfeld	2	0.1	5	2000	8	-0	whole fruit	ND			DP-23885
Netherlands,						0		ND			Test 01b
2008						1		ND			[soil
(Sensation)											dripline]
Sweet Pepper											1 9
Berja	4	0.1	5	2000	7	-0	whole fruit	0.007			DP-28188
Spain, 2009						0		0.005			Test 05
(Melchor)						1		0.006			[soil
Pepper						3		0.008			dripline]
						7		0.008			
El Puente del	4	0.1	5	2000	7	-0	whole fruit	ND			DP-28188
Rio						0		ND			Test 11
Spain, 2009						1		ND			[soil
(California						3		ND			dripline]
Rojo)						7		ND			
Pepper											
El Puente del	4	0.1	5	2000	7	-0	whole fruit	0.005			DP-28188
Rio						0		0.005			Test 12
Spain, 2009						1		ND			[soil
(Italico)						3		0.007			dripline]
Pepper						7		0.006			
El Puente del	4	0.1	5	2000	7	-0	whole fruit	0.004			DP-28188
Rio						0		0.004			Test 04
Spain, 2009						1		0.005			[soil
(Lamullo)						3		0.004			dripline]
Pepper/						7		0.004			
Los Palacios,	4	0.1	5	2000	7	-0	whole fruit	ND			DP-23885
Andalucia,						0		ND			Test 03c
Spain, 2008						1		ND			[soil
(Palermo)						3		ND			dripline]
Pepper						7		ND			
						14		ND			
Los Palacios,	4	0.1	5	2000	7	-0	whole fruit	ND			DP-23885
Andalucia,						0		ND			Test 03d
Spain, 2008						1		ND			[soil
(Palermo)											dripline]
Pepper											

PEPPERS		د	Applicatio	on		DAT	Matrix	Residu	Reference		
Location						(days)					&
Country, year											Comments
(variety)	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
				L/ha	(days)						
NE Meterik	4	0.1	5	2000	7	-0	whole fruit	ND			DP-28118
Netherlands,						0		ND			Test 01
2009						1		ND			[soil
(Spider)						3		0.003			dripline]
Pepper						7		ND			
Nea Magnisia	4	0.1	5	2000	7	-0	whole fruit	0.007			DP-28118
Greece, 2009						0		0.006			Test 02
(Raikon)						1		0.007			[soil
Pepper						3		0.006			dripline]
						7		0.011			1 3
NK Belfeld	4	0.1	5	2000	6-8	-0	whole fruit	0.009			DP-23885
Netherlands,						0		0.007			Test 01c
2008						1		0.006			[soil
(Sensation)						3		0.006			dripline]
Sweet Pepper						7		0.006			1 ,
11						14		ND			
NK Belfeld	4	0.1	5	2000	6-8	-0	whole fruit	ND			DP-23885
Netherlands.			-			0		0.079			Test 01d
2008						1		0.004			[soil
(Sensation)											dripline]
Sweet Pepper											1 ,
NK Belfeld	4	0.1	5	2000	7	-0	whole fruit	ND			DP-28118
Netherlands,						0		0.004			Test 10
2009						1		ND			[soil
(Ferrari)						3		ND			dripline]
Pepper						7		ND			
Pact	4	0.1	5	2000	6-8	-0	whole fruit	ND			DP-28118
S France,						0		ND			Test 09
2009						1		ND			[soil
(Minerva)						3		ND			dripline]
Pepper						7		ND			
Poirino	4	0.1	5	2000	7	-0	whole fruit	ND			DP-28118
Italy, 2009						0		ND			Test 03
(Sienor)						1		ND			[soil
Pepper/						3		ND			dripline]
						7		ND			
Chalkidona	4	0.1	5	2000	7	-0	whole fruit	ND			DP-28118
Greece, 2009						0		ND			Test 06
(Local						1		ND			[soil
"Magnisias")						3		0.004			dripline]
Hot pepper/						7		0.007			
NM Grashoek	4	0.1	5	2000	6–8	-0	whole fruit	0.004			DP-28118
Netherlands,						0		0.007			Test 07
2009						1		0.006			[soil
(Midal)						3		0.007			dripline]
Hot pepper/						7		0.007			

PEPPERS		L	Applicatio	on		DAT	Matrix	Residues (mg/kg)			Reference
Location						(days)					&
Country, year											Comments
(variety)	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
				L/ha	(days)						
Contrada	4	0.1	5	2000	7	-0	whole fruit	ND			DP-28118
Sughero Torto						0		ND			Test 08
Italy, 2009						1		ND			[soil
(Romitol)						3		ND			dripline]
Hot pepper/						7		ND			
Pact	4	0.1	5	2000	7	-0	whole fruit	ND			DP-28118
S France,						0		ND			Test 13
2009						1		ND			[soil
(Capel Hot)						3		ND			dripline]
Hot pepper/						7		ND			
Berja	4	0.1	5	2000	7	-0	whole fruit	ND			DP-28118
Spain, 2009						0		ND			Test 14
(Fire flame)						1		ND			[soil
Hot pepper/						3		ND			dripline]
						7		ND			

Table 113 Residues in protected peppers from supervised trials in Europe involving foliar applications of cyantraniliprole (OD formulation)

PEPPERS	Application DAT Matrix Residues (mg/kg)						Reference				
Location						(days)					&
Country, year											Comments
(variety)	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
				L/ha	(days)						
K Belfeld	2	0.12	10	1200	8	-0	whole fruit	0.023			DP-23885
Netherlands,						0		0.081			Test 01a
2008						1		0.071			
(Sensation)						3		0.03			
Sweet Pepper						7		0.032			
						14		0.053			
Los Palacios,	2	0.12	10	1200	7	-0	whole fruit	0.24			DP-23885
Andalucia,						0		0.47			Test 03a
Spain, 2008						1		0.35			
(Palermo)						3		0.41			
Pepper						7		0.31			
						14		0.24			
Los Palacios,	2	0.12	10	1200	7	-0	whole fruit	0.21			DP-23885
Andalucia,						0		0.51			Test 03b
Spain, 2008						1		0.31			
(Palermo)											
Pepper											
NK Belfeld	2	0.12	10	1200	6	-0	whole fruit	0.010			DP-23885
Netherlands,						0		0.057			Test 01b
2008						1		0.051			
(Sensation)											
Sweet Pepper											
Berja	4	0.12	10	1200	7	1	whole fruit	0.076			DP-28118
Spain, 2009											Test 05
(Melchor)											
Pepper											

PEPPERS			Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)	Reference
Location						(days)					&
Country, year											Comments
(variety)	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
				L/ha	(days)						
El Puente del	4	0.12	10	1200	7	-0	whole fruit	0.063			DP-28118
Rio						0		0.14			Test 11
Spain, 2009						1		0.13			
(California						3		0.13			
Rojo)						7		0.12			
Pepper											
El Puente del	4	0.12	10	1200	7	-0	whole fruit	0.12			DP-28118
Rio						0		0.16			Test 12
Spain, 2009						1		0.15			
(Italico)						3		0.1			
Pepper						7		0.094			
El Puente del	4	0.12	10	1200	7	1	whole fruit	0.096			DP-28118
Rio											Test 04
Spain, 2009											
(Lamullo)											
Pepper											
NE Meterik	4	0.12	10	1250	7	1	whole fruit	0.13			DP-28118
Netherlands,											Test 01
2009											
(Spider)											
Pepper											
Nea Magnisia	4	0.12	10	1200	7	1	whole fruit	0.14			DP-28118
Greece, 2009											Test 02
(Raikon)											
Pepper/											
NK Belfeld	4	0.12	10	1200	7	-0	whole fruit	0.13			DP-28118
Netherlands,						0		0.13			Test 10
2009						1		0.17			
(Ferrari)						3		0.17			
Pepper						7		0.11			
Pact	4	0.12	10	1200	6–8	1	whole fruit	0.12			DP-28118
S France,								0.2			Test 09
2009								0.12			
(Minerva)								0.13			
Pepper								0.16			
Poirino	4	0.12	10	1200	7	1	whole fruit	0.12			DP-28118
Italy, 2009											Test 03
(Sienor)											
Pepper											
Chalkidona	4	0.12	10	1200	7	1	whole fruit	0.12			DP-28118
Greece, 2009											Test 06
(Local											
"Magnisias")											
Hot pepper											
NM Grashoek	4	0.12	10	1200	6-8	1	whole fruit	1			DP-28118
Netherlands,											Test 07
2009											
(Midal)											
Hot pepper											

PEPPERS	Application					DAT	Matrix	Residu	es (mg/	kg)	Reference
Location						(days)					&
Country, year											Comments
(variety)	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
				L/ha	(days)						
Contrada	4	0.12	10	1200	7	1	whole fruit	0.86			DP-28118
Sughero Torto											Test 08
Italy, 2009											
(Romitol)											
Hot pepper											
Pact	4	0.12	10	1200	7	-0	whole fruit	0.26			DP-28118
S France,						0		0.14			Test 13
2009						1		0.34			
(Capel Hot)						3		0.12			
Hot pepper						7		0.24			
Berja	4	0.12	10	1200	7	-0	whole fruit	0.27			DP-28118
Spain, 2009						0		0.17			Test 14
(Fire flame)						1		0.12			
Hot pepper						3		0.16			
						7		0.17			

Leafy vegetables

Results from supervised trials from Australia, Europe and North America on lettuce, spinach, Lamb's lettuce and scarole were provided to the Meeting.

North America

In trials conducted in North America on <u>head and leaf lettuce</u> and <u>spinach</u>, two or three foliar applications of 0.15 kg ai/ha cyantraniliprole (OD formulation) were applied at 5 day intervals, using 200–500 L/ha, with adjuvant added. Soil treatment plots were also included at several trial sites, either as a soil shank (in furrow) treatment of 0.2 kg ai/ha (SC formulation) at planting or two soil treatments of 0.15 kg ai/ha cyantraniliprole (SC formulation) applied through drip-line irrigation systems (adjusted to pH 4–5, with no added adjuvant).

Duplicate samples of spinach and lettuce leaves, lettuce heads (trimmed/washed and also with wrapper leaves) and celery (with tops and also trimmed/washed) were stored at -20 °C for up to 9 months before extraction and analysis for cyantraniliprole and six metabolites (within 3 months of extraction) using method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 96–98% (cyantraniliprole) and 80–106% (metabolites) in samples spiked with 0.01–5.0 mg/kg and up to 10 mg/kg in celery and 17 mg/kg in spinach.

In trials conducted in the USA on mustard greens, two or three foliar applications of 0.15 kg ai/ha cyantraniliprole (OD and SE formulations) were applied at 4–6 day intervals, using 200–500 L/ha, with adjuvant added. In several trials, separate plots were also treated with the equivalent of 0.2 kg ai/ha as a soil injection (soil shank) treatment at planting (without added surfactant).

Duplicate samples were stored at -20 °C for up to 8 months before extraction and analysis for cyantraniliprole and six metabolites (within 5 months of extraction) using method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 90–94% (cyantraniliprole) and 80–103% (metabolites) in samples spiked with 0.01 to 25 mg/kg.

Europe

In trials conducted in Europe on protected <u>head lettuce</u>, <u>leaf</u> (open head) <u>lettuce</u>, <u>Lamb's lettuce</u> and <u>scarole</u>, two to three applications of 3.7–10 g ai/hL cyantraniliprole were applied using 750–800 L/ha (0.078–0.096 kg ai/ha) as foliar sprays (OD formulation) or three to four applications of 0.075–

0.1 kg ai/ha using 2000 L/ha as soil treatments (SC formulation), applied through the dripline irrigation systems. The retreatment intervals in all trials was 7 days and no added surfactants were included.

In outdoor head lettuce, leaf (open head) lettuce, Lamb's lettuce and scarole in Southern Europe, three foliar applications of 0.078 kg ai/ha cyantraniliprole (OD formulation) were applied using 800 L water/ha (5 g ai/hL) or three soil treatments (SC formulation) were applied through the dripline irrigation systems at a rate equivalent to 0.1 kg ai/ha. The retreatment intervals in all trials was 7 days and no added surfactants were included.

Samples were stored at -18 °C for up to 7 months before extraction and analysis for cyantraniliprole and six metabolites analysis (within 7 days of extraction) using method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 88–102% (cyantraniliprole) and 83–95% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg and also 2 and 10 mg/kg cyantraniliprole and 0.5 mg/kg IN-J9Z38 metabolite in leaf lettuce.

Table 114 Residues in field head lettuce from supervised trials in North America involving soil applications (SC formulation) at planting or through dripline irrigation systems (with foliar applications—OD formulation)

LETTUCE			Application	on		DAT	Matrix	Residu	ies (mg/	kg)	Reference &
HEAD						(days)					Comments
Location	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
Country, year				L/ha	(days)						
(variety)											
Conklin, MI	1	0.15	0.74	20400		0	heads	ND, ND	ND		DP-25644
USA, 2009						3		ND, ND	ND		Trial 27
Head Lettuce						7		< 0.01, < 0.01	< 0.01		[by drip
Skyline)											irrigation]
Conklin, MI	2	0.15	0.74	20400	7	-0	heads	< 0.01, < 0.01	< 0.01		DP-25644
USA, 2009						0		< 0.01, < 0.01	< 0.01		Trial 27
Head Lettuce						3		0.01, < 0.01	< 0.01		[by drip
Skyline)						7		< 0.01, < 0.01	< 0.01		irrigation]
Porterville,	1 +	0.2	97	200	73	1	heads	0.017, 0.017	0.017		DP-25644
CA	1 +	0.1	42	240	5						Trial 2
USA, 2008	1	0.15	62	240							1 soil shank
Head Lettuce/											treatment +
Vandenberg)											2 foliar
											sprays
Conklin, MI	2+	0.15	0.74	20400	7	-0	heads	< 0.01, < 0.01	< 0.01		DP-25644
USA, 2009	1	0.15	52	290		1		1, 0.81	0.91		Trial 27
Head Lettuce											[2 by drip
Skyline)											irrigation +
											1 foliar]

Soil (shank) treatment rate at planting of 1.5 g ai/100 metres of row (Trial 2)

Soil (dripline irrigation) treatment rate of 1.1 g ai/100 metres of row (Trial 27)

Table 115 Residues in field head lettuce from supervised trials in Europe involving soil (drip irrigation) applications of cyantraniliprole (SC formulation)

LETTUCE		A	Applicatio	n		DAT	Matrix	Residu	es (mg/	kg)		Reference
HEAD						(days)						&
Location												Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	me	etaboli	ites	
(variety)				L/ha	(days)				M1	M2	M4	

LETTUCE		A	Applicatio	n		DAT	Matrix	Residu	es (mg/	kg)		Reference
HEAD						(days)						&
Location												Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	me	etabol	ites	
(variety)				L/ha	(days)				M1	M2	M4	
L'Aldea	3	0.1	5	2000		-0	heads	0.013				DP-27713
Spain, 2009						0		0.017				Test 05
(Maravilla)						1		0.013				
						3		0.013				
Lorgies	3	0.1	5	2010		-0	heads	ND				DP-27713
S France, 2009						0		0.021				Test 06
(Altadis)						1		0.009				
						3		0.006				
Nea Magnisia	3	0.1	5	2000		7 –0	heads	0.032				DP-27713
Greece, 2009						0		0.12				Test 07
(Verdunna)						1		0.12				
						3		0.13				

Table 116 Residues in field head lettuce from supervised trials in North America involving two or three foliar applications of cyantraniliprole (OD formulation unless specified)

LETTUCE			Application	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
HEAD						(days)					Comments
Location	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
Country, year				L/ha	(days)						
(variety)											
Bradenton, FL	2	0.15	36	420	5	1	heads	0.68, 0.75	0.71		DP-25644
USA, 2008							trimmed	0.21, 0.21	0.21		Trial 1
(Iceberg)											
Greenfield,	2	0.15	54	280	5	1	heads	0.023, 0.045	0.034		DP-25644
CA							trimmed	0.009, 0.018	0.014		Trial 5
USA, 2008											
(Telluride)											
Guadalupe,	2	0.15	54	280	5	1	heads	2.1, 2.9	2.5	M2=0.01	DP-25644
CA							trimmed	0.046, 0.027	0.036		Trial 4
USA, 2008											
(Durango)											
Porterville,	2	0.15	60	250	5	1	heads	0.018, 0.013	0.016		DP-25644
CA											Trial 3
USA, 2008											
(Vandenberg)											
Porterville,	2	0.15	62	240	5	1	heads	0.016, 0.022	0.019		DP-25644
CA											Trial 2
USA, 2008											
Head Lettuce/											
Vandenberg)											
Santa Maria,	2	0.15	65	230	5	1	heads	1.3, 1.1	1.2		DP-25644
CA											Trial 6
USA, 2008											
(Quest)											
Alton, NY	3	0.15	40	380	5	1	heads	1.8, 1.9	1.8	M1=0.01	DP-25644
USA, 2009											Trial 23
(Ithaca MTO)											

LETTUCE	Application					DAT	Matrix	Residu	es (mg/	kg)	Reference &
HEAD						(days)					Comments
Location	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
Country, year		-	_	L/ha	(days)						
(variety)											
Alton, NY	3	0.15	40	380	5	1	heads	1.2, 1.9	1.5		DP-25644
USA, 2009											Trial 23
(Ithaca MTO)											[100 SE]
Bradenton, FL	3	0.15	36	420	5	1	heads	1.6, 1.7	1.6	M1=0.02	DP-25644
USA, 2008							trimmed	0.6, 0.6	0.6		Trial 1
(Iceberg)											
Conklin, MI	3	0.15	50	300	5	1	heads	1.6, 1.7	1.7		DP-25644
USA, 2009											Trial 27
Skyline)											
Conklin, MI	3	0.15	50	300	5	1	heads	2.2, 2	2.1	M4=0.01	DP-25644
USA, 2009											Trial 27
Skyline)											[100 SE]
Delavan, WI	3	0.15	73	210	5	1	heads	0.2, 0.16	0.18		DP-25644
USA, 2009											Trial 26
(Sun Devil)											
Delavan, WI	3	0.15	73	210	5	1	heads	0.18, 0.16	0.17		DP-25644
USA, 2009											Trial 26
(Sun Devil)											[100 SE]
Fitchburg, WI	3	0.15	60	250	5	1	heads	0.17, 0.16	0.16		DP-25644
USA, 2009											Trial 24
(Summertime)											
Fitchburg, WI	3	0.15	60	250	5	1	heads	0.12, 0.15	0.13		DP-25644
USA, 2009											Trial 24
(Summertime)											[100 SE]
Greenfield,	3	0.15	54	280	5	1	heads	0.56, 0.95	0.75		DP-25644
CA							trimmed	0.004, ND	ND		Trial 5
USA, 2008											
(Telluride)											
Guadalupe,	3	0.15	53	290	5	1	heads	2.9, 2.6	<u>2.7</u>	M1=0.01	DP-25644
CA							trimmed	0.008, 0.012	0.01	M2=0.02	Trial 4
USA, 2008											
(Durango)											
Porterville,	3	0.15	60	250	5	1	heads	0.021, 0.015	0.018		DP-25644
CA											Trial 3
USA, 2008											
(Vandenberg)											
Porterville,	3	0.15	62	240	5	1	heads	0.05, 0.12	0.084		DP-25644
CA											Trial 2
USA, 2008											
Head Lettuce/											
Vandenberg)											
Princeton, ON	3	0.15	72	210	5	1	heads	0.39, 0.89	0.64		DP-25644
CAN, 2009											Trial 25
(Mighty Joe)											
Princeton, ON	3	0.15	72	210	5	1	heads	0.53, 0.46	0.5		DP-25644
CAN, 2009											Trial 25
(Mighty Joe)											[100 SE]
Santa Maria,	3	0.15	65	230	5	1	heads	1.1, 1.5	1.3	M2=0.01	DP-25644
CA											Trial 6
USA, 2008											
(Quest)											

LETTUCE			Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
HEAD						(days)					Comments
Location	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
Country, year				L/ha	(days)						
(variety)											
Canby, OR	1+	0.15	53	290	5	1	heads	0.5, 0.56	0.53		DP-25644
USA, 2009	1 +	0.14	52	270							Trial 28
(Sniper)	1	0.16	54	300							
Canby, OR	2+	0.15	54	280	5	1	heads	0.85, 0.82	0.83		DP-25644
USA, 2009	1	0.17	53	310							Trial 28
(Sniper)											[100 SE]

Trimmed=washed after outer leaves were removed

M1: Average residues of metabolite IN-J9Z38

M2: Average residues of metabolite IN-MYX98

M4: Average residues of metabolite IN-MLA84

Table	117	Residues	in	field	head	lettuce	from	supervised	trials	in	Europe	involving	3	foliar
applica	ations	s of cyantra	anil	iprole	(OD f	formulat	ion)							

LETTUCE		A	Applicatio	n		DAT	Matrix	Residu	es (mg/	kg)		Reference &
HEAD						(days)						Comments
Location												
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	me	etabol	ites	
(variety)				L/ha	(days)				M1	M2	M4	
L'Aldea	3	0.08	9.8	800		-0	heads	0.092				DP-27713
Spain, 2009						0		0.64				Test 05
(Maravilla)						1		0.5				
						3		0.16				
Lorgies	3	0.08	9.8	830	1	-0	heads	0.062				DP-27713
S France, 2009						0		0.15				Test 06
(Altadis)						1		0.045				
						3		0.037				
Nea Magnisia	3	0.08	9.8	800		-0	heads	0.37	0.02		0.02	DP-27713
Greece, 2009						0		2.8	0.03		0.02	Test 07
(Verdunna)						1		2.4	0.02		0.02	
						3		2.3	0.02	0.01	0.02	

M1: Average residues of metabolite IN-J9Z38

M2: Average residues of metabolite IN-MYX98

M4: Average residues of metabolite IN-MLA84

LETTUCE			Application	on		DAT	Matrix	Residu	es (mg/	kg)		Reference &
HEAD						(days)						Comments
Location	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	me	tabol	ites	
Country, year				L/ha	(days)				M1	M2	M4	
(variety)												
Azzano S. Paolo	2	0.07	3.7	2000	8,7	-0	heads	< 0.01, 0.031				DP-21415
Italy, 2008						0		< 0.01, < 0.01				Test 02
(Loira)						1		ND, 0.01				
						3		0.048				
						7		0.017				
						14		< 0.01				

Table 118 Residues in protected head lettuce from supervised trials in Europe involving soil (drip irrigation) applications of cyantraniliprole (SC formulation)

LETTUCE			Application	on		DAT	Matrix	Residu	es (mg/	'kg)		Reference &
HEAD						(days)						Comments
Location	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	me	etabol	ites	
Country, year				L/ha	(days)				M1	M2	M4	
(variety)												
Los Palacios	2	0.07	3.7	2000	7	-0	heads	ND, 0.026				DP-21415
Spain, 2008						0		< 0.01, 0.019				Test 03
(Filipu)						1		0.017, 0.013				
						3		0.017				
						7		0.021				
						14		0.013				
Lucenay	3	0.1	5	2000	7	-0	heads	0.02				DP-28200
France, 2009						0		0.012				Test 10
(Dedale)						1		0.006				
						3		0.034				
Utrera	3	0.1	5	2000	7	-0	heads	0.009				DP-28200
Spain, 2009						0		0.007				Test 09
(Iceberg)						1		0.009				
						3		0.008				
Azzano S. Paolo	4	0.07	3.7	2000	7–6	-0	heads	< 0.01, 0.01				DP-21415
Italy, 2008						0		< 0.01, 0.024				Test 02
(Loira)						1		< 0.01, ND				
						3		< 0.01				
						7		0.011				
						14		0.011				
Los Palacios	4	0.07	3.7	2000	8–6	-0	heads	0.041, 0.071				DP-21415
Spain, 2008						0		0.053, 0.067				Test 03
(Filipu)						1		0.052, 0.028				
						3		0.055				
						7		0.049				
						14		0.013				

Table 119 Residues in protected head lettuce from supervised trials in Europe involving foliar applications of cyantraniliprole (SC formulation)

LETTUCE			Applicatio	on		DAT	Matrix	Residu	ues (mg/kg))	Reference &
HEAD	1					(days)					Comments
Location	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	metab	oolites	
Country, year	1	'		L/ha	(days)				M1	M4	
(variety)		<u> </u>									
Los Palacios	2				7	-0	heads	1.5, 0.56			DP-21415
Spain, 2008		!				0		2.0, 0.92			Test 03
(Filipu)		'				1		2.3, 0.13			
1											
1	7				1.4						
		<u> </u> !				14		ND			
Azzano S. Paolo	2	0.1	13	750	7,6	-0	heads	1.1, 2.9	0.04	0.03	DP-21415
Italy, 2008		'				0		4.9, 6.1	0.04, 0.03	0.02, 0.01	Test 02
(Loira)		!				1		4.1, 7.4	0.04, 0.02	0.03, 0.02	
1		!				3		3.6	0.05	0.02	
1		!				7		3.6	0.05	0.02	
		<u> </u>				14		2.6	0.02	0.02	
Azzano San	3	0.08	9.7	820	6, 8	-0	heads	0.95			DP-28200
Paolo		!				0		3.1	0.01	0.01	Test 01
Italy, 2009		'				1		2.9	0.02	0.02	ĺ
(Nacre)		'				3		2.7	0.01	0.01	

LETTUCE			Application	on		DAT	Matrix	Residu	ues (mg/kg)	Reference &
HEAD						(days)					Comments
Location	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	metal	oolites	
Country, year				L/ha	(days)				M1	M4	1
(variety)											
Chalkidona	3	0.08	9.8	800	7	-0	heads	2.9	0.02	0.01	DP-28200
Greece, 2009						0		6.4	0.03	0.02	Test 02
(Sonia)						1		6.3	0.03	0.02	
						3		5.6	6 0.02 0.02		
Lucenay	3	0.08	9.8	780	7	-0	heads	1.4	0.01		DP-28200
France, 2009						0		2	0.02	0.01	Test 10
(Dedale)						1		2	0.02	0.01	
						3		3	0.02	0.01	
Utrera	3 0.08 9.8 810 7				7	-0	heads	0.006			DP-28200
Spain, 2009						0		0.009			Test 09
(Iceberg)						1		0.009			
						3		0.006			

M1: Average residues of metabolite IN-J9Z38

M4: Average residues of metabolite IN-MLA84

Table 120 Residues in field leaf lettuce from supervised trials in North America involving soil applications (SC formulation) at planting or through dripline irrigation systems (with foliar applications-OD formulation)

LETTUCE			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
LEAF						(days)					Comments
Location											
Country, year	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Conklin, MI	1	0.15	0.74	20400		0	leaves	ND, ND	ND		DP-25644
USA, 2009						3		0.015, 0.015	0.015		Trial 33
(Bergam's						7		0.028, 0.022	0.025		[drip
Green)											irrigation]
Conklin, MI	2	0.15	0.74	20400	7	-0	leaves	0.028, 0.022	0.025		DP-25644
USA, 2009						0		0.025, 0.032	0.028		Trial 33
(Bergam's						3		0.023, 0.028	0.026		[drip
Green)						7		0.016, 0.015	0.016		irrigation]
Fresno, CA	1+	0.2	107	190	68	1	leaves	1, 1.1	1.1		DP-25644
USA, 2008	1 +	0.1	36	280	5						Trial 12
(Big Star)	1	0.15	54	280							1 soil shank
											treatment +
											2 foliar
											sprays
Conklin, MI	2+	0.15	0.74	20400	7	-0	leaves	0.016, 0.015	0.016		DP-25644
USA, 2009	1	0.15	51	290	7	1		1.8, 1.6	1.7		Trial 33
(Bergam's											[2 by drip
Green)											irrigation +
											1 foliar]

Soil (shank) treatment rate of 1.5 g ai/100 metres of row (Trial 12)

Soil (dripline irrigation) treatment rate of 1.1 g ai/100 metres of row (Trial 27)

LETTUCE		A	Applicatio	n		DAT	Matrix	Residu	es (mg/	kg)		Reference
LEAF						(days)						&
Location												Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	me	tabol	ites	
(variety)				L/ha	(days)				M1	M2	M4	
Utrera	3	0.1	5	2000		-0	leaves	0.007				DP-27713
Spain, 2009						0		0.007				Test 01
(Filipus)						1		0.01				
						3		0.016				
Mediglia	3 0.1 5 2000					-0	leaves	ND				DP-27713
Italy, 2009						0		0.006				Test 02
(Canasta)						1		ND				
						3		0.004				
Lorgies	3	0.1	5	2030		-0	leaves	0.02				DP-27713
France, 2009						0		0.05				Test 03
(Kytare)						1		0.016				
						3		0.011				
Chalkidona	3	0.1	5	2000		-0	leaves	0.004				DP-27713
Greece, 2009						0		0.005				Test 04
(Simson)						1		0.004				
						3		0.009				

Table 121 Residues in field leaf (open head) lettuce from supervised trials in Europe involving soil (drip irrigation) applications of cyantraniliprole (SC formulation)

Table 122 Residues in field leaf lettuce from supervised trials in North America involving two or three foliar applications of cyantraniliprole (OD formulation)

LETTUCE			Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
LEAF						(days)					Comments
Location	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
Country, year				L/ha	(days)						
(variety)											
Bradenton, FL	2	0.15	36	430	5	1	leaves	1.3, 0.95	1.1		DP-25644
USA, 2008											Trial 7
(Oak Leaf)											
Fresno, CA	2	0.15	54	280	5	-0	leaves	0.28, 0.25	0.27		DP-25644
USA, 2008						0		2.9, 3.0	3.0	M1=0.01	Trial 12
(Big Star)						1		2, 2.2	2.1		
						3		1.5, 1.2	1.3		
						5		0.74, 0.59	0.67		
King City, CA	2	0.15	40	380	5	1	leaves	4.9, 3.8	4.4	M1=0.01	DP-25644
USA, 2008										M2=0.02	Trial 10
("454")										M4=0.01	
King City, CA	2	0.15	65	230	5	1	leaves	0.42, 0.58	0.5		DP-25644
USA, 2008											Trial 11
(Sunbelt)											
Porterville,	2	0.15	63	240	5	1	leaves	4.6, 3.9	4.2	M1=0.01	DP-25644
CA											Trial 9
USA, 2008											
(Buttercrunch)											
Porterville,	2	0.15	410	37	5	1	leaves	3.6, 4.7	4.2	M1=0.02	DP-25644
CA										M2=0.03	Trial 8
USA, 2008										M4=0.04	
(Tehema)											

LETTUCE			Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
LEAF						(days)			-	-	Comments
Location	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
Country, year				L/ha	(days)						
(variety)											
Alton, NY	3	0.15	53	280	5	1	leaves	2.7, 3.1	2.9	M1=0.02	DP-25644
USA, 2009										M2=0.01	Trial 29a
(Harmony)										M4=0.02	
Alton, NY	3	0.15	53	280	5	1	leaves	3, 3.3	3.2	M1=0.01	DP-25644
USA, 2009										M2=0.01	Trial 29b
(Harmony)										M4=0.01	[100 SE]
Bradenton, FL	3	0.15	35	430	5	1	leaves	1.1, 1.4	1.2		DP-25644
USA, 2008											Trial 7
(Oak Leaf)											
Conklin, MI	3	0.15	51	300	5	1	leaves	1.9, 2	1.9	M4=0.02	DP-25644
USA, 2009											Trial 33a
(Bergam's											
Green)											
Conklin, MI	3	0.15	51	300	5	1	leaves	2.5, 2.5	2.5		DP-25644
USA, 2009											Trial 33b
(Bergam's											[100 SE]
Green)											
Corvallis, OR	3	0.15	53	280	5	1	leaves	4.2, 3.5	3.9	M1=0.02	DP-25644
USA, 2009										M2=0.01	Trial 34a
(Waldmanns										M4=0.03	
Green)											
Corvallis, OR	3	0.15	53	280	5	1	leaves	5.8, 4.8	5.3	M1=0.02	DP-25644
USA, 2009										M2=0.02	Trial 34b
(Waldmanns										M4=0.03	[100 SE]
Green)											
Delavan, WI	3	0.15	73	210	5	1	leaves	7.4, 6.3	6.8	M1=0.02	DP-25644
USA, 2009										M2=0.02	Trial 32a
(Salad Bowl)										M4=0.02	
Delavan, WI	3	0.15	75	200	5	1	leaves	7.7, 5.2	6.4	M1=0.02	DP-25644
USA, 2009										M2=0.02	Trial 32b
(Salad Bowl)										M4=0.01	[100 SE]
Fresno, CA	3	0.15	54	280	5	-0	leaves	0.74, 0.59	0.67		DP-25644
USA, 2008						1		2.6, 2.1	<u>2.4</u>		Trial 12
(Big Star)											
King City, CA	3	0.15	40	380	5	1	leaves	3, 3.6	3.3	M1=0.01	DP-25644
USA, 2008										M4=0.02	Trial 10
("454")											
King City, CA	3	0.15	70	220	5	1	leaves	1.4, 0.92	1.1		DP-25644
USA, 2008											Trial 11
(Sunbelt)											
Porterville,	3	0.15	63	240	5	1	leaves	1.9, 2.2	2.1	M1=0.01	DP-25644
CA											Trial 9
USA, 2008											
(Buttercrunch)											
Porterville,	3	0.15	410	37	5	1	leaves	4, 3.9	4.0	M1=0.01	DP-25644
CA										M2=0.02	Trial 8
USA, 2008										M4=0.04	
(Tehema)											
Princeton, ON	1+	0.15	76	200	5	1	leaves	2.2, 2.5	2.4		DP-25644
CAN, 2009	1 +	0.15	71	220	4						Trial 31a
(Summer Star)	1	0.14	73	200							

LETTUCE			Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
LEAF						(days)					Comments
Location	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
Country, year				L/ha	(days)						
(variety)											
Princeton, ON	3	0.16	76	200	5	1	leaves	3 2.3, 2.5 2.4			DP-25644
CAN, 2009		0.15	74	200	4						Trial 31b
(Summer Star)		0.14	73	200							[100 SE]
Carlyle, IL	1 +	0.15	45	340	5	1	leaves	ves 5, 5.8 5.4 M1=0.0		M1=0.03	DP-25644
USA, 2009	1 +	0.15	50	300						M2=0.02	Trial 30a
(Loose Leaf	1	0.15	72	200						M4=0.06	
Oakleaf)											
Carlyle, IL	1+	0.15	46	330	5	1	leaves	6.3, 7.4	6.8	M1=0.04	DP-25644
USA, 2009	1 +	0.15	50	300				M2=0.02		M2=0.02	Trial 30b
(Loose Leaf	1	0.15	72	200						M4=0.05	[100 SE]
Oakleaf)											

M1: Average residues of metabolite IN-J9Z38

M2: Average residues of metabolite IN-MYX98

M4: Average residues of metabolite IN-MLA84

Table 123 Resi	dues in field	d leaf (ope	n head)	lettuce f	from	supervised	trials in	1 Europe	involving	three
foliar applicatio	ns of cyanti	aniliprole	(OD for	rmulation	1)					

LETTUCE			Application	on		DAT	Matrix	Residu	es (mg/	kg)		Reference
LEAF						(days)						&
Location												Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	me	tabol	ites	
(variety)				L/ha	(days)				M1	M2	M4	
Utrera	3	0.08	9.8	800	1	-0	leaves	0.27				DP-27713
Spain, 2009						0		0.49				Test 01
(Filipus)						1		0.94				
						3		0.4				
Mediglia	3	0.08	9.8	800	1	-0	leaves	0.047				DP-27713
Italy, 2009						0		0.69				Test 02
(Canasta)						1		0.5				
						3		0.41			0.01	
Lorgies	3	0.08	9.8	810		-0	leaves	0.14			0.01	DP-27713
France, 2009						0		0.42			0.01	Test 03
(Kytare)						1		0.18				
						3		0.088				
Chalkidona	3	0.08	9.8	810		-0	leaves	0.054				DP-27713
Greece, 2009						0		0.91				Test 04
(Simson)						1		0.81	0.01		0.01	
						3		0.49				

M1: Average residues of metabolite IN-J9Z38

M4: Average residues of metabolite IN-MLA84

Table 124 Residues in protected leaf (open head) lettuce from supervised trials in Europe involving soil (drip irrigation) applications of cyantraniliprole (SC formulation)

LETTUCE			Applicatio	on		DAT	Matrix	Residue	s (mg/kg)	Reference &
LEAF						(days)				Comments
Location										
Country, year	no	no kg ai/ha g ai/hL water RTI						cyantraniliprole	metabolites	
(variety)				L/ha	(days)					

LETTUCE			Application	on		DAT	Matrix	Residue	s (mg/kg)	Reference &
LEAF						(days)				Comments
Location										
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	metabolites	
(variety)				L/ha	(days)					
Treviolo	3	0.1	5	2000	7	-0	leaves	0.01		DP-28820
Italy, 2009						0		0.008		Test 11
(Gentile)						1		0.032		
						3		0.083		
Utrera	3	0.1	5	2000	7	-0	leaves	0.011		DP-28200
Spain, 2009						0		0.011		Test 12
(Filipu)						1		0.007		
						3		0.18		
Lleida	3	0.1	5	2000	8,6	-0	leaves	0.012		DP-28200
Spain, 2009						0		0.014		Test 13
(Inverna)						1		0.009		
						3		0.009		

Table	125	Residues	in	protec	cted	leaf	(open	head)	lettuce	from	supervised	trials	in	Europe	invol	lving
foliar a	appli	cations o	f cy	/antrai	nilip	role	(SC fo	rmula	tion)							

LETTUCE		A	Applicatio	n		DAT	Matrix	Residu	es (mg/kg	g)	Reference
LEAF						(days)					&
Location											Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	meta	abolites	
(variety)				L/ha	(days)				M1	M4	
Nea Magnisia	3	0.08	9.8	800	7	-0	leaves	2.5	0.01	0.02	DP-28200
Greece, 2009						0		4.4	0.02	0.02	Test 03
(Bera)						1		4.4	0.02	0.01	
						3		4.9	0.02	0.02	
Lucenay	3	0.08	9.8	800	7	-0	leaves	1.9	0.03	0.01	DP-28200
France, 2009						0		4	0.05	0.02	Test 04
(Kidam)						1		4.6	0.07	0.03	
						3		3.6	0.06	0.02	
Treviolo	3	0.08	9.8	800	7	-0	leaves	0.28		0.01	DP-28200
Italy, 2009						0		2.4	0.01	0.02	Test 11
(Gentile)						1		1.6	0.01	0.02	
						3		1.1		0.01	
Utrera	3	0.08	9.8	810	7	-0	leaves	0.022			DP-28200
Spain, 2009						0		1.1			Test 12
(Filipu)						1		0.49			
						3		0.012			
Lleida	3	0.08	9.8	800	8,6	-0	leaves	0.12			DP-28200
Spain, 2009						0		0.8			Test 13
(Inverna)						1		0.78			
						3		0.12			

M1: Average residues of metabolite IN-J9Z38

M4: Average residues of metabolite IN-MLA84

Table 126 Residues in protected Lamb's lettuce from supervised trials in Europe involving soil (drip irrigation) applications of cyantraniliprole (SC formulation)

LAMB'S		A	Applicatio	n		DAT	Matrix	Residu	es (mg/kg)	Reference &
LETTUCE						(days)				Comments
Location										
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	metabolites	

(variety)				L/ha	(days)				M1	
Treviolo	3	0.1	5	2000	6,7	-0	leaves	0.025		DP-28200
Italy, 2009						0		0.015		Test 14
(Macholong)						1		0.19	0.01	
						3		0.016		
Azzano San	3	0.1	5	2000	6, 8	-0	leaves	0.055	0.01	DP-28200
Paolo						0		0.064		Test 15
Italy, 2009						1		0.057		
(Tropi)						3		0.078	0.01	
Lleida	3	0.1	5	2000	7,6	-0	leaves	0.025		DP-28200
Spain, 2009						0		0.099		Test 16
(Verte de						1		0.045		
Cambrai)						3		0.034		

Table 127 Residues in protected Lamb's lettuce from supervised trials in Europe involving foliar applications of cyantraniliprole (SC formulation.

LAMB'S		A	Applicatio	n		DAT	Matrix	Residu	es (mg/	kg)		Reference &
LETTUCE						(days)						Comments
Location												
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	me	etaboli	ites	
(variety)				L/ha	(days)				M1	M2	M4	
Cadreita	3	0.08	9.8	810	8,6	-0	leaves	2.8	0.11		0.06	DP-28200
Spain, 2009						0		5.3	0.12		0.06	Test 05
(Trophy)						1		4.9	0.12		0.06	
						3		4.9	0.14		0.07	
Dommartin	3	0.08	9.7	790	7	-0	leaves	3	0.02			DP-28200
France, 2010						0		4.4	0.03			Test 06
(Gala)						1		3.7	0.03			
						3		3.7	0.03			
Treviolo	3	0.08	9.7	800	6,7	-0	leaves	4.7	0.07	0.01	0.02	DP-28200
Italy, 2009						0		3.6	0.08	0.02	0.02	Test 14
(Macholong)						1		6.9	0.09	0.02	0.03	
						3		6.5	0.06	0.02	0.02	
Azzano San	3	0.08	9.7	790	6, 8	-0	leaves	4	0.09	0.01	0.05	DP-28200
Paolo						0		8	0.14		0.07	Test 15
Italy, 2009						1		6.6	0.14	0.01	0.06	
(Tropi)						3		7.4	0.17		0.08	
Lleida	3	0.08	9.8	800	76	-0	leaves	0.37	0.01			DP-28200
Spain, 2009	5	0.00	2.0	000	7,0	0	ieuves	4	0.03			Test 16
(Verte de						1		1.7	0.02			100010
Cambrai)						3		0.73	0.02			

M1: Average residues of metabolite IN-J9Z38

M2: Average residues of metabolite IN-MYX98

M4: Average residues of metabolite IN-MLA84

Table 128 Residues in spinach from supervised trials in the USA involving soil applications at planting or through dripline irrigation systems (with foliar applications).

SPINACH			Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location						(days)					Comments
Country, year	no kg ai/ha kg ai/hL water RTI			RTI			cyantraniliprole	mean	metabolites		
(variety)	L/ha (day			(days)							

SPINACH			Application	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Conklin, MI	1	0.15	0.59	25500	ĺ	0	leaves	< 0.01, < 0.01	< 0.01		DP-25644
USA, 2009						3		< 0.01, < 0.01	< 0.01		Trial 38
Spinach						7		< 0.01, < 0.01	< 0.01		[by drip
(Melody)											irrigation]
Conklin, MI	1 +	0.15	0.59	25500	7	-0	leaves	< 0.01, < 0.01	< 0.01		DP-25644
USA, 2009	1	0.15	0.74	20400		0		< 0.01, < 0.01	< 0.01		Trial 38
Spinach						3		0.01, < 0.01	< 0.01		[by drip
(Melody)						7		< 0.01, < 0.01	< 0.01		irrigation]
Terra Bella,	1 +	0.2	97	210	51	1	leaves	6.7, 6.8	6.7	M1=0.05	DP-25644
CA	1 +	0.1	46	230	5					M2=0.18	Trial 20
USA, 2008	1	0.15	71	220							[1 soil shank
Spinach											treatment +
(Shasta)											2 foliar
											sprays]
Conklin, MI	1 +	0.15	0.59	25500	7	-0	leaves	< 0.01, < 0.01	< 0.01	M1=0.03	DP-25644
USA, 2009	1 +	0.15	0.74	20400	7	1		6.7, 6.8	6.8	M2=0.08	Trial 38
Spinach	1	0.15	51	300							2 [by drip
(Melody)											irrigation +
											1 foliar]

Soil (shank) treatment rate of 1.5 g ai/100 metres of row (Trial 20)

Soil (dripline irrigation) treatment rate of 1.1 g ai/100 metres of row (Trial 38)

M1: Average residues of metabolite IN-J9Z38

M2: Average residues of metabolite IN-MYX98

Table	129	Residues	in	spinach	from	supervised	trials	in	the	USA	involving	two	or	three	foliar
applic	ation	s of cyantı	ranil	liprole (C	DD for	rmulation)									

SPINACH			Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
King City, CA	2	0.15	60	250	6	1	leaves	3.1, 3.9	3.5	M1=0.02	DP-25644
USA, 2008										M2=0.31	Trial 22
Spinach/											
Raymondville,	2	0.15	40	380	5	1	leaves	14, 13	13.0	M1=0.07	DP-25644
TX										M2=0.29	Trial 19
USA, 2008											
Spinach											
(Melody)											
Santa Maria,	2	0.15	54	280	5	1	leaves	3.5, 3.2	3.4	M1=0.04	DP-25644
CA										M2=0.07	Trial 21
USA, 2008											
Spinach											
(Mizano)											
Terra Bella,	2	0.15	70	220	5	1	leaves	8.2, 8.9	8.5	M1=0.05	DP-25644
CA										M2=0.2	Trial 20
USA, 2008											
Spinach											
(Shasta)											

SPINACH			Applicatio	on		DAT	Matrix	Residu	kg)	Reference &	
Location						(days)					Comments
Country, year	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)			-	L/ha	(days)						
Alton, NY	3	0.15	40	380	5	1	leaves	5.8,4	4.9	M1=0.07	DP-25644
USA, 2009								,		M2=0.24	Trial 35
Spinach										M4=0.02	
(Lombardia)											
Conklin, MI	3	0.15	51	290	6.4	1	leaves	4.5.4.7	4.6	M1=0.03	DP-25644
USA, 2009	-				~, .			,,		M2=0.26	Trial 38
Spinach										M4=0.01	
(Melody)											
Corvallis OR	3	0.15	53	280	5	1	leaves	4, 4, 3	4.2	M1=0.03	DP-25644
USA 2009	5	0110	00	200	Ŭ	-	100.00	,		M2=0.22	Trial 40
Spinach										1112 0.22	inui io
(Tiger Cat)											
Ierome ID	3	0.15	76	200	75	1	leaves	576	5.8	M1=0.03	DP-25644
USA 2009	5	0.15	70	200	1,5	1	100 005	5.7,0	5.0	M2=0.1	Trial 39
Spinach										1012 0.1	11101 5 9
(Uninack 151)											
Marengo II	3	0.15	66	230	5	1	1001/05	10.10	10	M1-0.09	DP 25644
	5	0.15	00	230	5	1	leaves	10, 10	10	M2=0.48	Trial 37
Spinach										$M_{2}=0.48$ $M_{3}=0.01$	111ai 57
(Bloomsdale										M4=0.06	
Long										1014 0.00	
Standing)											
Raymondville	3	0.15	40	380	5	1	1001/05	13 13	13	M1-0.00	DP 25644
TY	5	0.15	40	380	5	1	leaves	15, 15	15	M2=0.4	Trial 10
										$M_{3=0.01}$	111ai 19
Spinach										M4=0.01	
(Melody)										0.01	
(Meriody) Santa Maria	3	0.15	54	280	5	1	leaves	4 4 2	4.1	M1=0.05	DP-25644
	5	0.15	54	200	5	1	leaves	7, 7.2	7.1	M2=0.13	Trial 21
										1012-0.15	111d1 21
Spinach											
(Mizano)											
Seven	3	0.15	65	230	5.6	1	leaves	4946	47	M1=0.04	DP-25644
Springs NC	5	0.15	05	250	5,0	1	100 005	1.9, 1.0	1.7	M2=0.15	Trial 36
USA 2009										M4=0.01	indi 50
Spinach											
(Hybrid 7)											
Terra Bella	3	0.15	70	220	5	1	leaves	7984	82	M1=0.09	DP-25644
CA		0.15	,0	220		1	104705	,.,, 0.1	0.2	M2=0.33	Trial 20
USA 2008										$M_{2} = 0.03$ $M_{4} = 0.01$	11101 20
Spinach											
(Shasta)											
King City CA	2+	0.15	60	250	6	1	leaves	364	3.8	M1=0.02	DP-25644
USA 2008	1	0.15	62	230	5	1	icaves	5.0, 4	5.0	$M^{2}=0.14$	Trial 22
Spinach/		0.15	02	210						1,12 0,14	11101 22
- I.			1	1	1	1		1	1	1	1

M1: Average residues of metabolite IN-J9Z38

M2: Average residues of metabolite IN-MYX98

M3: Average residues of metabolite IN-N7B69

M4: Average residues of metabolite IN-MLA84

MUSTARD			Applicati	on		DAT	Matrix	Residu	kg)	Reference &	
GREENS						(days)					Comments
Location	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
Country, year				L/ha	(days)						
(variety)											
King City, CA,	2	0.15	60	250	6	1	leaves	4.3, 4.7	4.5	M1=0.01	DP-25641
USA, 2008										M2=0.03	Trial 11
(Mizuna)										M4=0.03	
Mustard Greens/										M5=0.015	
Raymondville,	2	0.15	40	380	5	1	leaves	9.5, 11	10	M1=0.05	DP-25641
TX, USA, 2008										M2=0.05	Trial 10
(Florida										M4=0.06	
Broadleaf)										M5=0.02	
Mustard Greens/											
Terra Bella, CA,	2	0.15	70	220	5	1	leaves	4.2, 5.2	4.7	M1=0.03	DP-25641
USA, 2008										M2=0.01	Trial 12
(Southern Giant										M4=0.05	
Curled)											
Mustard Greens/											
Alton, NY,	3	0.15	53	280	4,6	1	leaves	2.2, 2.5	2.4	M1=0.02	DP-25641
USA, 2009										M2=0.01	Trial 25
(Pizzo)										M4=0.02	
Mustard Greens/										M5=0.01	
Chula, GA,	3	0.15	53	290	5	1	leaves	6.4, 5.6	6.0	M1=0.04	DP-25641
USA, 2009										M2=0.02	Trial 28
(Southern Giant										M4=0.04	
Curled)										M5=0.01	
Mustard Greens/	2	0.15	50	200		1	1	7469	7.1	N(1 0 02	DD 25(41
Conklin, MI,	3	0.15	50	300	5	1	leaves	7.4, 6.8	/.1	M1=0.03	DP-25641
USA, 2009										M2=0.03	I rial 31
(Green wave)										M4=0.03	
Mustard Greens/	2	0.15	5.4	290	5	1	1	(155	5.0	M5=0.01	DD 25(41
USA 2000	3	0.15	54	280	5	1	leaves	6.1, 5.5	5.8	M1=0.02 M2=0.02	DP-25641
(Graan Waya)										$M_{12} = 0.02$	111al 32
(Oreen wave) Mustard Groops/										$M_{5-0.01}$	
King City, CA	2	0.15	60	250	5.6	1	laguag	20.40	2.0	M1-0.01	DP 25641
$\operatorname{King} \operatorname{City}, \operatorname{CA},$	5	0.15	00	230	5,0	1	leaves	2.9, 4.9	3.9	M2 = 0.02	DF-23041
(Mizuna)										$M_{4}=0.03$	11141 1 1
(Wilzuna) Mustard Greens/										$M_{5=0.015}$	
Newberry FI	3	0.15	70	220	5.6	1	1002000	68.01	8.0	M1=0.06	DP 25641
USA 2000	5	0.15	70	220	5,0	1	icaves	0.0, 9.1	0.0	M2=0.02	Trial 20
(Southern Giant										$M_{4-0.02}$	11101 2.9
(Southern Olant										M5=0.02	
Mustard Greens/										1015-0.02	
North Rose NV	3	0.15	53	290	5	1	leaves	3631	34	M1=0.02	DP-25641
115Δ 2009	5	0.15	55	270	5	1	icaves	5.0, 5.1	5.7	M2=0.02	Trial 26
(Savanna)										M4=0.07	11101 20
Mustard Greens										M5=0.02	
Raymondville	3	0.15	40	380	5	1	leaves	14 13	13	M1=0.02	DP-25641
TX USA 2008	5	0.15	70	500	5	1	icaves	17,13	15	M2=0.07	Trial 10
(Florida										M3=0.01	11101 10
Broadleaf										M4=0.12	
Mustard Greens/										M5=0.04	
musuru Orcens/										1110 0.04	

Table 130 Residues in mustard greens from supervised trials in the USA involving two or three foliar applications of cyantraniliprole (OD formulation)

MUSTARD			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
GREENS						(days)					Comments
Location	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
Country, year				L/ha	(days)						
(variety)											
Seven Springs,	3	0.15	59	260	5	1	leaves	20, 17	19	M1=0.22	DP-25641
NC, USA, 2009										M2=0.08	Trial 27
(Southern Giant										M3=0.02	
Curled)										M4=0.23	
Mustard Greens/										M5=0.11	
Terra Bella, CA,	3	0.15	70	220	5	1	leaves	5.4, 5.7	5.5	M1=0.04	DP-25641
USA, 2008										M2=0.02	Trial 12
(Southern Giant										M4=0.1	
Curled)										M5=0.02	
Mustard Greens/											
Washington,	3	0.15	70	220	5	1	leaves	4.5, 9.9	7.2	M1=0.12	DP-25641
LA, USA, 2009										M2=0.05	Trial 30
(Florida										M4=0.19	
Broadleaf)										M5=0.03	
Mustard Greens/											
Terra Bella, CA,	1+	0.2 (soil)	97	200	-	1	leaves	3.0, 3.3	3.1	M1=0.02	DP-25641
USA, 2008	1 +	0.1	47	220	5					M2=0.03	Trial 12
(Southern Giant	1	0.15	70	220							soil inject at
Curled)											planting+ 2
Mustard Greens/											foliar sprays

M1: Average residues of metabolite IN-J9Z38

M2: Average residues of metabolite IN-MYX98

M3: Average residues of metabolite IN-N7B69

M4: Average residues of metabolite IN-MLA84

M5: Average residues of metabolite IN-JCZ38

Soil injection (shank) treatment rate was 1.8 g ai/100 metres of row

Table 13	31	Residues	in	field	scarole	from	supervised	trials	in	Europe	involving	soil	(drip	irrigation)
applicati	ions	s of cyant	ran	nilipro	ble (SC f	formu	lation)							

SCAROLE			Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)		Reference &
Location						(days)						Comments
Country, year												
(variety)	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	me	etabol	ites	
				L/ha	(days)				M1	M2	M4	
Lorgies	3	0.1	5	2010		-0	leaves	ND				DP-27713
S France, 2009						0		0.09				Test 08
(Sacha)						1		0.006				
						3		ND				
Chalkidona	3	0.1	5	2000		-0	leaves	0.017				DP-27713
Greece, 2009						0		0.076				Test 09
(Full Heart)						1		0.05				
						3		0.036				
Torrevecchia Pia	3	0.1	5	2000		-0	leaves	0.011				DP-27713
Italy, 2009						0		ND				Test 10
(Samoa)						1		0.005				
						3		0.036				

SCAROLE			Application	on		DAT	Matrix	Residu	es (mg/	kg)		Reference
Location						(days)						&
Country, year												Comments
(variety)	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	me	etabol	ites	
				L/ha	(days)				M1	M2	M4	
Lorgies	3	0.08	9.8	810		-0	leaves	0.083				DP-27713
S France, 2009						0		0.12				Test 08
(Sacha)						1		0.056				
						3		0.059				
Chalkidona	3	0.08	9.8	800		-0	leaves	0.21				DP-27713
Greece, 2009						0		3.3	0.01			Test 09
(Full Heart)						1		4.3	0.01		0.01	
						3		2.4				
Torrevecchia Pia	3	0.08	9.8	810		-0	leaves	0.65			0.01	DP-27713
Italy, 2009						0		1.4	0.01		0.01	Test 10
(Samoa)						1		1.2			0.02	
						3		0.66			0.01	

Table 132 Residues in field scarole from supervised trials in Europe involving three foliar applications of cyantraniliprole (OD formulation)

M1: Average residues of metabolite IN-J9Z38

M4: Average residues of metabolite IN-MLA84

Table 133 Residues in protected scarole from supervised trials in Europe involving soil (drip irrigation) applications of cyantraniliprole (SC formulation)

SCAROLE		I	Application	n		DAT	Matrix	Residues	(mg/kg)	Reference &
Location						(days)				Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	metabolites	
(variety)				L/ha	(days)					
Utrera	3	0.1	5	2000	7	-0	leaves	0.01		DP-28200
Spain, 2009						0		0.02		Test 17
(Tosca)						1		0.014		
						3		0.022		
Roncoferraro	3	0.1	5	2000	6,7	-0	leaves	0.032		DP-28200
Italy, 2009						0		0.1		Test 18
(Nuance)						1		0.091		
						3		0.015		
Lleida	3	0.1	5	2000	7	-0	leaves	0.035		DP-28200
Spain, 2009						0		0.011		Test 19
(Zigal)						1		0.022		
						3		0.025		

Table 134 Residues in protected scarole from supervised trials in Europe involving foliar applications of cyantraniliprole (SC formulation)

SCAROLE		A	Applicatio	n		DAT	Matrix	Residu	es (mg/kg	g)	Reference &
Location						(days)					Comments
Country, year											
(variety)	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	meta	abolites	
				L/ha	(days)				M1	M4	
Dommartin	3	0.08	9.7	820	7	-0	leaves	1.4		0.01	DP-28200
France, 2010						0		3.4		0.02	Test 07
(Natadia)						1		2.7		0.01	
								2.2		0.01	

SCAROLE		A	Applicatio	n		DAT	Matrix	Residu	es (mg/kg	g)	Reference &
Location						(days)					Comments
Country, year											
(variety)	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	meta	abolites	
				L/ha	(days)				M1	M4	1
Los Palacios	3	0.08	9.7	820	7	-0	leaves	0.8		0.01	DP-28200
Spain, 2009								2.2		0.02	Test 08
(Seychel)						1		1.3		0.01	
						3		1.8	0.01	0.02	
Utrera	3	0.08	9.7	810	7	-0	leaves	1.6			DP-28200
Spain, 2009						0		4.3	0.01	0.03	Test 17
(Tosca)						1		5.3	0.01	0.04	
						3		3.3		0.02	
Roncoferraro	3	0.08	9.7	800	6, 7	-0	leaves	1.8		0.02	DP-28200
Italy, 2009						0		3.4	0.02	0.03	Test 18
(Nuance)						1		2.8	0.01	0.02	
						3		2.1		0.02	
Lleida	3	0.08	9.8	800	7	-0	leaves	0.1			DP-28200
Spain, 2009						0		0.91			Test 19
(Zigal)						1		1.3			
						3		0.19			

M1: Average residues of metabolite IN-J9Z38

M4: Average residues of metabolite IN-MLA84

Legume vegetables

In trials conducted in Europe on common beans in the field and grown under protection, two applications of 0.09 kg ai/ha cyantraniliprole (OD formulation) were applied 7 days apart, using 800 L spray mix/ha with added surfactants in the protected crops but not in the field crops.

Samples of pods (with seeds) and foliage (leaves and stems) were stored at -18 °C for up to 7 months before extraction and analysis for cyantraniliprole and six metabolites analysis (within 2 days of extraction) using method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 90–106% (cyantraniliprole) and 84–93% (metabolites) in samples spiked with 0.01, 0.1, 0.2, 0.6 and 1.0 mg/kg and also 8 mg/kg cyantraniliprole in foliage.

Table 135 Residues in field common beans from supervised trials in Europe involving two foliar applications of cyantraniliprole (OD formulation)

COMMON			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)		Reference &
BEAN						(days)						Comments
Location												
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	me	etabolit	es	
(variety)				L/ha	(days)				M1	M2	M4	
Lleida	2	0.09	11	820	7	1	foliage	4.9	0.14		0.05	DP-27710
Spain, 2009							pods	0.22				Test 01
(Festival)												
Palioura	2	0.09	11	800	7	1	foliage	5.5	0.02	0.02		DP-27710
Greece, 2009							pods	0.16				Test 02
(Magirus)												
Herlies	2	0.09	11	780	7	1	foliage	2.0	0.01			DP-27710
N France, 2009							pods	0.19				Test 03
(Arras)												

COMMON			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)		Reference &
BEAN						(days)						Comments
Location												
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	me	etabolit	es	
(variety)				L/ha	(days)				M1	M2	M4	
Emilia	2	0.09	11	810	7	-0	foliage	0.31				DP-27710
Romagna						0		4.9	0.02			Test 04
Italy, 2009						1		1.7	0.01			
(Flavio)						3		1.8	0.01			
						-0	pods	0.023				
						0	1	0.27				
						1		0.13				
						3		0.12				
Tayrac	2	0.09	11	800	8	-0	foliage	0.22	0.02		0.01	DP-27710
S France, 2009						0		7.1	0.05		0.01	Test 05
(Banga)						1		4.3	0.05		0.01	
						3		1.9	0.03			
						-0	pods	0.062				
						0	Pouo	0.75	0.01			
						1		0.54	0.01			
						3		0.36	0.01			

Foliage=leaves and stems (without pods)

Pods includes seeds

M1: Residues of metabolite IN-J9Z38

M2: Residues of metabolite IN-MYX98

M3: Residues of metabolite IN-N7B69

COMMON			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)		Reference &
BEAN						(days)						Comments
Location	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	me	tabolit	es	
Country, year				L/ha	(days)				M1	M2	M4	
(variety)												
Chiclana de la	2	0.09	12	790	7	-0	pods	0.052				DP-21413
Frontera						0		0.14				Test 08
Spain, 2009						1		0.17				
(Emerite)						3		0.13				
						7		0.1				
						14		0.043				
La Sentiu de Sio	2	0.1	12	830	7	-0	pods	0.029				DP-21413
Spain, 2008						0		0.044				Test 02
(Nuria)						1		0.12				
						3		0.099				
						7		0.023				
						14		0.016				
La Sentiu de Sio	2	0.1	12	820	7	1	pods	0.42				DP-21413
Spain, 2009												Test 07
(Kilie)												
Nea Magnisia	2	0.1	12	800	7	1	pods	0.14				DP-21413
Greece, 2009							-					Test 06
(Trebona)												

Table 136 Residues in protected common beans from supervised trials in Europe involving two foliar applications of cyantraniliprole (OD formulation)

COMMON			Applicati	on		DAT	Matrix	Residu	es (mg/	kg)		Reference &
BEAN						(days)						Comments
Location	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	me	etabolit	es	
Country, year				L/ha	(days)				M1	M2	M4	
(variety)												
Palefito	2	0.1	12	800	7	-0	pods	0.058				DP-21413
Greece, 2008						0		0.19				Test 04
(Trebona)						1		0.16				
						3		0.063				
						7		0.067				
						14		0.021				
Roncoferraro	2	0.1	12	800	7	-0	pods	0.13				DP-21413
Italy, 2008						0		0.49				Test 01
(Bronco)						1		0.36				
						3		0.19				
						7		0.22				
						14		0.11				
Roncoferraro	2	0.1	12	820	7	1	pods	0.44	0.02			DP-21413
Italy, 2009												Test 05
(Slankette)												
St Chamond	2	0.1	12	810	7	-0	pods	0.27				DP-21413
S France, 2008						0		0.94				Test 03
(Hemerite)						1		0.81				
						3		0.81	0.01			
						7		0.55				
						14		0.45				
St Chamond	2	0.1	12	810	7	1	pods	0.16		ĺ		DP-21413
S France, 2009												Test 09
(Hemerite)												

M1: Residues of metabolite IN-J9Z38

Tuber vegetables

In trials conducted with cyantraniliprole on <u>potatoes</u> in North America, plots were treated with either a pre-planting seed treatment (FS formulation) followed by one late season foliar spray (OD formulation) or with three late season foliar spray applications (OD formulation). Potato seed was treated with 13.5 g ai cyantraniliprole/100 kg of seed (equivalent to 0.15 kg ai/ha based on 2200 kg seed/ ha) and the foliar application was 0.15 kg ai/ha with added surfactant.

In several trials, additional plots were treated with three late season foliar applications of an SE formulation of cyantraniliprole (with added surfactant) or with a pre-plant in-furrow soil treatment (0.3 kg ai/ha, SC formulation) followed by a single late season foliar spray application (0.15 kg ai/ha, OD formulation).

Samples of tubers were stored at -20 °C for up to 11 months before analysis (within 3 months after extraction) for cyantraniliprole and eight metabolites using method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 95% (cyantraniliprole) and 97–102% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg.

POTATO		L	Applicati	on		DAT	Matrix	Residu	ies (mg/	kg)	Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Alton, NY	3	0.15	40	370	4,6	6	tubers	< 0.01, < 0.01	< 0.01		DP-27583
USA, 2009											Test 01
(Superior)											
Alton, NY	3	0.15	40	370	4,6	6	tubers	< 0.01, < 0.01	< 0.01		DP-27583
USA, 2009											Test 01
(Superior)											[100 SE]
Berwick, NS	3	0.15	36	420	6, 4	8	tubers	0.02, 0.016	0.018		DP-27583
CAN, 2009											Test 04
(Goldrush)											
Fort	3	0.15	50	300	5	7	tubers	ND, < 0.01	ND		DP-27583
Saskatchewan,											Test 21
AB											
CAN, 2009											
(Yukon gold)											
Gardner, ND	3	0.15				7	tubers	< 0.01, < 0.01	< 0.01		DP-27583
USA, 2009											Test 12
(Gold Rush)											
Germansville,	1+	0.14	50	330	5,4	7	tubers	ND, < 0.01	ND		DP-27583
PA	2	0.15	50	300							Test 02
USA, 2009											
(Reba)											
Inglisville, NS	3	0.15	36	420	6, 5	8	tubers	0.011, 0.01	0.011		DP-27583
CAN, 2009											Test 05
(Superior)											
Jerome, ID	3	0.15	79	190	7	7	tubers	ND, ND	ND		DP-27583
USA, 2009											Test 14
(Norland)											
Jerome, ID	3	0.15	80	190	4, 5	7	tubers	ND, ND	ND		DP-27583
USA, 2009											Test 18
(Russet											
Burbank)		0.15	20	40.0	~	6	. 1	0.021.0.010	0.00		DD 05500
Merritt, BC	3	0.15	30	490	5	6	tubers	0.021, 0.018	0.02		DP-27583
CAN, 2009											Test 16
(Russel Durbanla)											
Burbank)	2	0.15	20	400	5		t - 1	0.021.0.021	0.021		DD 27592
Merritt, BC	3	0.15	30	490	Э	6	tubers	0.021, 0.021	0.021		DP-2/583
CAN, 2009											1 est 16
(Russet											[100 SE]
Burbank)		0.15	(2)	240	-		. 1	< 0.01 < 0.01	< 0.01		DD 07502
Merritt, BC	5	0.15	03	240	3	/	tubers	< 0.01, < 0.01	< 0.01		DP-2/583
CAN, 2009											Test 17
(Russet											
Durbank)	2	0.15	72	200	(-	4	< 0.01 < 0.01	< 0.01		DD 07500
new Glasgow,	5	0.15	/3	200	0	/	tubers	< 0.01, < 0.01	< 0.01		DP-2/583
CAN 2000											Test U/
(Gold Push)											
(Goia Kush)											

Table 137 Residues in potato tubers from supervised trials in North America involving three foliar applications of cyantraniliprole (OD or 100 SE formulations)

POTATO Location			Application	on		DAT (davs)	Matrix	Residu	ies (mg/	'kg)	Reference & Comments
Country, year (variety)	no	kg ai/ha	g ai/hL	water L/ha	RTI (days)			cyantraniliprole	mean	metabolites	
New Glasgow, PE CAN, 2009 (Yukon Gold)	3	0.14 0.15	73 73	200 190	6	7	tubers	ND, ND	ND		DP-27583 Test 06
North Rose, NY USA, 2009 (Superior)	3	0.16	80	190	5	7	tubers	ND, ND	ND		DP-27583 Test 03
Northwood, ND USA, 2009 (Pontiac)	3	0.15	79	190	5,7	7	tubers	ND, ND	ND		DP-27583 Test 11
Oviedo, FL USA, 2009 Fall application (Red Chieftain)	3	0.15	55	280	4	7	tubers	< 0.01, < 0.01	< 0.01		DP-27583 Test 09
Oviedo, FL USA, 2009 Fall application (Red Chieftain)	3	0.15	54	280	4	7	tubers	< 0.01, < 0.01	< 0.01		DP-27583 Test 09 [100 SE]
Oviedo, FL USA, 2009 Spring application (Red Pontiac)	3	0.15	53	280	4	6	tubers	0.033, 0.034	0.034		DP-27583 Test 09
Oviedo, FL USA, 2009 Spring application (Red Pontiac)	3	0.15	53	280	4	6	tubers	0.035, 0.026	0.03		DP-27583 Test 09 [100 SE]
Payette, ID USA, 2009 (Russet Norkatah)	3	0.15	64	230	5	7	tubers	ND, < 0.01	ND		DP-27583 Test 20
Portage la Prairie, MB CAN, 2009 (Umatilla Russet)	3	0.15	74	200	5, 6	8	tubers	ND, ND	ND		DP-27583 Test 10
Richland, IA USA, 2009 (Kennebec)	3	0.15	77	190	4, 5	7	tubers	ND, ND	ND		DP-27583 Test 13
Sanger, CA USA, 2009 (Red La Soda)	3	0.15	37	400	5	7	tubers	ND, ND	ND		DP-27583 Test 15
Seven Springs, NC USA, 2009 (Red Pontiac)	3	0.15	71	220	6, 4	7	tubers	< 0.01, < 0.01	< 0.01		DP-27583 Test 08

POTATO		L	Applicati	on		DAT	Matrix	Residu	ies (mg/	kg)	Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Seven Springs,	3	3 0.15 70 200 6, 4				7	tubers	< 0.01, < 0.01	< 0.01		DP-27583
NC											Test 08
USA, 2009											[100 SE]
(Red Pontiac)											

Table 138 Residues in potato tubers from supervised trials in North America involving seed treatment (or in-furrow) plus one foliar applications of cyantraniliprole

POTATO Location Country, year		Appli	cation		DAT (days)	Matrix	Resid	ues (mg	/kg)	Reference & Comments
(variety)	no	g ai/ 100 kg seed	kg ai/ha	water L/ha			cyantraniliprole	mean	metabolites	
Alton, NY USA, 2009 (Superior)	1+ 1	13.5	0.15	370	6	tubers	0.037, < 0.01	0.023	M1=0.01	DP-27583 Test 01
Germansville, PA USA, 2009 (Reba)	1+ 1	13.5	0.15	300	7	tubers	0.027, 0.027	0.027	M1=0.01	DP-27583 Test 02
North Rose, NY USA, 2009 (Superior)	1+ 1	13.5	0.15	190	7	tubers	ND, ND	ND		DP-27583 Test 03
Berwick, NS CAN, 2009 (Goldrush)	1+ 1	13.5	0.15	420	8	tubers	0.019, 0.027	0.023		DP-27583 Test 04
Inglisville, NS CAN, 2009 (Superior)	1+ 1	13.5	0.15	420	8	tubers	0.052, 0.052	0.052		DP-27583 Test 05
New Glasgow, PE CAN, 2009 (Yukon Gold)	1+ 1	13.5	0.15	200	7	tubers	< 0.01, 0.011	0.01	M1=0.01	DP-27583 Test 06
New Glasgow, PE CAN, 2009 (Gold Rush)	1+ 1	13.5	0.15	200	7	tubers	0.028, 0.033	0.031	M1=0.03	DP-27583 Test 07
Seven Springs, NC USA, 2009 (Red Pontiac)	1+ 1	13.5	0.15	220	7	tubers	0.11	0.11	M1=0.02	DP-27583 Test 08
Oviedo, FL USA, 2009 Fall (Red Chieftain)	1+ 1	13.5	0.15	280	7	tubers	0.012, 0.011	0.011		DP-27583 Test 09
Portage la Prairie, MB CAN, 2009 (Umatilla Russet)	1+ 1	13.5	0.15	200	8	tubers	< 0.01 (3)	< 0.01		DP-27583 Test 10
Northwood, ND USA, 2009 (Pontiac)	1+ 1	13.5	0.15	370	7	tubers	ND, 0.021, < 0.01	< 0.01		DP-27583 Test 11

POTATO		Appli	cation		DAT	Matrix	Resid	/kg)	Reference &	
Location					(days)					Comments
Country, year										
(variety)	no	g ai/	kg ai/ha	water			cyantraniliprole	mean	metabolites	
		100 kg seed		L/ha						
Gardner, ND	1+	13.5	0.15	190	7	tubers	0.019, 0.021,	0.02		DP-27583
USA, 2009	1						0.019			Test 12
(Gold Rush)										
Richland, IA	1 +	13.5	0.15	190	7	tubers	< 0.01, < 0.01	< 0.01		DP-27583
USA, 2009	1									Test 13
(Kennebec)										
Jerome, ID	1+	13.5	0.15	190	7	tubers	< 0.01, ND	< 0.01		DP-27583
USA, 2009	1									Test 14
(Norland)										
Sanger, CA	1+	13.5	0.15	400	7	tubers	0.014, < 0.01	0.01		DP-27583
USA, 2009	1									Test 15
(Red La Soda)										
Merritt, BC	1+	13.5	0.15	490	6	tubers	0.035, 0.11	0.072		DP-27583
CAN, 2009	1									Test 16
(Russet Burbank)										
Payette, ID	1+	13.5	0.15	240	7	tubers	ND, < 0.01	< 0.01		DP-27583
USA, 2009	1									Test 17
(Ranger Russet)										
Jerome, ID	1+	13.5	0.15	190	7	tubers	< 0.01, 0.05	0.028		DP-27583
USA, 2009	1									Test 18
(Russet Burbank)										
Ephrata, WA	1+	13.5	0.15	190	-0	tubers	ND, ND	ND		DP-27583
USA, 2009	1				0		ND, < 0.01	ND		Test 19
(Ranger Russet)					1		ND, < 0.01	ND		
					5		ND, ND	ND		
					7		ND, ND	ND		
Payette, ID	1+	13.5	0.15	230	7	tubers	0.01, < 0.01	< 0.01		DP-27583
USA, 2009	1									Test 20
(Russet Norkatah)										
Fort	1+	13.5	0.15	300	7	tubers	0.012, 0.016	0.014		DP-27583
Saskatchewan,	1									Test 21
AB										
CAN, 2009										
(Yukon gold)										
Ephrata WA	1.	in furrow	0.22	140	7	tubora		ND		DP 27582
	1	foliar	0.52	100		lubers				Test 10
(Ranger Russet)	1	101141	0.15	1 70						1051 17
(Italiger Russel)		1	1		1		1	1		

M1: Average residues of metabolite IN-J9Z38

Note: Second sample from Test site 8 reported high residues (cyantraniliprole 3.1 ppm) attributed to the selection of a treated seed piece

In trials conducted with cyantraniliprole on potatoes in Europe, plots were treated with two foliar applications of cyantraniliprole (OD formulation) with and without added surfactant. Targeted application rates were 0.01 kg ai/ha or 0.08 kg ai/ha, applied about 7 days apart using 450–500 L water/ha.

Samples of tubers were were stored at -18 °C for up to 8 months before analysis (within 2 days after extraction) for cyantraniliprole and six metabolites using method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 97% (cyantraniliprole) and 88–101% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg.

POTATO		A	Applicati	ion		DAT	Matrix Residues (mg/kg)		/kg)	Reference &	
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Ballencrieff Mains	2	0.01	2.2	410	7	0	tuber	ND			DP-21414
UK North, 2008						0		ND			Test 5a
(Maris Piper)						7		ND			
						14		ND			
Ballencrieff Mains	2	0.08	18	460	7	0	tuber	ND			DP-21414
UK, 2008						0		ND			Test 5b
(Maris Piper)						7		ND			(with surfactant)
						14		ND			
Castello de Farfanya	2	0.01	2.2	470	7	0	tuber	ND			DP-21414
Spain, 2008						0		ND			Test 8a
(Kenebec)						7		ND			
Ì.						14		ND			
Castello de Farfanva	2	0.08	18	440	7	0	tuber	ND			DP-21414
Spain, 2008						0		ND			Test 8b
(Kenebec)						7		ND			(with surfactant)
()						14		ND			(
Cervesina	2	0.01	2.2	450	7	14	tuber	ND			DP-21414
Italy 2008	-	0.01	2.2	150	,		tuoei	TLD .			Test 6a
(Deisy)											1050 04
(Dervesina	2	0.08	18	450	7	14	tuber	ND			DP-21414
Italy 2008	2	0.00	10	150	,	17	tuber	T(D)			Test 6b
(Deisy)											(with surfactant)
(Dejsy) Douai	2	0.01	2.2	460	7	0	tuber	ND			DP 21/11
N France 2008	2	0.01	2.2	400	/	0	tuber	ND			Test 1a
(Marabella)						7		ND			i est i a
(Warabena)						14		ND			
Douai	2	0.08	19	450	7	0	tubor	ND			DP 21414
N Franca 2008	2	0.08	10	450	/	0	tuber	ND			DI -21414 Tost 1b
(Maraballa)						7		ND			(with surfactant)
(Warabena)						14		ND			(with surfactant)
Calatadaa	2	0.01	2.2	460	7	14	tubor	ND			DD 21414
Galatades	2	0.01	2.2	400	/	14	tuber	ND			DP-21414
(Spupte)											Test /a
(Spund) Galatadaa Graaca 2008	2	0.08	10	470	7	1.4	tubor	ND			DD 21414
Galadades, Gleece, 2008	2	0.08	10	470	/	14	tuber	ND			DF-21414
(Spuna)											(with curfactant)
TT1'	2	0.01	2.2	450	0	1.4	4 - 1	NID			(with surfactant)
N Eren en 2009	2	0.01	2.2	430	0	14	tuber	ND			DP-21414
(Dirtic)											Test 2a
(Binije)	2	0.00	1.0	470	0	1.4	4 - 1	NID			DD 21414
Herlies	2	0.08	18	4/0	8	14	tuber	ND			DP-21414
N France, 2008											lest 2b
(Bintje)	_	0.01		1.60	-	0	. 1	ND			(with surfactant)
Le Mas Riller	2	0.01	2.2	460	7	0	tuber	ND			DP-21414
S France, 2008						0		ND			Test I0a
(Niona Lisa)								ND			
		0.55	4.7			14		ND		ļ	
Le Mas Riller	2	0.08	18	460	7	0	tuber	ND			DP-21414
S France, 2008						0		ND			Test 10b
(Mona Lisa)						7		ND			(with surfactant)
						14		ND			

Table 140 Residues in potato tubers from supervised trials in Europe involving foliar applications of cyantraniliprole (OD formulation)

POTATO		A	Applicat	ion		DAT	Matrix	Residue	s (mg/	/kg)	Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Motterwitz	2	0.01	2.2	430	7	14	tuber	ND			DP-21414
Germany, 2008											Test 3a
(Secura)											
Motterwitz	2	0.08	18	470	7	14	tuber	ND			DP-21414
Germany, 2008											Test 3b
(Secura)											(with surfactant)
Prušánky	2	0.01	2.2	470	8	14	tuber	ND			DP-21414
Czech Republic, 2008											Test 4a
(Impala)											
Prušánky	2	0.08	18	450	8	14	tuber	ND			DP-21414
Czech Republic, 2008											Test 4b
(Impala)											(with surfactant)
Tora	2	0.01	2.2	470	8	14	tuber	ND			DP-21414
Spain, 2008											Test 9a
(Kenebec)											
Tora	2	0.08	18	460	8	14	tuber	ND			DP-21414
Spain, 2008											Test 9b
(Kenebec)											(with surfactant)

Stalk and stem vegetables

In trials conducted in the USA on <u>celery</u>, two or three foliar applications of 0.15 kg ai/ha cyantraniliprole (OD formulation) were applied at 5 day intervals, using 200–500 L/ha, with adjuvant added. Soil treatment plots were also included at several trial sites, either as a soil shank (in furrow) treatment of 0.2 kg ai/ha (SC formulation) at planting or two soil treatments of 0.15 kg ai/ha cyantraniliprole (SC formulation) applied through drip-line irrigation systems (adjusted to pH 4–5, with no added adjuvant).

Duplicate samples of celery (with tops and also trimmed/washed) were stored at -20 °C for up to 9 months before extraction and analysis for cyantraniliprole and six metabolites (within 3 months of extraction) using method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 96–98% (cyantraniliprole) and 80–106% (metabolites) in samples spiked with 0.01–10 mg/kg.

Table 140 Residues in celery from supervised trials in North America involving soil applications at planting or through dripline irrigation systems (with foliar applications)

CELERY			Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Sparta, MI	1	0.15	0.42	36000		0	with tops	ND, ND	ND		DP-25644
USA, 2009						3		ND, ND	ND		Trial 45
Celery						7		ND, ND	ND		[by drip
(Sabroso)											irrigation]
Sparta, MI	2	0.15	0.42	36000	7	-0	with tops	ND, ND	ND		DP-25644
USA, 2009						0		ND, ND	ND		Trial 45
Celery						3		ND, < 0.01	ND		[by drip
(Sabroso)						7		ND, ND	ND		irrigation]

CELERY			Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Porterville,	1 +	0.2	97	210	77	1	with tops	3, 4.1	3.5	M1=0.02	DP-25644
CA	1+	0.1	41	240	5						Trial 14
USA, 2008	1	0.15	62	240							[1 soil shank
Celery											treatment +
(Challenger)											2 foliar
											sprays]
Sparta, MI	2+	0.15	0.42	36000	7	-0	with tops	ND, ND	ND		DP-25644
USA, 2009	1	0.15	47	320	7	1		1.1, 0.98	1.0		Trial 45
Celery											2 [by drip
(Sabroso)											irrigation +
											1 foliar]

Soil (shank) treatment rate of 2 g ai/100 metres of row (Trial 14)

Soil (dripline irrigation) treatment rate of 1.5 g ai/100 metres of row (Trial 45)

M1: Average residues of metabolite IN-J9Z38

Table 1-	41	Residues	in	celery	from	super	vised	trials	in	North	America	involving	two	or	three	foliar
applicat	ion	s of cyant	trar	niliprol	e (OD	formu	ilatio	n)								

CELERY			Applicatio	on		DAT (dava)	Matrix	Residu	es (mg/	kg)	Reference &
Country, year						(days)					Comments
(variety)	no	kg ai/ha	kg ai/hL	water L/ha	RTI (days)			cyantraniliprole	mean	metabolites	
Bradenton, FL USA, 2008 Celery	2	0.15	36	420	5	1	with tops	5.3, 5.7	5.5	M1=0.03 M2=0.02	DP-25644 Trial 13
(Tall Utan)						1	trimmed	4.4, 3.3	4.0	M1=0.02 M2=0.01	
Porterville, CA USA, 2008 Celery (Challenger)	2	0.15	62	240	5	1	with tops	4.4, 5.5	5	M1=0.02	DP-25644 Trial 14
Santa Maria, CA USA, 2008 Celery (Conquistador)	2	0.15	54	280	5	1	with tops	1, 0.84	0.92		DP-25644 Trial 15
Fresno, CA USA, 2008 Celery (Command)	2	0.15	54	280	5	1	with tops	2.1, 1.7	1.9	M1 =.02	DP-25644 Trial 16
Guadalupe, CA USA, 2008 Celery (Conquistador)	2	0.15	64	230	5	1	with tops trimmed	1.5, 1.0 0.7, 0.76	1.3 0.73		DP-25644 Trial 17

CELERY			Applicatio	on		DAT	Matrix	Residu	kg)	Reference &	
Location						(days)					Comments
Country, year			1 1 1 7 7								
(variety)	no	kg ai/ha	kg ai/hL	water L/ha	RTI (days)			cyantraniliprole	mean	metabolites	
King City, CA	2	0.15	51	290	6	1	with tops	0.62, 0.73	0.68		DP-25644
USA, 2008							trimmed	0.34, 0.46	0.4		Trial 18
Celery											
(G15)											
Bradenton FL	3	0.15	37	430	5	1	with tops	88.95	91	M1=0.04	DP-25644
USA, 2008		0110	5,		Ũ	-	with tops	0.0, 9.0	<u>711</u>	M2=0.03	Trial 13
Celery											
(Tall Utah)							trimmed	4.2, 5.4	4.8	M1=0.02	
										M2=0.01	
Branchton,	3	0.15	74	200	5,6	1	with tops	2.4, 2.2	2.3	M1=0.02	DP-25644
ON											Trial 42
CAN, 2009											
(Elorido 682)											
(Florida 085)	3	0.15	70	220	5	1	with tone	2110	2.0	M1=0.02	DP 25644
USA 2009	5	0.15	70	220	5	1	with tops	2.1, 1.9	2.0	W11-0.02	Trial 43
Celerv											inur 15
(XP266)											
Fitchburg, WI	3	0.15	60	250	5	1	with tops	0.31, 0.24	0.28	M1=0.01	DP-25644
USA, 2009											Trial 41
Celery											
(Tango)											
Fresno, CA	3	0.15	54	280	5	1	with tops	2.3, 2.6	2.5	M1=0.02	DP-25644
USA, 2008 Colorry											Trial 16
(Command)											
Guadalune	3	0.15	66	230	5	1	with tops	0.37.1.7	1.1		DP-25644
CA		0110	00	200	Ũ	-	trimmed	0.81, 0.97	0.89		Trial 17
USA, 2008								,			
Celery											
(Conquistador)											
King City, CA	2+	0.15	51	290	6	1	with tops	0.9, 0.57	<u>0.73</u>		DP-25644
USA, 2008	1	0.16	52	300	5		trimmed	0.45, 0.29	0.37		Trial 18
Celery											
(GIS) Portorvillo	2	0.15	62	240	5	1	with tong	6251	57	M1-0.02	DP 25644
CA	5	0.15	02	240	5	1	with tops	0.5, 5.1	5.7	W11-0.02	Dr-23044 Trial 14
USA, 2008											
Celery											
(Challenger)											
Richland, IA	3	0.15	74	210	5	1	with tops	4.7, 4.8	4.7	M1=0.04	DP-25644
USA, 2009										M2=0.01	Trial 44
Celery											
(Conquistador											
Santa Maria	3	0.15	54	280	5	1	with tops	1 1 1	1.0		DP-25644
CA	5	0.15	54	200	5	1	with tops	1, 1.1	1.0		Trial 15
USA, 2008											
Celery											
(Conquistador)											

CELERY			Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location						(days)					Comments
Country, year											
(variety)	no	kg ai/ha	kg ai/hL	water	RTI			cyantraniliprole mean metabolite			
				L/ha	(days)						
Sparta, MI	3	0.15	47	320	5	1	with tops	1.2, 1.2	1.2	M1=0.02	DP-25644
USA, 2009											Trial 45
Celery											
(Sabroso)											

M1: Average residues of metabolite IN-J9Z38

M2: Average residues of metabolite IN-MYX98

Cereals

In three trials on <u>rice</u>, conducted in China, cyantraniliprole (OD formulation) was applied two or three times as foliar sprays, using either 0.1 kg ai/ha or 0.15 kg ai/ha, with a 7 day retreatment interval. No adjuvants were used.

Samples of threshed brown rice, hulls and straw (leaves and stalks) were stored at -20 °C until analysed for cyantraniliprole and the metabolite IN-J9Z38 using an aqueous acetonitrile extraction and LC-MS/MS analysis method based on method DP-15736. The reported LOQs for cyantraniliprole were 0.01 mg/kg in grain and 0.05 mg/kg in hulls and straw, and the LOQs for IN-J9Z38 were 0.02 mg/kg in grain and 0.1 mg/kg in hulls and straw. Average concurrent recoveries were 78-103% (cyantraniliprole) and 79-102% (IN-J9Z38) in samples spiked with 0.01, 0.05, 0.1, 1.0 mg/kg and also 2.0 mg/kg ((IN-J9Z38).

Table	142	Residues	in	rice	grain	and	hulls	from	supervised	trials	in	China	involving	foliar
applica	ations	s of cyantra	nil	iprole	(100 I	FC fo	rmulat	tion)						

RICE		1	Applicatio	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	M1	
(variety)				L/ha	(days)						
Hangzhou Zhejiang	2	0.1			7	7	grain	< 0.01		< 0.02	CL-2010-026
China 2011						14		< 0.01		< 0.02	Site 1-11
(Xiu Shui 009)						21		< 0.01		< 0.02	
						7	hulls	0.67		0.1	
						14		0.37		< 0.1	
						21		0.43		< 0.1	
						7	straw	< 0.05		0.21	
						14		< 0.05		0.12	
						21		< 0.05		< 0.1	
Hangzhou Zhejiang	2	0.1			7	7	grain	< 0.01		< 0.02	CL-2010-026
China, 2010						14		< 0.01		< 0.02	Site 1-10
(Xiu Shui 009)						21		< 0.01		< 0.02	
						7	hulls	3.3		0.28	
						14		4.3		0.35	
						21		2.3		0.2	
						7	straw	0.67		0.29	
						14		1.4		0.28	
						21		1.1		0.2	

RICE	Application					DAT	Matrix	Matrix Residues (mg/kg)			Reference &
Location					(days)		Comments				
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	M1	
(variety)		-	-	L/ha	(days)						
Hunan, Changsha	2	0.1			7	7	grain	< 0.01		< 0.02	CL-2010-026
China, 2010						14	-	< 0.01		< 0.02	Site 2-10
(Yue You 712)						21		< 0.01		< 0.02	
						7	hulls	0.99		< 0.1	
						14		1.1		< 0.1	
						21		0.92		< 0.1	
						7	straw	< 0.05		< 0.01	
						14		0.083		< 0.01	
						21		0.057		< 0.01	
Hunan, Changsha	2	0.1			7	7	grain	< 0.01		< 0.02	CL-2010-026
China, 2011						14	-	< 0.01		< 0.02	Site 2-11
((Yue You 712)						21		< 0.01		< 0.02	
						7	hulls	1.4		< 0.1	
						14		1.4		< 0.1	
						21		1.6		< 0.1	
						7	straw	0.15		< 0.1	
						14		0.098		< 0.1	
						21		0.18		< 0.1	
Jinan, Shandong	2	0.1			7	7	grain	< 0.01		< 0.02	CL-2010-026
China, 2010						14		< 0.01		< 0.02	Site 3-10
(Xin Dao 16)						21		< 0.01		< 0.02	
						7	hulls	0.46		< 0.1	
						14		0.38		< 0.1	
						21		0.32		< 0.1	
						7	straw	0.27		< 0.1	
						14		0.14		< 0.1	
						21		0.4		< 0.1	
Jinan, Shandong	2	0.1			7	7	grain	< 0.01		< 0.02	CL-2010-026
China, 2011						14		< 0.01		< 0.02	Site 3-11
(Xin Dao 16)						21		< 0.01		< 0.02	
						7	hulls	0.081		< 0.1	
						14		0.092		< 0.1	
						21		0.57		< 0.1	
						7	straw	0.2		< 0.1	
						14		0.13		< 0.1	
						21		0.075		< 0.1	
RICE		1	Application	on	DAT Matrix Residues (mg/kg)					Reference &	
-------------------	----	----------	-------------	-------	-----------------------------	--------	-------	------------------	------	-------------	-------------
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	M1	
(variety)				L/ha	(days)						
Hangzhou Zhejiang	2	0.15			7	7	grain	0.023		< 0.02	CL-2010-026
China 2011						14		0.016		< 0.02	Site 1-11
(Xiu Shui 009)						21		0.01		< 0.02	
						7	hulls	1.7		0.21	
						14		1.2		0.2	
						21		0.95		0.17	
						7	straw	0.12		0.5	
						14		0.063		0.46	
						21		0.075		0.16	
Hangzhou Zhejiang	2	0.15			7	7	grain	0.02		< 0.02	CL-2010-026
China, 2010						14		0.013		< 0.02	Site 1-10
(Xiu Shui 009)						21		< 0.01		< 0.02	
						7	hulls	7.5		0.92	
						14		12		0.76	
						21		3.4		0.41	
						7	straw	1.1		0.46	
						14		3.7		0.47	
						21		1.9		0.31	
Hunan, Changsha	2	0.15			7	7	grain	< 0.01		< 0.02	CL-2010-026
China, 2010						14		< 0.01		< 0.02	Site 2-10
(Yue You 712)						21		< 0.01		< 0.02	
						7	hulls	1.4		< 0.1	
						14		2.2		< 0.1	
						21		1.5		< 0.1	
						7	straw	0.37		< 0.1	
						14		0.33		< 0.1	
						21		0.17		< 0.1	
Hunan, Changsha	2	0.15			7	7	grain	0.07		< 0.02	CL-2010-026
China, 2011						14		0.029		< 0.02	Site 2-11
((Yue You 712)						21		< 0.01		< 0.02	
						7	hulls	8.2		< 0.1	
						14		6.8		< 0.1	
						21		2.2		< 0.1	
						_		0.15			
						7	straw	0.42		< 0.1	
						14		1.1		< 0.1	
						21		0.13		< 0.1	

RICE			Application	on		DAT	Matrix	Residues (mg/kg)		kg)	Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	M1	
(variety)		-	-	L/ha	(days)						
Jinan, Shandong	2	0.15			7	7	grain	< 0.01		< 0.02	CL-2010-026
China, 2010						14	C	< 0.01		< 0.02	Site 3-10
(Xin Dao 16)						21		< 0.01		< 0.02	
` <i>`</i>											
						7	hulls	0.92		< 0.1	
						14		0.18		0.1	
						21		0.14		< 0.1	
						7	straw	0.31		< 0.1	
						14		0.33		0.1	
						21		< 0.05		< 0.1	
Jinan, Shandong	2	0.15			7	7	grain	< 0.01		< 0.02	CL-2010-026
China, 2011						14	-	< 0.01		< 0.02	Site 3-11
(Xin Dao 16)						21		< 0.01		< 0.02	
						7	hulls	< 0.05		< 0.1	
						14		< 0.05		< 0.1	
						21		< 0.05		< 0.1	
						7	straw	0.25		< 0.1	
						14		0.18		< 0.1	
						21		0.079		< 0.1	
Hangzhou Zhejiang	3	0.1			7	7	grain	< 0.01		< 0.02	CL-2010-026
China 2011						14	-	< 0.01		< 0.02	Site 1-11
(Xiu Shui 009)						21		< 0.01		< 0.02	
						7	hulls	1.2		0.18	
						14		0.71		0.16	
						21		0.42		0.096	
						7	straw	< 0.05		0.24	
						14		0.095		0.24	
						21		< 0.05		< 0.1	
Hangzhou Zhejiang	3	0.1			7	7	grain	0.01		< 0.02	CL-2010-026
China, 2010						14		< 0.01		< 0.02	Site 1-10
(Xiu Shui 009)						21		< 0.01		< 0.02	
						7	hulls	4.6		0.55	
						14		3.7		0.52	
						21		1.7		0.37	
						7	straw	0.78		0.34	
						14		1.9		0.24	
						21		1.4		0.16	

RICE		1	Application	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	M1	
(variety)				L/ha	(days)						
Hunan, Changsha	3	0.1			7	7	grain	< 0.01		< 0.02	CL-2010-026
China, 2010						14	-	< 0.01		< 0.02	Site 2-10
(Yue You 712)						21		< 0.01		< 0.02	
						7	hulls	0.87		< 0.1	
						14		1.1		< 0.1	
						21		1.4		< 0.1	
						7	straw	0.085		< 0.1	
						14		0.058		< 0.1	
						21		< 0.05		< 0.1	
Hunan, Changsha	3	0.1			7	7	grain	0.018		< 0.02	CL-2010-026
China, 2011						14		< 0.01		< 0.02	Site 2-11
((Yue You 712)						21		< 0.01		< 0.02	
						7	hulls	4.0		< 0.1	
						14		2.5		0.11	
						21		1.6		< 0.1	
						7	straw	0.68		< 0.1	
						14		0.4		< 0.1	
						21		0.35		< 0.1	
Jinan, Shandong	3	0.1			7	7	grain	< 0.01		< 0.02	CL-2010-026
China, 2010						14		< 0.01		< 0.02	Site 3-10
(Xin Dao 16)						21		< 0.01		< 0.02	
						7	hulls	0.55		< 0.1	
						14		0.71		< 0.1	
						21		0.57		< 0.1	
						7	straw	0.26		< 0.1	
						14		0.44		0.13	
						21		0.28		< 0.1	
Jinan, Shandong	3	0.1			7	7	grain	< 0.01		< 0.02	CL-2010-026
China, 2011						14		< 0.01		< 0.02	Site 3-11
(Xin Dao 16)						21		< 0.01		< 0.02	
						7	hulls	< 0.05		< 0.1	
						14		0.16		< 0.1	
						21		0.13		< 0.1	
						7	straw	0.34		0.18	
						14		0.2		< 0.1	
						21		0.12		< 0.1	

RICE		1	Applicatio	on		DAT	Matrix	Residu	kg)	Reference &	
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	M1	
(variety)				L/ha	(days)						
Hangzhou Zhejiang	3	0.15			7	7	grain	0.041		< 0.02	CL-2010-026
China 2011						14		0.022		< 0.02	Site 1-11
(Xiu Shui 009)						21		0.012		< 0.02	
						7	hulls	2.3		0.33	
						14		2.4		0.3	
						21		0.95		0.19	
						7	straw	< 0.05		0.36	
						14		< 0.05		0.59	
						21		0.12		0.39	
Hangzhou Zhejiang	3	0.15			7	7	grain	0.035		< 0.02	CL-2010-026
China, 2010						14		0.019		< 0.02	Site 1-10
(Xiu Shui 009)						21		< 0.01		< 0.02	
						7	hulls	12		1.4	
						14		11		0.6	
						21		9.9		0.84	
						-		1.0		0.50	
						7	straw	1.8		0.59	
						14		4.1		0.43	
	2	0.15				21		3.0		0.51	CL 2010 026
Hunan, Changsha	3	0.15				/	grain	< 0.01		< 0.02	CL-2010-026
China, 2010						14		< 0.01		< 0.02	Site 2-10
(Yue You /12)						21		< 0.01		< 0.02	
						7	h.11a	1.6		< 0.1	
						14	nuns	1.0		< 0.1	
						21		2.1		0.1	
						21		2.1		0.1	
						7	straw	0.58		< 0.1	
						14	511477	0.50		< 0.1	
						21		0.36		< 0.1	
Hunan, Changsha	3	0.15				7	grain	0.039		< 0.02	CL-2010-026
China. 2011	5	0110				14	Brunn	0.025		< 0.02	Site 2-11
((Yue You 712)						21		0.019		< 0.02	
(()											
						7	hulls	6.2		< 0.1	
						14		4.1		< 0.1	
						21		2.4		< 0.1	
						7	straw	0.55		< 0.1	
						14		0.26		< 0.1	
						21		0.33		< 0.1	

RICE		1	Applicati	on		DAT	Matrix	Residues (mg/kg)			Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	M1	
(variety)				L/ha	(days)						
Jinan, Shandong	3	0.15				7	grain	< 0.01		< 0.02	CL-2010-026
China, 2010						14		< 0.01		< 0.02	Site 3-10
(Xin Dao 16)						21		< 0.01		< 0.02	
						7	hulls	1.2		< 0.1	
						14		0.21		< 0.1	
						21		0.66		< 0.1	
						7	straw	1.3		0.12	
						14		0.33		< 0.1	
						21		< 0.05		< 0.1	
Jinan, Shandong	3	0.15				7	grain	< 0.01		< 0.02	CL-2010-026
China, 2011						14		< 0.01		< 0.02	Site 3-11
(Xin Dao 16)						21		< 0.01		< 0.02	
						7	hulls	< 0.05		< 0.1	
						14		< 0.05		< 0.1	
						21		< 0.05		< 0.1	
						7	straw	0.35		0.11	
						14		0.24		< 0.1	
						21		0.18		< 0.1	

M1: Residues of metabolite IN-J9Z38

Tree nuts

In trials conducted in the USA on <u>almonds</u> and <u>pecans</u>, three foliar (airblast) treatments of 0.15 kg ai/ha cyantraniliprole (OD formulation) were applied at about 7 day intervals using either high volume (1000–3000 L/ha), concentrate (100–800 L/ha) or ultra-low-volume (50 L/ha) sprays, all with adjuvant added. An additional soil (shank) injection side dressing treatment was included in one trial.

Duplicate samples of nutmeat and hulls were stored at -20 °C for up to 6 months before analysis (within 37 days of extraction) for cyantraniliprole and six metabolites using method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries in peel and pulp were 81–93% (cyantraniliprole) and 76–97% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg.

Table 143 Residues in almonds from supervised trials in the USA involving foliar applications of cyantraniliprole (OD or SE formulations)

ALMOND			Applicati	on		DAT	Matrix	Residues (mg/kg)			Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
(Turlock, CA	3	0.15	26	580	7,6	5	nutmeat	0.012, 0.012	0.012		DP-27446
USA, 2009)											Trial 01
(Butte)							hulls	4.5, 4.6	4.6	M1=0.03	
										M2=0.01	
Kerman, CA	3	0.15	32	470	7	5	nutmeat	0.009, 0.01	0.009		DP-27446
USA, 2009											Trial 02
(Non-Pareil)							hulls	2.0, 1.7	1.9	M1=0.01	

ALMOND			Application	on		DAT	Matrix	Residu	es (mg/	kg)	Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Sanger, CA	1+	0.15	23	650	6	5	nutmeat	0.006, 0.007	0.007		DP-27446
USA, 2009	1+		27	600	7						Trial 03
(Neplus)	1			540			hulls	0.78, 0.98	0.88		
Sutter, CA	3	0.15	310	50	7	5	nutmeat	0.024, 0.023	0.023		DP-27446
USA, 2009											Trial 04
(Non-Pareil)							hulls	3.0, 2.8	2.9	M1=0.02	
Sanger, CA	1 +	0.15	6	2400	7	5	nutmeat	0.005, 0.005	0.005		DP-27446
USA, 2009	2	0.15	12	1300	8						Trial 05
(Neplus)							hulls	1.2, 1.4	1.3	M1=0.01	
Sanger, CA	1 +	0.15	6	2400	7	5	nutmeat	0.008, 0.006	0.007		DP-27446
USA, 2009	2	0.15	12	1300	8						Trial 05
(Neplus)							hulls	2.3, 2.7	2.5	M1=0.01	[100 SE]
Madera, CA	3	0.15	330	50	6,7	5	nutmeat	0.006, 0.007	0.007		DP-27446
USA, 2009											Trial 06
(Non-Pareil)							hulls	0.88, 0.94	0.91		
Madera, CA	3	0.15	11	1400	6,7	5	nutmeat	0.016, 0.019	0.018		DP-27446
USA, 2009											Trial 06
(Non-Pareil)							hulls	3.7, 3.5	3.6	M1=0.04	[100 SE]

M1: Average residues of metabolite IN-J9Z38

M2: Average residues of metabolite IN-MYX98

PECAN			Application	on		DAT	Matrix	Residu	kg)	Reference &	
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Girard, GA	3	0.15	12	1200	7	5	nutmeat	ND, ND	ND		DP-27446
USA, 2009											Trial 07
(Desirables)											
Union Springs,	3	0.15	12	1200	7	5	nutmeat	ND, ND	ND		DP-27446
AL											Trial 08
USA, 2009											
(Stewart)											
Bailey, NC	3	0.15	12	1200	7	4	nutmeat	ND, ND	ND		DP-27446
USA, 2009											Trial 09
(Stuart)											
Alexandria, LA	1 +	0.16	24	660	7	5	nutmeat	0.008, 0.010	0.009		DP-27446
USA, 2009	1+	0.16	21	780							Trial 10
(Creek)	1	0.15	23	630							
											ļ
Eagle Lake, TX	3	0.15	360	40	7,8	5	nutmeat	0.006, 0.004	0.005		DP-27446
USA, 2009											Trial 11
(Pawnee)											
Pearsall TX	3	0.15	27	570	7	5	nutmeat	ND ND	ND		DP-27446
USA 2009		0.14	24	590	,		natificat	1.2,1.2	1,2		Trial 12
(Wichita		0.15	2.9	530							1110112
(

Table 144 Residues in pecans from supervised trials in the USA involving foliar applications of cyantraniliprole (OD or SE formulations) or soil (shank) injection (SC formulation)

PECAN			Applicati	on		DAT	Matrix	Residues (mg/kg)			Reference &
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Pearsall, TX	1	0.46	490	90		57	nutmeat	ND, ND	ND		DP-27446
USA, 2009											Trial 12
(Wichita)											[200 SC soil
											injection]

Oilseed crops

In trials conducted with cyantraniliprole on <u>cotton</u> in the USA, plots were treated with three late season foliar sprays (OD formulation) at a rate of 0.15 kg ai/ha, using 200–500 L water/ha, with added surfactant. In one trial, an additional plot was treated with a pre-plant in-furrow soil treatment (0.2 kg ai/ha, SC formulation) followed by two late season foliar spray applications (0.1–0.15 kg ai/ha, OD formulation).

Samples of cotton seed and cotton gin byproducts were stored at -20 °C for up to 8 months before extraction and analysed within 3 months after extraction for cyantraniliprole and eight metabolites using method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 75–76% (cyantraniliprole) and 69–120% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg and also 1.0 and 1.6 mg/kg in cotton seed.

Table 145 Residues in cotton from supervised trials in the USA involving three foliar applications of cyantraniliprole (OD formulation)

COTTON			Applicat	ion		DAT	Matrix	Resid	kg)	Reference	
SEED						(days)					&
Location											Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprol	mean	metabolites	
(variety)				L/ha	(days)			е			
Cheneyville, LA	3	0.16	77	200	7,6	-0	seed	0.28, 0.2	0.24	M1=0.02	DP-27565
USA, 2009						0		0.63, 0.58	0.6	M1=0.02	Trial 02
(Phytogen						5		0.2, 0.14	0.17	M1=0.02	
485WRF)						7		0.17, 0.2	0.18	M1=0.03	
East Bernard,	3	0.15	77	200	8,6	-0	seed	0.27, 0.33	0.3	M1=0.05	DP-27565
TX						0		0.94, 0.66	0.8	M1=0.05	Trial 05
USA, 2009						1		0.63, 0.89	0.76	M1=0.05	
(DP0924 B2F)						5		0.56, 0.82	0.69	M1=0.07	
						7		0.26, 0.26	0.26	M1=0.06	
Edmonson, TX	3	0.15	96	160	8,6	7	seed	0.83, 1.2	0.99		DP-27565
USA, 2009											Trial 08
(DP 924)							gin trash	4.3, 5.7	5	M1=0.02	
										M2=0.03	
Fisk, MO	3	0.15	80	190	8	8	seed	0.023, 0.027	0.025		DP-27565
USA, 2009											Trial 03
(DP 164 B2RF)											
Hickman, CA	3	0.15	40	370	7	8	seed	0.2, 0.2	0.2		DP-27565
USA, 2009											Trial 11
(Pima)											
Hinton, OK	3	0.15	72	200	8,9	9	seed	0.18, 0.13	0.16		DP-27565
USA, 2009											Trial 07
(FM1740B2F)							gin trash	2.6, 2.6	2.6	M1=0.03	
										M2=0.01	

COTTON			Applicat	ion		DAT	Matrix	Resid	kg)	Reference	
SEED						(days)					&
Location											Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprol	mean	metabolites	
(variety)				L/ha	(days)			е			
Larned, KS	3	0.15	71	210	7	8	seed	0.27, 0.32	0.29	M1=0.01	DP-27565
USA, 2009											Trial 06
(Delta Pine)											
Levelland, TX	3	0.15	63	230	7	8	seed	0.11, 0.12	0.12		DP-27565
USA, 2009											Trial 09
(9063 B2F)							gin trash	3.5, 3.5	3.5	M1=0.07	
										M2=0.02	
Madera, CA	3	0.15	64	230	7,6	7	seed	0.15, 0.12	0.14		DP-27565
USA, 2009											Trial 12
(Acala Riata											
RR)											
Newport, AR	3	0.15	80	190	7	7	seed	0.045, 0.025	0.035		DP-27565
USA, 2009											Trial 04
(DP 164 B2RF)											
Sanger CA	1+	0.15	54	290	6	7	seed	0.24.0.21	0.22		DP-27565
USA 2009	2	0.15	37	400	8		seeu	0.24, 0.21	0.22		Trial 13
(PHY 725 RF	-		57	100	0						inui io
Acala)											
Seven Springs,	3	0.15	63	240	7	8	seed	0.011, 0.013	0.012		DP-27565
NC								,			Trial 01
USA, 2009											
(ST 4554B2RF)											
Uvalde, TX	3	0.15	62	230	7	6	seed	0.1, 0.14	0.12		DP-27565
USA, 2009											Trial 10
(DP6167 B2RF)							gin trash	2.8, 2.6	2.7	M1=0.07	
										M2=0.01	
		0.10	110	100					0.45		DD 4551-
Larned, KS	1+	0.19	110	180	146	8	seed	0.16, 0.14	0.15		DP-27565
USA, 2009		0.1	48	210	7						Irial 06
(Delta Pine)	1	0.15	12	210							[soil inject+
											2 toliar
1	1	1	I	1		1	1	1		1	1

M1: Average residues of metabolite IN-J9Z38

M2: Average residues of metabolite IN-MYX98

In trials conducted in Australia on <u>cotton</u>, two foliar applications of 0.06 or 0.12 kg ai/ha cyantraniliprole (SE formulations) were applied at 7 day intervals using 120 L water/ha, with added adjuvant. Several of these trials were reverse decline studies, where different plots were treated at staggered intervals so that the sampling dates co-incided with normal commercial harvest.

Samples were stored at -20 °C for up to 1 month before analysis of forage (leaves, stems etc), seeds and field trash for cyantraniliprole and six metabolites (within 4 days after extraction) using analytical method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 95–99% (cyantraniliprole) and 77–101% (metabolites) in samples spiked with 0.01–2.0 mg/kg.

COTTONSEED		А	pplicat	ion		DAT	Matrix	Residue	es (mg	/kg)	Reference
Location						(days)					Comments
Country, year	no	kg ai/ha	g	water	RTI			cyantraniliprole	mean	metabolites	
(variety)			ai/hL	L/ha	(days)						
Boggabilla, NSW	2	0.06	0.05	120	7	7	forage	0.39		M1=0.01	DP-31410
Australia, 2010						14		0.23		M1=0.01	Site 1
(Sicot 71 BRF)						21		0.08			[Reverse
						28		0.03			decline]
						7	seed	ND			
						14		ND			
						21		ND			
						28		ND			
						7	C . 1 1 4 1	1 10		M1 0.05	
						/	field trash	1.18		M1=0.05	
						14		0.59		M1=0.03	
						21		0.19			
	2	0.06	0.05	120	7	28	C	0.11		N(1 0 02	DD 21410
Brookstead, QLD	2	0.06	0.05	120	/	14	forage	0.28		M1=0.02	DP-31410
Australia, 2010						14	heer	ND			Sile 5
(SICOL / I BKF)						14	seed	ND			
						14	field trash	0.74		M1=0.04	
Toobeah OLD	2	0.06	0.05	120	7	14	forage	0.15		M1=0.01	DP-31410
Australia 2010	2	0.00	0.05	120	,	14	lolage	0.15		1011 0.01	Site 2
(Sicot 71 BRF)						14	seed	ND			Site 2
(broot / 1 bru)							seed	112			
						14	field trash	0.34		M1 =0.02	
Boggabilla, NSW	2	0.12	0.1	120	7	7	forage	0.68		M1=0.03	DP-31410
Australia, 2010						14	U	0.38		M1=0.01	Site 1
(Sicot 71 BRF)						21		0.12			[Reverse
						28		0.09			decline]
											_
						7	seed	ND			
						14		ND			
						21		ND			
						28		ND			
						7	field trash	1.85		M1=0.08	
						14		1.01		M1=0.04	
						21		0.47		M1=0.02	
						28		0.16			
Brookstead, QLD	2	0.12	0.1	120	7	14	forage	0.43		M1=0.02	DP-31410
Australia, 2010											Site 3
(Sicot 71 BRF)						14	seed	ND			
						14	C 11/ 1	1.00		N/1 0.04	
T 1 1 01D	-	0.10	0.1	120		14	field trash	1.22		M1=0.04	DD 21410
100bean, QLD	2	0.12	0.1	120	/	14	torage	0.27		M1=0.02	DP-31410
Australia, 2010						14	cood	ND			Sile 2
(SICOL / I BKF)						14	seed	IND			
						14	field trach	0.76		M1=0.02	
						14	neiu uasii	0.70		10.02	

Table 146 Residues in cotton from supervised trials in Australia involving two foliar applications of cyantraniliprole (SE formulation)

M1: Average residues of metabolite IN-J9Z38

Rape seed

In trials conducted with cyantraniliprole on <u>oil-seed rape</u> (canola) in North America, plots were treated with three late season foliar sprays (OD formulation) at a rate of 0.15 kg ai/ha, using 200– 500 L water/ha, with added surfactant. In several trials, seed treated with cyantraniliprole FS formulation) at a rate required to achieve an application rate about 0.08 kg ai/ha planted and the plots were also treated with two late season foliar spray applications (0.15 kg ai/ha, OD formulation).

Seed samples were stored at -20 °C for up to 6.5 months before extraction and analysed within 4 months after extraction for cyantraniliprole and six metabolites using method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 92% (cyantraniliprole) and 85–99% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg and also 1.0 mg/kg cyantraniliprole in cotton seed.

Table 147 Residues in oil-seed rape from supervised trials in North America involving foliar applications of cyantraniliprole (OD formulation), with and without the use of cyantraniliprole-treated seed

OILSEED RAPE			Applicatio	on		DAT	Matrix	Residu	Reference		
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Alvena, SK	3	0.15	75	200		7	seed	0.24, 0.3	0.27	M1=0.02	DP-27582
CAN, 2009											Test 10
(RR 7145)											
Blaine Lake, SK		0.15	74	200	7	7	seed	0.25, 0.33	0.29	M1=0.01	DP-27582
CAN, 2009											Trial 16
(Dekalb 7145 RR)											
Brandon, MB	3	0.15	60	250	7	7	seed	0.18, 0.16	0.17		DP-27582
CAN, 2009											Test 09
(Invigor 5030)											
Carberry, MB	3	0.15	60	250	7,6	6	seed	0.054, 0.065	0.059		DP-27582
CAN, 2009											Test 07
(D3151)											
Carrington, ND	3	0.15	54	280	7	7	seed	0.017, 0.017	0.017		DP-27582
USA, 2009											Test 04
(Pioneer D3151)											
Ephrata, WA	3	0.15	73	210	7	7	seed	0.087, 0.08	0.084	M1=0.01	DP-27582
USA, 2009											Test 05
(7145 RR)											
Ft. Saskatchewan,	3	0.15	50	300	7	7	seed	0.13, 0.12	0.12		DP-27582
AB											Trial 12
CAN, 2009											
(1818 Roundup											
Ready)											
Ft. Saskatchewan,	3	0.15	50	300	7,6	7	seed	0.057, 0.066	0.061		DP-27582
AB											Trial 11
CAN, 2009											
(Liberty 1141)											
Geneva, MN	3	0.15	79	190	6,7	8	seed	0.027, 0.016	0.021		DP-27582
USA, 2009											Test 02
(Pioneer 45H21)											
Jerome, ID	2+	0.15	76	200	6	7	seed	0.29, 0.34	0.32		DP-27582
USA, 2009	1		80	190	8						Test 06
(D3151)											
Justice, MB	3	0.15	60	250	7,6	6	seed	0.022, 0.023	0.022		DP-27582
CAN, 2009											Test 08
(D3151)											

550

OILSEED RAPE			Application	on		DAT	Matrix	Residu	Reference		
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Lamont, AB	3	0.15	50	300	6,7	7	seed	0.14, 0.21	0.18		DP-27582
CAN, 2009											Trial 13
(Invigor 8440)											
St. Marcsur	3	0.15	50	300	6, 9	1	seed	0.17, 0.16	0.16		DP-27582
Richelieu, QC											Trial 03
CAN, 2009											
(Pioneer D3150)											
Stephens, GA	1 +	0.15	51	290	7	7	seed	0.017, 0.022	0.019		DP-27582
USA, 2009	1+	0.15	62	240							Test 01
(Sumner)	1	0.14	70	210							
Wakaw, SK	3	0.15	75	200	7	7	seed	0.066, 0.047	0.057		DP-27582
CAN, 2009											Trial 17
(RR 7145)											
Waldheim, SK	3	0.15	75	200	7	7	seed	0.57, 0.65	0.61	M1=0.02	DP-27582
CAN. 2009	_										Trial 15
(Dekalb 7145 RR)											
Westlock AB	3	0.15	50	300	7.6	7	seed	0.07.0.07	0.07	M1=0.01	DP-27582
CAN. 2009	5	0110	00	200	,, 0		seed	0.07, 0.07	0107		Trial 14
(Roundup Ready											
(1818)											
Carberry MB	1+	0.08+				6	seed	0.029.0.032	0.031		DP-27582
CAN 2009	1+	0.07	29	250	7	Ŭ	seed	0.029, 0.032	0.051		Test 07
(D3151)	2	0.15	60	250	6						[with
(20101)	-	0110	00	200	Ŭ						treated
											seed]
Carrington ND	1+	0.08+				7	seed	0.015.0.016	0.015		DP-27582
USA 2009	1+	0.07	25	280	7	,	seed	0.010, 0.010	0.012		Test 04
(Pioneer D3151)	2	0.15	54	280	7						[with
(I loneer D5151)	2	0.15	51	200	,						treated
											seed]
Jerome ID	1+	0.08+				7	seed	0.21.0.22	0.21		DP-27582
USA 2009	1+	0.001	37	200	6	,	seed	0.21, 0.22	0.21		Test 06
(D3151)	1+	0.15	74	200	8						[with
(D3131)	1	0.15	80	190	0						treated
	1	0.10	00	170							seed]
Justice MB	1+	0.08+				6	beea	0.048.0.047	0.047		DP 27582
CAN 2009	1+	0.08	29	250	7	0	secu	0.040, 0.047	0.047		DI -27362 Test 08
(D3151)	2	0.15	60	250	6						Iwith
(D5151)	2	0.15	00	250	0						treated
											seed]
St. Marcour	1⊥	0.08+				1	cood	0 11 0 12	0.12		DP 27592
Richelieu OC		0.087	24	310	6	1	seeu	0.11, 0.15	0.12		Trial 02
CAN 2000	$^{1^{+}}$	0.07	24 50	300	0						That US
(Pioneer D3150)	2	0.15	50	500	7						treated
											seedl
											secul

M1: Average residues of metabolite INJ9Z38

In trials conducted in Australia on oilseed rape, single foliar applications of 0.015 or 0.03 kg ai/ha cyantraniliprole (SE formulations) were applied using about 100 L water/ha, with added adjuvant. One of these trials was a reverse decline study, where different plots were treated at staggered intervals so that the sampling dates co-incided with normal commercial harvest.

Samples, fodder (remaining straw/trash) and processed oil were stored at -20 °C for up to 3 months before extraction for analysis of seeds, trash and oil for cyantraniliprole and six metabolites (within 4 days after extraction) using analytical method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 91–102% (cyantraniliprole) and 75–102% (metabolites) in samples spiked with 0.01–2.0 mg/kg.

Table 148 Residues in oilseed rape from supervised trials in Australia involving foliar applications of cyantraniliprole (SE formulation)

OILSEED RAPE	PE Application					DAT	Matrix	Residues (mg/kg)			Reference
Location						(days)					Comments
Country, year	no	kg ai/ha	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
(variety)				L/ha	(days)						
Welshpool, WA	1	0.015	15	100		7	seed	ND			DP-31412
Australia, 2009						14		ND			Site 1
						21		ND			[Reverse
						28		ND			decline]
						7	fodder	0.15			
						14		0.06			
						21		0.02			
						28		ND			
						7	oil	ND			
						14		ND			
						21		ND			
	_					28		ND			
Tranmere, SA	1	0.015	15	100		14	seed	ND			DP-31412
Australia, 2009							C 11	0.20			Site 2
						14	fodder	0.38		M1=0.01	
						14	oil	ND			
Young, NSW	1	0.015	15	100		14	seed	ND			DP-31412
Australia, 2009											Site 3
						14	fodder	0.08			
						14	oil	ND			
Tranmere, SA	1	0.03	30	100		14	seed	< 0.01			DP-31412
Australia, 2009											Site 2
						14	fodder	0.57		M1=0.03	
						14	oil	ND			
Young, NSW	1	0.03	30	100		14	seed	ND			DP-31412
Australia, 2009											Site 3
						14	födder	0.21		M1=0.01	
						14	oil	ND			

M1: Average residues of metabolite INJ9Z38

Sunflower

In trials conducted with cyantraniliprole on <u>sunflowers</u> in North America, plots were treated with three late season foliar sprays (OD formulation) at a rate of 0.15 kg ai/ha, using 200–500 L water/ha, with added surfactant.

Seed samples were stored at -20 °C for up to 6.5 months before extraction and analysed within 4 months after extraction for cyantraniliprole and six metabolites using method DP-15736,

with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 92% (cyantraniliprole) and 85–99% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg and also 1.0 mg/kg cyantraniliprole in cotton seed.

Table	149	Residues	in	sunflower	seed	from	supervised	trials	in	North	America	involving	foliar
applica	ation	s of cyantr	ani	liprole (OD) form	ulatio	n)						

SUNFLOWER			Applicat	ion		DAT	Matrix	rix Residues (mg/kg)			Reference
Location						(days)					&
Country, year											Comments
(variety)	no	kg	g ai/hL	water	RTI			cyantraniliprole	mean	metabolites	
		ai/ha		L/ha	(days)						
Atlantic, IA	3	0.15	80	190	7	7	seed	0.069, 0.065	0.067		DP-27582
USA, 2009											Trial 19
(Sunflower/ 8007 Millborn)											
Brookdale, MB	3	0.15	60	250	7,6	6	seed	0.36, 0.28	0.32		DP-27582
CAN, 2009											Trial 25
(Sunflower/ 6946)											
Carrington, ND	3	0.15	54	280	5,7	7	seed	0.068, 0.1	0.085		DP-27582
USA, 2009											Trial 20
(Sunflower/ Pioneer)											
Hinton, OK	3	0.15	63	240	8,9	5	seed	0.06, 0.059	0.059		DP-27582
USA, 2009											Trial 24
(Sunflower/ 8N453DM)											
Jamestown, ND	3	0.15	80	190	7	7	seed	0.03, 0.049	0.039		DP-27582
USA, 2009											Trial 22
(Sunflower/ IS 8048)											
Montpelier, ND	1 +	0.16	83	190	7	7	seed	0.026, 0.031	0.028		DP-27582
USA, 2009	2	0.15	80	190							Trial 23
(Sunflower/ IS 8048)											
Neepawa, MB	3	0.15	60	250	7,6	6	seed	0.092, 0.093	0.092		DP-27582
CAN, 2009											Trial 26
(Sunflower/ Jaguar)											
Stafford, KS	2+	0.15	71	210	7	7	seed	0.045, 0.082	0.064		DP-27582
USA, 2009	1	0.16	75								Trial 18
(Sunflower/ Pioneer 63M61)											
Velda, ND	3	0.15	80	190	8,7	7	seed	0.14, 0.15	0.14		DP-27582
USA, 2009											Trial 21
(Sunflower/ 8N835CL)											

Coffee

In Brazilian trials on <u>coffee</u>, plots was treated with two soil drench applications of cyantraniliprole (SC formulation), 30 days apart, using from 0.01–0.06 g ai/100 mL/plant to achieve the equivalent of 0.2 kg ai/ha/treatment, followed by two late season foliar applications of 0.175 kg ai/ha cyantraniliprole (OD formulation), 30 days apart, using 400–600 L water/ha with no added adjuvants. In two trials, additional plots received only the two late season foliar sprays.

Samples of beans were dried at room temperature and manually peeled, with the dried beans being stored frozen until analysis for cyantraniliprole and the metabolite IN-J9Z38 using method DP-15736, with reported LOQs of 0.01 mg/kg. Average concurrent recoveries were 93% (cyantraniliprole) and 88% (IN-J9Z38) in samples spiked with 0.01 and 1.0 mg/kg.

COFFEE	Application				RTI	DAT,	Matrix	Residues (Residues (mg/kg)	
Country, year	no	kg ai/ha	g	water	(days)	(days)		cyantraniliprole	metabolites	Comments
Location			ai/hL	(L/ha)				-		
(variety)										
Campinas SP	2	0.175	35	500		7	beans	< 0.01		BRI- 10/11-008
Brazil, 2011						28		< 0.01		Test A
Monte Santo	2	0.175	29	600		7	beans	0.02		BRI- 10/11-008
de Minas						28		0.02		Test F
Brazil, 2011										
Cabo Verde	2+2	0.2 (soil)	0.5	0.1L/plant	30	7	beans	0.03		BRI- 10/11-008
Brazil, 2011		0.175	35	500		28		0.01		Test C
Campinas SP	2+2	0.2 (soil)	0.5	0.1L/plant	30	7	beans	0.02		BRI- 10/11-008
Brazil, 2011		0.175	35	500		14		0.01		Test A
						28		< 0.01		
						35		< 0.01		
						45		< 0.01		
						60		ND		
Espirito Santo	2+2	0.2 (soil)	0.6	0.1L/plant	30	7	beans	0.01		BRI- 10/11-008
do Pinhal SP		0.175	35	500		14		< 0.01		Test B
Brazil, 2011						28		< 0.01		
						35		< 0.01		
Indianopolis	2+2	0.2 (soil)	0.7	0.1L/plant	30	7	beans	< 0.01		BRI- 10/11-008
Brazil, 2011		0.175	29	600		28		< 0.01		Test G
						45		< 0.01		
						60		< 0.01		
Lohdrina	2+2	0.2 (soil)	0.5	0.1L/plant	30	7	beans	< 0.01		BRI- 10/11-008
Brazil 2011		0.175	44	400		14		< 0.01		Test I
						28		ND		
						35		ND		
Monte Santo	2+2	0.2 (soil)	0.4	0.1L/plant	30	7	beans	0.01		BRI- 10/11-008
de Minas		0.175	29	600		28		0.01		Test F
Brazil, 2011										
Pardinho – SP	2+2	0.2 (soil)	0.6	0.1L/plant	30	7	beans	0.02		BRI- 10/11-008
Brazil, 2011		0.175	30	580		28		< 0.01		Test D
Restinga – SP	2+2	0.2 (soil)	0.2	0.1L/plant	30	7	beans	< 0.01		BRI- 10/11-008
Brazil, 2011		0.175	29	600		14		< 0.01		Test E
						28		<u>< 0.01</u>		
			1			35		< 0.01		

Table 150 Residues in coffee beans from supervised trials in Brazil involving soil drench (SC formulation) and foliar applications of cyantraniliprole (OD formulation)

FATE OF RESIDUES IN STORAGE AND PROCESSING

High temperature hydrolysis

In a study reported by Lowrie, 2005 [Ref: DP-16989], the high-temperature hydrolysis of $[^{14}C]$ cyantraniliprole in buffered solutions of pH 4, 5, and 6 was investigated to simulate representative processing conditions: pasteurization at 90 °C for 20 minutes in pH 4 solution; baking, brewing, or boiling at 100 °C for 60 minutes in pH 5 solution; and sterilization at 120 °C for 20 minutes in pH 6 solution.

Solutions of [CN-¹⁴C]-cyantraniliprole and [PC-¹⁴C]-cyantraniliprole were incubated at 90, 100, and 120 °C at pH 4, 5, and 6, respectively, using aqueous citrate buffer and samples analyzed

after 20 min. (pH 4 and 6) and 1 h (pH 5) by LSC and HPLC. Identification of parent and transformation products was by co-chromatography and the identifications made were confirmed using LC-MS analysis. The limit of quantification (LOQ) for both labelled forms was 1% AR.

Cyantraniliprole was susceptible to hydrolysis with IN-J9Z38 being the significant hydrolysis product, making up about 4–5% AR under conditions representative of pasteurization (20 minutes at 90 °C and pH 4) and 12-14% AR under sterilisation conditions (20 minutes at 120 °C and pH 6). Under conditions reflecting baking, brewing, or boiling (60 minutes at 100 °C and pH 5) levels of IN-J9Z38 were lower, at 4–6% AR with IN-F6L99 and IN-N5M09 making up a further 5–8% AR. Minor components were detected but represented < 1% AR.

Table 151 Distribution of radioactivity for [CN-¹⁴C]-cyantraniliprole in citrate buffer solutions—high temperature hydrolysis (% radioactivity)

Component	pH	I 4	p	H 5	рН 6		
	Control	90 °C	Control	100 °C	Control	120 °C	
Cyantraniliprole (parent)	97.54 90.56		96.73	74.54	96.92	93.58	
IN-J9Z38	0.69	4.40	1.14	11.51	0.92	6.21	
IN-N5M09	ND	1.90	ND	8.41	ND	ND	
Others ^a	ND	0.70	0.32	3.39	0.47	1.64	
Apparatus wash	0.77	0.84	0.80	0.74	0.74	0.68	
Total % recovery	99.00	98.40	98.99	98.59	98.92	102.11	

Table 152 Distribution of radioactivity for [PC-¹⁴C]-cyantraniliprole in citrate buffer solutions—high temperature hydrolysis (% radioactivity)

Component	pl	H 4	p	Н 5	рН б		
	Control	90 °C	Control	100 °C	Control	120 °C	
Cyantraniliprole	97.00	89.23	94.71	75.12	98.43	91.49	
IN-J9Z38	0.14	5.36	1.05	13.64	0.36	3.71	
IN-F6L99	ND	1.71	ND	5.33	ND	0.12	
Other peaks	0.80	1.70	1.33	4.04	1.26	2.14	
Total	97.94	97.99	97.09	98.12	100.05	97.46	

Potatoes

In three field trials conducted in North America and reported by Thiel, 2010 [Ref: DP-27583], bulk samples of <u>tubers</u> were taken from plots planted with cyantraniliprole-treated seed pieces (13.5 g ai/100 kg seed) and treated with a single foliar application of 0.15 kg ai/ha cyantraniliprole (OD formulation), with added surfactant, 7 days before harvest.

Samples were shipped under ambient conditions to the processing facility where samples were processed to potato flakes, potato waste, peeled potatoes, potato chips, wet peel, culls, fries, cooking water, unpeeled boiled potatoes, and unpeeled microwaved potatoes.

Tubers were washed for 5 minutes and representative samples were batch steam peeled, batch scrubbed for 20 seconds and further processed into flake processing and french fries. The collected peel was hydraulically pressed and blended with the cut trim waste to derive the wet potato waste sample.

A representative sample of steam-peeled potatoes were cut into slabs, batch spray-washed in cold tap water for 30 seconds to remove free starch, precooked at 70-77 °C for 20 minutes in a steam jacketed kettle and cooled to less than 32 °C for 20 minutes. The cooled potato slabs were then steam-cooked at 94–100 °C for 40 minutes and mixed with an emulsion of pre-weighed food additives. The cooked mash was then hand fed onto a drum dryer to produce a thin sheet of potato flake which was then hammer-milled to give the final potato flakes sample.

An additional representative sample of steam-peeled potatoes were pre-cooked in 54 °C water for 40 minutes and then cut into 3/16" strips using a french fry cutter. After cutting, the strips were spray-washed for 30 seconds to remove free starch, blanched in 79–85 °C water for 5 minutes and then dipped in a solution of 0.5% sodium acid pyrophosphate and 0.5% dextrose for 30 seconds at 71– 74 °C. The strips were then air dried (75 °C) to reduce the moisture content of the strips by about 15% and par-fried in vegetable oil for 45–50 seconds at 188–191 °C. After frying, the fried strips were drained to remove excess oil and placed in the freezer for rapid (12 minute) cooling before being labelled and placed back into freezer storage for subsequent analysis.

Potato chips were prepared from the washed potatoes by batch peeling and slicing the peeled potatoes into thin 16mm slices. The sliced potatoes were placed in a tub of hot water to remove free starch, drained and fried at163–191 ° C frying oil for 90 seconds. After draining and salting, samples were labelled and stored frozen for subsequent analysis.

For producing unpeeled boiled potatoes, washed potatoes were quartered and boiled in water until an internal temperature of 88–92 °C was achieved. Once the desired temperature was reached, the unpeeled boiled potato fraction was removed from the water and packaged, labelled and placed into frozen storage.

For producing unpeeled microwaved potatoes, the quartered potatoes were placed into the commercial microwave oven and microwaved in 5 minute increments until an internal temperature of 88–92 °C was achieved. After the desired temperature was reached, the unpeeled microwaved potato fraction was packaged, labelled and placed into frozen storage.

Tubers and processed fractions were stored at -20 °C for up to 9 months before analysis (within 3 months of extraction) for cyantraniliprole and eight metabolites using LC/MS/MS method DP-15736. The reported LOQ in all matrices was 0.01 mg/kg and average concurrent recoveries were 91-95% (cyantraniliprole) and 79–113% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg.

Residues of cyantraniliprole were detected at up to 0.02 mg/kg in fresh tubers, less than 0.01 mg/kg in wet peel and unpeeled microwaved potatoes and were not detectable in all other samples tested. The IN-JZ38 metabolite was also measured at < 0.01 mg/kg in tubers and wet peel, but was not detectable in other matrices. Residues of the other metabolites (IN-JCZ38, IN-K7H19, IN-MLA84, IN-MYX98, IN-N7B69, IN-N5M09, and IN-F6L99) were not detected in tubers or in processed fractions.

POTATO	Matrix	Cyantraniliprole	IN-J9Z38	Tota	ıl
Study ID		mg/kg	mg/kg	mg/kg	PF
DP-27583	tubers	<u>< 0.01</u> (3)	ND	< 0.01	-
Test 10	flakes	ND	ND	ND	-
	waste	ND	ND	ND	-
	peeled tubers	ND	ND	ND	-
	chips	ND	ND	ND	-
	wet peel	< 0.01	< 0.01	< 0.02	-
	culls	< 0.01	ND	< 0.01	-
	fries	ND	ND	ND	-
	cooking water	ND	ND	ND	-
	unpeeled, boiled	ND	ND	ND	-
	unpeeled mwaved	< 0.01	ND	< 0.01	-

Table 153 Residues in potato tubers and processed products from supervised trials in North America involving a seed treatment plus one foliar application of cyantraniliprole

POTATO	Matrix	Cyantraniliprole	IN-J9Z38	Tota	1
Study ID		mg/kg	mg/kg	mg/kg	PF
DP-27583	tubers	0.02, <u>< 0.01</u> , ND	ND	< 0.01	_
Test 11	flakes	ND	ND	ND	-
	waste	ND	ND	ND	-
	peeled tubers	ND	ND	ND	-
	chips	ND	ND	ND	-
	wet peel	< 0.01	< 0.01	< 0.02	-
	culls	0.01	ND	< 0.01	-
	fries	ND	ND	ND	-
	cooking water	ND	ND	ND	-
	unpeeled, boiled	ND	ND	ND	-
	unpeeled m'waved	ND	ND	ND	-
DP-27583	tubers	0.02, <u>0.02</u> , 0.02	< 0.01	0.03	
Test 12	flakes	ND	ND	ND	0.1
	waste	ND	ND	ND	0.1
	peeled tubers	ND	ND	ND	0.1
	chips	ND	ND	ND	0.1
	wet peel	0.02	0.05	0.07	2.3
	culls	0.02	< 0.01	< 0.03	1.0
	fries	ND	ND	ND	0.1
	cooking water	ND	ND	ND	0.1
	unpeeled, boiled	ND	ND	ND	0.1
	unpeeled m'waved	< 0.01	ND	< 0.01	0.33

For calculation purposes, where the residue in the processed commodity was reported as ND (< LOD), a value of 0.003 mg/kg was used and where residues were above the LOD but below the LOQ, a value of 0.01 mg/kg was used. In both cases, the PF was expressed as "less than" (e.g. < 0.01). Where residues of IN-J9Z38 are below the LOQ in the RAC, a value of 0.01 has been used to calculate 'total' residues.

Spinach

The effects of cooking on residues of cyantraniliprole in <u>spinach</u> were investigated by Carringer & Vogl, 2010 [Ref: DP-25644]. Bulk samples of spinach were taken from three field trials in the USA, one day after the last of three foliar applications of 0.15 kg ai/ha cyantraniliprole (OD formulation), applied at 5–6 day intervals with added surfactant.

At each of the three field sites about 400 g spinach leaves were added to 3 L boiling water in a large pot and boiled in the uncovered pot for approximately 15 minutes, stirring as needed to keep the leaves submerged under the water. The cooked spinach was removed and squeezed to remove as much water as possible.

Fresh and cooked leaves and the cooking water were stored at -20 °C for up to 8 months before analysis (within 10 weeks of extraction) for cyantraniliprole and eight metabolites using LC/MS/MS method DP-15736. The reported LOQ in all matrices was 0.01 mg/kg and average concurrent recoveries were 87–98% (cyantraniliprole) and 73–103% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg.

Residues of the IN-J9Z38, IN-MLA84 and IN-N5M09 metabolites increased significantly during the cooking process, with IN-J9Z38 being the predominant residue in cooked spinach. Residues of the other metabolites (IN-MYX98, IN-N7B69, IN-JCZ38 and IN-F6L99) decreased and the metabolite IN-K7H19 was not detected in any samples.

SPINACH	Matrix	Cyantraniliprole	IN-J9Z38	Tot	al		Other	metabo	olites (m	g/kg)	
Study ID		mg/kg	mg/kg	mg/kg	PF	M2	M3	M4	M5	M6	M7
DP-25644	fresh leaves	4.6	0.07	5.3		0.24	< 0.01	0.02	< 0.01	ND	ND
Trial 35	cooked leaves	0.8	3.5	4.3	0.81	0.01	ND	0.09	ND	0.02	< 0.01
	water	0.03	0.25	0.28	0.05	ND	ND	0.02	ND	ND	< 0.01
DP-25644	fresh leaves	5.3	0.04	5.7		0.15	< 0.01	0.01	ND	< 0.01	ND
Trial 36	cooked leaves	0.86	5.8	6.7	1.3	ND	ND	0.19	ND	0.04	< 0.01
	water	0.24	0.22	0.46	0.08	ND	ND	0.01	ND	ND	< 0.01
DP-25644	fresh leaves	10	0.1	10.1		0.43	0.01	0.05	< 0.01	< 0.01	< 0.01
Trial 37	cooked leaves	0.9	9.2	10.1	1.0	< 0.01	ND	0.35	ND	0.09	0.015
	water	0.18	0.45	0.63	0.06	ND	ND	0.06	ND	< 0.01	0.011

Table 154 Residues in fresh and cooked spinach from supervised trials in North America involving three foliar applications of cyantraniliprole (OD formulation)

M2: Residues of metabolite IN-MYX98 M4: Residues of metabolite IN-MLA84 M3: Residues of metabolite IN-N7B69

M5: Residues of metabolite IN-JCZ38

M6: Residues of metabolite IN-N5M09 M7:

M7: Residues of metabolite IN-F6L99

Tomatoes

Processing studies on tomatoes were reported by Carringer & Vogl, 2009 [Ref: DP-25645]. In three field trials in the USA, involving three foliar applications of 0.3 kg ai/ha cyantraniliprole (OD formulation), applied at 5 day intervals, with added surfactant, bulk samples were taken one day after the last application and shipped under ambient conditions to the processing facility where samples were processed to washed tomatoes, peeled tomatoes, sun-dried tomatoes, canned tomatoes, juice, wet pomace, dried pomace, paste, and puree.

Canned tomatoes were prepared by spray-rinsing the field samples with high pressure warm water (68–74 °C) for 30 seconds and boiling the rinsed tomatoes for about a minute to crack the skin prior to removal and peeled by hand before packing in cans with a teaspoon of salt. The cans were steam heated for about 10 minutes to achieve a temperature of about 80 °C, sealed, cooked in a boiling water bath for about 15 minutes and cooled in cold tap water.

Sun-dried tomatoes were prepared from the rinsed samples by removing the cores and stems, quartering the fruit and spreading them with the peel down on a tray for drying to a moisture content of < 16%.

Washed tomato samples were prepared by batch soaking a representative sample of the field tomatoes in a 5 g/L solution of sodium hydroxide at about 52–60 °C for 3 minutes and then sprayrinsing with high pressure warm water (68–74 °C) for 30 seconds.

Pomace samples were prepared by crushing the washed tomatoes in a hammermill and then rapidly heating the crush to about 79–85 °C for 15–30 seconds (hot break) before separation into pomace and juice. The wet pomace was pressed and the recovered press juice was combined with the fresh juice from the pulper/finisher. A representative sample of the wet pomace was then bin-dried to less than 10% moisture.

Fresh juice was heated to not more than 82 °C in the steam jacketed kettle and an aliquot was vacuum-evaporated to produce puree with the addition of 1% salt and the Brix level adjusted to 12.0–13.0° by the addition of water. The puree was heated to 82–88 °C, canned, sealed and cooked in a boiling water bath for about 15 minutes at 96–100 °C and then cooled under running cold tap water

Fresh juice was also vacuum-evaporated to paste with the addition of 0.5-1.0% salt and the Brix level adjusted to $24.0-33^{\circ}$ by the addition of water. The puree was heated to $82-88 \,^{\circ}$ C, canned, sealed and cooked in a boiling water bath for about 15 minutes at $96-100 \,^{\circ}$ C and then cooled under running cold tap water.

An aliquot of the paste was also diluted with hot water, mixed with 0.5%-1.0% salt and the Brix level adjusted to about $4.5-5.5^{\circ}$, to produce juice. This juice was then heated to about $85 \,^{\circ}$ C, canned, sealed and cooked in a boiling water bath for about 15 minutes at 96-100 °C and then cooled in cold tap water.

Processed samples were stored at or below -17 °C for up to 7 months before analysis (within about 2 weeks of extraction) for cvantraniliprole and eight metabolites using LC/MS/MS method DP-15736. The reported LOQ in all matrices was 0.01 mg/kg and average concurrent recoveries were 76-102% (cyantraniliprole) and 70–117% (metabolites) in samples spiked with 0.01 to 2.0 mg/kg.

Cyantraniliprole was the predominant residue in processed tomato products, with significant residues of the IN-J9Z38 metabolite also found in wet and dry pomace. In the wet and dry pomace, paste and sun-dried tomato samples, low levels (up to 0.04 mg/kg) of IN-MYX98, IN-MLA84 or IN-N5M09 were reported. Residues of the other metabolites (IN-N7B69, IN-K7H19 and IN-JCZ38) were not detected in any samples.

Table	155	Residues	in	fresh	and	processed	tomatoes	from	supervised	trials	in	North	America
involv	ing tl	nree foliar	app	olicatio	ns of	cyantranili	prole (OD	form	ulation)				

TOMATO	Matrix	Cyantraniliprole	IN-J9Z38	Tot	al	(Other meta	bolites (mg/	kg)
Study ID		mg/kg	mg/kg	mg/kg	PF	M2	M4	M6	M7
DP-25645	fresh (field)	0.13	ND	0.13		ND	ND	ND	ND
Trial 1	washed	0.02	ND	0.02	0.15	ND	ND	ND	ND
	peeled	< 0.01	ND	< 0.01	< 0.08	ND	ND	ND	ND
	sun-dried	0.45	0.03	0.48	3.7	ND	ND	ND	ND
	canned	ND	ND	ND	< 0.02	ND	ND	ND	ND
	juice	< 0.01	< 0.01	< 0.02	< 0.15	ND	ND	ND	ND
	wet pomace	0.08	0.05	0.13	1.0	ND	< 0.01	ND	ND
	dry pomace	0.23	0.18	0.41	3.2	ND	0.01	< 0.01	ND
	paste	0.03	0.05	0.08	0.62	ND	ND	< 0.01	< 0.01
	puree	0.02	0.01	0.03	0.23	ND	ND	ND	ND
DP-25645	fresh (field)	0.2	< 0.01	0.21		ND	ND	ND	ND
Trial 2	washed	0.05	< 0.01	< 0.06	< 0.29	ND	ND	ND	ND
	peeled	0.02	ND	0.02	0.1	ND	ND	ND	ND
	sun-dried	0.73	0.07	0.8	3.8	ND	< 0.01	< 0.01	< 0.01
	canned	< 0.01	ND	< 0.01	< 0.05	ND	ND	ND	ND
	juice	0.03	0.01	0.04	0.19	ND	ND	ND	ND
	wet pomace	0.29	0.17	0.46	2.2	ND	0.02	< 0.01	ND
	dry pomace	0.5	0.35	0.85	4.0	ND	0.04	0.01	ND
	paste	0.12	0.06	0.18	0.86	ND	ND	< 0.01	< 0.01
	puree	0.07	0.02	0.09	0.43	ND	ND	ND	ND
DP-25645	fresh (field)	0.12	ND	0.12		ND	ND	ND	ND
Trial 3	washed	0.02	ND	0.02	0.17	ND	ND	ND	ND
	peeled	< 0.01	ND	< 0.01	< 0.08	ND	ND	ND	ND
	sun-dried	0.34	0.02	0.36	3.0	< 0.01	< 0.01	ND	ND
	canned	< 0.01	ND	< 0.01	< 0.08	ND	ND	ND	ND
	juice	0.01	< 0.01	< 0.02	< 0.17	ND	ND	ND	ND
	wet pomace	0.06	0.03	0.09	0.75	ND	ND	ND	ND
	dry pomace	0.12	0.08	0.2	1.7	ND	ND	< 0.01	ND
	paste	0.08	0.04	0.12	1.0	ND	ND	< 0.01	< 0.01
	puree	0.02	0.01	0.03	0.25	ND	ND	ND	ND

M2: Residues of metabolite IN-MYX98 M6: Residues of metabolite IN-N5M09

M4: Residues of metabolite IN-MLA84

M7: Residues of metabolite IN-F6L99

For calculation purposes, where the residue in the processed commodity was reported as ND (< LOD), a value of 0.003 mg/kg was used and where residues were above the LOD but below the LOQ, a value of 0.01 mg/kg was used. In both cases, the PF was expressed as "less than" (e.g. < 0.01). Where residues of IN-J9Z38 are below the LOQ in the RAC, a value of 0.01 has been used to calculate 'total' residues.

Oranges

In three field trials on oranges conducted in North America and reported by Rice, 2010 [Ref: DP-27554], plots were treated 7 days apart with three late season foliar applications of 0.15 kg ai/ha cyantraniliprole (OD formulation) with added surfactant and bulk samples of fruit were taken 1 day after the last application for processing.

The samples were shipped under ambient conditions to the processing facility where samples were processed to juice, wet pulp, dry pulp, meal, molasses, marmalade, oil, and canned oranges.

Juice was prepared from batch-washing field oranges by scarifying the fruit in a Hobart Peeler for 45 seconds, collecting the oil-water emulsion and passing it through a 180 μ m screen to remove flavedo fragments before separating the oil fraction through a cream separator and then an IEC centrifuge. The residual emulsion was then frozen, thawed and centrifuged to collect the remaining oil.

Juice extracted from the scarified oranges was transferred to a pulper/finisher and passed through an approximately 1.2 mm screen to remove the rag and seeds. Peel from the juice extraction process was shredded and combined with scarified flavedo fragments and the residual pulp from the juice extraction to generate wet peel. Lime (about 95% CaO) was mixed with this wet peel and the limed peel was pressed to obtain press liquor which was then vacuum-evaporated to produce molasses.

An aliquot of the wet pulp was also dried to below 10% moisture and hammer-milled to produce the dry pulp sample, with further milling producing the meal sample.

Washed oranges were also peeled, segmented, mixed with a light syrup (Brix 14.0–18.0 °) and canned, with the sealed cans being cooked in a boiling water bath for about 15 minutes at 96° –100 °C and cooled with tap water.

For marmalade, the rinds from washed oranges were chipped in a food processor and cooked for 20 minutes and the chopped pulp (without seeds) was mixed with 20% w/w water and cooked for 45 minutes. The cooked rind and pulp (with about 45 mL lemon juice and 1.5 kg sugar added per kg) was then boiled for 3 minutes, pectin was added and the mixture was boiled for a further 2 minutes. After standing for 1–2 minutes, the finished marmalade was packed in sterilised jars for subsequent analysis.

Fruit and processed fractions were stored at -20 °C for up to 8 months before analysis (within 7 weeks of extraction) for cyantraniliprole and eight metabolites using LC/MS/MS method DP-15736. The reported LOQ in all matrices was 0.01 mg/kg and average concurrent recoveries were 81-96% (cyantraniliprole) and 64-101% (metabolites) in samples spiked with 0.01, 0.1 and 0.2 mg/kg.

The storage stability of frozen samples was also evaluated as part of this study. Whole fruit were cut in half and one-half of each fruit comprising each whole fruit incurred residue sample was pooled, homogenized, and extracted for analysis to provide an initial residue value for incurred residue stability determinations for this high-acid content commodity. The other half of these fruit were homogenized per sample and analyzed ten months later, to complete a ten-month incurred residue storage stability determination for orange fruit. Residues of cyantraniliprole after 10 months storage were 79, 88, and 128% of the initial residues in three composite samples.

Cyantraniliprole was the predominant residue in processed orange products, with residues concentrating in oil. Significant residues of the IN-J9Z38 metabolite were also in oil and other matrices, together with trace levels of the IN-N5M09 metabolite in oil. Residues of the other metabolites (IN-N7B69, IN-MYX98, IN-MLA84, IN-N5M09 IN-K7H19, IN-F6L99 and IN-JCZ38) were not detected in any samples.

ORANGE	Matrix	Cyantraniliprole	IN-J9Z38	Total		Other metabolites
Study ID		mg/kg	mg/kg	mg/kg	PF	(mg/kg)
DP-27554	oranges	0.13	ND	0.13		
Trial 8	juice	< 0.01	ND	< 0.01	0.08	
	wet pulp	0.05	< 0.01	0.06	0.46	
	dry pulp	0.11	0.01	0.12	0.92	
	meal	0.1	< 0.01	0.11	0.85	
	molasses	ND	0.09	0.09	0.69	
	marmalade	< 0.01	< 0.01	< 0.02	< 0.15	
	oil	0.81	0.25	1.1	8.5	M6=< 0.01
	canned	ND	ND	ND	< 0.02	
DP-27554	oranges	0.09	ND	0.09		
Trial 25	juice	ND	ND	ND	< 0.03	
	wet pulp	0.02	ND	0.02	0.22	
	dry pulp	0.02	< 0.01	< 0.03	< 0.33	
	meal	0.02	ND	0.02	0.22	
	molasses	ND	0.03	0.03	0.33	
	marmalade	ND	ND	ND	< 0.03	
	oil	0.21	0.048	0.26	2.9	
	canned	ND	ND	ND	< 0.03	
DP-27554	oranges	0.17	ND	0.17		
Trial 26	juice	ND	ND	ND	< 0.02	
	wet pulp	0.04	ND	0.04	0.24	
	dry pulp	0.07	0.01	0.08	0.47	
	meal	0.07	0.01	0.08	0.47	
	molasses	ND	0.1	0.1	0.59	
	marmalade	ND	< 0.01	< 0.01	< 0.06	
	oil	1.4	0.08	1.5	8.8	
	canned	< 0.01	ND	< 0.01	< 0.06	

Table 156 Residues in fresh and processed oranges from supervised trials in North America involving three foliar applications of cyantraniliprole (OD formulation)

M6: Residues of metabolite IN-N5M09

For calculation purposes, where the residue in the processed commodity was reported as ND (< LOD), a value of 0.003 mg/kg was used and where residues were above the LOD but below the LOQ, a value of 0.01 mg/kg was used. In both cases, the PF was expressed as "less than" (e.g. < 0.01). Where residues of IN-J9Z38 are below the LOQ in the RAC, a value of 0.01 has been used to calculate 'total' residues.

Apples

In three field trials on <u>apples</u> conducted in North America and reported by Thiel, 2010 [Ref: DP-27438], plots were treated 7 days apart with three late season foliar applications of 0.15 kg ai/ha cyantraniliprole (SE formulation) with added surfactant and bulk samples of fruit were harvested 3 day after the last application for processing.

Samples were shipped under ambient conditions to the processing facility where samples were processed to washed apples, puree, canned apples, frozen apples, juice, wet pomace, dry pomace, and sauce.

To produce juice, fresh apples were ground in a hammer-mill and the wet mash was pressed to 2200–3000 psi for at least 5 minutes to extract the juice, leaving the wet pomace. A representative sample of the wet pomace was also dried for 1–4 hours using hot air at 60–88 °C, to achieve a moisture content of 10% or less.

Apple sauce was prepared from peeled, cored and diced apples by heating in a kettle with added water (approximately 25% by weight) at about 70 °C for 45 minutes and mashing to produce puree. Further heating at 82–93 °C for 6–10 hours allowed excess moisture to evaporate, producing

apple sauce. Apple slices were also prepared from peeled, cored and sliced (6-7 mm) fruit by heating to about 70 °C for 20 minutes, resulting in cooked slices in syrup.

Peeled and cored apples were also cut into sliced to 3 mm slices and dehydrated at 65-70 °C for 20–24 hours to achieve a moisture content of about 10%.

Fruit and processed fractions were stored at -20 °C for up to 8 months before analysis (within 11 weeks of extraction) for cyantraniliprole and eight metabolites using LC/MS/MS method DP-15736. The reported LOQ in all matrices was 0.01 mg/kg and average concurrent recoveries were 91–101% (cyantraniliprole) and 81–109% (metabolites) in samples spiked with 0.01, 0.1 and 1.0 mg/kg.

Cyantraniliprole was the predominant residue in processed apple products, with residues concentrating in the dry pomace. Significant residues of the IN-J9Z38 metabolite were present in sauce and to a lesser extent in dry pomace. Residues of IN-N5M09 and IN-F6L99 were also found at levels up to 0.07 mg/kg in sauce. Residues of the other metabolites (IN-N7B69, IN-MYX98, IN-MLA84, IN-K7H19 and IN-JCZ38) were not detected in any samples.

Table 157 Residues in fresh and processed apples from supervised trials in the USA involving foliar applications of cyantraniliprole (SE formulation)

APPLE	Matrix	Cyantraniliprole	IN-J9Z38	Tota	1	Other metabol	ites (mg/kg)
Study ID		mg/kg	mg/kg	mg/kg	PF	M6	M7
DP-27438	fruit	0.08	ND	0.08		ND	ND
Trial 3	washed	0.05	ND	0.05	0.63	ND	ND
	puree	0.08	ND	0.08	1.0	ND	ND
	canned	0.01	ND	0.01	0.13	ND	ND
	frozen	0.12	ND	0.12	1.5	ND	ND
	juice	0.03	ND	0.03	0.38	ND	ND
	wet pomace	0.08	ND	0.08	1.0	ND	ND
	dry pomace	0.3	< 0.01	0.31	3.9	ND	ND
	sauce	0.13	0.06	0.19	2.4	0.014	< 0.01
DP-27438	fruit	0.26	ND	0.26		ND	ND
Trial 10	washed	0.15	ND	0.15	0.58	ND	ND
	puree	0.23	ND	0.23	0.88	ND	ND
	canned	0.01	ND	0.01	0.04	ND	ND
	frozen	0.25	ND	0.25	0.96	ND	ND
	juice	0.05	ND	0.05	0.19	ND	ND
	wet pomace	0.31	ND	0.31	1.2	ND	ND
	dry pomace	0.68	0.02	0.7	2.7	ND	ND
	sauce	0.21	0.35	0.56	2.2	0.053	0.04
DP-27438	fruit	0.26	ND	0.26		ND	ND
Trial 14	washed	0.12	ND	0.12	0.46	ND	ND
	puree	0.34	ND	0.34	1.3	ND	ND
	canned	0.03	< 0.01	0.04	0.15	ND	ND
	frozen	0.16	ND	0.16	0.62	ND	ND
	juice	0.08	ND	0.08	0.31	ND	ND
	wet pomace	0.2	ND	0.2	0.77	ND	ND
	dry pomace	0.52	0.01	0.53	2.0	ND	ND
	sauce	0.36	0.35	0.71	2.7	0.07	0.036

M6: Residues of metabolite IN-N5M09

M7: Residues of metabolite IN-F6L99

For calculation purposes, where the residue in the processed commodity was reported as ND (< LOD), a value of 0.003 mg/kg was used and where residues were above the LOD but below the LOQ, a value of 0.01 mg/kg was used. In both cases, the PF was expressed as "less than" (e.g. < 0.01). Where residues of IN-J9Z38 are below the LOQ in the RAC, a value of 0.01 has been used to calculate 'total' residues.

Plums

In three field trials on <u>plums</u> conducted in North America and reported by Thiel, 2010 [Ref: DP-27437], plots were treated 7 days apart with three late season foliar applications of 0.15 kg ai/ha cyantraniliprole (SE formulation) with added surfactant and bulk samples of fruit were taken 3 day after the last application for processing.

Samples were shipped under ambient conditions to the processing facility where the plums were stored for up to three days at about 6 °C before processing. The plums were sliced in half, the stones were removed and the pitted plums, on dehydrator trays, were dried at $130^{\circ}-150$ °C for about 14 to 18 hours to produce dried prunes, with a moisture content of 15-18%.

Plums and dried prunes were stored at -20 °C for up to 9 months before analysis (within 15 weeks of extraction) for cyantraniliprole and eight metabolites using LC/MS/MS method DP-15736. The reported LOQ in all matrices was 0.01 mg/kg and average concurrent recoveries were 101–104% (cyantraniliprole) and 92–109% (metabolites) in samples spiked with 0.01, 0.1, 0.2 and 0.5 mg/kg.

Cyantraniliprole was the predominant residue in dried prunes, found a levels up to twice those in plums (without stones). Residues of the IN-J9Z38 metabolite were also found in the dried prunes, with IN-N5M09 and IN-F6L99 also found at levels up to 0.01 mg/kg. Residues of the other metabolites (IN-N7B69, IN-MYX98, IN-MLA84, IN-K7H19 and IN-JCZ38) were not detected in any samples.

Table 158 Residues in plums and dried prunes from supervised trials in North America involving foliar applications of cyantraniliprole (SE formulation)

PLUM	Matrix	Cyantraniliprole	IN-J9Z38	Total		Other metabolites (mg/kg)	
Study ID		mg/kg	mg/kg	mg/kg	PF	M6	M7
DP-27437	plum flesh	<u>0.18</u>	ND	0.18		ND	ND
Trial 14	dried prunes	0.35	0.01	0.36	2.0	ND	ND
DP-27437	plum flesh	0.24	< 0.01	0.25		ND	ND
Trial 16	dried prunes	0.37	0.04	0.41	1.6	< 0.01	< 0.01
DP-27437	plum flesh	0.04	ND	0.04		ND	ND
Trial 20	dried prunes	0.05	ND	0.05	1.3	ND	ND

M6: Residues of metabolite IN-N5M09

M7: Residues of metabolite IN-F6L99

For calculation purposes, where the residue in the processed commodity was reported as ND (< LOD), a value of 0.003 mg/kg was used and where residues were above the LOD but below the LOQ, a value of 0.01 mg/kg was used. In both cases, the PF was expressed as "less than" (e.g. < 0.01). Where residues of IN-J9Z38 are below the LOQ in the RAC, a value of 0.01 has been used to calculate 'total' residues.

Cotton seed

In three field trials on <u>cotton</u> conducted in North America and reported by Thiel, 2010 [Ref: DP-27565], plots were treated 7 days apart with three late season foliar applications of 0.75 kg ai/ha cyantraniliprole (OD formulation) with added surfactant and bulk samples of cotton seed were taken 7 day after the last application for processing.

Ginned cotton seed samples were saw-delinted to remove most of the remaining lint, the hulls were cracked using a roller mill and screened (4–5 mm mesh) to separate out the kernels. After adjusting the kernel moisture content to 12–13.5%, the kernel material was heated to 80–90 °C for 30 minutes, flaked in a roller mill and steam extruded (93–121 °C) to form collets (pellets) which were then dried for 30–40 minutes at 66–82 °C prior to solvent extraction.

Flakes and collets were soaked in hexane at 49–60 °C for 30 minutes (1st cycle) and then 15 minutes each (2nd and 3rd cycles) with the miscella (crude oil and hexane) from each cycle being drained off and combined with the residual hexane from the final extraction (at about 95 °C). The combined miscella was passed through a vacuum evaporator (91–96 °C) to remove the hexane, leaving the raw oil solvent extract. This crude oil was refined by mixing with sodium hydroxide (16 °

Baume) in a water bath, first at 20–24 °C then at 63–67 °C before centrifuging to separate the oil from the soapstock.

Samples of delinted seed were also cold-pressed using a Komet expeller and the crude oil obtained by mechanical pressing was filtered and alkali-refined to produce refined cold-pressed oil.

Samples were shipped under frozen conditions to the processing facility where they were processed to cottonseed raw oil, cottonseed refined oil, cottonseed meal, cottonseed hull, cottonseed raw oil (cold press), cottonseed refined oil (cold press), and cottonseed meal (cold press).

The processing samples were stored at -20 °C for up to 8 months before analysis (within 13 weeks of extraction) for cyantraniliprole and eight metabolites using LC/MS/MS method DP-15736. The reported LOQ in all matrices was 0.01 mg/kg and average concurrent recoveries were 75–114% (cyantraniliprole) and 65–120% (metabolites) in samples spiked with 0.01–1.0 mg/kg.

Cyantraniliprole was the predominant residue in the processed fractions, with residues of the IN-J9Z38 metabolite also present in most oil fractions. Residues of the other metabolites (IN-N7B69, IN-MYX98, IN-MLA84, IN-N5M09, IN-F6L99, IN-K7H19 and IN-JCZ38) were not detected in any samples.

Table 159 Residues in raw and processed cotton seed from supervised trials in the USA involving three foliar applications of cyantraniliprole (OD formulation)

COTTON SEED	Matrix	Cyantraniliprole	IN-J9Z38	Т	otal	Other metabo	olites (mg/kg)
Study ID		mg/kg	mg/kg	mg/kg	PF	M6	M7
DP-27565	cottonseed	0.52	< 0.01	0.53		ND	ND
Trial 4	raw oil (solvent extr)	0.02	< 0.01	0.03	0.06	ND	ND
	refined oil (solvent extr)	ND	0.02	0.02	0.04		
	meal (solvent extr)	0.05	ND	0.05	0.09		
	hulls	0.17	< 0.01	0.18	0.34		
	raw oil (cold press)	0.16	ND	0.16	0.3		
	refined oil (cold press)	ND	0.02	0.02	0.04		
	meal (cold press)	0.06	ND	0.06	0.11		
DP-27565	cottonseed	0.71	0.02	0.73		ND	ND
Trial 10	raw oil (solvent extr)	0.017	0.016	0.03	0.04	< 0.01	< 0.01
	refined oil (solvent extr)	ND	0.02	0.02	0.03		
	meal (solvent extr)	0.01	< 0.01	< 0.02	< 0.03		
	hulls	0.25	0.02	0.27	0.37		
DP-27565	cottonseed	1.6	0.01	1.6		ND	ND
Trial 13	raw oil (solvent extr)	0.05	0.07	0.12	0.08	ND	ND
	refined oil (solvent extr)	ND	0.08	0.08	0.05		
	meal (solvent extr)	0.06	0.02	0.08	0.05		
	hulls	0.42	< 0.01	< 0.43	< 0.27		
	raw oil (cold press)	0.34	< 0.01	< 0.34	< 0.21		
	refined oil (cold press)	ND	0.07	0.07	0.04		
	meal (cold press)	0.11	ND	0.11	0.07		

M6: Residues of metabolite IN-N5M09

M7: Residues of metabolite IN-F6L99

For calculation purposes, where the residue in the processed commodity was reported as ND (< LOD), a value of 0.003 mg/kg was used and where residues were above the LOD but below the LOQ, a value of 0.01 mg/kg was used. In both cases, the PF was expressed as "less than" (e.g. < 0.01). Where residues of IN-J9Z38 are below the LOQ in the RAC, a value of 0.01 has been used to calculate 'total' residues.

Olives

In three field trials on <u>olives</u> conducted in Europe and reported by Haigh & Cairns, 2011[Ref: DP-27709], plots were treated about 10 days apart with two late season foliar applications of 5 g ai/hL (0.15 kg ai/ha) cyantraniliprole (OD formulation) without added surfactant and bulk samples of olives were taken 14 day after the last application for processing.

Samples were shipped under ambient conditions to the processing facility within 1 day of sampling and were immediately processed to canned olives, raw and refined oil. The fresh whole olives were washed by immersion, drained and placed in a brine solution (220 g salt/2 L/kg olives) and allowed to soak for 30 days at room temperature and stirred daily before being stored for 60 days at 5-10 °C. The olives in brine were then canned (500 g olives with 250 g brine) and sterilised for 10 minutes at 115-120 °C.

For oil production, the fresh olives were hammer-milled and the resulting pulp was mixed and heated for about 30 minutes in a thermo-malaxer with the addition of boiling water and centrifuged to separate the oil/margines/water from the solid cake. The liquid phase was left to settle and the floating oil was decanted, with one portion being filtered to produce raw (virgin) oil and the other portion used to obtain refined oil.

The raw (unfiltered) oil was mixed with 115 g/L soda, heated in an oven at 60-70 °C for at least 30 minutes and the oil decanted from the sediment (soap) and filtered to give refined oil.

The processed samples were stored at -20 °C for up to 5 months before analysis (within 1 week of extraction) for cyantraniliprole and six metabolites using LC/MS/MS method DP-15736. The reported LOQ in all matrices was 0.01 mg/kg and average concurrent recoveries were 84–103% (cyantraniliprole) and 87–107% (metabolites) in samples spiked with 0.01–1.0 mg/kg.

Cyantraniliprole was the predominant residue in the processed fractions, with levels concentrating in oil. Residues of the IN-J9Z38 metabolite were also measured in canned olives and trace residues (< 0.01 mg/kg) of IN-N5M09 and IN-F6L99 were also detected in canned olives and IN-MYX98 and IN-JCZ38 in oil. Residues of the other metabolites (IN-N7B69, IN-MLA84 and IN-K7H19 were not detected in any samples.

OLIVE	Matrix	Cyantraniliprole	IN-J9Z38	Tot	al	Oth	ner metabo	olites (mg/	′kg)
Study ID		mg/kg	mg/kg	mg/kg	PF	M2	M5	M6	M7
DP-27709	whole fruit	0.55	ND	<u>0.55</u>		ND	ND		
Trial 7	canned fruit	0.22	0.12	0.34	0.62	ND	ND	< 0.01	< 0.01
	olive flesh	0.93	< 0.01	0.94	1.7	ND	ND		
	canned flesh	0.34	0.18	0.52	0.95	ND	ND	< 0.01	< 0.01
	raw oil	0.92	< 0.01	0.93	1.7	ND	ND	ND	ND
	refined oil	0.69	< 0.01	0.7	1.3	ND	ND	ND	ND
DP-27709	whole fruit	0.26	ND	0.26		ND	ND		
Trial 9	canned fruit	0.1	0.05	0.15	0.58	ND	ND	ND	ND
	olive flesh	0.45	< 0.01	0.46	1.8	ND	ND		
	canned flesh	0.16	0.09	0.25	0.96	ND	ND	ND	ND
	raw oil	0.31	0.01	0.32	1.2	ND	ND	ND	ND
	refined oil	0.17	0.04	0.21	0.81	ND	ND	ND	ND

Table 160 Residues in processed olives and olive oil from supervised trials in Europe involving foliar applications of cyantraniliprole (SE formulation)

OLIVE	Matrix	Cyantraniliprole	IN-J9Z38	Tot	al	Oth	ner metabo	olites (mg/	'kg)
Study ID		mg/kg	mg/kg	mg/kg	PF	M2	M5	M6	M7
DP-27709	whole fruit	0.29	< 0.01	0.3		ND	ND		
Trial 10	canned fruit	0.04	0.02	0.06	0.2	ND	ND	ND	ND
	olive flesh	0.45	< 0.01	0.46	1.5	ND	ND	< 0.01	
	canned flesh	0.14	0.07	0.21	0.7	ND	ND	< 0.01	ND
	raw oil	0.16	0.02	0.18	0.6	ND	ND	ND	ND
	refined oil	0.06	0.06	0.12	0.4	< 0.01	< 0.01	ND	ND

M2: Residues of metabolite IN-MYX98 M5: Residues of metabolite IN-JCZ38

M6: Residues of metabolite IN-N5M09

M7: Residues of metabolite IN-F6L99

For calculation purposes, where the residue in the processed commodity was reported as ND (< LOD), a value of 0.003 mg/kg was used and where residues were above the LOD but below the LOQ, a value of 0.01 mg/kg was used. In both cases, the PF was expressed as "less than" (e.g. < 0.01). Where residues of IN-J9Z38 are below the LOQ in the RAC, a value of 0.01 has been used to calculate 'total' residues.

Grapes

In three field trials on wine grapes conducted in Europe and reported by Aitken, 2011 [Ref: DP-27718], plots were treated about 14 days apart with two late season foliar applications of 0.15 kg ai/ha) cyantraniliprole (OD formulation) by either high volume (1500 L/ha) or concentrate (300 L/ha) applications without added surfactant and bulk samples of grapes were taken 14 days after the last application for processing.

Samples were shipped under ambient conditions to the processing facility where samples were processed to stems, must, must deposit, wet pomace, lees, dry pomace, alcoholic fermentation (AF) Wine, malolactic fermentation (MF) Wine, bottled wine, grape juice and raisins.

For wine, grape samples were crushed and stemmed with an electric crusher/stemmer and sub samples taken for storage and analysis. For red wine, potassium metabisulphite (0.06-0.08 g/L) was added to the crushed grapes (must) and dry active yeast (0.1 g/L) added to initiate alcoholic fermentation. For white wine, potassium metabisulphite (0.12 g/L) and pectolytic enzymes were added to the must, which was then allowed to settle for 24 hours, decanted and the yeast was added to initiate alcoholic fermentation. The remaining wet pomace was sub-sampled for subsequent analysis and the wet pomace was also oven-dried at about 60 °C for two days to produce dry pomace.

At the end of the fermentation period, when the wine density had stabilised, the red wine was decanted and the solids were pressed to extract the remaining wine from the wet pomace. The wet pomace and the 'alcoholic fermentation' wine (AF wine) were sub-sampled for subsequent analysis and the wet pomace was also oven-dried at about 60 $^{\circ}$ C for two days to produce dry pomace. The white wine was separated from the lees and de-acidified by the addition of potassium bicarbonate.

Both the red and white 'AF wine' was then subjected to malolactic fermentation in the absence of air at ambient temperature by the addition of lactic bacteria and on completion, potassium metabisulphite was added. After settling for 4 days, the 'after malolactic fermentation' wine (MF wine) was separated from the lees and the wine was further clarified by the addition of gelatine (0.1 g/L) and potassium metabisulphite (0.04 g/L). After cool storage, the wine was racked and pressure-filtered (cellulose filter plate-2.5 µm pore) under nitrogen and 0.1 g/L potassium metabisulphite added to protect against oxidation.

Grape juice was prepared from the fresh grape samples by removing the stems and manually crushing the berries. After the addition of pectolytic enzymes, the crush was heated to 50 °C, put in jars and sterilised for 2 hours at 45-60 °C before being water-pressed to separate the juice and pomace. The juice was then clarified (5 minutes at about 80 °C), cool stored, racked and pressurefiltered under nitrogen and pasteurised for 1 minute at +85 °C.

Raisins were produced by oven-drying the bunch samples at 60 °C until the weight of the dried grapes was less than 35% of the initial weight and the stems were then removed by hand.

The processed samples were stored at -18 °C for up to 21 months before analysis (within 5 days of extraction) for cyantraniliprole and six metabolites using LC/MS/MS method DP-15736. The reported LOQ in all matrices was 0.01 mg/kg and average concurrent recoveries were 72–111% (cyantraniliprole) and 71–111% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg.

Cyantraniliprole was the predominant residue in the processed fractions, with levels concentrating in the pomace and in raisins. Residues of the IN-J9Z38 metabolite were also measured in dry pomace, lees and juice, with trace levels (< 0.01 mg/kg) also found in wine and raisins. Low levels of IN-N5M09, IN-MYX98 and IN-F6L99 were also detected in pomace and juice. Residues of the other metabolites (IN-N7B69, IN-MLA84, IN-JCZ38 and IN-K7H19 were not detected in any samples.

GRAPE Study ID	Matrix	Cyantraniliprole	IN-J9Z38	Tota	1	Other r	netabolites (mg/kg)
		mg/kg	mg/kg	mg/kg	PF	M2	M6	M7
DP-27718	bunches	<u>0.56</u>	ND	0.56		ND		
Trial 6	grapes	0.16	ND	0.16	0.29	ND		
	stems	0.69	ND	0.69	1.2	< 0.01	ND	ND
red wine	must	0.44	ND	0.44	0.79	ND	ND	ND
	wet pomace	0.77	ND	0.77	1.4	ND	< 0.01	ND
	lees	0.32	0.02	0.34	0.61	ND	ND	ND
	dry pomace	1.4	0.1	1.5	2.7	< 0.01	0.02	ND
	AF wine	0.3	ND	0.3	0.54	ND	ND	ND
	MF wine	0.28	< 0.01	0.29	0.52	ND	ND	ND
	bottled wine	0.27	< 0.01	0.28	0.5	ND	ND	ND
	juice	0.25	0.02	0.27	0.48	ND	< 0.01	< 0.01
	raisins	0.26	< 0.01	0.27	0.48	ND		
DP-27718	bunches	<u>0.21</u>	ND	0.21		ND		
Trial 7	grapes	0.12	ND	0.12	0.57	ND		
	stems	0.48	ND	0.48	2.3	< 0.01		
red wine	must	0.32	ND	0.32	1.5	ND	ND	ND
	wet pomace	0.8	0.02	0.82	3.9	< 0.01	ND	ND
	lees	0.38	0.02	0.4	1.9	ND	ND	ND
	dry pomace	0.73	0.05	0.78	3.7	ND	< 0.01	ND
	AF wine	0.24	ND	0.24	1.1	ND	ND	ND
	MF wine	0.23	< 0.01	0.24	1.1	ND	ND	ND
	bottled wine	0.24	< 0.01	0.25	1.2	ND	ND	ND
	juice	0.1	0.01	0.11	0.52	ND	ND	ND
	raisins	0.1	< 0.01	0.11	0.52	ND		

Table 161 Residues in grapes and processed fractions from supervised trials in Europe involving foliar applications of cyantraniliprole (SE formulation)

GRAPE	Matrix	Cyantraniliprole	IN-J9Z38	Tota	1	Other r	netabolites ((mg/kg)
Study ID								
		mg/kg	mg/kg	mg/kg	PF	M2	M6	M7
DP-27718	bunches	0.07	ND	0.07		ND		
Trial 8	grapes	0.11	ND	0.11	1.6	ND		
	stems	0.31	< 0.01	0.32	4.6	ND		
white wine	must	0.1	< 0.01	0.11	1.6	ND	ND	ND
	wet pomace	0.18	< 0.01	0.19	2.7	ND	ND	ND
	lees	0.46	ND	0.46	6.6	ND	ND	ND
	dry pomace	0.17	ND	0.17	2.4	ND	ND	ND
	AF wine	0.07	ND	0.07	1.0	ND	ND	ND
	MF wine	0.07	ND	0.07	1.0	ND	ND	ND
	bottled wine	0.07	ND	0.07	1.0	ND	ND	ND
	juice	0.09	< 0.01	0.1	1.4	ND	ND	ND
	raisins	0.15	< 0.01	0.16	2.3	ND		

M2: Residues of metabolite IN-MYX98 M6: Residues of metabolite IN-N5M09

M7: Residues of metabolite IN-F6L99

For calculation purposes, where the residue in the processed commodity was reported as ND (< LOD), a value of 0.003 mg/kg was used and where residues were above the LOD but below the LOQ, a value of 0.01 mg/kg was used. In both cases, the PF was expressed as "less than" (e.g. < 0.01). Where residues of IN-J9Z38 are below the LOQ in the RAC, a value of 0.01 has been used to calculate 'total' residues.

Tuble 102 Summary of processing fuelois for cyunitalimprote and cyunitalimprote + 11(3)22	Table 162 Summar	y of processing	g factors for c	yantraniliprole and o	cyantranilipro	le + IN-J9Z38
---	------------------	-----------------	-----------------	-----------------------	----------------	---------------

RAC	Matrix	Cyantraniliprole + IN-J9Z	38 ^a
		Calculated processing factors	PF median
Potato	tubers		
	flakes	0.1	0.1
	waste	0.1	0.1
	peeled tubers	0.1	< 0.1
	chips	0.1	0.1
	wet peel	2.3	2.3
	culls	<1.0	< 1.0
	fries	0.1	0.1
	cooking water	0.1	0.1
	unpeeled, boiled	0.1	0.1
	unpeeled mwaved	< 0.33	< 0.33
Spinach	fresh leaves		
	cooked leaves	0.81, 1.0 1.3	1.0
	water	0.06, 0.09, 0.06	0.06
Tomato	fresh		
	washed	0.15, < 0.29, 0.17	0.17
	peeled	< 0.08, 0.1, < 0.08	< 0.08
	sun-dried	3.7, 3.8, 3.0	3.7
	canned	< 0.02, < 0.05, < 0.08	< 0.05
	juice	< 0.15, 0.19, < 0.17	< 0.17
	wet pomace	1.0, 2.2, 0.75	1.0
	dry pomace	3.2, 4.0, 1.7	3.2
	paste	0.62, 0.86, 1.0	0.86
	puree	0.23, 0.43, 0.25	0.25
Orange	fruit		
	juice	0.08, < 0.03, < 0.02	< 0.03
	wet pulp	0.46, 0.22, 0.24	0.24
	dry pulp	0.92, < 0.33, 0.47	< 0.33

RAC	Matrix	Cyantraniliprole + IN-J9Z	38 ^a
		Calculated processing factors	PF median
	meal	0.85, 0.22, 0.47	0.47
l T	molasses	0.69, 0.33, 0.59	0.59
[marmalade	< 0.15, < 0.03, < 0.06	< 0.06
[oil	8.5, 2.9, 8.8	8.5
[canned	< 0.02, < 0.03, < 0.06	< 0.03
Apple	fruit		
l t	washed	0.63, 0.58, 0.46	0.58
l T	puree	1.0, 0.88, 1.3	1.0
[canned	0.13, 0.04, 0.15	0.13
l T	frozen	1.5, 0.96, 0.62	0.96
l T	juice	0.38, 0.19, 0.31	0.31
l T	wet pomace	1.0, 1.2, 0.77	1.0
[dry pomace	3.9, 2.7, 2.0	2.7
l t	sauce	2.4, 2.2, 2.7	2.2
Plum	plum flesh		
l T	dried prunes	2.0, 1.6, 1.3	1.6
Cottonseed	seed		
l T	raw oil (solvent extr)	0.06, 0.04, 0.08	0.06
l t	refined oil (solvent extr)	0.04, 0.03, 0.05	0.04
Ī	meal (solvent extr)	0.09, < 0.03, 0.05	0.05
Ī	hulls	0.34, 0.37, < 0.27	0.34
[raw oil (cold press)	0.3, < 0.21	0.25
l t	refined oil (cold press)	0.04, 0.04	0.04
[meal (cold press)	0.11, 0.07	0.09
Olive	whole fruit		
Ī	canned fruit	0.62, 0.58, 0.2	0.58
I	olive flesh	1.7, 1.8, 1.5	1.7
[canned flesh	0.95, 0.96, 0.7	0.95
Ī	raw oil	1.7, 1.2, 0.6	1.2
Ī	refined oil	1.3, 0.81, 0.4	0.81
Grape	bunches		
[grapes	0.29, 0.57, 1.6	0.57
[stems	1.2, 2.3, 4.6	2.3
Ī	must	0.79, 1.5, 1.6	1.5
Ī	wet pomace	1.4, 3.9, 2.7	2.7
[lees	0.61, 1.9, 6.6	1.9
[dry pomace	2.7, 3.7, 2.4	2.7
l T	AF wine	0.54, 1.1, 1.0	1.0
[MF wine	0.52, 1.1, 1.0	1.0
l T	bottled wine	0.5, 1.2, 1.0	1.0
l T	juice	0.48, 0.52, 1.4	0.52
	raisins	0.48, 0.52, 2.3	0.52

^a Each value represents a separate study where residues were above the LOQ in the RAC. The factor is the ratio of the combined cyantraniliprole plus IN-J9Z38 metabolite residues in the processed item divided by the residue of cyantraniliprole in the RAC.

RESIDUES IN ANIMAL COMMODITIES

Farm animal feeding studies

Dairy cow

In a <u>dairy cow feeding study</u> reported by Ward & Vance, 2011 [Ref: 27180], cyantraniliprole was administered orally in gelatine capsules to four groups of lactating Holstein cows (three cows/group) twice daily for 28 consecutive days. Dosing was made at target treatment levels of 3, 10, 30, and 100 ppm feed. Based on the average dietary intake and average dosing levels of 0.088, 0.276, 0.82 and 3.15 mg/kg body weight, the actual average dose levels were equivalent to 3.53, 11.7, 35.0, and 112 ppm feed. An additional three cows were dosed at 112 ppm feed to obtain depuration data. Body weights ranged from 457–730 kg and remained relatively constant throughout the study period.

Milk was collected twice daily and samples from afternoon sampling were combined with samples from the next morning. Milk samples from the depuration group were collected during the dosing period and up until sacrifice during the depuration phase. Except for the depuration group, cows were sacrificed within 24 hours after the last dose. One of the animals from the depuration group was sacrificed on Days 4, 10, and 15 after the last dose. Samples of liver, kidney, muscle, and fat were collected from all animals at sacrifice.

Samples were stored at about -80 °C for a maximum of 42 days. Samples were stored at about -80 °C for a maximum of 42 days before analysis, with the liver and kidney samples being extracted on the day of collection. Analysis for cyantraniliprole and seven metabolites was by HPLC/MS/MS method 18844, with an LOQ of 0.01 mg/kg for all analytes in all matrices. Average concurrent recovery rates were 75–103% (cyantraniliprole) and 71–112% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg.

Residues reached a plateau in milk after about 5 days and were concentrated in the cream fraction by a factor of approximately 1.7. Residues in skim milk were approximately 60% of those in raw milk.

Residues in milk were dose-dependant and were predominantly cyantraniliprole and IN-N7B69. In the 3 ppm dose group, the maximum average residue of cyantraniliprole was 0.03 mg/kg and for IN-N7B6, 0.028 mg/kg. In the 10 ppm dose group, residues of cyantraniliprole and IN-N7B69 were 0.11 and 0.074 mg/kg, respectively. In the 30 ppm group, residues of cyantraniliprole, IN-N7B69, IN-J9Z38, and IN-MYX98 were 0.25, 0.17, 0.01, and 0.025 mg/kg, respectively. In the 100 ppm dose group, residues of cyantraniliprole, IN-N7B69, IN-J9Z38, and IN-MYX98 were 0.71, 0.28, 0.034, and 0.085 mg/kg, respectively. Residues of all other metabolites were < LOQ.

Residues in cream were comparable on Days 14 and 21. The predominant residues in cream were cyantraniliprole, IN-N7B69, and IN-J9Z38. In the 3 ppm dose group, analytes present above the LOQ were cyantraniliprole (0.066 mg/kg), IN-N7B69 (0.021 mg/kg) and IN-J9Z38 (0.013 mg/kg).

In the 10 ppm dose group the average residues in cream were: cyantraniliprole, 0.18 mg/kg; IN-N7B69, 0.051 mg/kg; and IN-J9Z38, 0.03 mg/kg. In the 30 ppm dose group the average residues of analytes were: cyantraniliprole, 0.55 mg/kg; IN-N7B69, 0.13 mg/kg; IN-J9Z38, 0.078 mg/kg; IN-MLA84, 0.024 mg/kg; and IN-MYX98, 0.022 mg/kg. In the 100 ppm dose group the average residues were: cyantraniliprole, 1.8 mg/kg; IN-N7B69, 0.22 mg/kg; IN-J9Z38, 0.31 mg/kg; IN-MYX98, 0.073 mg/kg; and IN-MLA84, 0.04 mg/kg. All other residues were < LOQ.

Residues in skim milk were comparable on Days 14 and 21. The predominant residues in cream were cyantraniliprole and IN-N7B69. In the 3 ppm dose group the average residues of analytes present above the LOQ were: cyantraniliprole, 0.017 mg/kg and IN-N7B69, 0.02 mg/kg.

In the 10 ppm dose group the average residues in skim milk were: cyantraniliprole, 0.044 mg/kg and IN-N7B69, 0.052 mg/kg. All other residues were < LOQ. In the 30 ppm dose group the average residues were: cyantraniliprole, 0.14 mg/kg; IN-N7B69, 0.13 mg/kg; and IN-MYX98,

0.021 mg/kg. In the 100 ppm dose group the average residues were: cyantraniliprole, 0.47 mg/kg; IN-N7B69, 0.20 mg/kg; and IN-YX98, 0.059 mg/kg. All other residues were < LOQ.

In tissues, the highest residues were found in liver, followed by kidney, fat, and muscle, with cyantraniliprole being the predominant residue in all tissues and was dose dependent.

In the 3 ppm dose group, average residues of analytes present above the LOQ in liver were cyantraniliprole, 0.054 mg/kg and IN-MLA84, 0.032 mg/kg. In the 10 ppm dose group, the average residues were: cyantraniliprole, 0.15 mg/kg and IN-MLA84, 0.075 mg/kg. In the 30 ppm dose group, the average residues were: cyantraniliprole, 0.46 mg/kg; IN-MLA84, 0.22 mg/kg; and IN-N7B69, 0.042 mg/kg. In the 100 ppm dose group, average residues were: cyantraniliprole, 1.7 mg/kg; IN-MLA84, 0.41 mg/kg; IN-N7B69, 0.075 mg/kg; IN-MYX98, 0.025 mg/kg; IN-J9Z38, 0.015 mg/kg; and IN-HGW87, 0.010 mg/kg. All other residues were < LOQ.

In the 3 ppm dose group, average residues of analytes present above the LOQ in kidney were cyantraniliprole, 0.023 mg/kg and IN-N7B69, 0.012 mg/kg. In the 10 ppm dose group, the average residues were: cyantraniliprole, 0.084 mg/kg; IN-N7B69, 0.031 mg/kg; and IN-MLA84, 0.013 mg/kg. In the 30 ppm dose group, the average residues were: cyantraniliprole, 0.20 mg/kg; IN-N7B69 0.071 mg/kg; IN-MLA84, 0.041 mg/kg; and IN-MYX98, 0.034 mg/kg. In the 100 ppm dose group, average residues were: cyantraniliprole, 0.73 mg/kg; IN-MYX98, 0.14 mg/kg; IN-N7B69, 0.12 mg/kg; IN-MLA84, 0.099 mg/kg; IN-J9Z38, 0.024 mg/kg; and IN-HGW87, 0.011 mg/kg. All other residues were < LOQ.

In the 3 ppm dose group, average residues of analytes present above the LOQ in fat were: cyantraniliprole, 0.014 mg/kg and IN-J9Z38, 0.010 mg/kg. In the 10 ppm dose group, the average residues were: cyantraniliprole, 0.042 mg/kg and IN-J9Z38, 0.023 mg/kg. In the 30 ppm dose group, the average residues were: cyantraniliprole, 0.12 mg/kg; IN-J9Z38, 0.082 mg/kg; and IN-N7B69, 0.01 mg/kg. In the 100 ppm dose group, the average residues were: cyantraniliprole, 0.51 mg/kg; IN-J9Z38, 0.38 mg/kg; and IN-N7B69, 0.02 mg/kg. All other residues were < LOQ.

In the 3 ppm dose group, there were no residues present in muscle above the LOQ. In the 10 ppm dose group, only cyantraniliprole was present above the LOQ (0.026 mg/kg). In the 30 ppm dose group, the average residues were: cyantraniliprole, 0.071 mg/kg and IN-J9Z38, 0.01 mg/kg. In the 100 ppm dose group, the average residues were: cyantraniliprole, 0.28 mg/kg and IN-J9Z38, 0.027 mg/kg. All other residues were < LOQ.

Following cessation of dosing residues declined rapidly. All residues were < LOQ in milk, liver and kidney within 10 days after the last dose, in muscle within 4 days, and in fat within 15 days of the last dose.

Matrix	Analyte		A	Average res	sidues of cy	antranilipı	role and met	abolites		
			(1	alues in m	ilk represen	t the high	est single da	y value)		
		3 pj	om ^a	10 p	opm ^a	30	ppm ^a	10	0 ppm ^a	
					Mean re	esidue (mg	g/kg)	•		
Milk	Cyantraniliprole	0.	03	0.	.11	0).25		0.71	
	IN-HGW87	0.0	001	0.	001	0.	.004	(0.007	
	IN-J9Z38	0.0	003	0.	004	0.010		(0.034	
	IN-JCZ38	0.0004		0.0004		0.	0008	(0.001	
	IN-K7H19	N	D	N	1D	1	ND	(0.001	
	IN-MLA84	0.0	004	0.	005	0.	.006	(0.007	
	IN-MYX98	0.003		0.009		0.025		(0.085	
	IN-N7B69	0.0	028	0.	074	0	0.17		0.28	
	Study day	14	21	14	21	14	21	14	21	
Cream	Cyantraniliprole	0.072	0.059	0.2	0.15	0.63	0.46	1.9	1.7	
	IN-HGW87	0.0002	0.0002	0.0007	0.0007	0.002	0.002	0.008	0.009	
	IN-J9Z38	0.014	0.011	0.032	0.027	0.085	0.066	0.37	0.31	

Table 163 Average residues of cyantraniliprole and metabolites in milk from cows dosed with cyantraniliprole for 28 days

Matrix	Analyte		ŀ	Average res	sidues of cy	antranilipı	ole and met	abolites		
			()	values in m	ilk represer	nt the high	est single da	y value)		
		3 pj	om ^a	10 p	pm ^a	30	ppm ^a	100) ppm ^a	
				Mean residue (mg/kg)						
	IN-JCZ38	ND	ND	ND	ND	ND	0.00001	ND	0.00009	
	IN-K7H19	ND	ND	ND	ND	ND	ND	ND	0.00001	
	IN-MLA84	0.004	0.004	0.009	0.009	0.026	0.021	0.039	0.041	
	IN-MYX98	0.002	0.002	0.007	0.006	0.020	0.023	0.066	0.079	
	IN-N7B69	0.019	0.022	0.048	0.053	0.12	0.14	0.19	0.25	
Skim milk	Cyantraniliprole	0.019	0.014	0.049	0.039	0.15	0.13	0.47	0.47	
	IN-HGW87	0.00009	0.00005	0.0004	0.0004	0.001	0.001	0.004	0.003	
	IN-J9Z38	ND	0.0002	0.0001	0.0004	0.001	0.002	0.005	0.008	
	IN-JCZ38	0.000007	ND	0.00002	ND	0.00003	0.00002	0.030	0.00009	
	IN-K7H19	ND	ND	ND	ND	ND	ND	ND	ND	
	IN-MLA84	0.0003	0.0002	0.0007	0.0004	0.002	0.001	0.003	0.002	
·	IN-MYX98	0.002	0.002	0.007	0.006	0.022	0.020	0.066	0.051	
	IN-N7B69	0.019	0.020	0.047	0.057	0.12	0.13	0.22	0.18	

^a Actual dose rates were 3.5 ppm, 11.7 ppm, 35 ppm and 112 ppm diet

Table 164 Residues of cyantraniliprole and metabolites in tissues from lactating cows dosed with cyantraniliprole for 28 days

Matrix	Analyte	Residues of cyantraniliprole and metabolites (mg/kg feed) in tissues								
		3 pj	pm ^a	10 p	pm ^a	30 p	pm ^a	100 p	pm ^a	
		mean	max	mean	max	mean	max	mean	max	
Muscle	Cyantraniliprole	0.008	0.011	0.026	0.037	0.071	0.092	0.28	0.33	
	IN-HGW87	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0015	0.0017	
	IN-J9Z38	0.001	0.0013	0.002	0.0026	0.010	0.018	0.027	0.043	
	IN-JCZ38	ND	ND	ND	ND	< 0.0005	0.0008	0.0008	0.0009	
	IN-K7H19	ND	ND	ND	ND	ND	ND	ND	ND	
	IN-MLA84	0.0007	0.0009	0.001	0.0014	0.002	0.0029	0.004	0.0045	
	IN-MYX98	0.001	0.0012	0.002	0.002	0.003	0.0035	0.01	0.011	
	IN-N7B69	0.001	0.0015	0.003	0.0037	0.005	0.0056	0.009	0.0095	
Liver	Cyantraniliprole	0.054	0.066	0.15	0.16	0.46	0.6	1.7	2.1	
	IN-HGW87	< 0.0005	< 0.0005	0.0006	0.0008	0.002	0.0027	0.01	0.01	
	IN-J9Z38	< 0.0005	0.0013	0.002	0.0025	0.006	0.0093	0.015	0.026	
	IN-JCZ38	< 0.0005	< 0.005	< 0.0005	0.005	0.001	0.0018	0.008	0.011	
	IN-K7H19	ND	ND	ND	ND	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
	IN-MLA84	0.032	0.043	0.075	0.099	0.22	0.29	0.41	0.57	
	IN-MYX98	0.0008	0.001	0.003	0.0034	0.007	0.0082	0.025	0.026	
	IN-N7B69	0.008	0.01	0.021	0.024	0.042	0.046	0.076	0.079	
Kidney	Cyantraniliprole	0.023	0.031	0.084	0.14	0.20	0.25	0.73	0.89	
	IN-HGW87	< 0.0005	< 0.005	0.0005	0.0006	0.002	0.0028	0.011	0.012	
	IN-J9Z38	0.0009	0.0013	0.002	0.003	0.009	0.013	0.024	0.031	
	IN-JCZ38	ND	ND	ND	ND	< 0.0005	< 0.005	0.0005	0.0007	
	IN-K7H19	ND	ND	ND	ND	ND	ND	ND	ND	
	IN-MLA84	0.007	0.011	0.013	0.017	0.041	0.044	0.099	0.13	
	IN-MYX98	0.003	0.0037	0.009	0.0094	0.034	0.039	0.14	0.15	
	IN-N7B69	0.012	0.015	0.031	0.031	0.071	0.081	0.12	0.15	
Fat	Cyantraniliprole	0.014	0.015	0.042	0.066	0.12	0.15	0.51	0.58	
	IN-HGW87	ND	ND	< 0.0005	< 0.005	< 0.0005	< 0.005	0.001	0.0014	
	IN-J9Z38	0.01	0.012	0.023	0.031	0.082	0.12	0.38	0.45	
	IN-JCZ38	ND	ND	ND	ND	< 0.0005	0.0007	ND	ND	
-	IN-K7H19	ND	ND	ND	ND	ND	ND	ND	ND	

Matrix	Analyte		Residues of cyantraniliprole and metabolites (mg/kg feed) in tissues								
		3 pj	om ^a	10 ppm ^a 30 ppm			pm ^a	100 ppm ^a			
		mean	mean max mean max mean max				mean	max			
	IN-MLA84	0.001	0.0012	0.002	0.0022	0.004	0.0051	0.008	0.0087		
	IN-MYX98	0.001	0.0012	0.002	0.0021	0.002	0.0024	0.005	0.007		
	IN-N7B69	0.002	0.0027	0.006	0.0088	0.01	0.012	0.02	0.024		

^a Actual dose rates were 3.5 ppm, 11.7 ppm, 35 ppm and 112 ppm diet

Table 165 Residue depuration of cyantraniliprole and metabolites in tissues and milk from lactating cows dosed with 100 ppm cyantraniliprole in feed for 28 days

Days after	Analyte	Mean residues	of cyantraniliprole	and metabolites	following withd	rawal of dose
last dose		Milk	Muscle	Liver	Kidney	Fat
4	cyantraniliprole	0.025	0.009	0.063	0.022	0.013
	IN-HGW87	0.0002	0.00007	ND	0.0004	0.00003
	IN-J9Z38	0.002	0.004	0.003	0.011	0.14
	IN-JCZ38	0.0004	ND	0.0002	ND	ND
	IN-K7H19	ND	ND	ND	ND	ND
	IN-MLA84	0.008	0.001	0.17	0.043	0.002
	IN-MYX98	0.004	0.001	0.001	0.004	0.001
	IN-N7B69	0.028	0.001	0.007	0.012	0.002
10	cyantraniliprole	0.002	0.0007	0.005	ND	ND
	IN-HGW87	ND	ND	ND	ND	ND
	IN-J9Z38	ND	0.0006	0.0006	0.001	0.02
	IN-JCZ38	ND	ND	ND	ND	ND
	IN-K7H19	ND	ND	ND	ND	ND
	IN-MLA84	0.00009	ND	0.006	0.0008	0.0005
	IN-MYX98	ND	ND	ND	ND	ND
	IN-N7B69	0.0009	ND	ND	ND	ND
15	cyantraniliprole	0.003	0.0007	0.007	0.004	ND
	IN-HGW87	ND	ND	ND	ND	ND
	IN-J9Z38	ND	ND	0.0005	0.0003	0.004
	IN-JCZ38	ND	ND	ND	ND	ND
	IN-K7H19	ND	ND	ND	ND	ND
	IN-MLA84	0.00009	ND	0.0003	0.0003	ND
	IN-MYX98	ND	ND	0.003	ND	ND
	IN-N7B69	0.002	ND	ND	0.00006	ND

Poultry

In a <u>poultry feeding study</u> reported by Roberts & Ward, 2011 [Ref: DP-27181], cyantraniliprole was administered orally in gelatine capsules to three groups of hens (3 or 4 hens/sub-group with three groups/treatment) daily for 28 consecutive days. Dosing was made at treatment levels of 3, 10, and 30 ppm feed based on the animal diet on a dry weight basis, equivalent to 0.24, 0.86, and 2.34 mg/kg body weight. An additional group (three sub-groups) was dosed at 30 ppm feed (2.37 mg/kg body weight) to obtain depuration data. Body weights ranged from 1.3–1.96 kg and remained relatively constant throughout the study period.

Eggs were collected twice daily and samples from afternoon sampling were combined with samples from the next morning. Eggs from the depuration group were collected during the dosing period and up until sacrifice during the depuration phase. Except for the depuration group, hens were sacrificed within 6 hours after the last dose. Animals from the relevant sub-group from the depuration group were sacrificed on Days 5, 9, and 14 after the last dose. Samples of liver, muscle, and skin with

fat were collected from all animals at sacrifice and were pooled in approximately equal quantities according to sub-group.

Samples were stored at about -80 °C for a maximum of 97 days before analysis, with the liver samples being extracted on the day of collection. Analysis for cyantraniliprole and seven metabolites was by HPLC/MS/MS method 18844, with an LOQ of 0.01 mg/kg for all analytes in all matrices. Average concurrent recovery rates were 95–125% (cyantraniliprole) and 67–126% (metabolites) in samples spiked with 0.01 and 0.1 mg/kg.

Residues in eggs were dose dependant and were predominantly cyantraniliprole and IN-J9Z38. In the 3 ppm dose group, the maximum average residue of cyantraniliprole was 0.08 mg/kg and for IN-J9Z38, 0.04 mg/kg. Residues of IN-MLA84 and IN-MYX98 were also found at 0.016 and 0.014 mg/kg, respectively. In the 10 mg/kg dose group, residues of cyantraniliprole and IN-N7B69 were 0.17 and 0.077 mg/kg, respectively. Residues of IN-MLA84 and IN-MYX98 also exceeded the LOQ (0.038 and 0.035 mg/kg, respectively). In the 30 mg/kg group, residues of cyantraniliprole, IN-J9Z38, IN-MLA84, IN-MYX98, and IN-HGW87 were 0.80, 0.41, 0.12, 0.10, and 0.016 mg/kg, respectively. Residues of all other metabolites were < LOQ.

The predominant residues in egg whites were cyantraniliprole (0.08 mg/kg, 0.17 mg/kg and 0.64 mg/kg) and IN-J9Z38 (0.04 mg/kg, 0.07 mg/kg and 0.27 mg/kg) in the 3 ppm, 10 ppm and 30 ppm dose groups respectively. Other metabolites present were IN-MYX98 and IN-MLA84, at levels less than 0.02 mg/kg (3 ppm dose group), less than 0.04 mg/kg (10 ppm dose group) and less than 0.1 mg/kg in the 10 ppm dose group. All other residues were < LOQ.

The predominant residues in yolks were also cyantraniliprole and IN-J9Z38. In the 3 mg/kg dose group only cyantraniliprole was present above the LOQ (0.015 mg/kg). In the 10 mg/kg dose group the average cyantraniliprole residues were 0.03 mg/kg and were 0.1 mg/kg in the 30 ppm dose group. Residues of IN-J9Z38, IN-MYX98 and IN-MLA84 were less than 0.02 mg/kg in the 10 ppm dose group and less than 0.06 mg/kg in the 30 ppm dose group. All other residues were < LOQ.

In tissues, the highest residues were found in liver with cyantraniliprole, IN-MYX98 and IN-MLA84 being the predominant residues in all tissues. Residues of cyantraniliprole were dose dependant.

In liver, the predominant residue was IN-MYX98, present at average levels of 0.03 mg/kg (3 ppm dose group), 0.07 mg/kg (10 ppm dose group) and 0.19 mg/kg (30 ppm dose group). Average cyantraniliprole residues in these dose groups were 0.017, 0.04 and 0.13 mg/kg respectively and IN-MLA84 was also found at similar levels (0.015, 0.04 and 0.1 mg/kg) in the respective dose groups. Other metabolites found in the 10 ppm and 30 ppm dose groups were IN-HGW87 (0.03 and 0.06 mg/kg respectively) and IN-N7B69 (0.013 and 0.05 mg/kg respectively). All other residues were <LOQ.

In skin with fat, no residues were found above the LOQ, with cyantraniliprole (0.033 mg/kg) and IN-MYX98 (0.015 mg/kg) reported in the 10 mg/kg dose group. In the 30 mg/kg dose group, the average cyantraniliprole residues were 0.08 mg/kg with IN-MYX98, IN-J9Z38 and IN-HGW87 found at levels less than 0.03 mg/kg. All other residues were < LOQ.

In muscle, the only residues found above the LOQ were IN-MYX98, found at 0.012 mg/kg in the 10 ppm dose group and cyantraniliprole (0.025 mg/kg), IN-MYX98 (0.014 mg/kg and IN-HGW87 (0.011 mg/kg) in the 30 ppm dose group. All other residues were < LOQ.

Following cessation of dosing residues rapidly declined, with residues in eggs, muscle and skin with fat all being below the LOQ within 5 days after the last dose. Residues in liver were also below the LOQ after 9 days depuration (first sample taken).

Matrix	Analyte	1	Average res	idues of cyantr	aniliprole and	metabolites (mg	y/kg)	
		2 1	(values 1	n eggs represe	nt the highest	single day value)	
		3 ppm dos	e group	10 ppm d	ose group	30 ppm o	dose group	
			-	Mean r	Mean residue (mg/kg)			
Eggs	cyantraniliprole	0.08	2	0.	17	0.80		
	IN-HGW87	0.0053		0.0	069	0.	016	
	IN-J9Z38	0.03	9	0.0)77	0	.41	
	IN-JCZ38	< 0.0	02	< 0.	002	< (0.002	
	IN-K7H19	< 0.0	02	N	D	1	ND	
	IN-MLA84	0.01	6	0.0	38	0	.12	
	IN-MYX98	0.01	4	0.0	35	0	.10	
	IN-N7B69	< 0.0	02	< 0.	002	0.0	0029	
Stud	dy day	14	21	14	21	14	21	
Egg whites	cyantraniliprole	0.098	0.059	0.20	0.14	0.68	0.60	
	IN-HGW87	< 0.002	0.0020	0.0037	0.0038	0.010	0.0097	
	IN-J9Z38	0.045	0.026	0.078	0.066	0.27	0.27	
	IN-JCZ38	ND	ND	ND	ND	ND	ND	
	IN-K7H19	ND	ND	ND	ND	ND	ND	
	IN-MLA84	0.015	0.015	0.034	0.033	0.092	0.093	
	IN-MYX98	0.017	0.014	0.037	0.030	0.10	0.089	
	IN-N7B69	< 0.002	0.0023	< 0.002	< 0.002	0.0038	0.0036	
Egg yolks	cyantraniliprole	0.017	0.012	0.034	0.023	0.090	0.11	
	IN-HGW87	< 0.002	< 0.002	0.0040	0.0034	0.0099	0.0081	
	IN-J9Z38	0.0081	0.0056	0.018	0.014	0.053	0.062	
	IN-JCZ38	ND	ND	ND	ND	ND	ND	
	IN-K7H19	ND	ND	ND	ND	ND	ND	
	IN-MLA84	0.0064	0.0077	0.017	0.016	0.039	0.046	
	IN-MYX98	0.0086	0.0059	0.017	0.012	0.041	0.039	
	IN-N7B69	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	

Table 166 Average	residues o	of	cyantraniliprole	and	metabolites	in	eggs	from	hems	dosed	with
cyantraniliprole for 28	8 days										

Table 167 Residues of cyantraniliprole and metabolites in poultry tissues

Matrix	Analyte	Res	sidues of cyar	ntraniliprole	and metab	olites (mg/kg	g)
		3 ppm do	se group	10 ppm do	se group	30 ppm d	ose group
		mean	max	mean	max	mean	max
Muscle	cyantraniliprole	0.0034	0.0055	0.0093	0.015	0.025	0.05
	IN-HGW87	< 0.002	< 0.002	0.0052	0.0064	0.011	0.015
	IN-J9Z38	ND	ND	ND	ND	ND	ND
	IN-JCZ38	ND	ND	ND	ND	ND	ND
	IN-K7H19	ND	ND	ND	ND	ND	ND
	IN-MLA84	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.002
	IN-MYX98	0.0041	0.0045	0.012	0.013	0.014	0.022
	IN-N7B69	< 0.002	< 0.002	< 0.002	< 0.002	0.0026	0.0037
Liver	cyantraniliprole	0.017	0.03	0.041	0.064	0.13	0.24
	IN-HGW87	0.0076	0.009	0.028	0.036	0.059	0.083
	IN-J9Z38	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.0034
	IN-JCZ38	0.0030	0.0043	0.0094	0.011	0.0060	0.0074
	IN-K7H19	ND	ND	ND	ND	ND	ND
	IN-MLA84	0.015	0.022	0.043	0.048	0.096	0.099
	IN-MYX98	0.023	0.034	0.068	0.096	0.19	0.32
	IN-N7B69	0.0067	0.012	0.013	0.017	0.045	0.072

Matrix	Analyte	Residues of cyantraniliprole and metabolites (mg/kg)							
		3 ppm do	se group	10 ppm do	se group	30 ppm dose group			
		mean	max	mean	max	mean	max		
Skin with fat	cyantraniliprole	0.0093	0.014	0.033	0.058	0.080	0.16		
	IN-HGW87	< 0.002	0.002	0.0078	0.01	0.015	0.021		
	IN-J9Z38	0.0029	0.0033	0.0064	0.0079	0.018	0.023		
	IN-JCZ38	ND	ND	ND	ND	ND	ND		
	IN-K7H19	ND	ND	ND	ND	ND	ND		
	IN-MLA84	< 0.002	< 0.002	0.0034	0.0037	0.0080	0.009		
	IN-MYX98	0.0037	0.0046	0.015	0.026	0.027	0.049		
	IN-N7B69	< 0.002	< 0.002	< 0.002	0.002	0.0030	0.005		

Table	168	Residue	depuration	of	cyantraniliprole	and	metabolites	in	eggs	from	hens	dosed	with
30 pp	m cya	antranilip	role for 28 d	lays	5								

Analyte	Residues of cyantraniliprole and metabolites in eggs following withdrawal of dose									
			Mean resid	lue (mg/kg)						
			Study day (day	s post last dose)						
	29 (1) 31 (3) 33 (5) 35 (7) 38 (10) 40 (12)									
cyantraniliprole	0.22	0.010	0.0040	< 0.002	< 0.002	< 0.002				
IN-HGW87	0.00086	0.0030	< 0.002	< 0.002	ND	ND				
IN-J9Z38	0.12	0.0065	0.0024	< 0.002	ND	ND				
IN-JCZ38	ND	ND	ND	ND	ND	ND				
IN-K7H19	ND	ND	ND	ND	ND	ND				
IN-MLA84	0.050	0.0068	< 0.002	ND	ND	ND				
IN-MYX98 0.041 0.0079 0.0033 < 0.002 < 0.002										
IN-N7B69	< 0.002	< 0.002	ND	ND	ND	ND				

Table 169 Residue depuration of cyantraniliprole and metabolites in tissues from hens dosed with 30 ppm cyantraniliprole for 28 days

Study day	Analyte	Residues of cyantraniliprole and metabolites following withdrawal of dose									
(days post last dose)		Me	ean residue (mg/kg)								
		Muscle	Liver	Skin with fat							
33 (5)	cyantraniliprole	< 0.002	-	0.0030							
	IN-HGW87	ND	-	ND							
	IN-J9Z38	ND	-	ND							
	IN-JCZ38	ND	-	ND							
	IN-K7H19	ND	-	ND							
	IN-MLA84	ND	-	< 0.002							
	IN-MYX98	ND	-	< 0.002							
	IN-N7B69	ND	-	ND							
37 (9)	cyantraniliprole	< 0.002	< 0.002	0.0057							
	IN-HGW87	ND	ND	< 0.002							
	IN-J9Z38	ND	ND	< 0.002							
	IN-JCZ38	ND	ND	ND							
	IN-K7H19	ND	ND	ND							
	IN-MLA84	ND	< 0.002	< 0.002							
	IN-MYX98	ND	ND	< 0.002							
	IN-N7B69	ND	ND	ND							
42 (14)	cyantraniliprole	< 0.002	< 0.002	0.0044							
	IN-HGW87	ND	ND	ND							
	IN-J9Z38	ND	ND	< 0.002							
	IN-JCZ38	ND	ND	ND							
Study day	Analyte	Residues of cyantraniliprole and metabolites following withdrawal of dose									
-----------------------	----------	---	---------	---------------							
(days post last dose)		Mean residue (mg/kg)									
		Muscle	Liver	Skin with fat							
	IN-K7H19	ND	ND	ND							
	IN-MLA84	ND	< 0.002	ND							
	IN-MYX98	ND	ND	ND							
	IN-N7B69	ND	ND	ND							

NATIONAL RESIDUE DEFINITIONS

Table 170 Cyantraniliprole: National residue definitions for MRL-compliance and dietary intake estimation

Country	MRL-compliance	Dietary intake estimation			
	All commodities	Plant commodities	Plant commodities	Animal commodities	
		(unprocessed)	(processed)		
Canada	cyantraniliprole	cyantraniliprole	cyantraniliprole		
			+ IN-J9Z38		
New Zealand	cyantraniliprole	cyantraniliprole	cyantraniliprole	Not established ^a	
Global Joint Review	cyantraniliprole	cyantraniliprole	cyantraniliprole	cyantraniliprole	
(proposed)			+ IN-J9Z38	+ IN-J9Z38	
				+ IN-MLA84	
				+IN-MYX98	
				+ IN-N7B69	

^a A residue definition has not yet been established as the current authorized GAPs are not expected to result in detectable residues in animal products.

APPRAISAL

Cyantraniliprole is a diamide insecticide with a mode of action (ryanodine receptor activation) similar to that of chlorantraniliprole and flubendiamide with root systemic and translaminar activity against the larval stages of lepidopteran insects; and also on thrips, aphids, and some other chewing and sucking insects.

It was scheduled by the Forty-fourth Session of the CCPR (REP12/PR) as a new compound for consideration by the 2013 JMPR. The manufacturer submitted studies on metabolism, analytical methods, supervised field trials, processing, freezer storage stability, environmental fate in soil and rotational crop residues.

Authorisations exist for the use of cyantraniliprole in Canada, Columbia, Malaysia, New Zealand, Vietnam and in a regional grouping of countries in West Africa (CLISS).

Cyantraniliprole is 3-bromo-1-(3-chloro-2-pyridyl)-4' -cyano-2' -methyl-6' - (methylcarbamoyl) pyrazole -5-carboxanilide. It is relatively insoluble in water (12 mg/L at pH 7, 6 mg/L at pH 9) and hydrolyses under alkaline conditions and at higher temperatures (above 25 °C), the major hydrolysis product being IN-J9Z38. It is not volatile (1.2×10^{-15} Pa at 20 °C), has a log P_{OW} of 1.9, its solubility in organic sovents ranges from < 1 g/L (octanol, xylene) to 5–7 g/L (methanol, dichloromethane, acetone) and is rapidly degraded by photolysis.

Cyantraniliprole (DPX-HGW86) (MW 473.7)

The following abbreviations are used for the metabolites discussed below:

Animal metabolism

The Meeting received information on the metabolism of radiolabelled cyantraniliprole, separately ¹⁴C-labelled at the 4-cyano (CN) and the pyrazole carbonyl (PC) groups, in rats, lactating goats and laying hens.

The WHO panel of the 2013 JMPR concluded that in <u>rats</u>, the majority of the dose was excreted within 24 to 48 hours, with about 1-5.5% TRR being recovered in tissues and that tissue elimination half-lives ranged from 2.6 days (fat) to about 6 days in whole blood.

The metabolic pathway was primarily through hydroxylation (to form IN-N7B69 and IN-MYX98), with IN-N7B69 being further metabolized to a glucuronide conjugate. Cyantraniliprole undergoes ring closure to generate IN-J9Z38 which is then in turn hydroxylated to form IN-NBC94, its carboxylic acid, and its glucuronide conjugate. IN-MYX98 is also metabolized to the closed-ring metabolite IN-MLA84, which, like IN-NBC94, is further oxidized to a hydroxylated metabolite, a carboxylic acid, and the glucuronide of the hydroxyl metabolite. Further, the hydroxylated metabolite IN-MYX98 can be N-dealkylated to form IN-HGW87 as well as being hydroxylated a second time to form bis-hydroxy-cyantraniliprole. Cyantraniliprole can also be hydroxylated on the pyridine ring, followed by a ring closure analogous to the conversion of cyantraniliprole to IN-J9Z38.

<u>Lactating goats</u> were orally dosed with $[CN^{-14}C]$ - or $[PC^{-14}C]$ -cyantraniliprole at doses equivalent to approximately 13 ppm in the feed for 7 consecutive days and sacrificed 23 hours after the last dose.

The majority of the administered dose was recovered in excreta (84–88% in faeces, 7% in urine). About 1–2% (0.08–0.15 mg/kg) of the applied radioactivity was retained in milk, with 0.5 mg/kg (0.3% AR) found in liver and < 0.01% AR in other tissues. Solvent extraction was able to retrieve 99% TRR from milk, 90–98% TRR from fat, 61–81% TRR from muscle and 63–79% TRR from kidney. Solvent extractable TRR in the liver were lower (54–60% TRR) but an additional 21–27% TRR were recovered following digestion of the post extracted solids (PES) with protease.

In <u>milk</u>, TRR reached a plateau of 0.09 and 0.18 mg/kg after 2–3 days in the CN and PC label studies respectively. Cyantraniliprole was the major residue component, making up 40–50% (0.03–0.07 mg/kg) of the radiochemical label. Metabolite IN-MYX98 was also present at 15–18% TRR (0.01–0.03 mg/kg). Other metabolites (except IN-N7B69 at 11% TRR in the CN-label study) were found each < 0.01 mg/kg and less than 10% TRR.

In <u>liver</u>, TRR were 0.43–0.5 mg/kg. Cyantraniliprole (0.07-0.14 mg/kg) made up about 17–23% of the TRR and in <u>kidney</u> (TRR 0.14–0.21 mg/kg) with the major residue was also cyantraniliprole, accounting for 13–19% TRR (0.02–0.04 mg/kg).

In <u>muscle</u>, TRR were 0.03–0.04 mg/kg with the significant residue being cyantraniliprole, found at about 30% TRR and 0.01 mg/kg in the CN-label study and 15% TRR, 0.006 mg/kg in the PC-label study. The IN-MYX98 metabolite also accounted for 33% TRR (0.01 mg/kg) in the PC-label study.

TRR in <u>fat</u> were 0.05 and 0.12 mg/kg in the CN-label and PC-label studies respectively, with consistent results in omental, subcutaneous and renal fat. Cyantraniliprole was the major residue, averaging 31-42% TRR (0.01–0.025 mg/kg) with the IN-J9Z38 metabolite also accounted for 24–27% TRR (0.01–0.03 mg/kg).

<u>Laying hens</u> were orally dosed with [CN-¹⁴C]- or [PC-¹⁴C]-cyantraniliprole at doses equivalent to approximately 11 ppm in the feed for 14 consecutive days and sacrificed 23 hours after the last dose.

The majority of the administered dose was excreted, with 0.4-0.5% (0.20-0.26 mg/kg) remaining in egg whites, 0.07% (0.09 mg/kg) in yolks. Radioactivity in liver (0.14-0.2 mg/kg) accounted for 0.3-0.4% of the applied dose with muscle, abdominal fat and skin with fat each containing $\leq 0.1\%$ AR (< 0.01 mg/kg).

In eggs, %TRR reached a plateau of about 0.1 mg/kg in yolks after 5–7 days. The %TRRs in egg white increased to 0.26-0.56 mg/kg over the first 2 days and decreased to a steady state of about 0.2–0.24 mg/kg after 7 days.

Solvent extraction was able to retrieve 79–99% TRR from eggs, 63–120% TRR from fat, 100% TRR from muscle and 53–72% TRR from skin with fat. Solvent extractable TRR in the liver were lower (17–23% TRR) but an additional 38% TRR were recovered following digestion of the post extracted solids (PES) with protease.

In eggs, cyantraniliprole was the major residue component, making up 33-42% TRR (0.09 mg/kg) in egg whites and 9-10% TRR (< 0.01 mg/kg) in yolks. Metabolite IN-J9Z38 made up about 17–29% TRR (0.03–0.08 mg/kg) in egg whites and 7–13% TRR (0.006–0.011 mg/kg in yolks. IN-MLA84 was also present in egg whites at about 18–19% TRR (0.04–0.05 mg/kg) and in yolks at about 12–17% TRR (0.01–0.015 mg/kg

In <u>liver</u>, TRR were 0.14–0.17 mg/kg. Cyantraniliprole was not found in any samples and while metabolites IN-JCZ38, IN-K5A78, IN-K5A79, IN-K7H19, IN-MLA84, IN-MYX98 and IN-N7B69 were identified, these were each present at <4% TRR (< 0.01 mg/kg).

In <u>muscle</u>, <u>abdominal fat</u> and <u>skin with fat</u>, no further analysis was conducted because of the low TRR (< 0.004 mg/kg) present.

In summary, the metabolism of cyantraniliprole in lactating goats (ruminant) and laying hen was consistent with that in the rat. Cyantraniliprole residues were rapidly eliminated in the excreta (94–100% of the dose) in goats and laying hens, with less than 1% of the total administered dose remaining in tissues and eggs and 1–2% found in milk). Cyantraniliprole was the predominant residue, with IN-N7B69 (milk), IN-MYX98 (muscle and milk), IN-J9Z38 (fat and eggs) and IN-MLA84 (eggs) being the principal metabolites present at more than 10% TRR or > 0.01 mg/kg.

Plant metabolism

The Meeting received plant metabolism studies on cotton, lettuce, tomato and rice seedlings following foliar and soil treatments with [¹⁴C]-cyantraniliprole. A 1:1 (μ Ci/ μ Ci ratio) mixture of [CN-¹⁴C]-cyantraniliprole and [PC-¹⁴C]-cyantraniliprole was used in the foliar treatments and separate treatments of the two radiolabels were applied as soil treatments.

Cotton

In <u>cotton</u> plants, treated three times with the equivalent of 0.15 kg ai/ha per application as <u>foliar</u> <u>sprays</u>, 7 days apart from 3 weeks after emergence, TRR in leaves immediately after the first treatment were 2.7 and 7.9 mg/kg immediately after the last application and after 13 days had

decreased to 0.43 mg/kg. At harvest (124 days after the last application), TRRs in cotton gin byproducts, lint and undelinted seed were 0.13, 0.01, and < 0.01 mg/kg, respectively.

Surface washing removed 56–70% TRR from immature leaves with a further 27–33% extracted into acidified aqueous acetone.

Cyantraniliprole was the major residue in leaves, decreasing from 70% TRR immediately after the first application to 20% TRR seven days later and accounted for 37% TRR (0.19 mg/kg) and 27% TRR (0.12 mg/kg), respectively, 7 and 13 days after the final application.

IN-NXX70, a photodegradate of IN-J9Z38, found predominately in the surface wash, accounted for 22% TRR seven days after the first application but decreased to 1% TRR in leaves sampled 7 days after the third application.

Surface washing of cotton gin by-products removed about 19% TRR (0.03 mg/kg) with a further 65% TRR (0.07 mg/kg) being extracted into acetone or with more aggressive extraction methods. Cyantraniliprole was the predominant residue, accounting for 34% TRR (0.04 mg/kg).

In plants from <u>soil treatments</u> where three applications of 0.15 kg ai/ha cyantraniliprole (SC formulation) were made to wetted soil at 7 day intervals from 7 weeks after emergence, TRRs in leaves from immature plants sampled up to 14 days after the last application were all \leq 0.005 mg/kg. At maturity, 125 days after the last application, residues in lint and undelinted seed were < 0.001 mg/kg and TRR values in cotton gin by-products were 0.1 mg/kg (CN-label) and 0.02 mg/kg (PC-label).

Cyantraniliprole was the only significant residue in gin by-products, making up 26-47% TRR (0.01–0.03 mg/kg).

Lettuce

In <u>lettuce</u> plants, treated three times with the equivalent of 0.15 kg ai/ha per application as <u>foliar</u> <u>sprays</u>, 7 days apart from 3 weeks after emergence, TRR in leaves immediately after the first treatment was 11 mg/kg, 10 mg/kg immediately after the second application and about 8 mg/kg just after the last application. Seven days after the last application. TRRs had decreased to about 2 mg/kg and were 0.43 mg/kg at maturity, 32 days after the last application. Surface residues decreased from about 91% TRR immediately after the first application and 32 days after the last application surface residues were 13% TRR.

Cyantraniliprole was the major residue in leaves, decreasing from about 98% TRR immediately after the first application to 50% TRR in mature leaves, 32 days after the last application. The IN-J9Z38 metabolite, present in mature leaves at about 23% TRR (0.01 mg/kg) was only metabolite accounting for more than 5% TRR.

In plants from <u>soil treatment</u> where three applications of 0.15 kg ai/ha cyantraniliprole (SC formulation) were made to wetted soil at 7 day intervals from 7 weeks after emergence, TRRs (CN-label) in leaves from immature plants declined from 0.14 mg/kg immediately after the first application to about 0.05 mg/kg (7 days after the 2^{nd} and 3^{rd} applications) and were about 0.01 mg/kg at maturity. TRRs following the PC-label soil treatment were ≤ 0.06 mg/kg in immature leaves and at crop maturity.

Cyantraniliprole was the major radioactive component present in leaves, up to 77–84% TRR in young leaves and 37% TRR (0.004 mg/kg) and 69% TRR (0.04 mg/kg) in mature leaves for the CN-label and PC-labels respectively.

Tomatoes

In tomato plants, treated three times with the equivalent of 0.15 kg ai/ha per application as <u>foliar</u> <u>sprays</u>, 7 days apart from 3 weeks after emergence, TRR in leaves immediately after the first treatment were 2.5 mg/kg, 8.5 mg/kg immediately after the second application and 7.6 mg/kg just after the last application. Seven days after the last application, TRRs had decreased to about

2.2 mg/kg and were 1.3 mg/kg 14 days after the last application. Residues in fruit and leaves at harvest (132 days after the last treatment were < 0.01 mg/kg. The majority of the TRR (66–85%) were found in the surface wash with 15–34% TRR present in the extract.

Cyantraniliprole was the major residue in leaves, decreasing from about 95% TRR immediately after the first application to 61% TRR seven days later and accounted for 64 and 43% TRR respectively, 7 and 14 days after the last application. In leaves taken at maturity, residues in the surface wash were < 0.01 mg/kg and 0.01 mg/kg in the tissue extracts.

Concentrations of the unresolved radioactivity corresponding to both IN-MLA84 and IN-NXX70, (mostly in the surface wash) reached 11.5% TRR 7 days after the first application, decreasing to 4.4% TRR thereafter.

In plants from <u>soil treatments</u> where three applications of 0.15 kg ai/ha cyantraniliprole (SC formulation) were made to wetted soil in pots at 7 day intervals from 7 weeks after emergence, TRRs reached a maximum of 0.03 mg/kg in immature leaves 7 days after the last application and were < 0.01 mg/kg in leaves and 0.001 mg/kg in fruit at harvest (125 days after the last application).

Cyantraniliprole was the major radioactive component in leaves 7–14 days after the last application, ranging from 22-26% TRR (< 0.01 mg/kg).

Rice

<u>Rice</u> seedlings were treated with three <u>foliar applications</u> of 0.15 kg ai/ha at the 3–4 leaf stage and 7 and 14 days later and grown under flooded conditions (pots immersed in about 3 cm water) from 2 days after the initial treatment until 2–3 days before harvest.

TRRs in foliage were 2.1 mg/kg immediately after the first application, decreasing to 0.38 mg/kg after 7 days. Seven and 14 days after the last application, TRRS in leaves were 1.6 mg/kg and 1.2 mg/kg respectively. At harvest, 140 days after the last application, TRRs in straw were 0.45 mg/kg and 0.02 mg/kg in grain. In roots, TRRs increased from 0.24 mg/kg seven days after the first application to 0.68 mg/kg seven days after the last application and were 0.45 mg/kg at harvest. In immature leaves, 7 days after the last application, the surface wash contained about 75% TRR, reducing to 47% TRR in leaves sampled 14 days after the last treatment.

Cyantraniliprole was the major residue in immature leaves, making up 76-81% TRR (about 1.0 mg/kg) in samples taken 7 and 14 days after the last application. IN-J9Z38 was the predominant metabolite found at 0.6% TRR immediately after the first application and increasing to 11% TRR 14 days after the last application.

In straw, cyantraniliprole was the major component, accounting for 24.4% TRR (0.11 mg/kg) and cyantraniliprole was also the predominant residue in grain, accounting for 21% TRR (0.005 mg/kg).

Rice seedlings were also treated with a single <u>soil application</u> of 0.3 kg ai/ha (as surfaceapplied granules) at the 3–4 leaf stage and the plants were grown under flooded conditions (pots immersed in about 3 cm water) from 2 days after the initial treatment until 2–3 days before harvest, 175 days after treatment.

TRRs in foliage increased from 0.08 mg/kg (7 days after treatment) to 0.15 mg/kg (14 days after treatment) and reached 0.4 mg/kg after 56 days. Residues in roots were about 0.3 mg/kg after 56 days and at harvest (175 days after treatment). At harvest, TRRs were 0.28–0.3 mg/kg in straw and 0.01–0.03 mg/kg in grain.

Cyantraniliprole was the major residue in leaves sampled 56 days after treatment (49–57% TRR and about 0.2 mg/kg). The IN-J9Z38 metabolite was found in these samples at 16–22% TRR (about 0.08 mg/kg).

The major residue in straw was also cyantraniliprole (42–45% TRR, 0.13 mg/kg), with IN-J9Z38 (14–18% TRR) being the only significant metabolite, found at 14–18% TRR and in grain, cyantraniliprole accounted for 46–63% TRR (0.007–0.014 mg/kg).

In summary, cyantraniliprole was the predominant residue in most crop fractions at various sampling points up to crop maturity. Metabolites identified in foliar treated samples (with the exception of the photodegradate IN-NXX70) were also found in samples from plants treated with a soil drench application, indicating that the main metabolic pathways were similar. Overall, total radioactive residues were greater following foliar treatment than following soil application. A similar profile was observed in all studies.

The metabolite IN-J9Z38 was present at levels above 10% TRR only in rice foliage and lettuce (after foliar applications) and also in rice foliage and straw after soil treatment. Where present, residues were significantly lower (10–50%) than the levels of cyantraniliprole.

The metabolism of cyantraniliprole in plants was generally consistent with those in animals, except for the minor plant photodegradation pathway leading to the formation of IN-NXX70 and IN-QKV54).

Environmental fate

The Meeting received information on the environmental fate and behaviour of cyantraniliprole, including aerobic degradation in soil, photolysis on the soil surface, field soil dissipation, hydrolytic stability, soil and water/sediment degradation and confined and field rotational crop studies. Separate treatments of [CN-¹⁴C]-cyantraniliprole and [PC-¹⁴C]-cyantraniliprole were used in the confined studies.

Hydrolysis

Hydrolysis of cyantraniliprole was pH and temperature dependant. The rate of hydrolysis was significantly higher at high pH and temperature. The half lives at 15 °C decreased from 362 days (pH 4) to 126 days (pH 7) and was about 3 days at pH 9. A similar pattern was observed at the higher temperature of 35 °C, with the respective half-lives being 55 days, 7.5 days and < 1 day at pH 9. Under environmental conditions (pH 7, 25 °C) the half-life for cyantraniliprole was 212 days.

At all pH's, the predominant hydrolysis product was the cyclisation product IN-J9Z38 which accounted for about 28% AR (pH 4), 89% AR (pH 7) and 98% AR in the pH 9 samples.

Photolysis

In aqueous solutions, cyantraniliprole is rapidly degraded by photolysis. Half-lives in natural water and pH 4 sterile buffer exposed to continuous artificial sunlight for 15 days at 25 °C were 4–5 hours, with the formation of IN-NXX69, IN-NXX70, IN-QKV54 and IN-QKV55 as photodegradates. DT_{90s} were less than 16 hours.

In moist (non-sterile) soil (75% field capacity), treated with [¹⁴C]-cyantraniliprole at the equivalent of 1 kg ai/ha parent residues decreased to about 1% AR after 30 days in the irradiated samples and to 33% AR in the non-irradiated samples. The IN-J9Z38 metabolite was the predominant residue (up to about 50% AR) with IN-RNU71 and IN-QKV54 also found at about 13–14% AR. Estimated photolysis DT_{50} and DT_{90} values for cyantraniliprole (derived from the difference in the degradation constants (k) for the irradiated and non-irraditaed samples) were 12 and 41 days respectively. Kinetic modeling suggested that nearly 34% of the cyantraniliprole in soil is degraded by photolysis and about 64% through soil degradation pathway.

Aerobic soil metabolism

Two studies were conducted in five soils (one loam soil, two silty clay loams, one silt loam and a sandy loam) with the equivalent of 0.4 kg ai/ha [CN-¹⁴C]-cyantraniliprole or [PC-¹⁴C]-cyantraniliprole. In these studies, the moist soils were incubated in the dark for up to a year at 20 °C or 22 °C.

Half-lives for cyantraniliprole were 9 days in the loam soil, 21–39 days in the silty clay loams, 44 days in the silty loam and 92 days in the sandy loam.

 DT_{50} values for the seven major transformation products (average DT_{50} values in brackets) were: IN-JCZ38 (8 days), IN-K5A79 (64 days), IN-K5A77 (132 days), IN-J9Z38 (139 days), IN-JSE76 (410 days), IN-K5A78 (423 days) and IN-PLT97 (1032 days).

Soil dissipation

Ten field studies were conducted to investigate the degradation and mobility of cyantraniliprole under field conditions. In all of the trials a single application of 0.3 kg ai/ha or 0.45 kg ai/ha was made to bare soil in late spring or early summer and cropped soils were also treated in three of these studies. Soil samples were collected to a maximum depth of 90 cm, immediately prior to application and at pre-determined intervals over an 18 month period.

Cyantraniliprole was rapidly degraded in field soils with half-lives ranging from 17 to 51 days. While laboratory studies suggested that pH had some effect on degradation rates, degradation rate under field conditions does not appear to be pH-dependent. Downward mobility of the parent compound as well as its metabolites was limited, with residues rarely found below 15 cm. Soil metabolites formed in the bare soil treatments at levels greater than 10% of the initial soil concentration were IN-J9Z38 (max 42%), IN-K5A78 (max 17%), IN-JSE76 (max 14%), IN-JCZ38 (max 13%) and IN-K5A77 (max 11%). Lower metabolite levels were observed in soil from the cropped soil treatments, predominantly IN-J9Z38 (max 27%) and IN-JCZ38 (max 13%).

The mean temperature-normalized field DT_{50} value from all studies was 32 days, consistent with the mean laboratory derived value.

Water/sediment dissipation

Under anaerobic conditions, cyantraniliprole degraded in the water phase and also partitioned to the sediment where it was further degraded and incorporated into the sediment organic fraction. The major degradate was IN-J9Z38, present in the total system at up to 23-40% AR (0.09–0.16 ppm) during the first 28 days after treatment and declining to 5-7% AR (0.02–0.03 ppm) at the end of the study period (Day 100).

The aerobic degradation of [¹⁴C]-cyantraniliprole was studied in a water/silt-loam system and a water/sand system treated with [PC-¹⁴C]-cyantraniliprole at a rate of 0.5 μ g ai/g and incubated outdoors for 14 days under natural sunlight at 23 ± 2 °C.

In the water phase, cyantraniliprole residues were 1-2% AR at the end of the 14-day study period and in the sediment phase, after reaching maximum levels of 15-22% AR after 2–3 days, residues declined to 6-9% AR on Day 14.

One significant degradate, IN-J9Z38, was found in the surface water at a maximum of about 15–27% AR after 3–5 days and declining to 4.5% AR (silt-loam system) and 12% AR (sand system) at the end of the 14-day study period. In the sediment extracts residues of IN-J9Z38 increased from about 2% AR at Day 1 to about 42% AR at Day 14.

The calculated half-lives in the water/sediment systems were 3.5–4.4 days for cyantraniliprole and 40 days for the IN-J9Z38 metabolite.

Residues in succeeding crops

In two rotational crop metabolism studies using $[PC^{-14}C]$ -cyantraniliprole or $[CN^{-14}C]$ -cyantraniliprole, wheat, soya bean, lettuce and red beet were planted as rotational crops 25–30 and 120 days after a single bare soil application of 0.3 kg ai/ha in one study and 0.45 kg ai/ha in the second study. In the second study, after 365 days aging, a further planting of wheat was made in the 30-day rotation plots.

In the first rotation crops, total radioactive residues in food items ranged from 0.02-0.06 mg/kg in wheat grain, 0.08-0.11 mg/kg in lettuce, 0.02-0.03 mg/kg in beet roots and 0.04 mg/kg in soya bean seeds. Higher residues were seen in animal feed items; wheat hay and straw (0.97-1.6 mg/kg), soya bean foliage (0.19 mg/kg) and beet foliage (0.11 mg/kg).

The metabolic fates of cyantraniliprole in the three rotational crops were similar. Cyantraniliprole was the predominant residue in wheat straw and hay (41-53% TRR, 0.4-0.85 mg/kg), wheat grain (10-36% TRR, <0.01-0.02 mg/kg), soya bean foliage (36% TRR, 0.07 mg/kg), red beet roots (21-27% TRR, <0.01 mg/kg) and lettuce (60-69% TRR, 0.05-0.08 mg/kg). No cyantraniliprole was detected in soya bean seeds and parent residues in beet foliage were 3-4% TRR.

In food commodities, IN-MYX98 was the only significant metabolite present above 10% TRR, being found in 2nd rotation (120 day) lettuce leaves at 16% TRR but < 0.01 mg/kg. In animal feed commodities, IN-J9Z38 was found in wheat hay, forage and straw at up to 13% TRR (0.18 mg/kg) and IN-K7H19 was present in wheat hay and straw at 10–11% TRR (0.04–0.06 mg/kg) in the 365 day rotation crop.

Overall, the metabolism in rotational crops was consistent with metabolism seen in primary crops and in the animal studies.

<u>Rotational crop field studies</u> were conducted in Europe and North America to estimate residue uptake in follow crops. In two European studies, where spinach, lettuce, spring barley, oats, soya bean and radish were planted into bare soil treated with 0.2 kg ai/ha or 0.45 kg ai/ha at plant-back intervals of 14, 30, 120, 270 and 365 days, with the exception of soya bean (seeds and forage) and radish tops, residues of cyantraniliprole and metabolites were not found in succeeding crops. In soya bean forage, residues of cyantraniliprole were 0.02–0.03 mg/kg and in soya bean seed, residues of the IN-N7B69 metabolite were < 0.01 mg/kg.

In five North American studies, bare soil was treated with three applications of cyantraniliprole at about 5 day intervals to achieve a total seasonal application rate of 0.45 kg ai/ha. In three of these studies, four rotational crops (lettuce/spinach, oats, radish and soya bean) were planted 14, 30, 120, and 365 days after the last application. In the other two studies, strawberries, turnip, sugar beet, garden beet, radish, carrot, bean, pea, soya bean, alfalfa, clover, field corn, sweet corn, sorghum, rice, wheat, Bermuda grass, brome grass, clover, bluegrass and peanut were planted 30 days after the last application.

Residues of cyantraniliprole and metabolites in the first rotation crops (30 day plant-back interval were below 0.05 mg/kg in commodities for human consumption (cereal grains, root crops, legumes and pulses, leafy vegetables). Higher residues were reported in animal feed commodities, up to 0.2 mg/kg in forage crops and 0.3 mg/kg in most hays and straws. Highest residues were found in soya bean hay, up to 0.63 mg/kg in one sample.

In the first rotation crops (30 day plant-back interval (PBI)), highest residues of cyantraniliprole were above 0.01 mg/kg in radish roots (0.02 mg/kg), radish and turnip tops (0.02–0.04 mg/kg), legume forages (0.02–0.14 mg/kg), legume hays (0.05–0.63 mg/kg), leafy vegetables (0.03 mg/kg), cereal forages (0.01–0.11 mg/kg), cereal hays and straws (0.07–0.21 mg/kg), forage grasses (0.01–0.09 mg/kg) and grass hays (0.02–0.23 mg/kg).

Metabolites present at more than 0.01 mg/kg were IN-J9Z38 (up to 0.03 mg/kg in cereal and legume hays and straws), IN-JZ38 (in cereal and legumes, up to 0.06 mg/kg hays and 0.03 mg/kg in forages) and IN-MLA84 (in legumes, up to 0.02 mg/kg in forage and 0.07 mg/kg in hays).

Methods of analysis

Several analytical methods have been reported for the analysis of cyantraniliprole and up to eight metabolites in plant and animal commodities. The basic approach employs extraction with acetonitrile/water and analysis by high pressure liquid chromatography with tandem mass spectrometry.

For plant and processed plant commodities, the HPLC-MS/MS method used in most of the supervised residue field trials, was validated for the analysis of cyantraniliprole and its metabolites (IN-N7B69, IN-JCZ38, IN-K7H19, IN-MYX98, IN-MLA84 and IN-J9Z38) in a range of representative matrices. The LOQ is 0.01 mg/kg for each analyte. Adequate extraction efficiencies

were demonstrated in plant matrices using radiolabelled samples from metabolism and confined rotational crop studies.

For animal commodities, the HPLC-MS/MS method was validated for the analysis of cyantraniliprole, IN-HGW87, IN-N7B69, IN-K7H19, IN-JCZ38, IN-MYX98, IN-J9Z38 and IN-MLA84 in livestock tissues, milk and eggs. After extraction with acetonitrile, extracts are partitioned against hexane before SPE clean-up and analysis. The LOQ is 0.01 mg/kg for each analyte. The method was validated by an independent laboratory using kidney, muscle, and milk. The extraction efficiency was successfully demonstrated with samples of liver, muscle, milk, egg white, and egg yolk from livestock metabolism studies.

The DFG S19 multi-residue method with LC-MS/MS analysis was validated for the analysis of cyantraniliprole residues in tomato (representing high water content), orange (high acid content), wheat grain (high starch content) and almond (high oil content), and is suitable as an enforcement method for cyantraniliprole in plant commodities. It was also validated in milk, eggs, meat and liver as being a suitable enforcement method for cyantraniliprole residues in animal commodities.

The US-FDA PAM multi-residue methods were shown to be unsuitable for the detection and enforcement of cyantraniliprole and metabolites (Protocols A through F).

Stability of pesticide residues in stored analytical samples

Freezer storage stability of cyantraniliprole and metabolites IN-F6L99, IN-J9Z38, IN-JCZ38, IN-K7H19, IN-MLA84, IN-MYX98, IN-N5M09 and IN-N7B69 was investigated in five representative commodities: apples (high-water content), grapes (high-acid content), potatoes (high-starch content), dry bean seeds (high-protein content), and peanuts (high-oil content).

Residues were shown to be stable in these representative substrates for at least 24 months in frozen storage, with residues in the stored samples being greater than 80% of the spiked levels except in peanuts (high oil content), where reduced recoveries were observed at all storage intervals for the metabolites IN-JCZ38, IN-K7H19 and IN-N7B69.

Definition of the residue

In animal commodities, the predominant residues identified in the metabolism studies were cyantraniliprole, IN-J9Z38, IN-MLA84, IN-N7B69 and IN-MYX98. Where residues were found in animal tissues in the metabolism studies or the feeding studies, cyantraniliprole was the major or a significant component. Noting that a multi-residue method was available to measure cyantraniliprole in animal commodities, the Meeting agreed that for MRL-compliance, the residue definition for animal commodities should be cyantraniliprole.

The compound cyantraniliprole has a log K_{ow} of 1.9, suggesting that it is not fat soluble, and this is supported by the residue distribution in muscle and fat reported in a cow feeding study, where the residues in fat were generally only about 2-fold higher than in muscle. The Meeting therefore concluded that cyantraniliprole is not fat soluble.

For dietary intake estimation, in addition to the parent compound, metabolites found at significant levels in the animal metabolism studies were IN-N7B69 (milk), IN-MYX98 (muscle and milk), IN-J9Z38 (fat and eggs) and IN-MLA84 (eggs). In the feeding studies, at doses that reflect the expected animal burden, these individual metabolites were also found at levels ranging from about 20% to 100% of the parent concentrations in different matrices but when combined, were generally found at levels close to those of the parent.

IN-N7B69 was found in milk at a level equivalent to parent and at about half the parent concentration in kidney. IN-J9Z38 was present in eggs at about 50% parent concentration. IN-MLA84 was found in cattle liver at about 60% of the parent concentration and in eggs at about 50% parent concentration. IN-MYX98, found in eggs at about 20% parent and in poultry liver at about 135% of parent.

These metabolites also occur in rats, are not considered more toxic than the parent compound, are adequately covered in the derived toxicological reference dose and a validated HPLC-MS/MS method is available to analyse for them.

The Meeting agreed that while not all of these metabolites would occur in all tissues; these four metabolites (IN-N7B69, IN-J9Z38, IN-MLA84 and IN-MYX98) should be included in the residue definition for dietary intake estimation for animal commodities. The Meeting considered that if animal commodities were analysed only for cyantraniliprole, a conservative correction factor of 2 could be applied for the purpose of dietary intake estimation to account for these metabolites.

In plant commodities from treated crops, the metabolism studies indicated that cyantraniliprole was the major residue in rice, lettuce, cotton and tomato. In rotational crops, where residues are present, cyantraniliprole is also the main residue in food commodities. The Meeting noted that a multi-residue method exists to measure parent residues and agreed that for MRL-compliance, the residue definition for plant commodities should be cyantraniliprole.

The only metabolite identified in the plant metabolism studies at more than 10% TRR or greater than 0.01 mg/kg in commodities at harvest was IN-J9Z38, reported in leaves from foliar-treated rice (11% TRR and 0.13 mg/kg), rice straw from rice grown in treated soil (up to 18% TRR and 0.05 mg/kg) and in foliar-treated lettuce where residues of 23% TRR (0.01 mg/kg) were measured in mature leaves from seedling plants treated up to 32 days before sampling. The Meeting noted that in the supervised field trials, residues of IN-J9Z38 were also reported in some trials, but mostly < 0.01 mg/kg and rarely found at levels more than 10% of the cyantraniliprole residue.

In rotational crops, metabolite residues in food commodities did not exceed 0.01 mg/kg, with IN-J9Z38, IN-JZ38 and IN-MLA84 only present in animal feeds (cereal and legume forage, hays and straws) at up to 0.07 mg/kg.

In processed food commodities, metabolites IN-J9Z38 and to a lesser extent IN-N5M09 and IN-F6L99 were formed under conditions of heat and/or hydrolysis. In addition to cyantraniliprole, only IN-J9Z38 was observed at significant levels, being the predominant residue in cooked spinach, cottonseed oil and present at more than 50% of the parent levels in tomato paste, apple sauce and canned olives. IN-N5M09 and IN-F6L99 were only quantifiable in a few processed food commodities (e.g., cooked spinach, apple sauce) and were much lower than the levels of the parent compound and IN-J9Z38.

The main metabolite in some processed commodities (IN-J9Z38) was also observed in the animal metabolism studies and the toxicology of IN-J9Z38 is addressed in the rat studies and covered by the derived reference dose. Sufficient toxicological information is available to confirm that the IN-J9Z38 metabolite is no more toxic than cyantraniliprole and analytical methods are available to measure this metabolite.

The Meeting concluded that for dietary intake risk assessment, the residue definition for plant commodities should be cyantraniliprole but that for processed commodities, the IN-J9Z38 should also be included.

Proposed <u>definition of the residue</u> (for compliance with the MRL, animal and plant commodities): *cyantraniliprole*.

Proposed <u>definition of the residue</u> (for estimation of dietary intake for unprocessed plant commodities): *cyantraniliprole*.

Proposed <u>definition of the residue</u> (for estimation of dietary intake for processed plant commodities): *sum of cyantraniliprole and IN-J9Z38, expressed as cyantraniliprole.*

Proposed <u>definition of the residue</u> (for estimation of dietary intake for animal commodities: sum of cyantraniliprole, 2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl]-3,4-dihydro-3,8dimethyl-4-oxo-6-quinazolinecarbonitrile [IN-J9Z38], 2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1Hpyrazol-5-yl]-1,4-dihydro-8-methyl-4-oxo-6-quinazolinecarbonitrile [IN-MLA84], 3-Bromo-1-(3chloro-2-pyridinyl)-N-[4-cyano-2-(hydroxymethyl)-6-[(methylamino)carbonyl]phenyl]-1H-pyrazole-

5-carboxamide [IN- N7B69] and 3-Bromo-1-(3-chloro-2-pyridinyl)-N-[4-cyano-2[[(hydroxymethyl)amino]carbonyl]-6-methylphenyl]-1H-pyrazole-5-carboxamide [IN- MYX98], expressed a cyantraniliprole.

The residue is not fat soluble.

Results of supervised residue trials on crops

The Meeting received supervised trial data for foliar and soil applications of cyantraniliprole on a range of fruit and vegetable crops, rice, tree nuts, oilseeds and coffee and for seed treatments (potatoes, oil-seed rape). These trials were conducted mainly in Europe and/or North America.

Where residues have been reported as ND (< LOD) the values have been considered as < LOQ (< 0.01 mg/kg) for the purposes of MRL setting. If a higher residue level was observed at a longer PHI than the GAP, the higher value has been used in MRL setting.

The Meeting noted that GAP has been authorised for the use of cyantraniliprole and that product labels were available from Canada, Columbia, New Zealand Malaysia, Vietnam and from a regional group of countries in West Africa. Supervised trial data were provided for citrus, grapes, olives, pomegranate, beans and sunflower, but no GAP information was available to support maximum residue level estimations for these commodities.

Pome fruits

The critical GAP for cyantraniliprole on pome fruit is in Canada, up to four foliar applications of 0.05-0.15 kg ai/ha applied at least 7 days apart with a PHI of 3 days and with a total of 0.45 kg ai/ha/season.

In trials on <u>apples</u> in North America matching the Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: 0.06, 0.07, 0.1, 0.12, 0.13, 0.13, 0.15, 0.15, 0.16, 0.17, 0.18, 0.21, 0.26, 0.26, 0.29 and 0.31 mg/kg (n=16).

In trials on <u>pears</u> in North America matching the Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: 0.08, 0.1, 0.12, 0.14, 0.16, 0.23, 0.42, 0.44, 0.56 and 0.58 mg/kg (n=10).

The Meeting noted that the GAP in Canada was for pome fruit and that the medians of the two data sets differed by less than 5-fold and agreed to consider a group maximum residue level. As the Mann-Whitney U-test indicated that the residue populations for apples and pears were not different it was agreed to combine the results to give a data set of: 0.06, 0.07, 0.08, 0.1, 0.1, 0.12, 0.12, 0.13, 0.13, 0.14, 0.15, 0.15, 0.16, 0.16, 0.17, 0.18, 0.21, 0.23, 0.26, 0.26, 0.29, 0.31, 0.42, 0.44, 0.56 and 0.58 mg/kg (n=26) for the pome fruit crop group.

The Meeting estimated an STMR of 0.16 mg/kg and a group maximum residue level of 0.8 mg/kg for cyantraniliprole on pome fruit.

Stone fruits

The critical GAP for cyantraniliprole on stone fruit is in Canada, up to four foliar applications of 0.05–0.15 kg ai/ha with a total of 0.45 kg ai/ha/season, applied at least 7 days apart with a PHI of 3 days.

In trials on <u>cherries</u> in North America matching the Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues in whole fruit were: 0.3, 0.32, 0.7, 0.8, 0.89, 0.9 and 3.4 mg/kg (n=7). In flesh residues were: 0.33, 0.36, 0.89, <u>0.93</u>, 0.96, 0.98 and 3.8 mg/kg (n=7).

In trials on <u>peaches</u> in North America matching the Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: 0.16, 0.18, 0.19, 0.19, 0.23, 0.24, 0.28, 0.34, 0.39, 0.45, 0.51, 0.79 and 0.81 mg/kg. In flesh, residues were: 0.19, 0.19, 0.2, 0.23, 0.25, 0.27, 0.34, 0.35, 0.42, 0.49, 0.56, 0.89 and 0.94 mg/kg (n=13).

In trials on <u>plums</u> in North America matching the Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: 0.03, 0.05, 0.06, 0.06, 0.06, 0.07, 0.12, 0.19 and 0.28 mg/kg. In flesh, residues were: 0.03, 0.05, 0.06, 0.06, <u>0.07</u>, 0.07, 0.13, 0.2 and 0.29 mg/kg (n=9).

The Meeting noted that the GAP in Canada was for stone fruit and that the medians of the data sets for cherries, peaches and plums differed more than 5-fold and agreed not to consider a group maximum residue level for stone fruit.

The Meeting estimated an STMR of 0.93 mg/kg (based on residues in flesh), and based on residues in the whole fruit, estimated a subgroup maximum residue level of 6 mg/kg for cyantraniliprole on cherries.

The Meeting estimated an STMR of 0.34 mg/kg (based on residues in flesh, and based on residues in the whole fruit, estimated a subgroup maximum residue level of 1.5 mg/kg for cyantraniliprole on peaches.

The Meeting estimated an STMR of 0.07 mg/kg (based on residues in flesh) and based on residues in the whole fruit, estimated a subgroup maximum residue level of 0.5 mg/kg for cyantraniliprole on plums.

Bush berries

The critical GAP for cyantraniliprole on bush berries is in Canada, up to four foliar applications of 0.05-0.15 kg ai/ha with a total of 0.45 kg ai/ha/season, applied at least 7 days apart with a PHI of 3 days.

In trials on <u>blueberries</u> in North America matching the Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: 0.42, 0.51, 0.52, 0.52, 0.75, 0.8, 1.5, 1.5 and 2.0 mg/kg (n=9).

The Meeting noted that blueberry can be used as a representative crop for bush berries and estimated an STMR of 0.75 mg/kg and a subgroup maximum residue level of 4.0 mg/kg for cyantraniliprole on bush berries.

Bulb vegetables

The critical GAP for cyantraniliprole on bulb vegetables is in Canada, up to four foliar applications of 0.1-0.15 kg ai/ha with a total of 0.45 kg ai/ha/season, applied at least 5 days apart with a PHI of 1 day.

In trials on <u>bulb onions</u> in North America matching the Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: < 0.01, < 0.01, < 0.01, < 0.01, 0.02, 0.02, 0.02, 0.02 and 0.03 mg/kg (n=10).

The Meeting noted that the GAP in Canada also includes use on garlic and shallot and agreed to extrapolate the data for bulb onions to these commodities.

The Meeting estimated an STMR of 0.02 mg/kg and a maximum residue level of 0.05 mg/kg for cyantraniliprole on onion, bulb, garlic and shallot.

In trials on <u>spring onions</u> (green onions) in North America matching the Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: 0.38, 0.63, <u>1.3</u>, 1.6 and 4.1 mg/kg (n=5).

The Meeting noted that the GAP in Canada also includes use Welsh onion and agreed to extrapolate the data for spring onions to onion, Welsh.

The Meeting estimated an STMR of 1.3 mg/kg and a maximum residue level of 8.0 mg/kg for cyantraniliprole on spring onion and onion, Welsh.

Brassica (cole or cabbage) vegetables

The critical GAP for cyantraniliprole on brassica vegetables is in Canada, up to four foliar applications of 0.025-0.15 kg ai/ha with a total of 0.45 kg ai/ha/season, applied at least 5–7 days apart with a PHI of 1 day.

In trials on <u>broccoli</u> in North America matching the critical Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: 0.22, 0.28, 0.51, 0.59, 0.61, 0.69, 0.82 and 1.1 mg/kg (n=8).

In trials on <u>cauliflowers</u> in North America matching the critical Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues in the flower heads were: 0.01 and 0.08 mg/kg (n=2).

In trials on <u>head cabbage</u> in North America matching the critical Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues in cabbages (with wrapper leaves) were: 0.29, 0.32, 0.32, 0.42, 0.47, 0.56, 0.57, 0.65, 0.71, 0.86 and 0.95 mg/kg (n=11).

The Meeting noted that the GAP in Canada was for brassica vegetables and that the medians of the data sets for broccoli and cabbage differed by less than 5-fold (insufficient data on cauliflower) and agreed to consider a group maximum residue level. In deciding on the data set to use for estimating a group maximum residue level, since a Mann-Whitney U-test indicated that the residue populations for broccoli and cabbage were not different, it was agreed to combine the results to give a data set of: 0.01, 0.08, 0.22, 0.28, 0.29, 0.32, 0.32, 0.42, 0.47, 0.51, <u>0.56</u>, 0.57, 0.59, 0.61, 0.65, 0.69, 0.71, 0.82, 0.86, 0.95 and 1.1 mg/kg (n=21) for brassica vegetables.

The Meeting estimated an STMR of 0.56 mg/kg and a group maximum residue level of 2.0 mg/kg for cyantraniliprole on brassica (cole or cabbage) vegetables. The Meeting also estimated a highest residue of 1.1 mg/kg for calculating animal dietary burdens.

Fruiting vegetables, Cucurbits

The critical GAP for cyantraniliprole on cucurbit vegetables is in Canada, up to four foliar applications of 0.025-0.15 kg ai/ha with a total of 0.45 kg ai/ha/season, applied at least 5–7 days apart with a PHI of 1 day.

In trials on <u>cucumber</u> in North America matching the GAP of Canada (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: 0.02, 0.02, 0.02, 0.03, 0.04, 0.05, 0.05, 0.07, 0.12 and 0.16 mg/kg (n=10).

In trials on <u>summer squash</u> in North America matching the critical Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: 0.01, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 and 0.11 mg/kg (n=9).

In trials on <u>melons</u> in North America matching the critical Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: 0.04, 0.05, 0.08, 0.09, 0.09, 0.1, 0.11, 0.15 and 0.17 mg/kg (n=9). In these trials, cyantraniliprole residues in the melon edible portion were all < 0.01 (n=9).

The Meeting noted that the GAP in Canada was for cucurbit vegetables and that the medians of the data sets for cucumber, summer squash and melons differed by less than 5-fold and agreed to consider a group maximum residue level. In deciding on the data set to use for estimating a group maximum residue level, since a Kruskal-Wallis H-test indicated that the residue populations for cucumber, summer squash and melons were not different, it was agreed to combine the results to give a data set of: 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.04, 0.04, 0.05, 0.05, 0.05, 0.05, <u>0.06, 0.07</u>, 0.07, 0.08, 0.08, 0.09, 0.09, 0.1, 0.11, 0.11, 0.12, 0.15, 0.16 and 0.17 mg/kg (n=28) for cucurbit vegetables.

The Meeting estimated an STMR of 0.01 mg/kg for cucurbits with an inedible peel (based on the melon data on residues in flesh), an STMR of 0.065 mg/kg (based on the summer squash data) for

cucurbits with an edible peel and a group maximum residue level of 0.3 mg/kg for cyantraniliprole on fruiting vegetables, Cucurbits.

Fruiting vegetables, other than Cucurbits

The critical GAP for cyantraniliprole on fruiting vegetables (except cucurbits) is in Canada, up to four foliar applications of 0.025-0.15 kg ai/ha with a total of 0.45 kg ai/ha/season, applied at least 5-7 days apart with a PHI of 1 day.

In trials on tomatoes in North America matching the critical Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: 0.04, 0.05, 0.06, 0.06, 0.07, 0.07, 0.07, 0.07, 0.07, 0.08, 0.08, 0.08, 0.09, 0.09, 0.1, 0.12, 0.14, 0.14, 0.16, 0.17 and 0.26 mg/kg (n=20).

In trials on <u>sweet peppers</u> in North America matching the critical Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: 0.03, 0.04, 0.06, 0.07, 0.07, 0.08, 0.08, 0.15, 0.21, 0.24 and 0.28 mg/kg (n=11).

In trials on <u>chilli peppers</u> (non-bell peppers) in North America matching the critical Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: 0.07, 0.07, 0.08, 0.09, <u>0.1</u>, 0.2, 0.25, 0.31 and 0.42 mg/kg (n=9).

The Meeting noted that the GAP in Canada was for fruiting vegetables (except cucurbits) and that the medians of the data sets for sweet peppers, tomatoes and chilli peppers differed by less than 5-fold and agreed to consider a group maximum residue level. In deciding on the data set to use for estimating a group maximum residue level, since a Kruskal-Wallis H-test indicated that the residue populations for sweet peppers, tomatoes and chilli peppers were not different, it was agreed to combine the results to give a data set of: 0.03, 0.04, 0.04, 0.05, 0.06, 0.06, 0.06, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.09, 0.09, 0.09, 0.1, 0.1, 0.12, 0.14, 0.14, 0.15, 0.16, 0.17, 0.2, 0.21, 0.24, 0.25, 0.26, 0.28, 0.31 and 0.42 mg/kg (n=40) for the non-cucurbit fruiting vegetables group.

The Meeting estimated an STMR of 0.08 mg/kg and a group maximum residue level of 0.5 mg/kg for cyantraniliprole on fruiting vegetables, other than Cucurbits (excluding sweet corn and mushrooms).

For dried chilli peppers, applying the default processing factor of 7 to the data set for fresh chilli peppers, the Meeting estimated an STMR-P of 0.7 mg/kg and a maximum residue level of 5 mg/kg for cyantraniliprole on dried chilli peppers.

Leafy vegetables (including Brassica leafy vegetables)

The critical GAP for cyantraniliprole on leafy vegetables is in Canada, up to four foliar applications of 0.025-0.15 kg ai/ha with a total of 0.45 kg ai/ha/season, applied at least 5-7 days apart with a PHI of 1 day.

In trials on <u>head lettuce</u> in North America matching the critical Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: 0.02, 0.08, 0.16, 0.18, 0.64, 0.75, 0.83, 1.3, 1.6, 1.8, 2.1 and 2.7 mg/kg (n=12).

In trials on <u>leaf lettuce</u> in North America matching the critical Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: 1.1, 1.2, 2.1, 2.4, 2.4, 2.5, 3.2, 3.3, 4.0, 5.3, 6.8 and 6.8 mg/kg (n=12).

In trials on <u>spinach</u> in North America matching the critical Canadian GAP (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: 3.8, 4.1, 4.2, 4.6, 4.7, 4.9, 5.8, 8.2, 10 and 13 mg/kg (n=10).

In trials on <u>mustard greens</u> in North America matching the critical Canadian GAP for vegetable brassicas (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: 2.4, 3.4, 3.9, 5.5, 5.8, 6.0, 7.1, 7.2, 8.0, 13 and 19 mg/kg (n=11).

The Meeting noted that the GAP in Canada was for leafy vegetables and that the medians of the data sets for leaf lettuce, spinach and mustard greens (but not head lettuce) differed by less than 5-fold and agreed to consider a group maximum residue level for leafy vegetables except head lettuce. In deciding on the data set to use for estimating a group maximum residue level, since a Kruskal-Wallis H-test indicated that the residue populations for leaf lettuce, spinach and mustard greens were not different it was agreed to combine the results to give a data set of: 1.1, 1.2, 2.1, 2.4, 2.4, 2.4, 2.5, 3.2, 3.3, 3.4, 3.8, 3.9, 4.0, 4.1, 4.2, 4.6, <u>4.7</u>, 4.9, 5.3, 5.5, 5.8, 5.8, 6.0, 6.8, 6.8, 7.1, 7.2, 8.0, 8.2, 10, 13, 13 and 19 mg/kg for leafy vegetables (n=33) except head lettuce and to use the head lettuce data to estimate a maximum residue level for head lettuce.

The Meeting estimated an STMR of 4.7 mg/kg and a group maximum residue level of 20 mg/kg for cyantraniliprole on leafy vegetables (except head lettuce).

The Meeting estimated an STMR of 0.79 mg/kg and a maximum residue level of 5 mg/kg for cyantraniliprole on head lettuce.

Root and tuber vegetables

The critical GAP for cyantraniliprole on root and tuber vegetables is in Canada, up to four foliar applications of 0.05-0.15 kg ai/ha with a total of 0.45 kg ai/ha/season, applied at least 5-14 days apart with a PHI of 7 days.

In trials on <u>potatoes</u> in North America matching the critical Canadian GAP for foliar applications to root and tuber vegetables (with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season), cyantraniliprole residues were: < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.02, < 0.02 and 0.03 mg/kg (n=20).

The Meeting also noted that residues of cyantraniliprole may also arise in potatoes planted as rotational crops, and agreed to consider maximum residue level recommendations for potatoes when discussing rotational crop residues.

Stalk and stem vegetables

The critical GAP for cyantraniliprole on <u>celery</u> is in Canada, up to four foliar applications of 0.025-0.15 kg ai/ha with a total of 0.45 kg ai/ha/season, applied at least 5–7 days apart with a PHI of 1 day.

In trials on <u>celery</u> in North America matching the critical Canadian GAP for leafy vegetables (including celery), with three applications of 0.15 kg ai/ha, 0.45 kg ai/ha/season, cyantraniliprole residues were: 0.28, 0.73, 1.0, 1.1, 1.2, 2.0, 2.3, 2.5, 4.7, 5.7 and 9.1 mg/kg (n=11).

The Meeting estimated an STMR of 2.0 mg/kg and a maximum residue level of 15 mg/kg for cyantraniliprole on celery.

Rice

The critical GAP for cyantraniliprole on <u>rice</u> is in Vietnam, for foliar applications of 0.05–0.1 kg ai/ha with a PHI of 5 days.

Results were available from six trials on rice in China where three foliar applications of cyantraniliprole were applied up to 7 days before harvest.

The Meeting agreed that these data did not match the GAP in Vietnam in that the PHI deviated from GAP by more than 25%.

Tree nuts

The critical GAP for cyantraniliprole on tree nuts is in Canada, up to four foliar applications of 0.05-0.1 kg ai/ha with a total of 0.45 kg ai/ha/season, applied at least 7 days apart with a PHI of 5 days.

In six trials on <u>almonds</u> in the USA, 3 foliar sprays of 0.15 kg ai/ha (0.45 kg ai/ha/season) were applied at 6–8 day intervals up to 5 days before harvest.

In six trials on <u>pecans</u> in the USA, 3 foliar sprays of 0.15 kg ai/ha (0.45 kg ai/ha/season) were applied at 6–8 day intervals up to 5 days before harvest.

The Meeting noted that since both the number of applications and the treatment rates in the trials for almonds and pecans did not match the Canadian GAP, the use of the proportionality approach to estimate maximum residue levels was not appropriate.

Oilseeds

The critical GAP for cyantraniliprole on <u>cotton</u> is in the region of West Africa, up to three foliar applications of 0.05 kg ai/ha with a total of 0.15 kg ai/ha/season, applied at least 14 days apart with a PHI of 7 days.

Results were available from trials conducted in the USA on cotton, where three foliar applications of 0.15 kg ai/ha cyantraniliprole were applied at 6-8 day intervals up to 7-9 days before harvest.

The Meeting noted that the application rates used in the USA trials were higher and the retreatment intervals were shorter than the GAP in West Africa and the Meeting agreed that the concept of proportionality could not be used to recommend a maximum residue level for cyantraniliprole on cotton seed.

The critical GAP for cyantraniliprole on <u>oil seed crops (excluding cotton and peanut)</u> is in Canada, up to 4 foliar applications of 0.025–0.1 kg ai/ha with a total of 0.11 kg ai/ha/season, applied at least 7 days apart with a PHI of 7 days.

Results were available from trials on <u>oilseed rape</u> and on <u>sunflower</u> in North America, where three foliar sprays of 0.15 kg ai/ha (0.45 kg ai/ha/season) were applied at 5–9 day intervals up to 7 days before harvest.

The Meeting noted that for both oilseed rape and sunflower, in addition to the application rate in the field trials differing from the Canadian GAP, the lower seasonal application rate associated with the Canadian GAP supports only a single application of the maximum recommended application rate of 0.1 kg ai/ha, compared to the three applications used in the field trials.

The Meeting concluded that these trials did not match the Canadian GAP.

Seed for beverages and sweets

The critical GAP for cyantraniliprole on <u>coffee</u> is in Columbia, one foliar application of 2.5-3.5 g ai/5 L/100 trees, equivalent to 0.125-0.175 kg ai/ha with a total of 0.3 kg ai/ha/season, with a PHI of 28 days.

In two Brazilian trials matching the Columbian GAP, cyantraniliprole residues were < 0.01 and 0.02 mg/kg.

The Meeting noted that in a further six trials in Brazil involving foliar applications that matched the Columbian GAP but where two soil drenches (0.01-0.06 g ai/100 mL/plant to achieve the equivalent of 0.2 kg ai/ha/treatment) were also applied approximately 90 and approximately 120 days before harvest, cyantraniliprole residues were < 0.01 (5) and 0.01 mg/kg.

The Meeting agreed that since the early season soil drench treatments did not appear to contribute to the final residue in coffee beans, the data from these two sets of results could be combined, giving a data set of: < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, < 0.01

The Meeting estimated an STMR of 0.01 mg/kg and a maximum residue level of 0.03 mg/kg for cyantraniliprole on coffee bean.

Estimation of residues in plant commodities grown as potential succeeding crops

Residues of cyantraniliprole, while not persistent, can be taken up by following crops. In Canada, the GAP includes a maximum seasonal foliar application rate of 0.45 kg ai/ha for most crops except oil seeds where the maximum seasonal rate is 0.11 kg ai/ha. In Columbia, the maximum seasonal rate for onions and Welsh onions is 0.3 kg ai/ha and in West Africa, the total seasonal rate on cotton is 0.15 kg ai/ha.

In Canada, recommended plant-back intervals (PBIs) have been established for crops likely to be grown in rotation with treated crops. In general, for annual crops for human consumption and where MRLs have been established, there is no plant-back interval specified, but for crops likely to be used as animal feed (cereals, grasses, legumes etc) the label recommends a 30-day plant-back interval.

Field rotational crop studies conducted in the USA on a range of representative crops, involving treatment rates equivalent a 0.45 kg ai/ha maximum seasonal rate to bare soil, reported cyantraniliprole residues of less than 0.05 mg/kg in representative food commodities and higher residues in animal feed commodities.

The Meeting agreed that the results of the USA field rotational crop studies, in particular the cyantraniliprole residues reported from the 30 day PBI crops, could be used to estimate residues in follow crops.

Leafy vegetables (including Brassica leafy vegetables)

Highest cyantraniliprole residues in rotational <u>leafy vegetables</u> were < 0.01 mg/kg in spinach and beet tops, 0.02 mg/kg in lettuce and turnip tops and 0.04 mg/kg in radish tops. These levels are adequately covered by the recommendations for leafy vegetables.

Root and tuber vegetables

Cyantraniliprole residues in rotational root and tuber vegetables ranged from < 0.01 to 0.014 mg/kg (n=29, median < 0.01 mg/kg) in beet roots, turnip roots, carrot roots and radish roots.

The Meeting agreed to use the data from 20 field trials on <u>potatoes</u> in North America, treated according to the Canadian GAP for root and tuber vegetables (residues in tubers ranging from < 0.01 to 0.03 mg/kg, STMR 0.01 mg/kg, n=20) and the results of the rotational crop studies on root and tuber vegetables to recommend a group maximum residue level for potatoes (to accommodate residues in follow-crop potatoes that may also be treated with cyantraniliprole).

The Meeting established a maximum residue level of 0.05 mg/kg, a highest residue of 0.044 mg/kg (for estimating animal dietary burdens) and a median residue of 0.02 mg/kg for cyantraniliprole on potato.

The Meeting also agreed to use the rotational crop studies on root and tuber vegetables to recommend a group maximum residue level for the remaining root and tuber vegetables to accommodate residues in these crops grown as follow-crops.

The Meeting established a maximum residue level of 0.05 mg/kg, a highest residue of 0.014 mg/kg and a median residue of 0.01 mg/kg for cyantraniliprole on root and tuber vegetables except potato.

Miscellaneous fodder root crops

The Meeting also agreed to use the results of the rotational crop studies on root and tuber vegetables (residues ranging from < 0.01 to 0.014 mg/kg, median < 0.01 mg/kg, n=29) to recommend maximum residue levels for turnips and fodder beet to accommodate residues in these crops grown as follow-crops.

The Meeting established a maximum residue level of 0.02 mg/kg, a highest residue of 0.014 mg/kg and a median residue of 0.01 mg/kg for cyantraniliprole on fodder beet and turnip fodder.

Legume animal feeds

Cyantraniliprole residues in legume animal feeds (forage) ranged from < 0.01 to 0.14 mg/kg (n=24, median < 0.01 mg/kg) in clover forage, bean forage, pea forage, alfalfa forage and soya bean forage. For the purpose of estimating livestock dietary burdens, the Meeting agreed to combine the data on rotational crop residues in legume animal feeds to estimate residues in legume feed crops grown as follow-crops.

Meeting estimated a median residue of 0.01 mg/kg and a highest residue of 0.14 mg/kg for cyantraniliprole in legume forages (fresh weight).

Cyantraniliprole residues in legume animal feeds (<u>fodders</u>) ranged from < 0.01 to 0.58 mg/kg (n=24, median 0.017 mg/kg) in peanut hay, clover hay, pea hay, bean, alfalfa hay and soya bean hay. The Meeting agreed to combine the data on rotational crop residues in legume fodder crops to recommend a group maximum residue level to accommodate residues in these crops grown as follow-crops.

The Meeting established a median residue of 0.017 mg/kg and a highest residue of 0.58 mg/kg (0.67 mg/kg DM after correction for an average dry matter content of 87%) and recommended a maximum residue level of 0.8 mg/kg (dry weight) for cyantraniliprole in legume animal feeds.

Cereal and grass forages, straws and hays

Cyantraniliprole residues in cereal and grass <u>forage</u> ranged from < 0.01 to 0.053 mg/kg (n=23, median < 0.01 mg/kg) in corn forage, sorghum, Bermuda grass and brome grass forages, oat forage, bluegrass forage and wheat forage. For the purpose of estimating livestock dietary burdens, the Meeting agreed to combine the data on rotational crop residues in cereal and grass forages to estimate residues in cereal and grasse grown as follow-crops.

Meeting established an STMR of 0.01 mg/kg and a highest residue of 0.053 mg/kg for cyantraniliprole in cereal and grass forages (fresh weight).

Cyantraniliprole residues in cereal and grass <u>straws and hays</u> ranged from < 0.01 to 0.14 mg/kg (median < 0.01 mg/kg) in sorghum stover, rice straw, corn stover, brome grass hay, Bermuda grass hay, oat straw, wheat straw, oat hay, wheat hay bluegrass hay. The Meeting agreed to combine the data on rotational crop residues in cereal and grass straws and hays to recommend a group maximum residue level to accommodate residues in these crops grown as follow-crops.

The Meeting established a median residue of 0.01 mg/kg and a highest residue of 0.14 mg/kg (0.16 mg/kg DM after correction for an average dry matter content of 89%) and recommended a maximum residue level of 0.2 mg/kg (dry weight) for cyantraniliprole in straw, fodder (dry) and hay of cereal grains and other grass-like plants.

Miscellaneous fodder leaf crops

The Meeting agreed to use the results of the rotational crop studies on beet, turnip and radish tops (residues ranging from < 0.01 to 0.021 mg/kg (n=22, median < 0.01 mg/kg)_to estimate residues in fodder beet tops and the miscellaneous fodder leaf crops listed in the OECD Feedstuffs Table to accommodate residues in these commodities grown as follow-crops.

The Meeting established median residue of 0.01 mg/kg and a highest residue of 0.021 mg/kg for cyantraniliprole on sugar beet tops, fodder beet tops or leaves, kale forage, rape greens and turnip tops (fresh weight).

Fate of residues during processing

The effect of processing on the nature of residues was investigated in buffer solutions under conditions simulating pasteurisation, boiling and sterilisation. Cyantraniliprole was stable under most processing conditions. Hydrolysis to IN-J9Z38 was a significant pathway under sterilisation

conditions (20 minutes at 120 °C and pH 6) making up 12–14% AR. Other degradates present were IN-F6L99 and IN-N5M09 making up a further 5–8% AR.

The fate of cyantraniliprole residues has been examined in a number of studies simulating household and commercial processing of potatoes, spinach, tomatoes, oranges, apples, plums, cottonseed, olives and grapes. Estimated processing factors and STMR-Ps for the commodities considered at this Meeting are summarized below.

RAC	Commodity	Cyantraniliprole+IN-J9Z38 ^a					
	(RAC: STMR mg/kg b	Processing factors	PF best	RAC STMR	STMR-P		
			estimate	(mg/kg)	(mg/kg)		
Potato	RAC: tubers			0.02			
	flakes	0.1	0.1		0.002		
	waste	0.1	0.1		0.002		
	peeled tubers	0.1	0.1		0.002		
	chips	0.1	0.1		0.002		
	wet peel	2.3	2.3		0.046		
					hi-res 0.1 °		
	culls	1.0	1.0		0.02		
	fries	0.1	0.1		0.002		
	unpeeled, boiled	0.1	0.1		0.002		
	unpeeled microwaved	< 0.33	< 0.33		0.006		
Spinach	RAC: leaves			4.7			
	cooked leaves	0.81, 1.0, 1.2	1.0		4.7		
Tomato	RAC: fruit (0.08 mg/kg)						
	washed	0.15, 0.17, < 0.29	0.17		0.014		
	peeled	< 0.08, < 0.08, 0.1	< 0.08		0.006		
	sun-dried	3.0, 3.7, 3.8	3.7		0.3		
	canned	< 0.02, < 0.05, < 0.08	< 0.05		0.004		
	juice	< 0.15, < 0.17, 0.19	< 0.17		0.014		
	wet pomace	0.75, 1.0, 2.2	1.0		0.08		
	dry pomace	1.7, 3.2, 4.0	3.2		0.26		
	paste	0.62, 0.86, 1.0	0.86		0.07		
	puree	0.23, 0.25, 0.43	0.25		0.02		
Apple	RAC: fruit			0.16			
	washed	0.46, 0.58, 0.63	0.58		0.09		
	puree	0.88, 1.0, 1.3	1.0		0.16		
	canned	0.04, 0.13, 0.15	0.13		0.02		
	frozen	0.62, 0.96, 1.5	0.96		0.15		
	juice	0.19, 0.31, 0.38	0.31		0.05		
	wet pomace	0.77, 1.0, 1.2	1.0		0.16		
	dry pomace	2.0, 2.7, 3.9	2.7		0.43		
	sauce	2.2, 2.4, 2.7	2.2		0.35		
Plum	RAC: flesh			0.34			
	dried prunes	1.3, 1.6, 2.0	1.6		0.54		

Summary of selected processing factors and STMR-P values for cyantraniliprole

^a Each PF value represents a separate study where residues were above the LOQ in the RAC and is the ratio of the combined cyantraniliprole+IN-J9Z38 metabolite residues in the processed item divided by the combined residues of cyantraniliprole+IN-J9Z38 in the RAC.

^b Residues in the RAC are the sum of cyantraniliprole and IN-J9Z38

^c Based on the highest residue in the RAC (0.044 mg/kg)

The Meeting noted that in the studies available, cyantraniliprole residues did not concentrate in food commodities during processing except in apple sauce and in dehydrated commodities such as dried prunes and sun-dried tomatoes. Residues also concentrated in dry pomace (apple and tomato).

In three plum processing studies conducted in the USA, cyantraniliprole residues increased (median processing factor of 1.5) when fresh prunes (flesh) were dried to a moisture content of 15-18% (from about 85% in fresh fruit).

The Meeting estimated a maximum residue level for prunes of 0.8 mg/kg based on the maximum residue level estimated for plums of 0.5 mg/kg and a median processing factor of 1.6.

Residues in animal commodities

Farm animal dietary burden

The Meeting estimated the dietary burden of cyantraniliprole in farm animals on the basis of the diets listed in Annex 6 of the 2009 JMPR Report (OECD Feedstuffs Derived from Field Crops). Dietary burden calculations for beef cattle, dairy cattle, broilers and laying poultry are presented in Annex 6 and are summarized below.

	Animal diet	nimal dietary burden, cyantraniliprole, ppm of dry matter diet						
	US-Canada		EU		Australia		Japan	
	max	mean	max	mean	max	mean	max	mean
Beef cattle	0.41	0.19	1.9 ^a	0.98 °	0.68	0.13	0.13	0.004
Dairy cattle	0.44	0.1	1.9 ^b	0.95 ^d	0.67	0.11	0.29	0.02
Poultry-broiler	0.0	0.0	0.05 ^e	0.02 ^f	0.0	0.0	0.0	0.0
Poultry-layer	0.0	0.0	0.37 ^g	0.19 ^h	0.0	0.0	0.0	0.0

Estimated maximum and mean dietary burdens of farm animals

^a Highest maximum beef or dairy cattle dietary burden suitable for MRL estimates for mammalian tissues

^b Highest maximum dairy cattle dietary burden suitable for MRL estimates for mammalian milk

^c Highest mean beef or dairy cattle dietary burden suitable for STMR estimates for mammalian tissues.

^d Highest mean dairy cattle dietary burden suitable for STMR estimates for milk.

^e Highest maximum poultry dietary burden suitable for MRL estimates for poultry tissues.

^f Highest mean poultry dietary burden suitable for STMR estimates for poultry tissues.

^g Highest maximum poultry dietary burden suitable for MRL estimates for poultry eggs.

^h Highest mean poultry dietary burden suitable for STMR estimates for poultry eggs.

For beef and dairy cattle, the calculated maximum dietary burden suitable for estimating maximum residue levels in mammalian tissues and milk is 1.9 ppm dry weight of feed and the calculated mean dietary burdens, suitable for estimating STMRs in mammalian tissues and in milk are 0.98 ppm and 0.95 ppm dry weight of feed respectively.

For poultry, noting that in some countries, laying hens may also be consumed, the calculated maximum dietary burden suitable for estimating maximum residue levels in poultry tissues and eggs is 0.37 ppm dry weight of feed and the calculated mean dietary burden, suitable for estimating STMRs in poultry tissues and in eggs is 0.19 ppm dry weight of feed.

Farm animal feeding studies

The Meeting received information on the residue levels arising in animal tissues and milk when dairy cows were dosed with cyantraniliprole for 28 days at the equivalent of 3.5, 12, 35 and 112 ppm in the diet. A separate dose group (112 ppm) was used to estimate residue depuration of cyantraniliprole and its major metabolites.

In <u>milk</u>, residues reached a plateau after about 5 days. Average residues of cyantraniliprole were 0.03 mg/kg in the 3.5 ppm dose group and increased to 0.7 mg/kg in the highest dose group (112 ppm). In skim milk, cyantraniliprole residues were about 60% of the whole milk levels (0.016 mg/kg up to 0.47 mg/kg) and 0.066 mg/kg up to 1.8 mg/kg in cream. Residues of IN-N7B69, the predominant metabolite in milk, increased from 0.03 mg/kg to 0.28 mg/kg over the four dose groups while residues of the other metabolites (IN-MLA84, IN-J9Z38 and IN-MYX98) were present at levels at least ten-fold lower than parent.

In <u>muscle</u>, maximum residues of cyantraniliprole increased from 0.01 mg/kg to 0.33 mg/kg in the four dose groups, with IN-J9Z38 being the predominant metabolite, found at more than

0.01 mg/kg only in the two highest dose groups (up to 0.04 mg/kg). Other metabolites were ≤ 0.01 mg/kg at all dose levels.

In <u>fat</u>, maximum residues of cyantraniliprole increased from 0.015 mg/kg to 0.58 mg/kg in the four dose groups, with IN-J9Z38 being the predominant metabolite, found at 0.012 mg/kg (low dose) up to 0.45 mg/kg (highest dose). Other metabolites were found at lower levels, more than 5-fold lower that parent and only IN-N7B69 was present at more than 0.01 mg/kg, found at 0.02 mg/kg in the highest dose group.

In <u>kidney</u>, maximum residues of cyantraniliprole increased from 0.03 mg/kg to 0.89 mg/kg in the four dose groups, with IN-N7B69 being the predominant metabolite, found at 0.012 mg/kg (low dose) up to 0.15 mg/kg (highest dose). Other metabolites were found at levels more than 5-fold lower that parent, with residues of IN-J9Z38 and IN-MYX98 present above 0.01 mg/kg only in the two higher dose groups.

In <u>liver</u>, maximum residues of cyantraniliprole increased from 0.066 mg/kg to 2.1 mg/kg in the four dose groups, with IN-MLA84 being the predominant metabolite, present at 0.04 mg/kg in the lowest dose group and up to 0.57 mg/kg in the highest dose group. Metabolite IN-N7B69 residues were up to 0.01 mg/kg in the lowest dose group, increasing to 0.08 mg/kg in the highest dose group and other metabolites were all < 0.01 mg/kg except in the highest dose group where levels of < 0.03 mg/kg were found.

Residue depletion was studied in cows dosed orally for 28 days with the equivalent of 112 ppm cyantraniliprole. Parent residues depleted to < 0.01 mg/kg in muscle within 4 days after the last dose, were < 0.01 mg/kg in milk, liver and kidney within 10 days and < 0.01 mg/kg in fat within 15 days. Metabolites were all < 0.01 mg/kg in all matrices after 4 days except IN-J9Z38 (< 0.01 within 10 days in kidney and 15 days in fat), IN-MLA84 (< 0.01 mg/kg within 10 days in liver) and IN-N7B69 (< 0.01 mg/kg within 10 days in kidney).

The Meeting also received information on the residues in tissues and eggs when laying hens were dosed with cyantraniliprole for 28 days at levels equivalent to 3, 10 and 30 ppm in the diet. A separate dose group (30 ppm) was used to estimate residue depuration of cyantraniliprole and its major metabolites.

In eggs, residues reached a plateau after about 3 days. Average residues of cyantraniliprole were 0.08 mg/kg in the 3 ppm dose group and increased to 0.8 mg/kg in the highest dose group (30 ppm). In egg whites, cyantraniliprole was the predominant residue, averaging 0.08 mg/kg in the low dose group up to 0.64 mg/kg in the high dose group. Lower levels of parent were found in egg yolks, averaging 0.015 mg/kg (low dose) up to 0.1 mg/kg (high dose). Residues of IN-J9Z38, the predominant metabolite in eggs, present at levels of about 50% of parent, increased from 0.04 mg/kg to 0.4 mg/kg over the three dose groups while residues of IN-MLA84 and IN-MYX98 were present at levels of 0.015 mg/kg in the low dose group up to 0.12 in the high dose group. In general, residues of these metabolites were about 2-fold higher in egg whites than in the yolks.

In <u>muscle</u>, maximum residues of cyantraniliprole increased from 0.003 mg/kg to 0.05 mg/kg in the three dose groups, with the only metabolites found at more than 0.01 mg/kg being IN-MYX98 and IN-HGW87 (up to 0.02 mg/kg in the highest dose group. Other metabolites were all ≤ 0.01 mg/kg at all dose levels.

In <u>skin + fat</u>, maximum residues of cyantraniliprole increased from 0.014 mg/kg to 0.16 mg/kg in the three dose groups, with IN-MYX98 being the predominant metabolite, found at 0.005 mg/kg (low dose) up to 0.05 mg/kg (highest dose). Other metabolites were found at lower levels, with IN-J9Z38 and IN-HGW87 present at more than 0.01 mg/kg only in the highest dose group (0.021 mg/kg and 0.023 mg/kg respectively).

In <u>liver</u>, maximum residues of cyantraniliprole increased from 0.03 mg/kg to 0.24 mg/kg in the three dose groups. Metabolite IN-MLA84 was present at levels similar to the parent (0.034 mg/kg in the lowest dose group and up to 0.32 mg/kg in the highest dose group). Maximum IN-MLA84, IN-

HGW87 and IN-N7B69 residues were 0.01-0.02 mg/kg in the lowest dose group and 0.07-0.1 mg/kg in the highest dose group. Other metabolites were all < 0.01 mg/kg in all dose groups.

In the residue depuration dose group (30 ppm), residues depleted to < 0.01 mg/kg in all matrices within 5 days of the last dose (within 9 days in liver, when the first sample was taken).

Animal commodity maximum residue levels

The maximum dietary burden for beef and dairy cattle is 1.9 ppm. The mean dietary burdens are 0.98 ppm (beef cattle) and 0.95 ppm (dairy cattle). Residue levels of cyantraniliprole and the metabolites included in the residue definition in milk and tissues were obtained by extrapolation below the 3.5 ppm feeding level in the dairy cow feeding study.

Cyantraniliprole feeding	Feed level	Residues	Feed level	Residues a (mg/	kg) in		
study	(ppm) for milk	(mg/kg) in	(ppm) for tissue	Muscle	Liver	Kidney	Fat
	residues	milk	residues			-	
MRL beef or dairy cattle							
Feeding study ^b	3.5	0.03	3.5	0.011	0.066	0.031	0.015
Dietary burden and high	1.9	0.016	1.9	0.006	0.036	0.017	0.008
residue							
STMR beef or dairy cattle							
Feeding study ^c	3.5	0.03	3.5	0.008	0.094	0.042	0.024
Dietary burden and residue	0.95	0.016	0.98	0.002	0.026	0.012	0.007
estimate							

^a Residue values used in estimating STMRs are the sum of cyantraniliprole and metabolites IN-N7B69, IN-J9Z38, IN-MLA84 and IN-MYX98, expressed as cyantraniliprole

^b highest residues for tissues and mean residues for milk

^c mean residues for tissues and mean residues for milk

Residues of cyantraniliprole expected in cattle milk and tissues for use in estimating maximum residue levels are: 0.008 mg/kg (fat), 0.006 mg/kg (muscle), 0.036 mg/kg (liver) and 0.017 mg/kg (kidney) and the mean residue for milk is 0.016 mg/kg.

The Meeting estimated maximum residue levels of 0.01 mg/kg for cyantraniliprole in meat (from mammals other than marine mammals), 0.05 mg/kg for edible offal (mammalian), 0.01 mg/kg for mammalian fat and 0.02 mg/kg for milks. Estimated STMRs (parent plus metabolites) for dietary intake estimation are 0.002 mg/kg for meat, 0.026 mg/kg for edible offal, 0.007 mg/kg for fat and 0.016 mg/kg for milk.

For poultry, the maximum dietary burden is 0.37 ppm and the mean dietary burden is 0.19 ppm (based on the diet for laying hens). Residue levels of cyantraniliprole and the metabolites included in the residue definition in eggs and tissues were obtained by extrapolation below the 3.0 ppm feeding level in the dairy cow feeding study.

Cyantraniliprole feeding study	Feed level	Residues	Feed level	Residues a (r	ng/kg) i	n	
	(ppm) for egg residues	(mg/kg) in egg	(ppm) for tissue	Muscle	Liver	Skin	Fat
			residues				
MRL broiler or laying hen							
Feeding study ^b	3.0	0.082	3.0	0.0055	0.03	0.014	
Dietary burden and high residue	0.37	0.01	0.37	0.0007	0.004	0.002	
STMR broiler or laying hen							
Feeding study ^c	3.0	0.082	3.0	0.007	0.062	0.016	
Dietary burden and residue estimate	0.19	0.01	0.19	0.0004	0.004	0.001	

^a Residue values used in estimating STMRs are the sum of cyantraniliprole and metabolites IN-N7B69, IN-J9Z38, IN-MLA84 and IN-MYX98, expressed as cyantraniliprole

^b highest residues for tissues and mean residues for egg

^c mean residues for tissues and mean residues for egg

Residues of cyantraniliprole expected in eggs and poultry tissues for use in estimating maximum residue levels are: 0.002 mg/kg (skin plus fat), 0.0007 mg/kg (muscle), 0.004 mg/kg (liver) and the mean residue for eggs is 0.01 mg/kg.

The Meeting estimated maximum residue levels of 0.01 mg/kg for cyantraniliprole in poultry meat, 0.01 mg/kg for poultry offal, 0.01 mg/kg for poultry fat and 0.015 mg/kg for eggs. Estimated STMRs for dietary intake estimation are 0 mg/kg for poultry fat, 0 mg/kg for poultry meat, 0.004 mg/kg for poultry offal and 0.01 mg/kg for eggs.

RECOMMENDATIONS

On the basis of the data from supervised trials the Meeting concluded that the residue levels listed below are suitable for establishing maximum residue limits and for IEDI assessment.

Definition of the residue (for compliance with the MRL, animal and plant commodities): *cyantraniliprole*.

De<u>finition of the residue</u> (for estimation of dietary intake for unprocessed plant commodities): *cyantraniliprole*.

Definition of the residue (for estimation of dietary intake for processed plant commodities): sum of cyantraniliprole and 2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl]-3,4-dihydro-3,8-dimethyl-4-oxo-6-quinazolinecarbonitrile.

Proposed <u>definition of the residue</u> (for estimation of dietary intake for animal commodities: sum of: *cyantraniliprole*, 2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl]-3,4-dihydro-3,8dimethyl-4-oxo-6-quinazolinecarbonitrile, 2-[3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl]-1,4-dihydro-8-methyl-4-oxo-6-quinazolinecarbonitrile, 3-Bromo-1-(3-chloro-2-pyridinyl)-N-[4*cyano-2-(hydroxymethyl)-6-[(methylamino)carbonyl]phenyl]-1H-pyrazole-5-carboxamide* and 3-Bromo-1-(3-chloro-2-pyridinyl)-N-[4-*cyano-2[[(hydroxymethyl)amino]carbonyl]-6-methylphenyl]-*1H-pyrazole-5-carboxamide.

	Commodity	MRL	STMR or	Highest residue ^c
CCN	Name	New	STMR-P	
VB 0040	Brassica (cole or cabbage) vegetables	2.0	0.56	1.1
FB 2006	Bush berries	4.0	0.75	
VS 0624	Celery	15	2.0	
FS 0013	Cherries	6.0	0.93	
SB 0716	Coffee beans	0.03	0.01	
DV 0444	Dried chilli peppers	5	0.7	
MO 0105	Edible offal (Mammalian)	0.05	0.026	
PE 0112	Eggs	0.015	0.01	
AM 1050	Fodder beet (follow-crop)	0.02	0.01	0.014
VC 0045	Fruiting vegetables, Cucurbits	0.3	0.065 ^a 0.01 ^b	

The residue is not fat soluble.

	Commodity	MRL	STMR or	Highest residue [°]
CCN	Name	New	STMR-P	
VO 0050	Fruiting vegetables, other than Cucurbits (except mushrooms & sweetcorn)	0.5	0.08	
VA 0381	Garlic	0.05	0.02	
VL 0053	Leafy vegetables (except lettuce, Head)	20	4.7	
AL 0157	Legume animal feeds (follow-crop)	0.8 (dw)	0.017	0.58
VL 0482	Lettuce, Head	5	0.79	
MM 0069	Mammalian fat	0.01	0.007	
MM 0095	Meat (from mammals other than marine mammals)	0.01	0.002	
ML 0106	Milks	0.02	0.016	
VA 0385	Onion, bulb	0.05	0.02	
VA 0387	Onion, Welsh	8.0	1.3	
FS 2001	Peaches	1.5	0.34	
FS 0014	Plums	0.5	0.07	
FP 0009	Pome fruit	0.8	0.16	
VR 0589	Potato (follow-crop+foliar)	0.05	0.02	0.044
PO 0111	Poultry, Edible offal of	0.01	0.004	
PF 0111	Poultry fat	0.01	0	
PM 0110	Poultry meat	0.01	0	
DF 0014	Prunes	0.8	0.54	
VR 0075	Root and tuber vegetables except potato (follow-crop)	0.05	0.01	0.014
VA 0388	Shallot	0.05	0.02	
VA 0389	Spring onion	8.0	1.3	
AS 0161	Straw, fodder (dry) & hay of cereal grains and other grass-like plants (follow crop)	0.2 (dw)	0.01	0.14
AM 0506	Turnip fodder (fodder-crop)	0.02	0.01	0.014

 $^{\rm a}$ STMR is for cucurbits with edible peel

^b STMR is for cucurbits with an inedible peel

^c Highest residue values for calculating animal dietary burdens

CCN	Commodity Name	STMR or STMR-P	Highest residue
JF 0226	Apple juice	0.05	

CCN	Commodity Name	STMR or STMR-P	Highest residue
	Apple pomace (wet)	0.16	
	Cereal and grass forages (follow crop)	0.01	0.053
AV 1051	Fodder beet leaves or tops	0.01	0.021
	Legume forages (follow-crop)	0.01	0.14
AV 0480	Kale forage	0.01	0.021
	Potato waste (wet)	0.046	0.1
VL 0495	Rape greens	0.01	0.021
	Spinach (cooked)	4.7	
AV 0596	Sugar beet leaves or tops	0.01	0.021
	Tomato (canned)	0.004	
JF 0048	Tomato juice	0.014	
	Tomato paste	0.07	
	Tomato pomace (wet)	0.08	
AV 0506	Turnip leaves or tops	0.01	0.021

^a Highest residue values for calculating animal dietary burdens

DIETARY RISK ASSESSMENT

Long-term intake

The International Estimated Daily Intake (IEDI) for cyantraniliprole was calculated for the food commodities for which STMRs or HRs were estimated and for which consumption data were available. The results are shown in Annex 3 of the 2013 JMPR Report.

The International Estimated Daily Intakes of cyantraniliprole for the 13 GEMS/Food regional diets, based on estimated STMRs were 1-10% of the maximum ADI of 0.03 mg/kg bw (Annex 3). The Meeting concluded that the long-term intake of residues of cyantraniliprole from uses that have been considered by the JMPR is unlikely to present a public health concern.

Short-term intake

The 2013 JMPR decided that an ARfD was unnecessary. The Meeting therefore concluded that the short-term intake of cyantraniliprole residues is unlikely to present a public health concern.

REFERENCES

Reference	Author(s)	Year	Title
AAFC09-025R	Ure, B.	2011	Cyantraniliprole: Magnitude of the residue on blueberry. AAFC minor use pesticide program. ABC Laboratories, Inc. DuPont Report No. AAFC09-0258. Unpublished
BRI-09/10-014	Kalvan, H.C.	2011	Study of the Residues of the Insecticide DPX-HGW86 20%SC and DPX-HGW86 10%OD (Cyantraniliprole) in Citrus Culture (Citrus spp. L.
BRI-10/11-008	Kalvan, H.C.	2011	DuPont do Brasil S.A. DuPont Report No. BRI- 09/10-014. Unpublished Study of the Residues of the Insecticide DPX HGW86 20%SC and DPX-HGW86 10%OD (Cyantraniliprole) in Coffee Culture (Coffee Arabica) 2010-2011 field season. DuPont do Brazil S/A, Paulina SP, Brazil and JM Bioanalises (BPL 0024), Botucato SP, Brazil. DuPont Papert No. PPL 10/11 008. Unpublished
CL-2010-026	Qing, H.X.	2012	Residue test report of cyantraniliprole on the rice field. Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences. DuPont Report No. CL-2010-026. Unpublished
DP-1104829	S. Sathiyanarayanan	2011	Studies on the multipicking residues of Cyantraniliprole 10%OD w/v and its metabolite on pomegranate and soil (multilocation study). International Institute of Biotechnology and Toxicology (IIBAT). DuPont Report No. 1104829. Unpublished
DP-15440	Henze, R.M., Devine, T.J., McClory, J.P.	2006	Analytical method for the determination of DPX-HGW86 and metabolites in soil using LC/MS/MS. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-15440. Unpublished
DP-15513	Scott, M.T., Swain, R.S., Young, G.A.	2006	[14C]DPX-HGW86 pilot confined crop rotation study (wheat, soya beans, and red beets). DuPont Stine-Haskell Research Center. DuPont Report No. DuPont, 15513. Unpublished
DP-15736	McClory, J.P., Steven-Shreve, S.,	2011	Analytical method for the determination of DPX-HGW86 and metabolites in crops using LC/MS/MS. DuPont Stine-Haskell Research Center.
DP-15736-S1	McClory, J.P., Stevens-Shreve, S., Henze, R.M.	2009	Analytical method for the determination of DPX-HGW86 and metabolites in processed fractions using LC/MS/MS. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-15736, Supplement No. 1. Unpublished
DP-15775	Malekani, K., Mattson, S.L.	2006	Route of degradation and sorption of [14C]-DPX-HGW86 in two aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-15775 Unpublished
DP-15778	Chapleo, S., Green, M.A.	2012	Confined rotational crop study using [14C] DPX-HGW86. Charles River Laboratories. DuPont Report No. DuPont-15778, Revision No.2.
DP-16984	MacDonald, A.M.G. MacKinnon, I.M.R. Chapleo, S	2008	The metabolism of [14C]DPX-HGW86 in cotton. Charles River Laboratories. DuPont Report No. DuPont-16984, Revision No. 1. Unpublished
DP-16985	MacKinnon, I.	2008	The metabolism of [14C]DPX-HGW86 in tomatoes. Charles River Laboratories. DuPont Report No. DuPont-16985. Unpublished
DP-16986	MacKinnon, I.	2008	The metabolism of [14C]DPX-HGW86 in lettuce. Charles River Laboratories. DuPont Report No. DuPont-16986. Unpublished
DP-16987	McLellan, G., Vance, C., Lowrie, C.	2008	Metabolism of [14C] DPX-HGW86 in the lactating goat. Charles River Laboratories. DuPont Report No. DuPont-16987. Unpublished
DP-16988	McLellan, G., Lowrie, C.	2008	The metabolism of [14C] DPX-HGW86 in the laying hen. Charles River Laboratories. DuPont Report No. DuPont-16988. Unpublished
DP-16989	Lowrie, C.	2005	High temperature hydrolysis of [14C]-DPX-HGW86 in buffered aqueous solution at pH 4, 5, and 6. Charles River Laboratories. DuPont Report No. DuPont-16989. Unpublished
DP-16990	Rodgers, C.A.	2010	Stability of DPX-HGW86 and metabolite/degradation product residues in representative crops stored frozen. ABC Laboratories, Inc. DuPont Report No. DuPont-16990, Revision No. 1, Unpublished
DP-17050	Clipston, A.S., Craig, W.B.	2007a	DPX-HGW86: Laboratory study of water solubility. Charles River Laboratories. DuPont Report No. DuPont-17050. Unpublished
DP-17052	Sharma, A.	2011	DPX-HGW86: Laboratory study of vapor pressure. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-17052, Revision No. 1. Unpublished
DP-17054	Hirata, C.M.	2006	DPX-HGW86: Laboratory study of partition coefficient. DuPont Stine- Haskell Research Center. DuPont Report No. DuPont-17054. Unpublished

Reference	Author(s)	Year	Title
DP-17055	Lowrie, C., Coyle,	2006	Rate of degradation and aged desorption of [14C]-DPX-HGW86 in three
	D.		aerobic soils. Charles River Laboratories. DuPont Report No. DuPont-
			17055. Unpublished
DP-17056	Morris, A.W.J.	2005	Photodegradation of [14C]-DPX-HGW86 on soil. Charles River
			Laboratories. DuPont Report No. DuPont-17056. Unpublished
DP-17058	Lowrie, C.	2005	Hydrolytic stability of [14C]-DPX-HGW86 in buffered aqueous solutions
			at pH 4, 7, and 9. Inveresk Research International (IRI) Limited, DuPont
			Report No. DuPont-17058. Unpublished
DP-17059	McCorquodale, G.	2006	[14C]-DPX-HGW86. Degradability and fate in the sediment/water
51 1,000	Wardrone, L	2000	system Charles River Laboratories, DuPont Report No. DuPont-17059
	Wararope, 21		Unnublished
DP-17060	Morriss A W I	2007	Photodegradation of [14C]-DPX-HGW86 in pH 4 buffer and natural
DI 17000	McCorquodale G	2007	water Charles River Laboratories DuPont Report No. DuPont-17060
	meeorquotate, G.		Unnublished
DP-17061	Old I Kinney I	2010	Field soil dissination of DPX-HGW86 following a single application to
DI-17001	Sharma A K	2010	bare ground southern Europe (Spain) Charles River I aboratories
	Shaima, A.K.		DuPont Report No. DuPont 17061 Revision No. 1 Unpublished
DB 17062	Old I Kinnov I	2010	Field soil dissingtion of DPX HGW86 following a single application to
DI -1/002	Sharma A V	2010	have ground northern Europa (France). Charles Diver Laboratories
	Silalilla, A.K.		DuPont Report No. DuPont 17062, Revision No.1, Unpublished
DD 17062	Old I Vinney I	2010	Eight and dissinguised of DDY LICW/96 following a single employed
DF-1/005	Colu, J., Killiley, J.,	2010	Field soli dissipation of DFA-HOW 80 following a single application to
	Cairiis, S., Sharina,		Dare ground - normern Europe (Germany). Charles River Laboratories.
DD 17074	A.K.	2010	DuPont Report No. DuPont-1/063, Revision No. 1. Unpublished
DP-1/064	Iniel, A.	2010	I errestrial field dissipation of DPA-HG w86 on bare soil in New York,
			USA. ABC Laboratories, Inc. DuPont Report No. DuPont-1/064.
DD 170/5	C1 A 17	2000	
DP-1/065	Sharma, A.K.,	2009	Terrestrial field dissipation of DPX-HGW86 insecticide on bare soil and
	Rice, F., Gant,		in the presence of a potato crop in Washington, USA. DuPont Stine-
	A.G.		Haskell Research Center. DuPont Report No. DuPont-1/065, Revision
DD 45077		• • • • •	No. I. Unpublished
DP-17066	Sharma, A.K.,	2008	Terrestrial field dissipation of DPX-HGW86 insecticide on bare soil and
	Rice, F., Gant,		in the presence of a leafy vegetable crop in California, USA. DuPont
	A.G.		Stine-Haskell Research Center. DuPont Report No. DuPont-17066.
			Unpublished
DP-17067	Sharma, A.K.,	2009	Terrestrial field dissipation of DPX-HGW86 insecticide on bare soil and
	Rice, F., Gant,		in the presence of an alfalfa crop in Missouri, USA. DuPont Stine-Haskell
	A.G.		Research Center. DuPont Report No. DuPont-17067. Unpublished
DP-17068	Thiel, A.	2010	Terrestrial field dissipation of DPX-HGW86 on bare soil in Manitoba,
			Canada. ABC Laboratories, Inc. DuPont Report No. DuPont-17068.
			Unpublished
DP-17457	Thiel, A.	2010	Terrestrial field dissipation of DPX-HGW86 on bare soil in Texas, USA.
			ABC Laboratories, Inc. DuPont Report No. DuPont-17457, Revision No.
			1. Unpublished
DP-17458	Old, J., Cairns, S.,	2010	Field soil dissipation of DPX-HGW86 following a single application to
	Kinney, J., Sharma,		bare ground - southern Europe (Italy). Charles River Laboratories. DuPont
	A.		Report No. DuPont-17458. Unpublished
DP-17596	McCorquodale, G.	2006	Rate of degradation of [14C]-IN-J9Z38 in five aerobic soils. Charles
			River Laboratories. DuPont Report No. DuPont-17596. Unpublished
DP-17597	Wardrope, L.	2007	Rate of degradation of [14C]-IN-JCZ38 in five aerobic soils. Charles
			River Laboratories. DuPont Report No. DuPont-17597. Unpublished
DP-17598	McCorquodale, G.,	2007	Rate of degradation of [14C]-IN-JSE76 in five aerobic soils. Charles
	Wardrope, L.		River Laboratories. DuPont Report No. DuPont-17598. Unpublished
DP-17599	McCorquodale, G.,	2007	Rate of degradation of [14C]-IN-K5A78 in five aerobic soils. Charles
	Wardrope, L.		River Laboratories. DuPont Report No. DuPont-17599. Unpublished
DP-17602	Morriss, A.W.J.	2006	Rate of degradation of [14C]-IN-K5A77 in five aerobic soils. Charles
			River Laboratories. DuPont Report No. DuPont-17602. Unpublished
DP-17942	Weber, H.	2010	Independent laboratory validation for the determination of residues of
			DPX-HGW86 in animal tissues using multi-residue method DFG S 19
			(LC-MS/MS module). Eurofins Dr. Specht. DuPont Report No. DuPont-
			17942. Unpublished
DP-18780	Chapleo, S.,	2010	The metabolism of [14C]DPX-HGW86 in rice. Charles River
	Hobbs, G., Grant-		Laboratories. DuPont Report No. DuPont-18780. Unpublished
	MacDonald,		
	A.M.G.		

DP-18844 Henze, R.M., McClory, J.P. 2010 Analytical method for the determination of DPX-HGW86 and method hown tissues, dirty, and eggs using LC/MSMN, DuPont Sine-Haskell Research Center. DuPont Report No. DuPont-18844. Unpublished INN-TB469, IN-JC238, IN-K7119, IN-MYX98, IN-MLA84 and IN- J92/381 in various corps with LC-MSMS detection. Charles River Laboratories. DuPont Report No. DuPont-18846. Unpublished Independent laboratory validation of DuPont-15440 method for the determination of residues of DPX-HGW86 in Amathematical Independent laboratory validation of DuPont-15440 method for the determination of residues of DPX-HGW86 in Calculation DP-18863 DP-18861 Hirata, C.M. 2007 DPX-HGW856 i: Volatility, calculation of Heary's law constant. DuPont Sine-Haskell Research Center. DuPont Report No. DuPont-18861. Unpublished DP-18863 Clipston, A.S., Craig, W.B. 2007 DPX-HGW856 i: Volatility, calculation of Heary's law constant. DuPont Sine-Haskell Research Center. DuPont Report No. DuPont-18863. Unpublished DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-IN-K5A79 in five acribic soils. DuPont Sine-Haskell Research Center. DuPont Report No. DuPont-18868. Unpublished DP-19077 Malckani, K. 2008 Rate of degradation of [14C]-IN-K5A79 in five acribic soils. DuPont Sine- Haskell Research Center. DuPont Report No. DuPont-18907. Unpublished DP-19077 Malckani, K. 2008 Rate of degradation of [14C]-IN-K5A79 in five acribic soils. DuPont Sine- Haskell Research Center. DuPont Report No. DuPont-18907. Unpublished <th>Reference</th> <th>Author(s)</th> <th>Year</th> <th>Title</th>	Reference	Author(s)	Year	Title
McClory, J.P. in bovine tissues, dairy, and eggs using LC/MS/MS, DuPort Simel-Laskell DP-18846 Kinney, J. 2008 Method validation for the analysis of DPX-HIGW86 and is metabolitise DP-18847 Schwarz, T. 2010 Method validation for the analysis of DPX-HIGW86 and is metabolitise DP-18847 Schwarz, T. 2010 Independent laboratory, validation of DuPont-18440, toppbilshed DP-18863 Hirata, C.M. 2007 SDPX-HIGW856: Volatility, calculation of Henrys haw constant. DuPont Jimbished DP-18863 Clipston, A.S., 2007 DPX-HIGW856: Laboratory study of appearance and relative densitybulk density. Charles River Laboratories. DuPont Report No. DuPont-18863. Unpublished DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-1N-K5A79 in five aerobics oils. DuPont Sine-Haskell Research Center. DuPont Report No. DuPont-18863. Unpublished DP-18870 Pils, J.R.V. 2010 Adsorption-description of [14C]-1N-K5A79 in five aerobic soils. DuPont Sine-Haskell Research Center. DuPont Report No. DuPont-1870. No. DuPont	DP-18844	Henze, R.M.,	2010	Analytical method for the determination of DPX-HGW86 and metabolites
DP-18846 Kinney, J. 2008 Research Center. DuPont Report No. DuPont-18844. Unpublished (N-N7B60, N-JC238, IN-K7H19, N-MYX98, IN-MLA84 and IN- JJ2238) in various crops with IC-MSMS detection. Charles River Laboratories. DuPont Report No. DuPont-18846. Unpublished DP-18847 Schwarz, T. 2010 Independent laboratory validation of DuPont-15440 method for the determination of residues of DPX-HGW86 nut methodolites in sub Unpublished DP-18863 Hirata, C.M. 2007 DPX-HGW856: Volatility, calculation of Heary Ne constant. DuPont Stime-Haskell Research Center. DuPont Report No. DuPont-18863. Unpublished DP-18863 Clipston, A.S., Craig, W.B. 2007 DPX-HGW856: Volatility, calculation of Heary Ne constant. DuPont Stime-Haskell Research Center. DuPont Report No. DuPont-18863. Unpublished DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-IN-K5A79 in five acolis coils. DuPont Staper Indone No. DuPont-18863. DP-18870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-IN-K5A79 in five acolis by batch equilibrium. DuPont Sime-Haskell Research Center. DuPont Report No. DuPont-18863. DP-19077 Malekani, K. 2008 Rate of degradation of [14C]-IN-K5A79 in five acolis by batch equilibrium. DuPont Sime-Haskell Research Center. DuPont Report No. DuPont-19977. Unpublished DP-19176 Clipston, A.S., 2007 DVA:HGW86: Laboratory study of dissoctinton costant. Charles River Laboratories. DuPont Rep		McClory, J.P.		in bovine tissues, dairy, and eggs using LC/MS/MS. DuPont Stine-Haskell
DP-18846 Kimey, J. 2008 Method validation for the analysis of DPX-HGW86 and its methodites (IN-N7766, IN-C238, IN-K7119, IN-MYX98, N-MA A84 and IN- J9Z38) in various crops with I.C-MS/MS detection. Charles River Laboratories. DuPont Report No. DuPont-1846. Unpublished DP-18847 Schwarz, T. 2010 Independent laboratory validation of DuPont-15440 methoditor in soil using IC/MS/MS, PTRL Europe. DuPont Report No. DuPont-1886. DP-18861 Hirata, C.M. 2007 DPX-HGW85 of PX-HGW86 on Imatholities in soil using IC/MS/MS, PTRL Europe. DuPont Report No. DuPont-18861. DP-18863 Clipston, A.S., Caig, W.B. 2007 DPX-HGW856: Valoatility, calculation of Henry's law constant. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18863. DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-IN-K5A79 in five aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18863. DP-18870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-IN-K5A79 in five soils by batch equilibrium. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18870, Revision No. 2. Unpublished DP-19077 Malekani, K. 2008 Rate of degradation [14C]-IN-K5A79 in five aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18870, Revision No. 2. Unpublished DP-19170 Clipston, A.S., 2007 2007 DPX-HGW86 1000 insecticide - EPA region 11, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-1977. Unpublished DP-19176 Clipston, A.S., 2007 2007 <td></td> <td>, , , , , , , , , , , , , , , , , , ,</td> <td></td> <td>Research Center, DuPont Report No. DuPont-18844, Unpublished</td>		, , , , , , , , , , , , , , , , , , ,		Research Center, DuPont Report No. DuPont-18844, Unpublished
 (IN-N7B69, IN-IC238, IN-K71H9, IN-MYX98, IN-MA 244 and IN- D228) in various crops with LC-MS/MS detection. Charles River Laboratories. DuPont Report No. DuPont-18846. Lapublished DP-18847 Schwarz, T. 2010 Independent laboratory validation of DuPont-18440 method for the determination of residues of DPX-HGW86 and metabolites in soil asing LC/MS/MS. PTRL Europe. DuPont Report No. DuPont-18846. Unpublished DP-18863 Clipston, A.S., 2007 DPX-HGW856: Volatility, calculation of Hemry's law constant. DuPont Unpublished DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-IN-K5A79 in five aerobic soils. DuPont-18863. Unpublished DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-IN-K5A79 in five aerobic soils. DuPont 18863. Unpublished DP-18870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-IN-K5A79 in five soils by batch equilibrium. DuPont Sime-Haskell Research Center. DuPont Report No. DuPont 907. Unpublished DP-19077 Malekani, K. 2008 Rate of degradation [14C]-IN-K5A79 in five soils by batch equilibrium. DuPont Sime-Haskell Research Center. DuPont Report No. DuPont 9107. Unpublished DP-19177 Clipston, A.S., 2007 DPX-HGW86 Laboratory study of absociation constant. Charles River Laboratories. DuPont Report No. DuPont-1907. Unpublished DP-19167 Clipston, A.S., 2007 DPX-HGW86 Laboratory study of of L-Charles River Laboratories. In: Craig, W.B. DP-19640 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 10, UXSA, 2006. ABC Laboratories, In: DuPont Report No. DuPont-19639. DP-21326 Weber, H. 2010 Field crop rotation stu	DP-18846	Kinney, J.	2008	Method validation for the analysis of DPX-HGW86 and its metabolites
JP2189 in various crops with I.C-MS/MS detection. Charles River Laboratories. DuPont Report No. DuPont-1846. Unpublished DP-18847 Schwarz, T. 2010 Independent laboratory validation of DuPont-15440 methodites in soil using LC/MS/MS, PTRL Europe. DuPont Report No. DuPont-18847. Unpublished DP-18861 Hirata, C.M. 2007 DPX-HGW86 methods for the determination of Heary's law constant. DuPont State Tabkell Research Center. DuPont Report No. DuPont-18861. Unpublished DP-18863 Clipston, A.S., 2007 DPX-HGW86 i. Laboratoris. DuPont Report No. DuPont-18863. Unpublished DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-IN-K5A79 in five aerobic soils. DuPont 18863. Unpublished DP-18870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-IN-K5A79 in five aerobic soils. DuPont 18863. Unpublished DP-19870 Malekani, K. 2008 Rate of degradation of [14C]-IN-K5A79 in five aerobic soils. DuPont 18863. Unpublished DP-19077 Malekani, K. 2008 Rate of degradation [14C]-IN-K5A79 in five aerobic soils. DuPont No. DuPont-18870. Research Center. DuPont Report No. DuPont-18870. Laboratoris in DuPont Sime-Haskell Research Center. DuPont Report No. DuPont No. DuPont-18870. Unpublished DP-19077 Clipston, A.S., 2007 DY-HGW86 Laboratoris in DPV-HGW86 100D insecticide - EPA region 10, USA, 2006. APC Laboratorises, Inc. DuPont Report No. DuPont-19177. Unpublished </td <td></td> <td>,</td> <td></td> <td>(IN-N7B69, IN-JCZ38, IN-K7H19, IN-MYX98, IN-MLA84 and IN-</td>		,		(IN-N7B69, IN-JCZ38, IN-K7H19, IN-MYX98, IN-MLA84 and IN-
Laboratorics. DuPont Report No. DuPont -18846. Unpublished DP-18847 Schwarz, T. 2010 Independent laboratory vialidation of DuPont-18440 method for the determination of Tesidues of DPX.HGW86 and methoblites in soil using LC/MS/MS.PTRL Europe. DuPont Report No. DuPont-18861. DP-18861 Hirata, C.M. 2007 DPX.HGW85 (E. Volatility, calculation of Henry's law constant. DuPont PDX:HGW866 DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-IN-K5A79 in five aerobic soils. DuPont Report No. DuPont-18863. DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-IN-K5A79 in five aerobic soils. DuPont Sime-1askell Research Center. DuPont Report No. DuPont-18863. DP-18870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-IN-K5A79 in five aerobic soils. DuPont Sime-1askell Research Center. DuPont Report No. DuPont-18863. DP-19077 Malekani, K. 2008 Rate of degradation of [14C]-IN-K5A79 in five aerobic soils. DuPont Sime-1907 DP-19077 Malekani, K. 2008 Rate of degradation topy with ophont-1907. Unpublished DP-1917 Clipston, A.S., 2007 DPX-HGW86: Laboratory study of dissociation constant. Charles River Laboratories. DuPont Report No. DuPont-1917. DP-1963 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 11, USA, 2006. A				J9Z38) in various crops with LC-MS/MS detection. Charles River
DP-18847 Schwarz, T. 2010 Independent laboratory validation of DuPont-15440 method for the determination or fresidues of DPX-HGW86 and metabolites in soil using LC/MS/MS, PTRL Europe. DuPont Report No. DuPont-18847. Unpublished DP-18861 Hirata, C.M. 2007 DPX-HGW85 of. Volatility, calculation of Henry's law constant. DuPont Sine-Haskell Research Center. DuPont Report No. DuPont-18863. Unpublished DP-18863 Clipston, A.S., 2007 DPX-HGW85 ic. Laboratory study of appearance and relative density-bulk density. Charles River Laboratories. DuPont Report No. DuPont-18863. Unpublished DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-IN-K5A79 in five aerobic soils. DuPont Sine-Haskell Research Center. DuPont Report No. DuPont-18868. Unpublished DP-18870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-IN-K5A79 in five aerobic soils. DuPont Sine-Haskell Research Center. DuPont Report No. DuPont-19077. Unpublished DP-19077 Malekani, K. 2008 Rate of degradation [14C]-IN-PI Try in five aerobic soils. DuPont Sine-Haskell Research Center. DuPont Report No. DuPont-19077. Unpublished DP-19176 Clipston, A.S., 2007 DPX-HGW86 Laboratory study of dissociation constant. Charles Kiver Laboratories. DuPont Plo77. Unpublished DP-19630 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 10, USA 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19678. Unpublished DP-19640 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insectici				Laboratories. DuPont Report No. DuPont-18846. Unpublished
determination of residues of DPX-HGW86 and metabolities in soil using LC/MS/MS, PTRL Europe. DuPont Report No. DuPont-18867. Unpublished DP-18861 Hirata, C.M. 2007 DPX-HGW8506: Volatility, calculation of Henry's law constant. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18861. Unpublished DP-18863 Clipston, A.S., Craig, W.B. 2007 DPX-HGW866: Laboratories. DuPont Report No. DuPont-18863. Unpublished DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-IN-K5A79 in five aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18863. Unpublished DP-18870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-IN-K5A79 in five asoils by batch equilibrium. DuPont Sine-Haskell Research Center. DuPont Report No. DuPont-1907. Unpublished DP-19077 Malekani, K. 2008 Rate of degradation [14C]-IN-K5A79 in five asoils DuPont Sine- Haskell Research Center. DuPont Report No. DuPont-1907. Unpublished DP-19176 Clipston, A.S., 2007 2007 DPX-HGW86: Laboratory study of dissociation constant. Charles River Laboratories. DuPont Report No. DuPont-1907. Unpublished DP-19639 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 11, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19630 DP-19678 Old, J., 2010 2010 Field crop rotation study with DPX-HGW86 10	DP-18847	Schwarz, T.	2010	Independent laboratory validation of DuPont-15440 method for the
LCMS/MS, PTRL Europe. DuPont Report No. DuPont-18847. DP-18861 Hirata, C.M. 2007 DPX-HGW8556: Volatility, calculation of Henry's law constant. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18861. DP-18863 Clipston, A.S., 2007 DPX-HGW856: Laboratory study of appearance and relative density/bulk density. Charles River Laboratories. DuPont Report No. DuPont-18863. DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-IN-K5A79 in five aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18868. DP-18870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-IN-K5A79 in five aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18868. DP-19077 Malekani, K. 2008 Rate of degradation [14C]-IN-R5A79 in five aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-19077. Unpublished DP-19176 Clipston, A.S., 2007 DPX-HGW86: Laboratory study of filscatiano constant. Charles River Laboratories. DuPont Report No. DuPont-1976. Unpublished DP-19177 Cingis M. S., 2007 DPX-HGW86: Laboratories, Inc. DuPont Report No. DuPont-1977. Unpublished DP-19178 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 10OD insecticide - EPA region 10, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19678. DP-19640 Thiel, A. </td <td></td> <td>, , , , ,</td> <td></td> <td>determination of residues of DPX-HGW86 and metabolites in soil using</td>		, , , , ,		determination of residues of DPX-HGW86 and metabolites in soil using
DP-18861 Hirata, C.M. 2007 DPX-HGW856: Volutility, calculation of Henry's law constant. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18861. Unpublished DP-18863 Clipston, A.S., 2007 DPX-HGW86: Laboratories. DuPont Report No. DuPont-18863. Unpublished DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-IN-K5A79 in five acrobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18868. Unpublished DP-18870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-IN-K5A79 in five acrobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18868. Unpublished DP-19870 Malekani, K. 2008 Rate of degradation [14C]-IN-K5A79 in five acrobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18707. Unpublished DP-19077 Malekani, K. 2008 Rate of degradation [14C]-IN-K5A79 in five acrobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-1977. Unpublished DP-19176 Clipston, A.S., 2007 Clipston, A.S., 2007 Dr2N-HGW86: Laboratory study of file.Charles River Laboratories. DuPont Report No. DuPont-19176. Unpublished DP-19176 Clipston, A.S., 2007 Dr2N-HGW86 Laboratories, Inc. DuPont Report No. DuPont-19176. Unpublished DP-19177 Charles River Laboratories. DuPont Report No. DuPont-19176. Unpublished DP-19180 Dide parte				LC/MS/MS. PTRL Europe. DuPont Report No. DuPont-18847.
DP-18861 Hirata, C.M. 2007 DPX-HGW85%: Volatility, calculation of Heary's Inconstant. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18861. Unpublished DP-18863 Clipston, A.S., Craig, W.B. 2007 DPX-HGW86: Laboratory study of appearance and relative density/bulk density. Charles River Laboratories. DuPont Report No. DuPont-18863. Unpublished DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-IN-K5A79 in five aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18868. Unpublished DP-19870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-IN-K5A79 in five aerobic soils. DuPont Stine- requilibrium. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-19870. DuPont 18870, Revision No. 2. Unpublished DP-19077 Malekani, K. 2008 Rate of degradation (14C]-IN-PLT97) in five aerobic soils. DuPont Stine- Haskell Research Center. DuPont Report No. DuPont-19707. Unpublished DP-19170 Clipston, A.S., Craig, W.B. 2007 DPX-HGW86: Laboratoris, Nuc DuPont-1970. DP-19639 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 11, USA, 2006. ABC Laboratoris, Inc. DuPont Report No. DuPont-19649. DP-19678 Old, J., 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC- MS/MS module). Eurofins Dr. Specht GLP GmbH. DuPont Report No. DuPont-19732. DP-21328 Bacher, R. 2009 Method assessement and				Unpublished
 Stine-Haskell Research Carter. DuPont Report No. DuPont-18861. Unpublished DP-18863 Clipston, A.S., Curaig, W.B. Curaig, W.B. Curaig, W.B. Pedersen, C. 2008 Rate of degradation of [14C]-IN-K5A79 in five aerobic soils. DuPont 18863. Unpublished DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-IN-K5A79 in five aerobic soils. DuPont Report No. DuPont-18863. Unpublished DP-18870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-IN-K5A79 in five aerobic soils. DuPont Sine-Haskell Research Center. DuPont Report No. DuPont-19077. Malekani, K. 2008 Rate of degradation [14C]-IN-K5A79 in five aerobic soils. DuPont Sine-Haskell Research Center. DuPont Report No. DuPont-19077. Malekani, K. 2008 Rate of degradation [14C]-IN-K5A79 in five aerobic soils. DuPont Sine-Haskell Research Center. DuPont Report No. DuPont-19077. Unpublished DP-19177 Clipston, A.S., 2007 DPX-HGW86: Laboratory study of fit. Charles River Laboratories. DuPont Report No. DuPont-19176. Unpublished DP-19177 Clipston, A.S., 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 10, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19078. DuPont Report No. DuPont-19079. DuPont-19639. Dp1961 DP-19640 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 11, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19078. DuPont-19678. DuPont-19678. DP-21326 Weber, H. 2010	DP-18861	Hirata, C.M.	2007	DPX-HGW85\6: Volatility, calculation of Henry's law constant. DuPont
DP-18863 Clipston, A.S., Craig, W.B. 207 DPX-HGW86: Laboratory study of appearance and relative density/bulk density: Charles River Laboratories. DuPont Report No. DuPont-18863. Unpublished DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-IN-KSA79 in five aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18868. Unpublished DP-18870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-IN-KSA79 in five aerobic soils. DuPont Stine- Haskell Research Center. DuPont Report No. DuPont-18707. Unpublished DP-19077 Malekani, K. 2008 Rate of degradation [14C]-IN-PLT97 in five aerobic soils. DuPont Stine- Haskell Research Center. DuPont Report No. DuPont-19077. Unpublished DP-19176 Clipston, A.S., Craig, W.B. 2007 DPX-HGW86: Laboratory study of dissociation constant. Charles River Laboratories. DuPont Report No. DuPont-19170. Unpublished DP-19639 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 10, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19630. Unpublished DP-19678 Old, J., Woodmansey, L. 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S19 (LC- MS/MS module). PTRL Europe. DuPont Report No. DuPont-21326. DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue method		,		Stine-Haskell Research Center. DuPont Report No. DuPont-18861.
DP-18863 Clipston, A.S., Craig, W.B. 2007 DP:A:HGW86: Laboratory study of appearance and relative density/bulk density. Charles River Laboratories. DuPont Report No. DuPont-18863. Unpublished DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-1N-K5A79 in five aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18868. Unpublished DP-18870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-1N-K5A79 in five aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18976. DuPont-18970, Revision No. 2. Unpublished DP-19077 Malekani, K. 2008 Rate of degradation [14C]-1N-PL197 in five aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-19077. Unpublished DP:19177 Clipston, A.S., 2007 DPX-HGW86: Laboratory study of fabscication constant. Charles River Laboratories. DuPont-19639. Unpublished DP-19640 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 10, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19639. Unpublished DP-19678 Old, J., Woodmansey, L. 2010 Field crop rotation study with DPX-HGW86 100D insecticide - S04 region 11, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19640. Unpublished DP-21326 Weber, H. 2010 Field crop rotation study with DPX-HGW86 100D CP S 19 (LC- MS/MS module). PTRL Europe. DuPont Report No. DuPont-19176. DP-21328 Bacher, R				Unpublished
Craig, W.B. density. Charles River Laboratories. DuPont Report No. DuPont-18863. Unpublished DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-IN-K5A79 in five aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18868. Unpublished DP-18870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-IN-K5A79 in five aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18870, Revision No. 2. Unpublished DP-19077 Malekani, K. 2008 Rate of degradation [14C]-IN-K5A79 in five aerobic soils. DuPont Stine- equilibrium. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18870, Revision No. 2. Unpublished DP-19177 Clipston, A.S., Craig, W.B. 2007 DPX-HGW86: Laboratory study of dissociation constant. Charles River Laboratories. DuPont Report No. DuPont-19170. Unpublished DP-19639 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 10, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19639. Unpublished DP-19640 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 insecticide - southern Europe 2006-2009. Charles River Laboratories, DuPont Report No. DuPont-19640. Unpublished DP-19678 Old, J., Woodmansey, L. 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG 519 (LC- MS/MS module). PTRL Europe. DuPont Report No. DuPont- 19678. Unpublished DP-21328 Bacher, R. 2009 Method assessment and validat	DP-18863	Clipston, A.S.,	2007	DPX-HGW86: Laboratory study of appearance and relative density/bulk
Urpublished Urpublished DP-18868 Pedersen, C. 2008 Rate of degradation of [14C]-1N-K5A79 in five aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18868. Urpublished DP-18870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-1N-K5A79 in five soils by batch equilibrium. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18870, Revision No. 2. Urpublished DP-19077 Malekani, K. 2008 Rate of degradation [14C]-1N-LT97 in five aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-19077. Unpublished DP-19176 Clipston, A.S., 2007 DPX-HGW86: Laboratory study of fixesociation constant. Charles River Laboratories. DuPont Report No. DuPont-19176. Unpublished DP-19639 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 10, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19639. Unpublished DP-19640 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 insecticide - southern Europe 2006-2009. Charles River Laboratories, Inc. DuPont Report No. DuPont-19678. Unpublished DP-21326 Weber, H. 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S19 (LC-MS/MS module). PTX-HGW86 in glants using multi-residue method DFG S19 (LC-MS/MS module). PTX-HGW86 in aphication of residues of DPX-HGW86 in plants using multi-residue method DFG S19		Craig, W.B.		density. Charles River Laboratories. DuPont Report No. DuPont-18863.
DP-18868 Pedersen, C. 2008 Rafe of degradation of [14C]-IN-K5A79 in five aerobic soils. DuPont Stime-Haskell Research Center. DuPont Report No. DuPont-18868. Unpublished DP-18870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-IN-K5A79 in five aerobic soils. DuPont Report No. DuPont-18870, Revision No. 2. Unpublished DP-19077 Malekani, K. 2008 Rate of degradation of [14C]-IN-PLT97 in five aerobic soils. DuPont Sime-Haskell Research Center. DuPont Report No. DuPont-19077. Unpublished DP-19177 Clipston, A.S., 2007 DPX-HGW86. Laboratory study of dissociation constant. Charles River Laboratories. DuPont Report No. DuPont-19176. Unpublished DP-19639 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 10, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19630. Unpublished DP-19678 Old, J., 2010 Field crop rotation study with DPX-HGW86 insecticide - southern Europe 2006-2009. Charles River Laboratories. DuPont Report No. DuPont-19670. Unpublished DP-21326 Weber, H. 2010 Field crop rotation study with DPX-HGW86 insecticide - southern Europe 2006-2009. Charles River Laboratories. DuPont Report No. DuPont-19670. Unpublished DP-21326 Weber, H. 2010 Field Crop rotation study with DPX-HGW86 insecticide - southern Europe 2006-2009. Charles River Laboratories. DuPont Report No. DuPont-19670. Unpublished DP-213		6)		Unpublished
DP-18870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-IN-K5A79 in five soils by batch equilibrium. DuPont Sine-Haskell Research Center. DuPont Report No. DuPont-18870, Revison No. 2. Unpublished DP-19077 Malekani, K. 2008 Rate of degradation [14C]-IN-K5A79 in five soils by batch equilibrium. DuPont Sine-Haskell Research Center. DuPont Report No. DuPont-19870, Revisor No. 2. Unpublished DP-19176 Clipston, A.S., 2007 DPX-HGW86 : Laboratory study of dissociation constant. Charles River Laboratories. DuPont Report No. DuPont-19176. Unpublished DP-19177 Clipston, A.S., 2007 DPX-HGW86 : Laboratory study of pH. Charles River Laboratories. DuPont Report No. DuPont-19177. Unpublished DP-19639 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 11, USA. 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19639. Unpublished DP-19640 Thiel, A. 2019 Field crop rotation study with DPX-HGW86 insecticide - southern Europe 2006-2009. Charles River Laboratories. Inc. DuPont Report No. DuPont-19678. Unpublished DP-19678 Old, J., 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-MS/MS module). PTRL Europe. DuPont Report No. DuPont-21326. Unpublished DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-MS/MS module). PTRL Europe. DuPont Report No. DuPont-21326. Unpublished DP-21329 Rockwell,	DP-18868	Pedersen, C.	2008	Rate of degradation of [14C]-IN-K5A79 in five aerobic soils. DuPont
DP-18870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-IN-K5A79 in five soils by batch equilibrium. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-18870, Revision No. 2. Unpublished DP-19077 Malekani, K. 2008 Rate of degradation [14C]-IN-LT970 in five acrobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-19077. Unpublished DP-19176 Clipston, A.S., 2007 DPX-HGW86: Laboratory study of dissociation constant. Charles River Laboratories. DuPont Report No. DuPont-19176. Unpublished DP-19177 Clipston, A.S., 2007 DPX-HGW86: Laboratory study of DIC. Charles River Laboratories. DuPont Report No. DuPont-19176. Unpublished DP-19639 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 (100D) insecticide - EPA region 10, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19640. Unpublished DP-19678 Old, J., 2010 Field crop rotation study with DPX-HGW86 insecticide - southern Europe 2006–2009. Charles River Laboratories. DuPont Report No. DuPont-19678. Unpublished DP-21326 Weber, H. 2010 Field Crop rotation study with DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume 1 (PAM, Vol. 1 as revised in October 1999). Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21326. Unpublished DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue m		,		Stine-Haskell Research Center. DuPont Report No. DuPont-18868.
DP-18870 Pils, J.R.V. 2010 Adsorption-desorption of [14C]-IN-K5A79 in five soils by batch equilibrium. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont 18870, Revision No. 2. Unpublished DP-19077 Malekani, K. 2008 Rate of degradation [14C]-IN-PLT97 in five aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-19077. Unpublished DP-19176 Clipston, A.S., 2007 DPX-HGW86: Laboratory study of dissociation constant. Charles River Laboratories. DuPont Report No. DuPont-19077. Unpublished DP-19177 Clipston, A.S., 2007 DPX-HGW86: Laboratory study of pH. Charles River Laboratories. DuPont Report No. DuPont-19070. Unpublished DP-19639 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 10, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19640 DP-19640 Thiel, A. 2010 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 11, USA. 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19676. Unpublished DP-19678 Old, J., 2010 Field crop rotation study with DPX-HGW86 insecticide - southern Europe Woodmansey, L. DP-21326 Weber, H. 2010 Field crop rotation study with DPX-HGW86 indermination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-MS/MS module). Eurofins Dr. Specht GLP GmbH. DuPont Report No. DuPont-13675. Unpublished DP-21328 Bacher, R. 2009 Meth				Unpublished
equilibrium. DuPont Stine-Haskell Research Center. DuPont Report No. DP-19077 Malekani, K. 2008 Rate of degradation [14C]-14N-PLT97 in five aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-19077. Unpublished DP-19176 Clipston, A.S., 2007 DPX-HGW86: Laboratory study of dissociation constant. Charles River Laboratories. DuPont Report No. DuPont-19176. Unpublished DP-19177 Clipston, A.S., 2007 DPX-HGW86: Laboratory study of pH. Charles River Laboratories. DuPont Report No. DuPont-19177. Unpublished DP-19639 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 10OD insecticide - EPA region 11, USA. 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19630. Unpublished DP-19640 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 10OD insecticide - EPA region 11, USA. 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19678. Unpublished DP-19678 Old, J., 2010 Field crop rotation study with DPX-HGW86 insecticide - southern Europe 2006-2009. Charles River Laboratories. DuPont Report No. DuPont-19678. Unpublished DP-21326 Weber, H. 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-MS/MS module). FURL Europe. DuPont Report No. DuPont-21326. Unpublished DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue metho	DP-18870	Pils, J.R.V.	2010	Adsorption-desorption of [14C]-IN-K5A79 in five soils by batch
DuPont-18870, Revision No. 2. Unpublished DP-19077 Malexani, K. 2008 Rate of degradation [14C]-IN-PLT97 in five aerobic soils. DuPont Stime-Haskell Research Center. DuPont Report No. DuPont-19077. Unpublished DP-19176 Clipston, A.S., 2007 DPX-HGW86: Laboratory study of dissociation constant. Charles River Laboratories. DuPont Report No. DuPont-19176. Unpublished DP-19177 Clipston, A.S., 2007 DPX-HGW86: Laboratory study of pH. Charles River Laboratories. DuPont Report No. DuPont-19177. Unpublished DP-19639 Thiel, A. 2009 Field crop totation study with DPX-HGW86 10OD insecticide - EPA region 10, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19630. Unpublished DP-19640 Thiel, A. 2009 Field crop totation study with DPX-HGW86 inOD insecticide - Southern Europe 2006-2009. Charles River Laboratories. Inc. DuPont Report No. DuPont-19670. Unpublished DP-19678 Old, J., 2010 Field crop totation study with DPX-HGW86 insecticide - southern Europe 2006-2009. Charles River Laboratories. DuPont Report No. DuPont-19678. Unpublished DP-21326 Weber, H. 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-MS/MS module). FURL Europe. DuPont Report No. DuPont-21326. Unpublished DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of residues of DPX-HGW86 in				equilibrium. DuPont Stine-Haskell Research Center. DuPont Report No.
DP-19077 Malekani, K. 2008 Rate of degradation [14C]-IN-PLTY in five aerobic soils. DuPont Stine-Haskell Research Center. DuPont Report No. DuPont-19077. Unpublished DP-19176 Clipston, A.S., Clipston, A.S., Clipston, A.S., Craig, W.B. 2007 DPX-HGW86: Laboratory study of filescoitation constant. Charles River Laboratories. DuPont Report No. DuPont-19176. Unpublished DP-19177 Clipston, A.S., Clipston, A.S., Caraig, W.B. 2007 DPX-HGW86: Laboratory study of file. Charles River Laboratories. Inc. DuPont Report No. DuPont-19177. Unpublished DP-19639 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 11, USA. 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19639. Unpublished DP-19640 Thiel, A. 2010 Field crop rotation study with DPX-HGW86 insecticide - southern Europe Woodmansey, L. DP-19678 Old, J., Woodmansey, L. 2010 Field crop rotation study with DPX-HGW86 insecticide - southern Europe Woodmansey, L. DP-21326 Weber, H. 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-MS/MS module). Eurofins Dr. Specht GLP GmH. DuPont Report No. DuPont-21320. Unpublished DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-MS/MS module). PTRL Europe. DuPont Report No. DuPont-21320. Unpubli				DuPont-18870, Revision No. 2. Unpublished
Haskell Research Center, DuPont Report No. DuPont-19077. Unpublished DP-19177 Clipston, A.S., Craig, W.B. 2007 DPX-HGW86: Laboratory study of flissociation constant. Charles River Laboratories. DuPont Report No. DuPont-19176. Unpublished DP-19177 Clipston, A.S., Craig, W.B. 2007 DPX-HGW86: Laboratory study of flick DP-19639 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 10, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19630. Unpublished DP-19640 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 11, USA. 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19640. Unpublished DP-19640 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 incecticide - southern Europe 2006-2009. Charles River Laboratories. DuPont Report No. DuPont-19660. Unpublished DP-19678 Old, J., Woodmansey, L. 2010 Field crop rotation study with DPX-HGW86 insecticide - southern Europe 2006-2009. Charles River Laboratories. DuPont Report No. DuPont- 19678. Unpublished DP-21326 Weber, H. 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC- MS/MS module). Eurofins Dr. Specht GLP GmbH. DuPont Report No. DuPont-21326. Unpublished DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of residues of D	DP-19077	Malekani, K.	2008	Rate of degradation [14C]-IN-PLT97 in five aerobic soils. DuPont Stine-
DP-19176 Clipston, A.S., 2007 DPX-HGW86: Laboratory study of fissication constant. Charles River Laboratories. DuPont Report No. DuPont-19176. Unpublished DP-19177 Clipston, A.S., 2007 DPX-HGW86: Laboratory study of fissication constant. Charles River Laboratories. DuPont Report No. DuPont-19177. Unpublished DP-19639 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 10, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19639. Unpublished DP-19640 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 11, USA. 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19678. Unpublished DP-19678 Old, J., 2010 Field crop rotation study with DPX-HGW86 insecticide - southern Europe Woodmansey, L. DP-21326 Weber, H. 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-MS/MS module). PTRL Europe. DuPont Report No. DuPont-21326. Unpublished DP-21328 Bacher, R. 2009 Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume 1 (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21328. Unpublished DP-21413 Aitken, A., Cairns, 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected green sens (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and				Haskell Research Center. DuPont Report No. DuPont-19077. Unpublished
Craig, W.B. Craig, W.B. (DP-19177)Laboratories. DuPont Report No. DuPont-19176. Unpublished DP-19639DP-19639Thiel, A.2007 DP-19639Field crop rotation study with DPX-HGW86 10OD insecticide - EPA region 10, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19639. UnpublishedDP-19640Thiel, A.2009Field crop rotation study with DPX-HGW86 10OD insecticide - EPA region 11, USA. 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19640. UnpublishedDP-19640Thiel, A.2010Field crop rotation study with DPX-HGW86 10OD insecticide - Southern Europe 2006-2009. Charles River Laboratories, Inc. DuPont Report No. DuPont-19678. UnpublishedDP-19678Old, J., Woodmansey, L.2010Field crop rotation study with DPX-HGW86 insecticide - southern Europe 2006-2009. Charles River Laboratories. DuPont Report No. DuPont- 19678. UnpublishedDP-21326Weber, H.2010Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S19 (LC- MS/MS module). Eurofins Dr. Specht GLP GmbH. DuPont Report No. DuPont-21326. UnpublishedDP-21328Bacher, R.2009Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume I (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21329. UnpublishedDP-21413Aitken, A., Cairns, S.2010Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413	DP-19176	Clipston, A.S.,	2007	DPX-HGW86: Laboratory study of dissociation constant. Charles River
DP-19177 Clipston, A.S., Craig, W.B. 2007 DPX-HGW86: Laboratory study of pH. Charles River Laboratories. DuPont Report No. DuPont-19177. Unpublished DP-19639 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 10OD insecticide - EPA region 10, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19639. Unpublished DP-19640 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 10OD insecticide - EPA region 11, USA. 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19640. Unpublished DP-19678 Old, J., 2010 Field crop rotation study with DPX-HGW86 insecticide - southern Europe Woodmansey, L. DP-21326 Weber, H. 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC- MS/MS module). PTRL Europe. DuPont No. DuPont-21328. DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC- MS/MS module). PTRL Europe. DuPont Report No. DuPont-21328. DP-21329 Rockwell, D. 2009 Method assessment and validation for the determination of residues of DPX-HGW86 in of DPX-HGW86 and metabolite according to the FDA pesticide analytical manual volume 1 (PAM, Vol. 1 as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21329. DP-21413 Aitken, A., Cairms, S. 2010 Magnitude and decline of DPX-HGW86 and met		Craig, W.B.		Laboratories. DuPont Report No. DuPont-19176. Unpublished
Craig, W.B. DuPont Report No. DuPont-19177. Unpublished DP-19639 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 10, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19639. Unpublished DP-19640 Thiel, A. 2009 P-19678 Old, J., 2010 Woodmansey, L. 2010 Field crop rotation study with DPX-HGW86 insecticide - southern Europe 2006-2009. Charles River Laboratories. DuPont Report No. DuPont-19678. Unpublished DP-21326 Weber, H. 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG 5 19 (LC-MS/MS module). Eurofins Dr. Specht GLP GmbH. DuPont Report No. DuPont-21326. Unpublished DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG 5 19 (LC-MS/MS module). PTRL Europe. DuPont Report No. DuPont-21328. Unpublished DP-21329 Rockwell, D. 2009 Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA persicide analytical manual volume 1 (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21432. Unpublished DP-21413 Aitken, A., Cairns, S. 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L O - Europ	DP-19177	Clipston, A.S.,	2007	DPX-HGW86: Laboratory study of pH. Charles River Laboratories.
DP-19639 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 10OD insecticide - EPA region 10, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19639. Unpublished DP-19640 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 10OD insecticide - EPA region 11, USA. 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19640. Unpublished DP-19678 Old, J., 2010 Field crop rotation study with DPX-HGW86 insecticide - southern Europe 2006–2009. Charles River Laboratories. DuPont Report No. DuPont-19678. Unpublished DP-21326 Weber, H. 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-MS/MS module). Eurofins Dr. Specht GLP GmbH. DuPont Report No. DuPont-21326. Unpublished DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-MS/MS module). Eurofins for To DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume 1 (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21329. DP-21413 Aitken, A., Cairns, Song Amagin application of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. DP-21414 Aitken, A., Cairns, Song Amagin and adcline of DPX-HGW86 and metabolite residues in protected green beans (fresh l		Craig, W.B.		DuPont Report No. DuPont-19177. Unpublished
PP-19640Thiel, A.2009region 10, USA, 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19639. UnpublishedDP-19678Old, J., Woodmansey, L.2010Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 11, USA. 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19640. UnpublishedDP-19678Old, J., Woodmansey, L.2010Field crop rotation study with DPX-HGW86 insecticide - southern Europe 2006-2009. Charles River Laboratories. DuPont Report No. DuPont- 19678. UnpublishedDP-21326Weber, H.2010Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG 5 19 (LC- MS/MS module). Eurofins Dr. Specht GLP GmbH. DuPont Report No. DuPont-21326. UnpublishedDP-21328Bacher, R.2009Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG 519 (LC- MS/MS module). PTRL Europe. DuPont Report No. DuPont-21328. UnpublishedDP-21329Rockwell, D.2009Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume 1 (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21329. UnpublishedDP-21413Aitken, A., Cairns, S.2010Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21414. UnpublishedDP-21415Livingstone, K., Haigh, I., Cairns, S., Woodmansey, L.2010Magnitude and decline of DPX	DP-19639	Thiel, A.	2009	Field crop rotation study with DPX-HGW86 10OD insecticide - EPA
DP-19640 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 11, USA. 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19640. Unpublished DP-19678 Old, J., 2010 Field crop rotation study with DPX-HGW86 insecticide - southern Europe 2006-2009. Charles River Laboratories. DuPont Report No. DuPont-19678. Unpublished DP-21326 Weber, H. 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-MS/MS module). Eurofins Dr. Specht GLP GmbH. DuPont Report No. DuPont-21326. Unpublished DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of FG S19 (LC-MS/MS module). PTRL Europe. DuPont Report No. DuPont-21328. Unpublished DP-21329 Rockwell, D. 2009 Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume I (PAM, Vol. I as revised in October 1999), Appendix II. Pyyant Labs, Inc. DuPont Report No. DuPont-21329. Unpublished DP-21413 Aitken, A., Cairns, S. 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. Unpublished DP-21414 Aitken, A., Cairns, S. 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86				region 10, USA, 2006. ABC Laboratories, Inc. DuPont Report No.
DP-19640 Thiel, A. 2009 Field crop rotation study with DPX-HGW86 100D insecticide - EPA region 11, USA. 2006. ABC Laboratories, Inc. DuPont Report No. DuPont-19640. Unpublished DP-19678 Old, J., 2010 Field crop rotation study with DPX-HGW86 insecticide - southern Europe 2006–2009. Charles River Laboratories. DuPont Report No. DuPont-19678. Unpublished DP-21326 Weber, H. 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-MS/MS module). Eurofins Dr. Specht GLP GmbH. DuPont Report No. DuPont-21326. Unpublished DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-MS/MS module). PTRL Europe. DuPont Report No. DuPont-21328. Unpublished DP-21329 Rockwell, D. 2009 Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume I (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21329. Unpublished DP-21413 Aitken, A., Cairns, S. 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. Unpublished DP-21414 Aitken, A., Cairns, S. 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected g				DuPont-19639. Unpublished
pp-19678 Old, J., 2010 Field crop rotation study with DPX-HGW86 insecticide - southern Europe DP-19678 Old, J., 2010 Field crop rotation study with DPX-HGW86 insecticide - southern Europe DP-21326 Weber, H. 2010 Independent laboratory validation for the determination of residues of DP-21326 Weber, H. 2010 Independent laboratory validation for the determination of residues of DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of residues of DP-21329 Rockwell, D. 2009 Method assessment and validation for the determination of residues of DP-21329 Rockwell, D. 2009 Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume I (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21329. DP-21413 Aitken, A., Cairns, 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legune vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. DP-21414 Aitken, A., Cairns, 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21413.	DP-19640	Thiel, A.	2009	Field crop rotation study with DPX-HGW86 10OD insecticide - EPA
DP-19678 Old, J., 2010 Field crop rotation study with DPX-HGW86 insecticide - southern Europe DP-21326 Weber, H. 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC- MS/MS module). Eurofins Dr. Specht GLP GmbH. DuPont Report No. DuPont-21326. Unpublished DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S19 (LC- MS/MS module). PTRL Europe. DuPont Report No. DuPont-21328. Unpublished DP-21329 Rockwell, D. 2009 Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume I (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21329. DP-21413 Aitken, A., Cairns, S. 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21414. Unpublished DP-21415 Livingstone, K., Baigh, I., Cairns, S., Woodmansey, L. 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX- HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21414. Unpublished				region 11, USA. 2006. ABC Laboratories, Inc. DuPont Report No.
DP-19678 Old, J., 2010 Field crop rotation study with DPX-HGW86 insecticide - southern Europe Woodmansey, L. 2006–2009. Charles River Laboratories. DuPont Report No. DuPont-19678. Unpublished DP-21326 Weber, H. 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-MS/MS module). Eurofins Dr. Specht GLP GmbH. DuPont Report No. DuPont-21326. Unpublished DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-MS/MS module). PTRL Europe. DuPont Report No. DuPont-21328. Unpublished DP-21329 Rockwell, D. 2009 Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume I (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21329. Unpublished DP-21413 Aitken, A., Cairns, 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. Unpublished DP-21414 Aitken, A., Cairns, 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21413. Unpublished DP-21415 Livingston				DuPont-19640. Unpublished
Woodmansey, L. 2006–2009. Charles River Laboratories. DuPont Report No. DuPont-19678. Unpublished DP-21326 Weber, H. 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-MS/MS module). Eurofins Dr. Specht GLP GmbH. DuPont Report No. DuPont-21326. Unpublished DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S19 (LC-MS/MS module). PTRL Europe. DuPont Report No. DuPont-21328. Unpublished DP-21329 Rockwell, D. 2009 Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume I (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont DP-21413 Aitken, A., Cairns, S. 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. Unpublished DP-21414 Aitken, A., Cairns, S. 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21413. Unpublished DP-21415 Livingstone, K., Low Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86 100 g/	DP-19678	Old, J.,	2010	Field crop rotation study with DPX-HGW86 insecticide - southern Europe
DP-21326 Weber, H. 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-MS/MS module). Eurofins Dr. Specht GLP GmbH. DuPont Report No. DuPont-21326. Unpublished DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S19 (LC-MS/MS module). PTRL Europe. DuPont Report No. DuPont-21328. Unpublished DP-21329 Rockwell, D. 2009 Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume I (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21329. Unpublished DP-21413 Aitken, A., Cairns, S. 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. Unpublished DP-21414 Aitken, A., Cairns, S. 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21414. Unpublished DP-21415 Livingstone, K., Haigh, I., Cairns, S., Woodmansey, L. 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86 200 e/L SC- Europe. 2008. Charles River Laboratories. DuPont Repo		Woodmansey, L.		2006–2009. Charles River Laboratories. DuPont Report No. DuPont-
DP-21326 Weber, H. 2010 Independent laboratory validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-MS/MS module). Eurofins Dr. Specht GLP GmbH. DuPont Report No. DuPont-21326. Unpublished DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S19 (LC-MS/MS module). PTRL Europe. DuPont Report No. DuPont-21328. Unpublished DP-21329 Rockwell, D. 2009 Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume I (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21329. Unpublished DP-21413 Aitken, A., Cairns, 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. Unpublished DP-21414 Aitken, A., Cairns, 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. Unpublished DP-21415 Livingstone, K., S., Woodmansey, L. 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (lear vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21414. Unpublished <td></td> <td></td> <td></td> <td>19678. Unpublished</td>				19678. Unpublished
DP-21328Bacher, R.2009Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S19 (LC- MS/MS module). PTRL Europe. DuPont Report No. DuPont-21328. UnpublishedDP-21329Rockwell, D.2009Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S19 (LC- MS/MS module). PTRL Europe. DuPont Report No. DuPont-21328. UnpublishedDP-21329Rockwell, D.2009Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume I (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21329. UnpublishedDP-21413Aitken, A., Cairns, 2010Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. UnpublishedDP-21414Aitken, A., Cairns, 2010Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21414. UnpublishedDP-21415Livingstone, K., Haigh, I., Cairns, S., Woodmansey, L.2010Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86 100 or drip irrigation application of DPX-HGW86 100 or DO or drip irrigation application of DPX-HGW86 100 or DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86 100	DP-21326	Weber, H.	2010	Independent laboratory validation for the determination of residues of
MS/MS module). Eurofins Dr. Specht GLP GmbH. DuPont Report No. DuPont-21326. UnpublishedDP-21328Bacher, R.2009Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S19 (LC- MS/MS module). PTRL Europe. DuPont Report No. DuPont-21328. UnpublishedDP-21329Rockwell, D.2009Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume I (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21329. UnpublishedDP-21413Aitken, A., Cairns, S.2010Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. UnpublishedDP-21414Aitken, A., Cairns, S.2010Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21414. UnpublishedDP-21415Livingstone, K., Haigh, I., Cairns, S., Woodmansey, L.2010Magnitude and decline of DPX-HGW86 and metabolite residues in protected letture (leaf vegetables) following foliar application of DPX-HGW86 100 g/L OD or drip irrigation application of DPX-HGW86 100 g/L OD ordrip irrigation ap				DPX-HGW86 in plants using multi-residue method DFG S 19 (LC-
DuP-21328Bacher, R.2009Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S19 (LC- MS/MS module). PTRL Europe. DuPont Report No. DuPont-21328. UnpublishedDP-21329Rockwell, D.2009Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume I (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21329. UnpublishedDP-21413Aitken, A., Cairns, S.2010Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. UnpublishedDP-21414Aitken, A., Cairns, S.2010Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21414. UnpublishedDP-21415Livingstone, K., Haigh, I., Cairns, S., Woodmansey, L.2010Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86 100 g/L OD or drip irrigation application of DPX-HGW86				MS/MS module). Eurotins Dr. Specht GLP GmbH. DuPont Report No.
DP-21328 Bacher, R. 2009 Method assessment and validation for the determination of residues of DPX-HGW86 in plants using multi-residue method DFG S19 (LC-MS/MS module). PTRL Europe. DuPont Report No. DuPont-21328. Unpublished DP-21329 Rockwell, D. 2009 Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume I (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21329. Unpublished DP-21413 Aitken, A., Cairns, 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. Unpublished DP-21414 Aitken, A., Cairns, 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21414. Unpublished DP-21415 Livingstone, K., 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21414. Unpublished DP-21415 Livingstone, K., 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86 DP-21415 Livingstone, K., 2010 Magnitude and decline of DPX-HGW86 and metabolit	DD 01000		• • • • •	DuPont-21326. Unpublished
DP-21329Rockwell, D.2009DP/X-HGW86 in plants using multi-residue method DFG S19 (LC- MS/MS module). PTRL Europe. DuPont Report No. DuPont-21328. UnpublishedDP-21329Rockwell, D.2009Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume I (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21329. UnpublishedDP-21413Aitken, A., Cairns, 2010 S.Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. UnpublishedDP-21414Aitken, A., Cairns, 2010 S.Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21414. UnpublishedDP-21415Livingstone, K., Haigh, I., Cairns, S., Woodmansey, L.2010Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX- HGW86 100 g/L OD or drip irrigation application of DPX-HGW86 200 g/L SC- Europe. 2008. Charles River Laboratories. DuPont Report	DP-21328	Bacher, R.	2009	Method assessment and validation for the determination of residues of
MS/MS module). PTRL Europe. DuPont Report No. DuPont-21328. UnpublishedDP-21329Rockwell, D.2009Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume I (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21329. UnpublishedDP-21413Aitken, A., Cairns, 2010 S.Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. UnpublishedDP-21414Aitken, A., Cairns, 2010 S.Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21414. UnpublishedDP-21415Livingstone, K., Haigh, I., Cairns, S., Woodmansey, L.2010 Haigh, I., Cairns, S., Woodmansey, L.Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX- HGW86 100 g/L OD or drip irrigation application of DPX-HGW86 100 og/L SC- Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21418. Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX- HGW86 100 g/L OD or drip irrigation application of DPX-HGW86 				DPX-HGW86 in plants using multi-residue method DFG S19 (LC-
DP-21329Rockwell, D.2009Multiresidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume I (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21329. UnpublishedDP-21413Aitken, A., Cairns, 2010Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. UnpublishedDP-21414Aitken, A., Cairns, 2010Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21414. UnpublishedDP-21415Livingstone, K., Haigh, I., Cairns, S., Woodmansey, L.2010DP-21415Livongstone, K., L.2010DP-21415Livingstone, K., 20102010DP-21415Livingstone, K., 20102010<				MS/MS module). PTRL Europe. DuPont Report No. DuPont-21328.
DP-21329Rockweit, D.2009Multirestidue method testing for DPX-HGW86 and six metabolites according to the FDA pesticide analytical manual volume I (PAM, Vol. I as revised in October 1999), Appendix II. Pyxant Labs, Inc. DuPont Report No. DuPont-21329. UnpublishedDP-21413Aitken, A., Cairns, 2010 S.Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 and metabolite residues in field UnpublishedDP-21414Aitken, A., Cairns, 2010 S.Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21414. UnpublishedDP-21415Livingstone, K., Haigh, I., Cairns, S., Woodmansey, L.2010DP-21415Livingstone, K., L.2010DP-21415Livingstone, K., 20102010DP-21415Livingstone, K., 2010 <t< td=""><td>DD 21220</td><td>Dealawall D</td><td>2000</td><td>Unpublished</td></t<>	DD 21220	Dealawall D	2000	Unpublished
DP-21413Aitken, A., Cairns, 2010Cairns, 2010Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 and metabolite residues in field protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 and metabolite residues in field protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 and metabolite residues in field protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21414. UnpublishedDP-21415Livingstone, K., L, Cairns, S., Woodmansey, L.2010Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX- HGW86 100 g/L OD or drip irrigation application of DPX- HGW86 100 g/L OD or drip irrigation application of DPX- HGW86 100 g/L OD or drip irrigation application of DPX- HGW86 100 g/L OD or drip irrigation application of DPX- HGW86 100 g/L SC- Europe, 2008. Charles River Laboratories. DuPont Report	DP-21329	Kockwell, D.	2009	Multirestate method testing for DPA-HGW 80 and six metabolites
DP-21413Aitken, A., Cairns, 2010Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 and metabolite residues in field UnpublishedDP-21414Aitken, A., Cairns, 2010 S.Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21414. UnpublishedDP-21415Livingstone, K., Haigh, I., Cairns, S., Woodmansey, L.2010DP-21415Livingstone, K., L.2010DP-21415Livingstone, K., L.2010 </td <td></td> <td></td> <td></td> <td>according to the FDA pesticide analytical manual volume I (FAW, Vol. I</td>				according to the FDA pesticide analytical manual volume I (FAW, Vol. I
DP-21413Aitken, A., Cairns, 2010Magnitude and decline of DPX-HGW86 and metabolite residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. UnpublishedDP-21414Aitken, A., Cairns, 2010 S.Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21414. UnpublishedDP-21415Livingstone, K., 2010 Haigh, I., Cairns, S., Woodmansey, L.Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX- HGW86 100 g/L OD or drip irrigation application of DPX- HGW86 100 g/L OD or drip irrigation application of DPX- HGW86 100 g/L OD or drip irrigation application of DPX- HGW86 100 g/L OD or drip irrigation application of DPX- HGW86 100 g/L SC- Europe, 2008. Charles River Laboratories. DuPont Report				Benert No. DuPont 21220, Unpublished
DP-21413 Aitken, A., Cainis, 2010 Magintude and decline of DFX-HGW80 and interaoonie residues in protected green beans (fresh legume vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. Unpublished DP-21414 Aitken, A., Cairns, 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21414. Unpublished DP-21415 Livingstone, K., 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86 L. DP-21415 Livingstone, K., 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86 L.	DD 21/12	Aitkon A Coirne	2010	Magnitude and dealing of DPX HGW86 and matchalite residues in
3. protected green beans (nesh regulate vegetables) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008 and 2009. Charles River Laboratories. DuPont Report No. DuPont-21413. Unpublished DP-21414 Aitken, A., Cairns, 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 g/L OD - Europe, 2008. Charles River Laboratories. DuPont Report No. DuPont-21414. Unpublished DP-21415 Livingstone, K., 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86 200 g/L OD or drip irrigation application of DPX-HGW86 L. 200 g/L SC- Europe, 2008. Charles River Laboratories. DuPont Report	DF-21415	Altkell, A., Callis,	2010	protocted groon boons (fresh logume vagetables) following folior
application DFX-HO was for gF OD - Europe, 2008 and 2009.DP-21414Aitken, A., Cairns, 2010S.UnpublishedDP-21415Livingstone, K., 2010Haigh, I., Cairns, S., Woodmansey, L.Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86L.Livingstone, K., 2010Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86L.Livingstone, K., 2010Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86L.200 g/L SC- Europe, 2008. Charles River Laboratories. DuPont Report		5.		application of DPX HGW86 100 g/L OD Europe 2008 and 2009
DP-21414 Aitken, A., Cairns, 2010 Unpublished DP-21414 Aitken, A., Cairns, 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in field potatoes (potato group) following foliar application of DPX-HGW86 100 DP-21415 Livingstone, K., 2010 DuPont-21414. Unpublished DP-21415 Livingstone, K., 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86 DP-21415 Livingstone, K., 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86 L. 200 g/L SC- Europe, 2008. Charles River Laboratories. DuPont Report				Charles River I aboratories DuPont Report No. DuPont 21/13
DP-21414 Aitken, A., Cairns, 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in field DP-21414 Aitken, A., Cairns, 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in field DP-21415 Livingstone, K., 2010 DuPont-21414. Unpublished DP-21415 Livingstone, K., 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86 L. L. 200 g/L SC- Europe, 2008. Charles River Laboratories. DuPont Report				Unpublished
DP-21415 Livingstone, K., 2010 Magintade und decline of DFX-HGW86 and metabolite residues in field DP-21415 Livingstone, K., 2010 Magintude and decline of DFX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86 L. DP-21415 Livingstone, K., 2010 Magintude and decline of DFX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86 Livingstone, K., 2010 Magintude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86 Livingstone, L. 200 g/L SC- Europe, 2008. Charles River Laboratories. DuPont Report	DP-21414	Aitken A Cairne	2010	Magnitude and decline of DPX-HGW86 and metabolite residues in field
DP-21415 Livingstone, K., 2010 Portations, S., Woodmansey, L. S., Woodmansey, L. DP-21415 Livingstone, K., 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86 L.	DI -21414	S S	2010	notatoes (notato group) following foliar application of DPX-HGW86 100
DP-21415 Livingstone, K., 2010 DuPont-21414. Unpublished DP-21415 Livingstone, K., 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in protected lettuce (leaf vegetables) following foliar application of DPX-HGW86 L. Livingstone, K., 2010 HGW86 100 g/L OD or drip irrigation application of DPX-HGW86		5.		g/I OD - Furone 2008 Charles River I aboratories DuPont Report No
DP-21415 Livingstone, K., 2010 Magnitude and decline of DPX-HGW86 and metabolite residues in Haigh, I., Cairns, S., Woodmansey, L. HGW86 100 g/L OD or drip irrigation application of DPX-HGW86 200 g/L SC- Europe, 2008. Charles River Laboratories. DuPont Report				DuPont-21414 Unnublished
Haigh, I., Cairns, S., Woodmansey, L. Haight aud and and an encode of DFA HG Woodman inclusion of DPX- HGW86 100 g/L OD or drip irrigation application of DPX- HGW86 100 g/L SC- Europe, 2008. Charles River Laboratories. DuPont Report	DP-21415	Livingstone K	2010	Magnitude and decline of DPX-HGW86 and metabolite residues in
S., Woodmansey, L. L. HGW86 100 g/L OD or drip irrigation application of DPX-HGW86 L.		Haigh, L. Cairns		protected lettuce (leaf vegetables) following foliar application of DPX-
L. 200 g/L SC- Europe, 2008. Charles River Laboratories. DuPont Report		S., Woodmansey		HGW86 100 g/L OD or drip irrigation application of DPX-HGW86
		L.		200 g/L SC- Europe, 2008, Charles River Laboratories, DuPont Report
No. DuPont-21415, Revision No. 1. Unpublished				No. DuPont-21415, Revision No. 1. Unpublished

Reference	Author(s)	Year	Title
DP-21446	Thiel, A.	2010	Magnitude of DPX-HGW86 and metabolite and/or degradation product residues in field rotational grops following application of DPX-HGW86
			100 g/L OD insecticide - Ontario, Canada location 2008/2009. ABC Laboratories, Inc. DuPont Report No. DuPont-21446, Unpublished
DP-21477	Haigh, I.,	2010	Magnitude and decline of DPX-HGW86 and metabolite and/or
	Woodmansey, L.		degradation product residues in field rotational crops following foliar
			application of DPX-HGW86 100 g/L OD - northern Europe, 2008 and
			2009. Charles River Laboratories. DuPont Report No. DuPont-21477.
DD 22885	Hoigh I Coirne S	2010	Unpublished Magnitude and dealing of DPX HGW86 and matchalite residues in
DF-23883	Haigh, I., Callis, S	5. 2010	protected peppers (fruiting vegetables, solanacea) following foliar
			application of DPX-HGW86 100 g/L OD or drip irrigation application of
			DPX-HGW86 200 g/L SC - Europe 2008. Charles River Laboratories.
			DuPont Report No. DuPont-23885. Unpublished
DP-24754	Lowrie, C.,	2009	Extraction efficiency of [14C]DPX-HGW86 from crops. Charles River
DP 24708	MacKinnon, I. Wardrope, I	2010	Laboratories. DuPont Report No. DuPont-24/54. Unpublished
DI -24790	Sharma, A K	2010	DPX-HGW86 Charles River Laboratories DuPont Report No
	511011100, 111121		DuPont-24798, Revision No. 1. Unpublished
DP-25543	Ward, C.	2010	Validation of an analytical method for the determination of DPX-HGW86,
			IN-HGW87, IN-N7B69, IN-K7H19, IN-JCZ38, IN-MYX98, IN-J9Z38
			and IN-MLA84 in bovine tissues, milk and eggs. Charles River
DP-25544	Bacher R	2010	Method assessment and validation for the determination of residues of
DI 20011	Ducher, IC	2010	DPX-HGW86 and metabolites in animal tissues using multi-residue
			method DFG S19 (LC/MS/MS module). PTRL Europe. DuPont Report
			No. DuPont-25544. Unpublished
DP-25641	Carringer, S.J.,	2010	Magnitude and decline of DPX-HGW86 and metabolite residues in
	Schlerhoff, K.		following foliar applications of DPX-HGW86 100 g/L OD DPX-HGW86
			100 g/L SE, and soil applications of DPX-HGW86 200 g/L SC The
			Carringers, Inc.; ABC Laboratories, Inc. DuPont Report No. DuPont-
			25641. Unpublished
DP-25642	Carringer, S.J.,	2010	Magnitude and decline of DPX-HGW86 and metabolite residues in
	Schierhoff, R.		foliar applications of DPX HGW86 100 g/L OD and soil applications of
			DPX-HGW86 200 g/L SC - U.S. The Carringers, Inc.: ABC Laboratories.
			Inc. DuPont Report No. DuPont-25642. Unpublished
DP-25643	Carringer, S.J.,	2010	Magnitude and decline of DPX-HGW86 and metabolite residues in
	Vogl, E.		fruiting vegetables (tomato, bell pepper, non-bell pepper) following foliar
			HGW86 200 g/L SC US The Carringers Inc. ABC Laboratories Inc.
			DuPont Report No. DuPont-25643. Unpublished
DP-25644	Carringer, S.J.,	2010	Combined processing and magnitude and decline of DPX-HGW86 and
	Vogl, E.		metabolite residues in leafy vegetables (head/leaf lettuce, celery, spinach)
			following foliar applications of DPX-HGW86 100 g/L, DPX-HGW86 100
			g/L SE, soli applications of DPA-HG w 86 200 g/L SC. The Carringers, Inc : ABC I aboratories Inc. DuPont Report No. DuPont-25644
			Unpublished
DP-25645	Carringer, S.J.,	2009	Magnitude of DPX-HGW86 and metabolite residues in processed
	Vogl, E.		fractions of tomatoes following foliar applications of DPX-HGW86 100
			g/L OD - U.S., The Carringers, Inc.; ABC Laboratories, Inc. DuPont
DP-26000	Seal S	2010	Report No. DuPont-25045. Unpublished Independent laboratory validation of "Analytical method for the
DI -20000	Seal, S.	2010	determination of DPX-HGW86 and metabolites in crops and processed
			fractions using LC/MS/MS". Pyxant Labs, Inc. DuPont Report No.
			DuPont-26000, Revision No. 1. Unpublished
DP-26458	Schwarz, T.	2010	Independent laboratory validation of DuPont-18844 method for the
			actermination of residues of DPX-HGW86 and metabolites in milk and hoving tissues using LC/MS/MS. Charles Diver Laboratories. DuPont
			Report No. DuPont-26458. Unnublished
DP-27180	Ward, C., Vance,	2011	DPX-HGW86: Magnitude of residues of cyantraniliprole (DPX-HGW86)
	C.		and metabolites in edible tissues and milk of lactating dairy cows
			following dosing with cyantraniliprole. Charles River Laboratories.
			DuPont Report No. DuPont-2/180, Revision No. 1. Unpublished

Reference	Author(s)	Year	Title
DP-27181	Roberts, S., Ward,	2010	Magnitude of residues of cyantraniliprole (DPX-HGW86) and metabolites
	C.		in edible tissues and eggs of poultry following dosing with
			cyantraniliprole. Charles River Laboratories. DuPont Report No. DuPont-
			27181. Unpublished
DP-27356	Kinney, J.,	2010	Extraction efficiency of [14C]DPX-HGW86 from muscle, liver and milk
	Melville, S.		from goats and eggs from hens. Charles River Laboratories. DuPont
			Report No. DuPont-27356. Unpublished
DP-27436	Rice, F.	2010	HGW86: Magnitude of the residue on dry bulb and green onion. ABC
			Laboratories, Inc. DuPont Report No. DuPont-27436. Unpublished
DP-27437	Thiel, A.	2010	Combined processing and magnitude and decline of cyantraniliprole and
			metabolite residues in stone fruit (peach, plum, and cherry) following
			foliar applications of DPX-HGW86 100 g/L SE - NAFTA, 2009. ABC
			Laboratories, Inc. DuPont Report No. DuPont-27437. Unpublished
DP-27438	Thiel, A.	2010	Combined processing and magnitude and decline of cyantraniliprole and
			metabolite residues in pome fruit (apple and pear) following foliar
			applications of DPX-HGW86 100 g/L SE - NAFTA, 2009. ABC
			Laboratories, Inc. DuPont Report No. DuPont-27438. Unpublished
DP-27440	Radhakrishnan, D.	2009	DPX-HGW86: Laboratory study of physical and chemical properties of
			appearance (physical state, colour, odor), relative density, bulk density
			melting point and boiling point. International Institute of Biotechnology
			and Toxicology (IIBAT). DuPont Report No. DuPont-27440.
			Unpublished
DP-27446	Thiel, A.	2010	Magnitude of cyantraniliprole and metabolite residues in tree nuts
			(almonds and pecans) following foliar applications (DPX-HGW86 100
			g/L OD and DPX-HGW86 100 g/L SE) and soil applications (DPX-
			HGW86-200 g/L SC) - NAFTA, 2009. Inc.; ABC Laboratories, Inc.
			DuPont Report No. DuPont-27446. Unpublished
DP-27447	Krishnan, V.N.	2009	DPX-HGW86: Laboratory study of solubility in organic solvents.
			International Institute of Biotechnology and Toxicology (IIBAT). DuPont
			Report No. DuPont-27447. Unpublished
DP-27554	Rice, F.	2010	Combined processing and magnitude of DPX-HGW86 and metabolite
			residues in citrus fruit (orange, lemon, and grapefruit) following foliar
			applications of DPX-HGW86 100 g/L SE and systemic delivery
			applications of DPX-HGW86 200 g/L SC - USA, 2009. ABC
			Laboratories, Inc. DuPont Report No. DuPont-27554. Unpublished
DP-27565	Thiel, A.	2010	Combined processing and magnitude of cyantraniliprole and metabolite
			residues in cotton following foliar applications of DPX-HGW86 100 g/L
			OD and soil applications of DPX-HGW86 200 g/L SC - USA, 2009. Inc.;
			ABC Laboratories, Inc. DuPont Report No. DuPont-27565. Unpublished
DP-27582	Thiel, A.	2010	Combined processing and magnitude of cyantraniliprole and metabolite
			residues in oil seeds (canola and sunflowers) following foliar applications
			of DPX-HGW86 100 g/L OD and seed treatment with 625 g/L FS -
			NAFTA, 2009. Inc.; ABC Laboratories, Inc. DuPont Report No. DuPont-
			27582. Unpublished
DP-27583	Thiel, A.	2010	Combined processing and magnitude of cyantraniliprole and metabolite
			residues in tuberous and corm vegetables (potatoes) following foliar
			applications (DPX-HGW86 100 g/L OD and DPX-HGW86 100 g/L SE),
			soil applications (DPX-HGW86 200 g/L SC), and seed treatment. ABC
			Laboratories, Inc. DuPont Report No. DuPont-27583. Unpublished
DP-27709	Haigh, I., Cairns, S.	2011	Combined processing and magnitude and decline of cyantraniliprole and
			metabolite residues in olives following foliar application of DPX-HGW86
			100 g/L SE - southern Europe, 2009 initiation. Charles River
			Laboratories. DuPont Report No. DuPont-27709. Unpublished
DP-27/10	Haigh, I., Cairns,	2010	Magnitude and decline of cyantraniliprole and metabolite residues in
	S., Ferguson, L.		field-grown green beans (fresh legume vegetables) following foliar
			application of DPX-HGW86 100 g/L OD - France and Southern Europe,
			2009 initiation. Charles River Laboratories. DuPont Report No. DuPont-
		0011	27/10. Unpublished
DP-27711	Aitken, A., Cairns,	2011	Magnitude and decline of cyantraniliprole and metabolite residues in
	S., Ferguson, L.		tield-grown melons, courgettes and cucumbers (fruiting vegetables,
			inedible-peel cucurbits) tollowing toliar application of DPX-HGW86 100
			g/L OD and soil application of DPX-HGW86 200 g/L. Charles River
			Laboratories. DuPont Report No. DuPont-27711. Unpublished

Reference	Author(s)	Vear	Title
DP-27712	Haigh, L. Cairns, S.	2011	Magnitude and decline of cvantraniliprole and metabolite residues in
			field-grown tomatoes, peppers, and hot peppers (fruiting vegetables, solanacea) following foliar application of DPX-HGW86 100 g/L OD - Southern Europe, 2009 initiation. Charles River Laboratories. DuPont
DP-27713	Haigh, I., Cairns, S.	2010	Report No. DuPont-27712. Unpublished Magnitude and decline of cyantraniliprole and metabolite residues in field-grown lettuce and scarole following foliar application of DPX- HGW/66 100 g/L OD and soil amplication of DPX HGW/86 200 g/L SC
DB 27714	Heigh I. Coima S	2011	France and Southern Europe, 2009 initiation of DFX-HGW86 200 g/L SC - France and Southern Europe, 2009 initiation. Charles River Laboratories. DuPont Report No. DuPont-27713. Unpublished
DF-27714	панди, 1., Callins, S.	2011	apples and pears (pome fruit) following foliar application of DPX- HGW86 100 g/L SE - Northern and Southern Europe, 2009 initiation. Charles River Laboratories. DuPont Report No. DuPont-27714. Unpublished
DP-27716	Haigh, I., Cairns, S., Just, G.	2011	Magnitude and decline of cyantraniliprole and metabolite residues in oranges and mandarins (citrus fruit) following foliar application of DPX- HGW86 100 g/L SE - southern Europe, 2009 initiation. Charles River Laboratories. DuPont Report No. DuPont-27716. Unpublished
DP-27717	Aitken, A, Cairns, S.	2011	Magnitude and decline of cyantraniliprole and metabolite residues in peaches and apricots (stone fruit) following foliar application of DPX-HGW86 100 g/L SE - Southern Europe, 2009 initiation. Charles River Laboratorias. DuPort Perpet 27717, Unpublished
DP-27718	Aitken, A.	2011	Combined processing and magnitude and decline of cyantraniliprole and metabolite residues in wine and table grapes (berries and small fruit) following foliar application of DPX-HGW86 100 g/L SE - northern and southern Europe, 2009 initiation. Charles River Laboratories. DuPont Report No. DuPont-27718. Unpublished
DP-27971	Thiel, A.	2010	Magnitude of cyantraniliprole and metabolite residues in blueberries following foliar applications of DPX-HGW86 100 g/L SE - USA, 2009. ABC Laboratories Inc. DuPont Report No. DuPont-77971 Unpublished
DP-27972	Thiel, A.	2010	Magnitude of cyantraniliprole and metabolite residues in field rotational crops following bare ground applications of DPX-100 g/L SE - USA, 2009. The Carringers, Inc.; ABC Laboratories, Inc. DuPont Report No. DuPont-27972. Unpublished
DP-28186	Aitken, A., Cairns, S.	2010	Magnitude and decline of cyantraniliprole and metabolite residues in protected melons (fruiting vegetables, inedible-peel cucurbits) following foliar application of DPX-HGW86 100 g/L OD and soil application of DPX-HGW86 200 g/L SC - Europe, 2009 initiation. Charles River Laboratories. DuPont Report No. DuPont-28186 Unpublished
DP-28187	Aitken, A., Cairns, S.	2010	Magnitude and decline of cyantraniliprole and metabolite residues in protected tomatoes and cherry tomatoes (fruiting vegetables, solanacea) following foliar application of DPX-HGW86 100 g/L OD and soil application of DPX-HGW86 200 g/L SC - Europe, 2009 initiation. Charles River Laboratories. DuPont Report No. DuPont-28187. Unpublished
DP-28188	Haigh, I., Cairns, S., Hoskins, M.	2010	Magnitude and decline of cyantraniliprole and metabolite residues in protected peppers and hot peppers (fruiting vegetables, solanacea) following foliar application of DPX-HGW86 100 g/L OD and soil application of DPX-HGW86 200 g/L SC - Europe, 2009 initiation. Charles River Laboratories. DuPont Report No. DuPont-28188. Unpublished
DP-28200	Aitken, A., Cairns, S., Hoskins, M.	2010	Magnitude and decline of cyantraniliprole and metabolite residues in protected lettuce, lamb's lettuce, and scarole (leaf vegetables) following foliar application of DPX-HGW86 100 g/L OD and soil application of DPX-HGW86 200 g/L SC - Europe, 2009 initiation. Charles River Laboratories. DuPart Report 28200. Upwelliched
DP-28201	Aitken, A., Cairns, S.	2010	Magnitude and decline of cyantraniliprole and metabolite residues in protected cucumbers and courgettes (fruiting vegetables, edible-peel cucurbits) following foliar application of DPX-HGW86 100 g/L OD and soil application of DPX-HGW86 200 g/L SC - Europe. Charles River Laboratories v. DuPont Report No. DuPont-28201 Unpubliched
DP-28730	Wardrope, L.	2010	Photodegradation of [¹⁴ C]-DPX-HGW86 on moist soil. Charles River Laboratories. DuPont Report No. DuPont-28730. Unpublished

Reference	Author(s)	Year	Title
DP-29456	Thiel, A.	2011	Magnitude of cyantraniliprole and metabolite residues in field rotational
			crops following bare ground applications of DPX-100 g/L SE - USA and
			Canada, 2010. ABC Laboratories Inc. DuPont Report No. DuPont-29456.
DP-29555	Wardrone I	2010	Unpublished Rate of degradation [¹⁴ C]-IN-OKV54 in five aerobic soils. Charles River
DI -27555	wardrope, E.	2010	Laboratories, DuPont Report No. DuPont-29555, Unpublished
DP-29556	Vogl, E., Sharma,	2010	Analysis of photolysis products of DPX-HGW86 in field soil dissipation
	A.K.		samples - North America. ABC Laboratories, Inc. DuPont Report No.
DD 20555		2010	DuPont-29556, Revision No. 1. Unpublished
DP-29557	Vogl, E., Sharma,	2010	Analysis of photolysis products of DPX-HGW86 in field soil dissipation
	А. К .		DuPont-29557 Revision No. 2 Unpublished
DP-29747	Vogl. E.	2010	Analytical method for the determination of DPX-HGW86 and
			photoproducts in soil using LC/MS/MS. ABC Laboratories, Inc. DuPont
			Report No. DuPont-29747. Unpublished
DP-29809	McCorquodale, G.	2010	Rate of degradation [¹⁴ C]-IN-RNU71 in five aerobic soils. Charles River
			Laboratories. DuPont Report No. DuPont-29809, Revision No. 1.
DD 21/10	Vanta A	2010	Unpublished To determine Communications of allowing two applications of
DF-31410	Keals, A.	2010	DPX-HGW86 100 SF Applied at a 7 day Interval AgriSolutions Australia
			Ptv Ltd. DuPont Report No. DuPont-31410. Unpublished
DP-31412	Keats, A.	2010	Determination of Cyazypyr residues in canola seed, oil and trash (fodder).
			AgriSolutions Australia Pty Ltd. DuPont Report No. DuPont-31412.
			Unpublished
DP-31413	Keats, A.	2010	Determination of Cyazypyr residues in cucurbit fruit. AgriSolutions
DD 21454	Snudar N I	2010	Australia Pty Ltd. DuPont Report No. DuPont-31413. Unpublished
DI-31434	White M	2010	and Europe - summary of normalized kinetic calculations. Waterborne
	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Environmental, Inc. (WEI). DuPont Report No. DuPont-31454.
			Unpublished
DP-31520	Keats, A.	2010	Determination of Cyazypyr residues in tomato and capsicum fruit.
			AgriSolutions Australia Pty Ltd. DuPont Report No. DuPont-31520.
500 01571	Commont E	2010	Unpublished SVN545277 Desidue at the on angle in parthem France and Company in
509-015/1	Gemrot, F.	2010	2000 Eurofing/ADME Bioanalyses Syngenta Report No. S00 01571
			Reg. Unpublished
S09-01572	Gemrot, F.	2010	SYN545377 - Residue study on apple in southern France and Spain in
			2009. Eurofins/ADME Bioanalyses. Syngenta Report No. S09-01572-
a	0 111 0		Reg. Unpublished
S09-01573	Oppilliart, S.	2010	SYN54553777 - Residue study on pears in northern France and Germany
			Reg Unpublished
S09-01574	Oppilliart, S.	2010	SYN5455377 - Residue study on pears in southern France and Spain in
	• FF		2009. Eurofins/ADME Bioanalyses. Syngenta Report No. S09-01574-
			Reg. Unpublished
S09-01576	Gemrot, F.	2010	SYN545377 - Residue study on peaches in southern France, Spain, and
			Italy in 2009. Eurofins/ADME Bioanalyses. Syngenta Report No. S09-
\$09.01577	Oppilliart S	2010	SVN545377 Residue study on peaches in northern France and Germany
309-01377	Opplinari, S.	2010	in 2009 Eurofins/ADME Bioanalyses Syngenta Report No. S09-01577-
			Reg. Unpublished
S09-01578	Oppilliart, S.	2010	SYN545377 - Residue study on plums in southern France, and Spain in
			2009. Eurofins/ADME Bioanalyses. Syngenta Report No. S09-01578-
G10 01051		2011	Reg. Unpublished
\$10-01051	Gemrot, F.	2011	Cyantraniliprole - Residue study on apples in northern France, and
			S10-01051 Unpublished
S10-01052	Gemrot, F.	2011	Cvantraniliprole - Residue study on apples in southern France, in 2010.
			Eurofins/ADME Bioanalyses. Syngenta Report No. S10-01052-Reg.
			Unpublished
S10-01053	Tessier, V.	2011	Cyantraniliprole - Residue study on pears in northern France and
			Germany in 2010. Eurofins/ADME Bioanalyses. Syngenta Report No.
\$10.01054	Tessier V	2011	S10-01055. Unpublished Cyantranilingale Residue study on pages in southarn France and Italy in
510-01034	1 CODICI, V.	2011	2010 Eurofins/ADME Bioanalyses Syngenta Report No S10-01054-
			Reg. Unpublished

Reference	Author(s)	Year	Title
S10-01055	Gemrot, F.	2011	Cyantraniliprole - Residue study on peaches in southern France, Italy, and
			Spain, in 2010. Eurofins/ADME Bioanalyses. Syngenta Report No. S10-
			01055-Reg. Unpublished
S10-01056	Amic. S.	2011	Cyantraniliprole - Residue study on plums in northern France, and
			Germany in 2010. Eurofins/ADME Bioanalyses. Syngenta Report No.
			S10-01056. Unpublished
S10-01057	Amic. S.	2011	Cyantraniliprole - Residue study on plums in southern France, and Spain
			in 2010. Eurofins/ADME Bioanalyses. Syngenta Report No. S10-01057.
			Unpublished

CYPROCONAZOLE (239)

The first draft was prepared by Professor Eloisa Dutra Caldas

University of Brasilia, Brasília, Brazil

APPRAISAL

Cyproconazole was first evaluated by the 2010 JMPR (T, R), when an ADI of 0–0.02 mg/kg bw and an ARfD of 0.06 mg/kg bw were set, and maximum residue levels were recommended for a variety of crops. Cyproconazole was scheduled at the Forty-fourth Session of the CCPR (2012) for the evaluation of residues in coffee by the 2013 JMPR. The residue definition for cyproconazole in commodities of plant and animal origin is the parent compound.

Methods of analysis

Two methods for the analysis of cyproconazole in coffee beans or roasted coffee were submitted. Residues can be extracted with acetone:water (95:5), the extract cleaned by gel permeation chromatography and the analyte analysed by LC/MS/MS (m/z 292.2 and 70.1), or extracted with methanol and analysed by LC/MS/MS after centrifugation. In both cases, satisfactory recoveries were obtained at 0.01 mg/kg (LOQ). No study was submitted to evaluate the stability of the residues in coffee samples. Studies evaluated by the 2010 JMPR on various fruits, peanuts and wheat had shown that cyproconazole residues are stable for at least 39 months under frozen conditions. The Meeting agreed that this conclusion could be extended to coffee.

Results from supervised residue trials on crops

Cyproconazole is registered in various central and South American countries. The critical GAP is found in Colombia, 3×0.06 kg ai/ha and 15 days PHI. A total of nine supervised residue trials were conducted on coffee from 2010 to 2012 in the region.

In two trials conducted in Brazil according to Colombian GAP, residues were 0.02 and 0.03 mg/kg. In two trials conducted in Colombia and one in Guatemala according to Colombian GAP, residues were 0.03 (2) and 0.04 mg/kg. Two declining studies conducted in Colombia according to GAP showed that residues at 10 and 14 days DAT are the same, and can be considered at GAP. Residues are 0.02 and 0.03 mg/kg.

In two other Brazilian trials, a soil drench application was applied in addition to a foliar application at 0.5 kg ai/ha, giving residues of 0.03 and 0.04 mg/kg at 23–37 DAT. Although these trials are not conducted according to GAP, they can be used as supporting information.

The Meeting agreed to combined the residues from trials conducted according to Colombian GAP (n=7) as 0.02 (2), 0.03 (4) and 0.04 mg/kg.

The Meeting estimates a maximum residue level of 0.07 mg/kg, and a STMR of 0.03 mg/kg for cyproconazole in coffee beans.

Fate of residues in processing

In one study conducted in Guatemala, green coffee beans containing 0.094 mg/kg cyproconazole were processed to roasted beans and instant coffee Residues were 0.119 mg/kg in roasted beans and 0.151 mg/kg in instant coffee, resulting in processing factors of 1.3 and 1.6, respectively.

Based on these processing factors, the Meeting recommends a maximum residue level of 0.1 mg/kg and a STMR of 0.039 mg/kg for cyproconazole in roasted coffee beans, and a STMR of 0.048 mg/kg for cyproconazole in instant coffee.

RECOMMENDATIONS

Definition of the residue for compliance with maximum residue levels and estimation of dietary intake in plant commodities: *cyproconazole*.

		Maximum residue level (mg/kg)		STMR (P)
CCN	Commodity name	New	Previous	mg/kg
SB 0716	Coffee beans	0.07		0.03
SM 0716	Coffee beans, roasted	0.1		0.039
	Instant coffee			0.048

DIETARY RISK ASSESSMENT

Long-term intake

The International Estimated Daily Intakes (IEDIs) of cyproconazole calculated for the 13 GEMS/Food Consumption Cluster Diets using STMRs and STMR-Ps estimated by the 2010 Meeting ranged from 0.5 to 2% of the maximum ADI. The impact of coffee on the IEDI is unlikely to affect the previous conclusion that the long-term intake of residues of cyproconazole resulting from the uses considered by the current JMPR is unlikely to present a public health concern.

Short-term intake

The International Estimated Short-Term Intakes (IESTI) of cyproconazole was calculated for coffee using STMR-P estimated by the current Meeting (Annex 4). The ARfD is 0.06 mg/kg and the calculated IESTI was 0% of the ARfD. The Meeting concluded that the short-term intake of residues of cyproconazole, when used in ways that have been considered by the JMPR, is unlikely to present a public health concern.