METRAFENONE (278)

The first draft was prepared by Mr David Lunn, Ministry for Primary Industries, Wellington, New Zealand

EXPLANATION

Metrafenone, a benzophenone fungicide active mainly against powdery mildew and eyespot, was first evaluated by the 2014 JMPR where residue definitions were proposed, an ADI of 0–0.3 mg/kg bw was established and an ARfD was not considered necessary. Maximum residue levels were also recommended for a range of commodities where GAP information was available.

The residue definition established by the 2014 JMPR for both MRL-compliance and dietary intake assessment for plant and animal commodities was: *metrafenone*.

Metrafenone was scheduled by the 47th Session of the CCPR for the evaluation of additional MRLs by the 2016 JMPR and the current Meeting received new GAP information and new supporting residue information from the manufacturer for pome fruit, stone fruit and hops and a residue stability study on fresh, quartered melons. The Meeting considered relevant residue information provided to the JMPR in 2014 for fruiting vegetables in light of new GAP information.

In this evaluation, the values presented in the tables are as reported in the various studies, but in the accompanying text, they have generally been rounded to two significant digits.

METHODS OF RESIDUE ANALYSIS

Analytical methods

The 2014 JMPR reviewed and summarized analytical method descriptions and validation data for metrafenone in crop and animal matrices. These included the QuEChERS 1 Method and Method 535/3 which were used to measure metrafenone in the new supervised residue trials on pome fruit, stone fruit and hops.

Table 1 Summary of metrafenone analytical methods used in the new residue trials on pome fruit, stone fruit and hops [Ref: 2014 JMPR Metrafenone Evaluation, Table 27, pp 1194–95]

Matrix	Analyte	Method	Principle	LOQ (mg/kg)	Reference
Wheat forage Wheat straw Wheat grain Cucumber Lemon Beans Oilseed rape (seed) Hops (dry cones)	Metrafenone	QuEChERS 1	Acetonitrile extraction (pH 5– 5.5 buffer) SPE clean-up LC-MS/MS analysis $m/z 409 \rightarrow m/z 209$ / $m/z 409 \rightarrow m/z 209$ / $m/z 409 \rightarrow m/z 209$ / $m/z 411 \rightarrow m/z 209$ for dry hop cones	0.01	2011/7007816
Hops (green cones) Hops (dry cones) Beer	Metrafenone	535/3 (L0076/03)	Methanol/water/HC l extraction cyclohexane partition (alkaline) HPLC-MS/MS analysis m/z 411 → m/z 209 / m/z 411 → m/z 229	0.01	2010/1089964

Data collection methods

QuEChERS (plant matrices)

In this method, homogenised samples were extracted with acetonitrile in frozen conditions, mixed with magnesium sulphate, sodium chloride and citrate salts for buffering to pH 5–5.5, centrifuged for phase separation and an aliquot of the acetonitrile phase was cleaned-up by a dispersive SPE on PSA (primary secondary amine sorbent). Analysis was by LC-MS/MS, monitoring two parent daughter ion transitions (MRM). The LOQ of the method was 0.01 mg/kg for each matrix.

In the new supervised field trials, method validation was also conducted prior to analysis of the field samples. Method validation recovery rates in the new studies are summarized below.

			-		
Matrix	Fortification (mg/kg)	Recovery (%)	Mean	Reference	
Annla	0.01	96, 99	98		
Apple	0.1	95, 103	99	2012/7004394	
Pear	0.01	101	101	2012/7004394	
Pear	1.0	101	101		
	0.01	115, 116, 120	117		
Charmy	0.1	119, 119, 125	121	2013/7001794	
Cherry	1.0	121, 123, 124	123	2015/7001794	
	2.0	100, 101, 104	102		
	0.01	99, 116, 121	112		
Peach	0.1	102, 103, 105	102, 103, 105 103		
	1.0	79, 81, 82	81		
	0.01	82, 94, 95	90		
Hops (green cones)	0.1	100, 108, 109	106		
	1.0	92, 96, 101	96		
	0.01	84, 92, 97	91	2013/7001795	
Hops (dried cones)	0.1	0.186, 95, 96921.0103, 114, 120112			
	1.0				
	200	92, 103, 104	100		

Table 2 Metrafenone analytical validation recovery rates for QuEChERS analytical method

BASF Method 535/3 (L0076/03)—hops and beer

The BASF Method 535/3 was evaluated by the 2014 JMPR as a suitable data-collection method to measure residues of metrafenone in hop cones (green and dried) and in beer, with an LOQ of 0.01 mg/kg.

Metrafenone residues are extracted with a mixture of methanol water and hydrochloric acid. An aliquot of the extract is centrifuged and partitioned at alkaline conditions against cyclohexane. The final determination is performed by HPLC-MS/MS and the LOQ of the method is 0.01 mg/kg for each matrix.

Table 3 Metrafenone analytical validation recovery rates for BASF method 535/3

Matrix	Fortification (mg/kg)	Recovery (%)	Mean	Reference
Hops (green cones)	0.01 0.1	93, 100, 101, 102, 103 93, 96, 96, 97, 99	100 96	
Hops (dried cones)	0.01 0.1	81, 88, 89, 89, 92 87, 88, 92, 96, 97	88 92	2010/1089964
Beer	0.01 0.1	93, 94, 95, 98, 101 91, 92, 92, 96, 96	96 94	

Analytical (concurrent) recoveries in supervised crop trials

Analytical recovery rates were measured in all the supervised crop field trials, with control samples being fortified with metrafenone at 0.01 mg/kg and at higher levels that generally reflected the range

Metrafenone

of expected residues. In the European trials the common analytical method was Method 535/3 and the QuEChERS method was predominantly used in the North American trials.

For each study, average recoveries per fortification level generally fell within the 70–120% range, with a relative standard deviation of 20% or less. Information on the concurrent recovery rates in the new supervised field trials are summarized below and for the trials reviewed by the 2014 JMPR, average concurrent recovery rates are reported in the relevant supervised crop field trial sections.

Matrix	Method	Fortification (mg/kg)	Recovery (%)	Mean	Reference
		0.01	95, 98	97	
Apple	QuEChERS 1	0.1	92	92	
		1.0	99	99	2012/7004394
Pear	QuEChERS 1	0.01	101	101	
real	QUECHERS I	1.0	101	101	
		0.01	78, 84, 87, 107	89	
Cherry	QuEChERS 1	0.1	111	111	2013/7001794
		1.0	83, 107, 107	99	
			74, 83, 86, 90, 105,		
	QuEChERS 1	0.01	108	93	
Peach		0.1	114	114	2013/7001835
		1.0	76, 92, 104, 104,	101	
			107, 109, 114		
		0.01	85, 103, 110, 112,	108	
Hops (green cones)	QuEChERS 1	1.0	113, 114, 116	97	
riops (green cones)		50	97	102	
		50	99, 104, 104	102	
		0.01	71, 84, 86, 90, 94,	92	2013/7001795
		1.0	95, 100, 118	91	
Hops (dried cones)	QuEChERS 1	120	82, 100	103	
		200	86, 107, 116	76	
			76		
Hops (green cones)	Method 535/3	0.01	99, 99	99	
nopo (green conco)	intenieu e e e e e	1.0	90	90	
		0.01	81, 83, 107	90	2011/1041886
Hops (dried cones)	Method 535/3	0.1	73	73	2011/10/10000
nops (anea cones)		1.0	65	65	
		100	99	99	
		0.01	91	91	
Hops (green cones)	Method 535/3	0.1	84	84	
		1.0	90	90	
		0.01	73	73	2011/1041879
Hops (dried cones)	Method 535/3	0.1	79	79	
rieps (arrea cones)	wiethod 555/5	1.0	93	93	
		50	92	92	

Table 4 Metrafenone analytical concurrent recovery rates in the supervised field trials

Stability of residues

Plant matrices—stored analytical samples

The 2014 JMPR concluded that metrafenone residues were stable in analytical samples stored frozen (-18 to -20 °C) for up to 24 months in representative substrates with a high water content (lettuce, and tomato), a high starch content (carrot), a high protein content (dry peas), a high oil content (soya bean) and a high acid content (grape, and wine); in wheat grain (high starch), wheat forage and straw (high water content) residues were stable for at least 31 months. In general, residues in the stored samples were greater than 80% of the spiked levels.

Plant matrices—fresh analytical sub-samples

The 2014 JMPR noted that in some of the supervised residue field trials conducted on melons in 2009–2010, the fruit samples had been quartered in the field, and although the subsamples had been frozen within 12 hours after sampling, no information was available on the stability of metrafenone residues in chopped or sliced samples.

The Meeting received an ambient storage residue stability study on melons conducted by Meridian, 2015 [Ref 2015/1196811] where an untreated, homogenised, frozen melon was thawed to room temperature and replicate 5 g samples were spiked with 0.01 mg/kg (0-day samples) or 0.1 mg/kg metrafenone, distributed drop-wise onto the melon matrix in centrifuge bottles. The spiked samples were stored at 19 °C \pm 1 °C for up to 16 hours before being placed in the freezer at about < -18 °C, until analysis the following day using the BASF LC-MS/MS Method 535/2 (LOQ of 0.01 mg/kg). Control samples were also freshly fortified at each sampling interval and analysed to determine the procedural recovery efficiency.

After 16 hours storage at room temperature, the measured residues of metrafenone in homogenised melon samples were greater than 79% of the spiked levels.

Table 5 Stability of metrafenone residues in homogenised melon samples spiked at 0.01 mg/kg or 0.1 mg/kg respectively and stored at room temperature (19 °C). [Ref 2015/1196811]

Commodity (fortification)	Storage interval	Residues remainin	g in stored samples	Procedural recovery ^b		
(fortification)	(hours)	mg/kg		mg/kg	%	
Melon (0.01 mg/kg)	0			0.00786, 0.00833, 0.00831	79, 83, 83 [82]	
Melon (0.1 mg/kg)	0 1 2 4 6 16	- 0.0951, 0.103, 0.0997 0.0919, 0.0946, 0.0876 0.0873, 0.095, 0.101 0.0919, 0.0953, 0.0918 0.0747, 0.0863, 0.0772	95, 103, 100 [99] 92, 95, 88 [92] 87, 95, 101 [94] 92, 95, 92 [93] 75, 86, 77 [79]	0.0881 0.0965 0.0931 0.0979 0.0986 0.0873	88 97 93 98 99 87	

^a Metrafenone residues in stored samples and % fortified level, mean% in square brackets

^b Metrafenone residues in freshly fortified samples, mean% in square brackets

USE PATTERNS

Information on GAP in Europe, the Americas, Asia and the Pacific was provided to the 2014 JMPR on the use of metrafenone, available as SC formulations, often co-formulated with either epoxiconazole and/or fenpropimorph. The Meeting received additional information on recently authorised uses on pome fruit, stone fruit, grapes, fruiting vegetables and hops in North America, Italy and Spain and the critical national GAPs for these crops are summarized in the following table.

Table 6 New registered uses of metrafenone (300 g ai/L or 500 g ai/L SC formulations)

Crop C	Country		Application			Max/season		PHI	Comments		
	Country	kg ai/ha	kg ai/hL	water L/ha	RTI (days)	no	kg ai/ha	(days)	Comments		
	Pome fruit										
Por	ne fruit										
	Canada ^a	0.225– 0.336			7–14	3	1.01	7			
	USA ^a	0.224– 0.336		min 94 (air)	7–14	3	1.01	7			

<i>a</i>			Appli	cation		Max	/season	PHI	
Crop	Country	kg ai/ha	kg ai/hL	water L/ha	RTI (days)	no	kg ai/ha	(days)	Comments
		•	•	Stone	e fruit		•		
C	herries								
	Canada	0.225- 0.336				2		7	
	USA	0.224– 0.336		min 94 (air)	7–14	2	0.67	7	
Peache	s (including	nectarines)							
	Canada	0.225– 0.336				2	0.67	7	
	USA	0.224– 0.336		min 94 (air)		2	0.67	7	
	Apricot								
	USA	0.224– 0.336		min 94 (air)	7–14	2	0.67	7	
				Small fruit v	ine climbing	g			
0	irapes								
	Canada	0.225			14–21	6	1.35	14	
	USA	0.224– 0.336		min 94 (air)	14–21	3	1.01	14	
	Spain	max 0.1	0.005-0.01			3		28	
	Italy	0.1-0.125	0.01– 0.0125		8–12	3		28	
		-	Fri	uiting vegeta	bles, Cucurł	oits			
Cu	curbits								
	Canada ^b	0.225- 0.336			7–14	3	1.01	0	
	USA ^b	0.224– 0.336		min 47 (air)	7–14	3	1.01	0	
	Spain		0.01	200–1000	14 min	2		3	200– 1500 L/ha fo indoor cucurbits wi edible peel
Cu	cumber								
	France	0.1			7–10	2		3	
	Italy	0.1	0.01		7–10	2		3	
N	Aelon	0.1			7 10	2		2	
	France Italy	0.1	0.01		7–10 7–10	2		3	also watermelor
Sumn	ner squash								watermeior
2 sinih	France	0.1			7–10	2	1	3	
	Italy	0.1	0.01		7–10	2		3	as zucchin
	1 -	1		Vegetables,		Cucurbits		I	1
Fruiting	g vegetables								
	Canada ^c	0.225– 0.336			7–14	3	1.01	0	max 2 sequential sprays
	USA	0.224– 0.336		min 47 (air)	7–14	3	1.01	0	max 2 sequential sprays
Т	omato							1	

Crop	Country		Appli	cation		Max/s	season	PHI	Comments
Стор	Country	kg ai/ha	kg ai/hL	water L/ha	RTI (days)	no	kg ai/ha	(days)	Comments
	Spain		0.015	200-1500	14 min	2		3	
	Italy	0.15	0.015		7–10	2		3	
Eg	gplant								
	Italy	0.15	0.015		7–10	2		3	
	Spain (indoor)		0.015	200-1000	14 min	2		3	
Pe	eppers								
	Italy	0.15	0.015		7–10	2		3	
	Spain (indoor)		0.015	200-1000	14 min	2		3	
	France (indoor)	0.15			7–10	2		3	
				Dried	herbs				
	Hops								
	Canada	0.225– 0.336			14	2	0.67	14	not by air
	USA	0.224– 0.336			7–14	2	0.67	3	not by air

^a Pome fruit: apple, Asian pear, azarole, crabapple, [loquat-USA], mayhaw, medlar, pear, quince, Chinese quince, Japanese quince, tejocote.

^b Cucurbits = chayote, Chinese wax gourd, citron melon, cucumber, gherkin, pumpkin, watermelon; edible gourd (hechima, hyotan, cucuzza, and Chinese okra); *Momordica* spp. (balsam apple, balsam pear, bitter melon, and Chinese cucumber); muskmelon (cantaloupe, casaba, Crenshaw melon, golden Pershaw, melon, honeydew melon, honey balls, mango melon, Persian melon, pineapple melon, Santa Claus melon, and snake melon); summer squash (crookneck squash, scallop squash, straightneck squash, vegetable marrow, and zucchini); winter squash (butternut squash, calabaza, hubbard squash, acorn squash, and spaghetti squash).

^c Fruiting vegetables: African eggplant, bush tomato, bell pepper, [cocona—USA], currant tomato, eggplant, garden huckleberry, goji berry, groundcherry, martynia, [naranjilla—USA], okra, pea eggplant, pepino, non-bell pepper, roselle, scarlet eggplant, sunberry, tomatillo, tomato, [tree tomato—USA] and cultivars, varieties and hybrids of these commodities.

RESIDUES RESULTING FROM SUPERVISED TRIALS

The Meeting received new information on supervised field trials involving foliar treatments of metrafenone to pome fruit, stone fruit and hops. Trials on grapes and fruiting vegetables evaluated by the 2014 JMPR were also re-assessed in light of new GAP information provided to the Meeting.

Group	Crop	Countries	Table no
Pome fruit	Apple	USA	7
Pome fruit	Pear	USA	8
	Cherry	USA	9
Stone fruit	Peach	USA	10
Small fruit vine climbing	Grapes	USA	11
	Cucumber	Nth America (JMPR 2014)	12
Fruiting vegetables, Cucurbits	Summer squash	Nth America (JMPR 2014)	13
	Melon	Nth America (JMPR 2014)	14
Fruiting vegetables,	Peppers	Nth America (JMPR 2014)	15
other than Cucurbits	Tomato	Nth America (JMPR 2014)	16

Group	Crop	Countries	Table no
Dried herbs	Hops	Nth America	17, 18

The supervised trials were well documented with laboratory and field reports. Laboratory reports included method validation including procedural recoveries with spiking at residue levels, similar to those occurring in samples from the supervised trials. Dates of analyses or duration of residue sample storage were also provided. Although trials included control plots, no control data are recorded in the tables unless residues in control samples exceeded the LOQ. In such cases, the residues found are noted as "c = nn mg/kg" in the Reference and Comments columns. Residue data are recorded unadjusted for recovery.

Results from replicated field plots are presented as individual values. Residue values have been reported as provided in the study reports, although the results from trials used for the estimation of maximum residue levels (underlined) have been rounded to two significant digits (or if close to the LOQ, rounded to one significant digit). If a higher residue level was observed at a longer PHI than the GAP, the higher value has been used for estimating maximum residue levels and for dietary intake assessment. For trials not considered to be independent, the result from the trial yielding the highest residue was selected for maximum residue level estimation and dietary intake assessment.

When multiple applications were made to a crop, the application rate, spray concentration and spray volume were not always identical from one application to the next. In most trials, the actual treatment rates were within 10% of the listed 'target' application rates, but if not, the actual treatment rates are listed.

Pome fruit

The results from 18 supervised trials on apples (12) and pears (6) conducted in USA were provided to the Meeting.

Apples

In the <u>apple</u> trials, three foliar applications of 0.34 kg ai/ha metrafenone (SC) were applied with adjuvant, at 5–9 day intervals in either 550–800 L water/ha ('concentrate') or 940–2400 L water/ha ('dilute') to single replicate 6–8 tree plots using tractor-mounted airblast sprayers.

Duplicate samples of whole fruit (24 units, 2.7–6.9 kg) were frozen within 4 hours after sampling and stored for up to 24 months before analysis for metrafenone using the LC/MS/MS multi-residue QuEChERS 1 method (LOQ of 0.01 mg/kg).

Table 7 Residues in apples from supervised trials in USA involving three foliar applications of metrafenone (SC formulation)

APPLE		Ap	plication				Residues (m	ıg/kg)	
Country, year Location (Variety)	no	kg ai/ha	kg ai/hL	water (L/ha)	Matrix	DAT	metrafenone	mean	Reference & Comments
GAP: USA, Canada	3	0.336				PHI: 7		1.01 k	Max xg ai/ha/season
USA, 2010 Alton, NY (Cortland)	3	0.34	0.03	1122	fruit	0 3 7 14 21	0.337, 0.297 0.345, 0.19 0.188, 0.247 0.226, 0.144 0.098, 0.095	0.32 0.27 <u>0.22</u> 0.19 0.1	2012/7004394 R100195
USA, 2010 North Rose, NY (Ida Red)	3	0.34	0.056	608–617	fruit	7 13	0.159, 0.156 0.224, 0.184	0.16 <u>0.2</u>	2012/7004394 R100196
USA, 2010 Hereford, PA (Star Krimson Red Delicious)	3	0.34	0.026	1291–1309	fruit	7 14	0.45, 0.533 0.434, 0.415	0.49 0.43	2012/7004394 R100197

APPLE		Ap	plication				Residues (m	ng/kg)	
Country, year Location (Variety)	no	kg ai/ha	kg ai/hL	water (L/ha)	Matrix	DAT	metrafenone	mean	Reference & Comments
USA, 2010 (Cana, VA	3	0.33	0.044	730–767	fruit	6 15	0.408, 0.483 0.383, 0.177	0.45 0.28	2012/7004394
(Yellow Delicious)	3	0.33	0.024	1375–1431	fruit	6 15	0.349, 0.371 0.324, 0.25	0.36 0.29	R100198
USA, 2010 Oregon, WI (Cortland)	3	0.34	0.054	627–645	fruit	7 16	0.3, 0.159 0.181, 0.151	0.23 0.17	2012/7004394 R100199
USA, 2010 Conklin, MI (Red Delicious)	3	0.34	0.019	1786–1843	fruit	7 14	0.236, 0.192 0.184, 0.25	0.21 <u>0.22</u>	2012/7004394 R100200
USA, 2010	3	0.34	0.05	673–692	fruit	7 13	0.355, 0.273 0.223, 0.177	0.31 0.2	2012/7004394
Perry, UT (Gala)	3	0.33	0.016	2002–2058	fruit	7 13	0.155, 0.127 0.109, 0.087	0.14 0.1	R100201
USA, 2010	3	0.34	0.047	720–739	fruit	7 14	0.149, 0.16 0.140 0.075	0.16 0.22	2012/7004394
Porterville, CA (Granny Smith)	3	0.34	0.014	2282-2348	fruit	7 14	0.152, 0.177 0.173, 0.09	0.165 0.13	R100202
USA, 2010 Marsing, ID (Gala)	3	0.34	0.044	739–804	fruit	0 4 7 13 21	$\begin{array}{c} 0.165,0.371\\ 0.097,0.085\\ 0.066,0.09\\ 0.038,0.066\\ 0.028,0.043\\ \end{array}$	$\begin{array}{r} 0.27 \\ 0.09 \\ \underline{0.08} \\ 0.05 \\ 0.04 \end{array}$	2012/7004394 R100203
USA, 2010 Weiser, ID (Law Rome)	3	0.34	0.036	945–954	fruit	6 14	0.467, 0.604 0.49, 0.409	0.54 0.45	2012/7004394 R100204
USA, 2010 Ephrata, WA (Red Delicious)	3	0.34	0.056	608–617	fruit	7 14	0.673, 0.847 0.504, 0.569	0.76 0.54	2012/7004394 R100205
USA, 2010 Ephrata, WA (Braeburn)	3	0.34	0.024	1403–1412	fruit	7 14	0.458, 0.325 0.268, 0.433	0.39 0.35	2012/7004394 R100206 not independent

Pears

In the <u>pear</u> trials, three foliar applications of 0.34 kg ai/ha metrafenone (SC) were applied with adjuvant, at 5–9 day intervals in either 550–800 L water/ha ('concentrate') or 940–2400 L water/ha ('dilute') to single replicate 6–8 tree plots using tractor-mounted airblast sprayers.

Duplicate samples of whole fruit (24 units, 2.7–6.9 kg) were frozen within 4 hours after sampling and stored for up to 24 months before analysis for metrafenone using the LC/MS/MS multi-residue QuEChERS 1 method (LOQ of 0.01 mg/kg).

Table 8 Residues in pears from supervised trials in USA involving three foliar applications of metrafenone (SC formulation)

PEAR		Ар	plication				Residues (m	g/kg)	
Country, year Location (Variety)	no	kg ai/ha	kg ai/hL	water (L/ha)	Matrix	DAT	metrafenone	mean	Reference & Comments
GAP: USA, Canada	3	0.336				PHI: 7		1.01 1	Max kg ai/ha/season
USA, 2010	3	0.33	0.06	552–571	fruit	7 14	0.381, 0.429 0.333, 0.265	0.41 0.3	2012/7004394
Alton, NY (Bartlett)	3	0.34	0.03	1122	fruit	7 14	0.424, 0.393 0.431, 0.303	0.41 0.37	R100207

PEAR		Ар	plication				Residues (m	g/kg)	
Country, year Location (Variety)	no	kg ai/ha	kg ai/hL	water (L/ha)	Matrix	DAT	metrafenone	mean	Reference & Comments
USA, 2010 Lindsay, CA (Olympic)	3	0.34	0.05	655–720	fruit	0 3 7 14 21	0.283, 0.281 0.218, 0.233 0.186, 0.191 0.116, 0.149 0.0717, 0.121	0.28 0.23 0.19 0.13 0.1	2012/7004394 R100208
USA, 2010 Porterville, CA (Bartlett)	3	0.34	0.014	2329–2404	fruit	7 14	0.159, 0.123 0.09, 0.094	0.14 0.09	2012/7004394 R100209
USA, 2010 Marsing, ID (Bartlett)	3	0.34	0.048	673–711	fruit	6 13	0.133, 0.187 0.082, 0.114	0.16 0.01	2012/7004394 R100210
USA, 2010 Ephrata, WA (Concorde)	3	0.33	0.024	1403–1412	fruit	7 14	0.519, 0.434 0.313, 0.255	0.48 0.28	2012/7004394 R100211
USA, 2010 Payette, ID (Bartlett)	3	0.34	0.045	758–767	fruit	7 14	0.359, 0.424 0.305, 0.357	0.39 0.33	2012/7004394 R100212

Stone fruit

The results from 32 supervised trials on <u>cherries</u> (16) and <u>peaches</u> (16) conducted in North America were provided to the Meeting.

Cherries

In the North American <u>cherry</u> trials, two foliar applications of 0.34 kg ai/ha metrafenone (SC) were applied with adjuvant, at 5–9 day intervals in 570–1770 L water/ha to single replicate 6–15 tree plots using tractor-mounted airblast sprayers (4–8 nozzles) or single-nozzle hand lances.

Duplicate samples of fruit were hand picked from at least four trees per plot, the stems and stones were discarded and samples of at least 0.9 kg were frozen within 4 hours after sampling and stored for up to 26 months before analysis for metrafenone using the LC/MS/MS multi-residue QuEChERS 1 method (LOQ of 0.01 mg/kg).

Table 9 Residues in cherries from supervised trials in North America involving two foliar applications of metrafenone (SC formulation)

CHERRY	Application	ı					Residues (mg/k	(g)	
Country, year Location (Variety)	no	kg ai/ha	kg ai/hL	water (L/ha)	Matrix	DAT	metrafenone	mean	Reference & Comments
GAP: Canada, USA	2	0.336				PHI: 7		Max 0.67 kg	ai/ha/season
USA, 2010 Tulare, CA (Tulare) Sweet cherry	2	0.34	0.026	1320	fruit without stone		0.661, 0.737 0.599, 0.594	<u>0.7</u> 0.6	2013/7001794 10370.10-CA35
USA, 2010 Sunny Slope, ID (Bing) Sweet cherry	2	0.34	0.024	1400	fruit without stone			<u>0.39</u> 0.14	2013/7001794 10370.10-ID04

CHERRY	Applicatior	1					Residues (mg/l	(g)	
Country, year				water	Matrix	DAT			Reference &
Location	no	kg ai/ha	kg ai/hL	(L/ha)	WILLIA	DITI	metrafenone	mean	Comments
(Variety)				()			-		
USA, 2010					fruit without	8	0.500 0.259	0.42	2013/7001794
Moxee, WA (Bing)	2	0.33	0.026	1290	stone	° 14	0.500, 0.358 0.284, 0.285	<u>0.43</u> 0.29	10370.10-
Sweet cherry					stone	17	0.204, 0.205	0.27	WA*08
USA, 2010									
Fennville, MI	_				fruit without	7	0.515, 0.473	0.49	2013/7001794
(Hedelfingen)	2	0.34	0.031	1080	stone	14	0.358, 0.317	0.34	10370.10-MI06
Sweet cherry									not independent
USA, 2010									2013/7001794
Fennville, MI	2	0.34	0.032	1050-	fruit without	7	0.591, 0.532	0.56	10370.10-MI03
(Montmorency)	2	0.54	0.032	1070	stone	14	0.363, 0.268	0.31	not independent
Sour cherry									normaspenarin
USA, 2010					C 14 14	7	0.007.0.042	0.07	2012/2001/204
Fennville, MI	2	0.34	0.025	1370	fruit without	7	0.987, 0.943	$\frac{0.97}{0.62}$	2013/7001794
(Montmorency) Sour cherry					stone	14	0.704, 0.526	0.63	10370.10-MI05
USA, 2010									
Fennville, MI	_				fruit without	7	0.608, 0.768	0.69	2013/7001794
(Montmorency)	2	0.34	0.032	1070	stone	14	0.426, 0.578	0.5	10370.10-MI04
Sour cherry							,		not independent
Canada, 2010									
Jordan Station,				1030-	fruit without	7	0.354, 0.28	0.32	2013/7001794
ON	2	0.35	0.034	1030-	stone	13	0.129, 0.175	$\frac{0.52}{0.15}$	10370.10-
(Hedelfingen)				1010	stone	15	0.1129, 0.175	0.12	ON02
Sweet cherry									
USA, 2010		0.34	0.034	990	£	7	0.280 0.247	0.27	2012/2001204
Hotchkiss, CO (Montmorency)	2	0.34 0.34	0.034 0.033	990 1020	fruit without stone	7 14	0.389, 0.347 0.322, 0.33	<u>0.37</u> 0.33	2013/7001794 10370.10-CO01
Sour cherry		0.34	0.033	1020	stone	14	0.322, 0.33	0.33	10370.10-0001
USA, 2010									
Prosser, WA	•	0.34	0.024	1420	fruit without	7	0.452, 0.424	0.44	2013/7001794
(Bing)	2	0.34	0.023	1495	stone	14	0.220, 0.282	0.25	10370.10-
Sweet cherry									WA07
USA, 2010									2013/7001794
Lansing, NY	2	0.34	0.06	570	fruit without	7	1.17, 1.15	<u>1.2</u>	10370.10-
(Galaxy)	-	0.34	0.03	1130	stone	14	0.682, 0.534	0.61	NY05
Sour cherry							-		
Canada, 2010 Grimbsy, ON					fruit without	7	0.424, 0.56	0.40	2013/7001794
(Montmorency)	2	0.35	0.034	1040	stone	14	0.424, 0.36 0.454, 0.418	0 <u>.49</u> 0.44	10370.10-
Sour cherry					stone	17	0.434, 0.410	0.77	ON03
Canada, 2010									2013/7001794
a 1 1 D.G	2	0.24	0.022	1540	fruit without	7	0.362, 0.306	0.33	10370.10-BC01
(Lapins)	2	0.34	0.022	1540	stone	13	0.339, 0.326	0.33	
Sweet cherry									not independent
Canada, 2010						L			2013/7001794
Summerland, BC	2	0.34	0.022	1540	fruit without	7	0.57, 0.622	$\frac{0.6}{0.2}$	10370.10-BC02
(Santina) Sweet cherry		0.34	0.021	1590	stone	14	0.354, 0.369	0.36	
Sweet cherry						0	0.931, 1.07	1.0	
USA, 2010						3	0.931, 1.07	0.78	
Reedley $C\Delta$	2		0.010	1.550	fruit without	5 7	0.615, 0.679	0.65	2013/7001794
(Brooks)	2	0.34	0.019	1770	stone	15	0.503, 0.565	0.53	10370.10-CA36
Sweet cherry						17	0.321, 0.562	0.44	
						21	0.321, 0.317	0.32	
Canada, 2010						0	1.24, 1.19	1.2	
Niagara-on-the-	1	0.22	0.024	000	c	3	0.538, 0.524	0.53	2013/7001794
Lake, ON	1+	0.33	0.034	980	fruit without	7	0.621, 0.473	$\frac{0.55}{0.22}$	10370.10-
(Montmorency)	1	0.34	0.034	1010	stone	14 17	0.367, 0.285 0.334, 0.423	0.33 0.38	ON04
Sour cherry						21	0.334, 0.423 0.377, 0.319	0.38	
	I	1		1	I			0.00	

Peaches

In the North American <u>peach</u> trials, two foliar applications of 0.34 kg ai/ha metrafenone (SC) were applied with adjuvant, at 6–8 day intervals in 1100–1770 L water/ha to single replicate 5–18 tree plots using tractor-mounted airblast sprayers (4–7 nozzles) or single-nozzle hand lances or mist blowers.

Duplicate samples of at least 24 fruit were hand picked from at least four trees per plot, halved and the stones discarded. In some trials both halves were collected while in others only half-fruit or opposite quarter-fruit were retained. Samples of at least 1.8 kg were frozen within 3 hours after sampling (except in one trial—TX13) and stored for up to 13 months before analysis for metrafenone using the LC/MS/MS multi-residue QuEChERS 1 method (LOQ of 0.01 mg/kg).

Table 10 Residues in peaches from supervised trials in North America involving two foliar applications of metrafenone (SC formulation)

PEACH		Appli	cation				Residues (m	g/kg)		
Country, year Location (Variety)	no	kg ai/ha	kg ai/hL	water (L/ha)	Matrix	DAT	metrafenone	mean	Reference & Comments	
GAP: Canada, USA	2	0.336				PHI: 7		0.67	Max kg ai/ha/season	
USA, 2011 Cream Ridge, NJ (Suncrest)	2	0.34	0.07	470	fruit without stone	7 14	0.217, 0.199 0.128, 0.128	0.21 0.1	2013/7001835 NJ07	
USA, 2011 Cream Ridge, NJ (Loring)	2	0.34	0.05	680	fruit without stone	8 13	0.127, 0.145 0.117, 0.093	0.14 0.11	2013/7001835 NJ08 not independent	
USA, 2011 Lansing, NY (Saturn)	2	0.34	0.075	450	fruit without stone	6 14	0.062, 0.041 0.042, 0.029	0.05 0.04	2013/7001835 NY09	
USA, 2011 Fennville, MI (Red Haven)	2	0.34	0.08	450	fruit without stone	7 14	0.520, 0.457 0.316, 0.394	0.49 0.36	2013/7001835 MI31	
USA, 2011 Jackson Springs, NC (Contender)	2	0.33	0.05	630	fruit without stone	7 15	0.149, 0.128 0.069, 0.068	0.14 0.07	2013/7001835 NC16	
USA, 2011 Fredericksburg, TX (Sentinel)	2	0.34	0.07	490	fruit without stone	7 14	0.167, 0.204 0.241, 0.161	0.19 0.2	2013/7001835 TX13	
USA, 2011 Parlier, CA (June Flame)	2	0.34	0.06	570	fruit without stone	7 14	0.237, 0.216 0.133, 0.15	0.23 0.14	2013/7001835 CA67	
USA, 2011 Parlier, CA (Henry II)	2	0.34	0.08	430	fruit without stone	7 14	0.182, 0.187 0.132, 0.166	0.19 0.15	2013/7001835 CA68 diff spray dates	
Canada, 2011 Summerland, BC (Glohaven)	2	0.33	0.02	1500	fruit without stone	7 14	0.214, 0.279 0.201, 0.154	0.25 0.18	2013/7001835 BC09	
Canada, 2011 Vineland Station, ON (Loring)	2	0.34 0.33	0.02 0.02	1600 1600	fruit without stone	7 14	0.318, 0.270 0.182, 0.201	0.29 0.19	2013/7001835 ON16	
USA, 2011 Jordan Station, ON (Red Haven)	2	0.34 0.33	0.03 0.025	1300 1300	fruit without stone	8 14	0.324, 0.119 0.211, 0.073	0.22 0.14	2013/7001835 ON17	
USA, 2011 Jordan Station, ON (Loring)	2	0.33 0.33	0.03 0.03	1000 970	fruit without stone	7 14	0.339, 0.226 0.145, 0.096	0.28 0.12	2013/7001835 ON18 diff spray dates	

PEACH		Appli	cation	-			Residues (m	g/kg)	
Country, year Location (Variety)	no	kg ai/ha	kg ai/hL	water (L/ha)	Matrix	DAT	metrafenone	mean	Reference & Comments
USA, 2011 Clarksville, AR (Cresthaven)	2	0.33 0.34	0.07 0.07	500 500	fruit without stone	8 14	0.191, 0.231 [c = 0.015] 0.095, 0.119	0.21 0.11	2013/7001835 AR04
USA, 2011 Clayton, NC (Contender)	2	0.34	0.07	490	fruit without stone	0 3 6 13 15 17	0.270, 0.485 0.259, 0.282 0.284, 0.132 0.14, 0.12 0.174, 0.121 0.101, 0.113	0.38 0.27 0.21 0.13 0.15 0.11	2013/7001835 NC15
USA, 2011 Winters, CA O'Henry Freestone (late)	2	0.34	0.08	440	fruit without stone	0 3 7 14 17 21	$\begin{array}{c} 0.397, 0.444\\ 0.269, 0.22\\ 0.2, 0.141\\ 0.099, 0.09\\ 0.089, 0.092\\ 0.092, 0.088\end{array}$	0.42 0.25 0.17 0.09 0.09 0.09	2013/7001835 CA69
USA, 2011 Winters, CA O'Henry Freestone (late)	2	0.34 0.33	0.08 0.08	440 430	fruit without stone	7 14	0.144, 0.18 0.084, 0.106	0.16 0.1	2013/7001835 CA70 not independent

Berries and other small fruits

Grape

The 2014 JMPR reviewed the results from supervised trials from the USA on grapes and the summary information from the 2014 Evaluation are also reproduced below.

Results from supervised trials from the USA on grapes conducted in 2011 were provided to the 2014 JMPR. In these trials, three foliar airblast applications of metrafenone (0.33 kg ai/ha, SC formulation) with added non-ionic surfactant were applied to 12–24 vine plots, 14–15 days apart, using about 1000–1500 L water/ha. Grape samples (min 1 kg and at least 12 bunches or part bunches) were frozen within 3 hours of sampling and stored frozen for up to 20 months before analysis of berries for metrafenone using the QuEChERS method. Procedural recovery rates in grapes fortified at 0.01 to 1.5 mg/kg ranged from 74 to 104% (mean 91 \pm 10%, n = 10) and the LOQ was 0.01 mg/kg.

Table 11 Residues in grapes from supervised trials in USA involving three foliar applications of metrafenone (SC formulation). [JMPR 2014 Metrafenone Evaluation, Table 40, pp 1222–1223]

GRAPE		Ap	plication				Residues (mg	g/kg)	
Country, year	no	kg ai/ha	kg ai/hL	water (L/ha)	Matrix	DAT	metrafenone	mean	Trial Reference
GAP: USA	3					PHI: 14	RTI: 14–21 d	1.01	max kg ai/ha/season
USA, 2011	3	0.337		935	berries	15	0.5, 0.41	0.46	R110152
USA, 2011	3	0.337		945	berries	14	1.1, 0.94	1.0	R110153
USA, 2011	3	0.336		1420–1500	berries	14	0.28, 0.42 (c = 0.015)	0.35	R110154
USA, 2011	3	0.339		1350-1420	berries	13	0.51, 0.45	0.48	R110155
USA, 2011	3	0.337		1330-1370	berries	17	0.58, 0.35	0.47	R110156
USA, 2011	3	0.339		1350-1375	berries	13	0.27, 0.4	0.34	R110157
USA, 2011	3	0.34		1340-1390	berries	14	0.25, 0.2	0.22	R110158
USA, 2011	3	0.333		954	berries	14	0.4, 0.49	0.45	R110159

Fruiting vegetables, Cucurbits

The 2014 JMPR reviewed the results from supervised trials from the USA on cucumbers, zucchini (summer squash) and melons (cantaloupes) and the summary information from the 2014 Evaluation are reproduced below.

Cucumber

In the North American outdoor trials, three foliar applications of 0.34 kg ai/ha metrafenone (SC formulation) with added adjuvant were applied at 6–8 day intervals, using motorized knapsacks or tractor-mounted 4–9 nozzle sprayers to apply about 300–700 L/ha. Plot sizes were larger than 33 square metres.

Duplicate fruit samples (min 2 kg, 12 units) were taken, with the larger cucumber fruit being sub-sampled in the field, frozen within 12 hours of sampling and stored frozen for up 24 months before analysis for metrafenone using the QuEChERS LC-MS/MS method. The average procedural recovery of metrafenone from samples fortified with 0.01 mg/kg or 1.0 mg/kg was 104% and the LOQ was 0.01 mg/kg.

Table 12 Residues in outdoor cucumbers from supervised trials in North America involving three foliar applications of metrafenone (SC formulation). [JMPR 2014 Metrafenone Evaluation, Table 44, p 1227]

CUCUMBER		Ар	plication				Residues (m	ng/kg)	Trial
Country, year	no	kg ai/ha	kg ai/hL	water (L/ha)	Matrix	DAT	metrafenone	mean	Reference
GAP: USA, Canada	3	0.336				PHI: 0	RTI: 7–14 d		x 1.01 kg na/season
USA, 2010	3	0.33	0.11	280	fruit	0	0.11, 0.09	0.1	R100008
USA, 2010	3	0.34	0.12	280	fruit	0	0.13, 0.15	0.14	R100009
USA, 2010	3	0.35	0.12	290	fruit	0	0.09, 0.07	0.08	R100010
USA, 2010	3	0.34	0.12	290	fruit	0	0.15, 0.17	0.16	R100011
USA, 2010	3	0.34	0.12	280	fruit	0	0.05, 0.06	0.05	R100012
USA, 2010	3	0.34	0.12	280	fruit	0	0.11, 0.08	0.1	R100013

Summer squash

In the North American trials, three foliar applications of 0.34 kg ai/ha metrafenone (SC formulation) with added adjuvant were applied at 6–8 day intervals, using motorized knapsacks or tractor-mounted 4–9 nozzle sprayers to apply about 300–700 L/ha. Plot sizes were larger than 33 square metres.

Duplicate fruit samples (min 2 kg, 12 units) were frozen within 12 hours of sampling and stored frozen for up 28 months before analysis for metrafenone using the QuEChERS LC-MS/MS method. The average procedural recovery of metrafenone from samples fortified with 0.01 mg/kg or 1.0 mg/kg as 100% and the LOQ was 0.01 mg/kg.

Table 13 Residues in outdoor summer squash from supervised trials in North America involving three foliar applications of metrafenone (SC formulation). [JMPR 2014 Metrafenone Evaluation, Table 47, pp 1229–1230]

SUMMER SQUASH		I	Application				Residues		
Country, year Location (Variety)	no	kg ai/ha	kg ai/hL	water (L/ha)	Matrix	DAT	metrafenone	mean	Trial Reference
GAP: USA, Canada	3	0.336				PHI: 0	RTI: 7–14d	Max 1.01	kg ai/ha/season
USA, 2010	1+	0.35	0.12	290	Fruit	0	0.25.0.36	0.31	10478.10-AZ06
USA, 2010	2	0.35	0.08	440	Fiun	0	0.25,0.50	0.51	10478.10-AZ00
Canada, 2010	3	0.34	0.09	380	Fruit	0	0.24, 0.35	0.29	10478.10-BC09
USA, 2010	3	0.34	0.07	480-500	Fruit	0	0.12, 0.13	0.13	10478.10-CA136
USA, 2010	3	0.33	0.05	640-650	Fruit	0	0.1, 0.16	0.13	10478.10-FL40
USA, 2010	3	0.33	0.08	390-400	Fruit	0	0.11, 0.09	0.1	10478.10-MD18

SUMMER SQUASH		A	Application				Residues	(mg/kg)	
Country, year Location (Variety)	no	kg ai/ha	kg ai/hL	water (L/ha)	Matrix	DAT	metrafenone	mean	Trial Reference
USA, 2010	3	0.34	0.085	400	Fruit	0	0.17, 0.18	0.17	10478.10-NC29
USA, 2010	3	0.33	0.12, 0.06	270, 560	Fruit	0	0.08, 0.07	0.07	10478.10-NY30
Canada, 2010	3	0.33	0.05	690	Fruit	0	0.13, 0.14	0.14	10478.10-ON21
Canada, 2010	1+ 3	0.14+ 0.34	0.04 0.08	380 410	Fruit	0	0.25, 0.18	0.22	10478.10-ON22
Canada, 2010	3	0.35	0.06	600–620	Fruit	0	0.1, 0.1	0.11	10478.10-QC11
USA, 2010	3	0.34	0.07	500-520	Fruit	0	0.08, 0.12	0.1	10478.10-SC13
USA, 2010	3	0.34	0.09	390-400	Fruit	0	0.14, 0.08	0.11	10478.10-TX21
USA, 2010	3	0.34	0.07	510	Fruit	0	0.24, 0.31	0.28	10478.10-TX22
USA, 2010	3	0.34	0.07	500	Fruit	0	0.12, 0.13	0.12	10478.10-WA36

Melons (except watermelon)

In the North American trials, three foliar applications of 0.34 kg ai/ha metrafenone (SC formulation) with added adjuvant were applied at 6–8 day intervals, using motorized knapsacks or tractor-mounted 4–9 nozzle sprayers to apply about 300–700 L/ha. Plot sizes were larger than 33 square metres.

Duplicate fruit samples (min 2 kg, 12 units) were sub-sampled in the field (two opposite quarters, eighths or sixteenths/fruit), frozen within 12 hours and stored frozen for up 27 months before analysis for metrafenone using the QuEChERS LC-MS/MS method. The average procedural recovery of metrafenone from samples fortified with 0.01 mg/kg or 1.0 mg/kg was 104% and the LOQ was 0.01 mg/kg.

Table 14 Residues in outdoor melons (cantaloupes) from supervised trials in North America involving										
three foliar applications of metrafenone (SC formulation). [JMPR 2014 Metrafenone Evaluation,										
Table 49, pp 1232–1233]										

MELON		Ар	plication				Residues (m	g/kg)	
Country, year	no	kg ai/ha	kg ai/hL	water (L/ha)	Matrix	DAT	metrafenone	mean	Trial Reference
GAP: USA, Canada	3	0.336				PHI: 0	RTI: 7–14d	Max 1.	01 kg ai/ha/season
USA, 2010	3	0.32	0.07	386-434	fruit	0	0.17, 0.14	0.15	10477.10-AZ05
USA, 2010	3	0.33	0.07	466-471	fruit	0	0.21, 0.24	0.23	10477.10-CA133
USA, 2010	3	0.33	0.07	488–498	fruit	0	0.12, 0.14	0.13	10477.10-CA134
USA, 2010	3	0.35	0.07	466-471	fruit	0	0.07, 0.1	0.09	10477.10-CA135
USA, 2010	3	0.33	0.08	392-405	fruit	0	0.23, 0.33	0.28	10477.10-GA14
USA, 2010	3	0.33	0.08	399–405	fruit	0	0.21, 0.14	0.18	10477.10-MD17
USA, 2010	3	0.34	0.08	409-435	fruit	0	0.15, 0.12	0.13	10477.10-NM13
USA, 2010	3	0.34	0.08	426-442	fruit	0	$0.04^{\rm a}, 0.04^{\rm a}$	0.04	10477.10-OH-18
Canada, 2010	3	0.34	0.085	402-404	fruit	0	0.13, 0.14	0.13	10477.10-ON20
Canada, 2010	3	0.35	0.08	407-423	fruit	0	0.17, 0.24	0.21	10477.10-QC10
USA, 2010	3	0.34	0.09	391-396	fruit	0	0.19, 0.17	0.18	10477.10-TX20
USA, 2010	3	0.34	0.09	393–396	fruit	0	0.08, 0.08	0.08	10477.10-TX19

Fruiting vegetables, other than Cucurbits

The 2014 JMPR reviewed the results from supervised trials from Europe and USA on peppers and tomatoes and the summary information from the 2014 Evaluation are reproduced below.

Peppers

In the North American trials on outdoor sweet (bell) <u>peppers</u> and <u>chilli</u> (non-bell) peppers, three foliar applications of 0.34 kg ai/ha metrafenone (SC formulation) with added adjuvant were applied at 7 day intervals, using pressurised knapsack sprayers (2–6 nozzles) to apply about 200–300 L/ha. Plot sizes were larger than 28 square metres.

Metrafenone

Duplicate whole fruit samples (min 2 kg, 12 large or 24 small fruit) were frozen within 2 hours of sampling and stored frozen (-15 °C) for up 25 months before analysis for metrafenone using the QuEChERS LC-MS/MS method. Average procedural recoveries of metrafenone from samples fortified with 0.01–0.1 mg/kg ranged from 109% to 114% with an overall mean of 112% and the LOQ was 0.01 mg/kg.

Table 15 Residues in outdoor peppers (bell and non-bell) from supervised trials in North America involving three foliar applications of metrafenone (SC formulation). [JMPR 2014 Metrafenone Evaluation, Table 52, pp 1235]

PEPPER			Applicati	on	Matuin	DAT	Residues	(mg/kg)	Trial
Country, year	no	kg ai/ha	kg ai/hL	water (L/ha)	Matrix	DAT	metrafenone	mean	Reference
GAP: USA, Canada	3	0.336				PHI: 0	RTI: 7–14 d	Max 1.01 kg	g ai/ha/season
									-
Bell peppers									
USA, 2010	3	0.34	0.12	280	fruit	0	0.39, 0.43	0.41	R100014
USA, 2010	3	0.34	0.15	230	fruit	0	0.47, 0.33	0.4	R100015
USA, 2010	3	0.33	0.15	220	fruit	0	0.18, 0.11	0.15	R100016
USA, 2010	3	0.33	0.15	230	fruit	0	0.33, 0.17	0.25	R100017
USA, 2010	3	0.34	0.14	250	fruit	0	0.33, 0.21	0.27	R100018
USA, 2010	3	0.36	0.12	280	fruit	0	0.51, 0.34	0.43	R100019
Non-bell peppers									
USA, 2010	3	0.34	0.15	230	fruit	0	0.37, 0.34	0.35	R100020
USA, 2010	3	0.34	0.16	210	fruit	0	0.07, 0.1	0.08	R100021
USA, 2010	3	0.34	0.12	280	fruit	0	0.33, 0.67	0.5	R100022

Tomato

In the North American trials on outdoor <u>tomatoes</u> (large and small fruited varieties), three foliar applications of 0.34 kg ai/ha metrafenone (SC formulation) with added adjuvant were applied at 6–8 day intervals, using knapsack or tractor-mounted boom sprayers (3–11 nozzles) to apply about 300–800 L/ha. Plot sizes were larger than 30 square metres.

Duplicate fruit samples (min 2 kg, 12 large or 24 small fruit) were frozen within 3 hours of sampling and stored frozen (-15 °C) for up 24 months before analysis for metrafenone using the QuEChERS LC-MS/MS method. Average procedural recoveries of metrafenone from samples fortified with 0.01–0.1 mg/kg ranged from 91% to 118% with an overall mean of 105% and the LOQ was 0.01 mg/kg.

Table 16 Residues in outdoor tomatoes from supervised trials in North America involving three foliar applications of metrafenone (SC formulation). [JMPR 2014 Metrafenone Evaluation, Table 55, pp 1237–1239]

ΤΟΜΑΤΟ		٨	plication				Dagiduag (m	a/lra)	
TOMATO		1	1	1	Matrix	DAT	Residues (m	g/kg)	Trial Reference
Country, year	no	kg ai/ha	kg ai/hL	water (L/ha)		2	metrafenone	mean	
GAP: USA, Canada	3	0.336				PHI: 0	RTI: 7–14 d	Max 1	.01 kg ai/ha/season
USA, 2010	3	0.34	0.11	300	fruit	0	0.09, 0.11	0.1	10467.10-GA13
USA, 2010	3	0.34	0.11	300	fruit	0	0.22, 0.18	0.2	10467.10-CA127
USA, 2010	3	0.34	0.09	380	fruit	0	0.08, 0.08	0.08	10467.10-NC28
USA, 2010	3	0.34	0.04	840	fruit	0	0.11, 0.11	0.11	10467.10- NM12
USA, 2010	3	0.34	0.11	300	fruit	0	0.15, 0.19	0.17	10467.10- MI42
USA, 2010	4	0.34	0.09	360	fruit	0	0.1, 0.11	0.11	10467.10- AZ04
USA, 2010	3	0.34	0.11	310	fruit	0	0.17, 0.18	0.18	10467.10- CA125
USA, 2010	3	0.34	0.11	300	fruit	0	0.2, 0.29	0.25	10467.10- CA119
USA, 2010	3	0.34	0.08	430	fruit	0	0.09, 0.09	0.09	10467.10- OH17
USA, 2010	3	0.34	0.06	580	fruit	0	0.29, 0.28	0.29	10467.10- NY27
USA, 2010	3	0.34	0.09	390	fruit	0	0.09, 0.12	0.11	10467.10- CA120
USA, 2010	3	0.34	0.07	470	fruit	0	0.11, 0.08	0.1	10467.10- CA122
USA, 2010	3	0.34	0.07	500	fruit	0	0.13, 0.08	0.1	10467.10- CA121
USA, 2010	3	0.34	0.07	470	fruit	0	0.24, 0.23	0.23	10467.10- CA126
USA, 2010	3	0.34	0.11	310	fruit	0	0.25, 0.26	0.26	10467.10- CA123

TOMATO		Application				DAT	Residues (mg/kg)		Trial Reference
Country, year	no	kg ai/ha	kg ai/hL	water (L/ha)	Matrix	DAT	metrafenone	mean	That Reference
USA, 2010	3	0.34	0.11	310	fruit	0	0.4, 0.45	0.43	10467.10- CA128
USA, 2010	3	0.34	0.1	340	fruit	0	0.15, 0.05	0.1	10467.10- CA124
						0	0.1, 0.04	0.07	
USA, 2010	2	0.34	0.05	620	fruit	1	0.09, 0.06	0.07	10467.10- FL38
USA, 2010	3	0.54	0.05	020	Iruit	3	0.07, 0.08	0.08	10407.10-FL38
						7	0.07, 0.11	0.09	
USA, 2010	3	0.34	0.05	620	fruit	0	0.18, 0.26	0.22	10467.10- FL39

Hops

Results from supervised trials from Europe and North America on hops were provided to the Meeting.

In the European trials, two foliar applications of 0.32-0.36 kg ai/ha metrafenone (SC formulation) were applied at 6–8 day intervals, using 16-nozzle mist blowers to apply about 3500–3600 L/ha. Plot sizes were 240 m² with 54 plants/plot.

Samples of fresh green hops (min 0.5 kg) were frozen within 12 hours and additional 1.2 kg samples were kiln-dried (7–85 hours at 58 °C) to obtain the dried cones samples (min 0.1 kg). All samples were stored frozen for up to 22 weeks before analysis for metrafenone using the LC/MS/MS BASF Method 535 with an LOQ of 0.01 mg/kg.

Table 17 Residues in hop cones from supervised trials in Europe involving two foliar applications of metrafenone (SC formulation)

HOPS Country, year		Ap	plication		Matrix	DAT	Residues (mg/kg)	Reference &
Location (Variety)	no	kg ai/ha	kg ai/hL	water (L/ha)	Widulix	DAT	metrafenone	Comments
GAP: USA	2	0.336		RTI: 14 d		PHI: 3	Max 0.67	/ kg ai/ha/season
Germany, 2010 Weddegast, Saxony	1+ 1	0.36 0.35	$0.01 \\ 0.01$	3600 3540	green cones	0 1 3 7	9.5 9.4 4.5 8.4	2011/1041886 L100073
(Magnum)	1	0.55	0.01	3340	dried cones	3	<u>34</u>	L100075
Germany, 2010 Golzern, Saxony (Nugget)	1+1	0.35 0.36	0.01 0.01	3500 3630	green cones	0 1 3 7	10.0 6.9 8.5 5.5	2011/1041886 L100074
(dried cones	3	$\frac{33}{(c=0.02)}$	
Germany, 2009 Golzern (Nugget)	1+ 1	0.31 0.34	0.01 0.01	3200 3400	green cones dried cones	0 1 2 7 2	4.9 4.4 3.7 2.9 <u>21</u> 3.7	2011/1041879 Trial: L090302
Germany, 2009 Hohenebra (Nordischer Brauer)	1+ 1	0.33 0.35	0.01 0.01	3400 3600	green cones	0 1 3 7 3	3.7 6.7 3.4 4.1 <u>23</u>	2011/1041879 Trial: L090303
Germany, 2009 Kleinbadegast (Magnum)	1+ 1	0.31 0.33	0.01 0.01	3100 3400	green cones dried cones	0 1 3 7 3	$\frac{2.3}{3.8}$ 2.6 1.8 3.7 $\frac{13.3}{0.05}$ (c =	2011/1041879 Trial: L090304

HOPS Country, year		Application		Matrix	DAT	Residues (mg/kg)	Reference &	
Location (Variety)	no	kg ai/ha	kg ai/hL	water (L/ha)		DAI	metrafenone	Comments
Germany, 2009 Simonshofen (Magnum)	2	0.34	0.01	3500	green cones	0 1 4 8	5.6 4.4 3.1 4.2	2011/1041879 Trial: L090305
					dried cones	4	<u>20</u>	

In the North American trials, two foliar applications of 0.34-0.36 kg ai/ha metrafenone (SC formulation) were applied at 6–10 day intervals, using backpack 1–6 nozzle hand lances or tractor-mounted 6-nozzle airblast sprayers to apply about 790–1600 L/ha with added adjuvant to single 72–400 square metre plots.

Green cones samples (min 0.4 kg) were hand picked or mechanically harvested from at least five vines per plot and additional samples were dried to about 10% moisture content (about 60 °C for 11 hours) to give typical sample weights of at least 0.45 kg. Samples were frozen within 3 hours and stored frozen for up to 27 months before analysis for metrafenone using the LC/MS/MS multi-residue QuEChERS 1 method (LOQ of 0.01 mg/kg).

Table 18 Residues in hop cones from supervised trials in North America involving two foliar applications of metrafenone (SC formulation)

HOPS		Al	oplication				Residues (m	g/kg)	
Country, year Location (Variety)	no	kg ai/ha	kg ai/hL	water (L/ha)	Matrix	DAT	metrafenone	mean	Reference & Comments
GAP: USA	2	0.336				PHI: 3	RTI: 14d	Max 0.	67 kg ai/ha/season
USA, 2010 Parma, ID	2	0.34		1510	green cones	2	6.08	6.1	2013/7001795
(Newport)			d	dried cones	2	15.7, 18.02	<u>17</u>	10466.10-ID05	
USA, 2010 Hubbard, OR	2	0.34		1630	green cones	2	6.17	6.2	2013/7001795
(Nugget)	Z	0.54		dried cones	2	20.7, 23.1	<u>21</u>	10466.10-OR09	
						4	5.51	5.5	
USA, 2010 Prosser, WA (Nugget)	2	0.34		1520	green cones	0 1 4	25.0, 21.9 20.6, 21.64 15.27, 10.2	23 21 <u>13</u>	2013/7001795 10466.10-WA10
(rugger)					dried cones	7 14	11.87, 12.89 12.19, 9.035	$\frac{13}{12}$ 11	
Canada, 2010 Langton, ON (Nugget)	2	0.34		1530	green cones dried cones	2 0 1 2	31.4 129.6, 105.5 88.8, 89.8 105.1, 158.8	31 117 89 132	2013/7001795 10466.10-ON05 See footnote
Canada, 2010 St. Polycarpe, QC (Fuggle)	1+ 1	0.36 0.35		800 790	green cones dried cones	2 2	9.67 25.34, 21.71	9.7 <u>23.5</u>	2013/7001795 10466.10-QC01

In trial ON05, adverse weather conditions (hurricane) resulted in a 10-day retreatment interval and excessive insect damage completely defoliated the vines between the two applications. The crop was not commercially viable.

FATE OF RESIDUES IN STORAGE AND PROCESSING

Processing

Processing studies on apples, grapes, strawberries, tomatoes, barley, wheat and hops were reviewed by the 2014 JMPR and the processing factors estimated by that Meeting are re-presented below:

Table 19 Summary of processing factors for metrafenone [2014 JMPR Metrafenone Evaluation, table 71, pp 1272–1273]

RAC	Matrix	Metrafer	
		Calculated processing factors	PF median or best estimate
	fruit		
	canned	0.1, 0.14	0.12
A 1	juice	0.19, 0.23	0.21
Apple	wet pomace	1.1, 1.3	1.2
	dried slices	0.39, 0.72	0.56
	sauce	4.1, 4.8	4.45
	grapes		
	must (red wine)	0.03, 0.57, 0.77, 0.78, 0.81, 1.2, 1.3	0.78
	must (white wine)	0.15, < 0.18, 0.26	0.18
	wet pomace	2.8, 3.6	3.2
	young wine (white)	0.07	
Grape	young wine (red)	$\begin{array}{c} 0.03, < 0.17, < 0.19, < 0.21, \\ 0.3, < 0.38, < 0.71 \end{array}$	< 0.2
	wine (white)	0.07, < 0.18, < 0.26	
	wine (red)	$\begin{array}{c} 0.03, < 0.17, < 0.19, < 0.19, \\ < 0.21, < 0.38, < 0.71 \end{array}$	< 0.19
	juice	0.04, 0.06	0.05
	raisins	0.63, < 0.71, 3.6, 3.9	3.75
	fruit		
	washed fruit	0.4, 0.45, 0.5, 0.52	0.475
Strawberry	preserved fruit	0.79, 0.84, 0.99, 1.1	0.915
	jam	0.21, 0.21, 0.24, 0.28	0.225
	syrup	0.15, 0.16, 0.18, 0.19	0.17
	fresh		,
	washed	0.57, 0.62, 0.84, 0.9	0.73
	blanched	0.45, 0.91, 1.3, 0.94	1.1
	peeled	< 0.01, < 0.02, 0.02, 0.05	0.02
	preserved	< 0.02, < 0.02, < 0.02, 0.02	< 0.02
Tomato	juice (raw)	0.26, 0.33, 0.35, 0.4	0.34
	wet pomace	3.3, 4.8, 6.2, 6.3	5.5
	peel	3.7, 6.2, 7.5, 7.9	6.85
	paste	0.27, 0.3, 0.47, 0.53	0.385
	ketchup	0.38, 0.42, 0.42, 0.5	0.42
	puree	0.65, 0.79, 0.83, 1.1	0.81
Mushroom	fresh		
	canned	0.16	0.16
	grain		
	pearl barley	< 0.13, 0.13, < 0.2, 0.22	0.165
	pearl barley abrasion	2.5	2.5
D - 1	malt	0.4	0.4
Barley	brewers grain	0.3	0.3
	spent hops	< 0.1	< 0.1
	Brewer's yeast	< 0.1	< 0.1
	beer	< 0.1, < 0.13, < 0.17, < 0.33,	< 0.15
	grain		
	wholemeal flour	0.94, 1.1, 1.7, 1.9	1.4
Wheat	flour type 550	0.14, 0.17, 0.21, 0.29	0.19
	bran flour	1.3, 1.6, 2.6, 2.6	2.1
	coarse bran	0.29, 0.33, 0.43, 0.57	0.38

RAC	Matrix	Metrafenone ^a		
		Calculated processing factors	PF median or	
		Calculated processing factors	best estimate	
	fine bran	2.6, 3.5, 4.9, 5.3	4.2	
	whole grain bread	0.6, 0.64, 0.71, 1.0	0.675	
	dried cones			
	extracted hops	1.8, 1.8, 1.8	1.8	
Hops	Brewer's yeast	0.008, 0.01, 0.01	0.01	
	hops draff	0.24, 0.24, 0.25	0.24	
	beer	< 0.0005, < 0.0005, < 0.0006	< 0.0005	

^a Each value represents a separate study where residues were above the LOQ in the RAC. The factor is the ratio of metrafenone residues in the processed item divided by the residue of metrafenone in the RAC.

APPRAISAL

Metrafenone, a benzophenone fungicide, was evaluated for the first time by the 2014 JMPR, where an ADI of 0–0.3 mg/kg bw was established, an ARfD was not considered necessary and a residue definition of *metrafenone* (parent only) was established for plant and animal commodities, for both compliance with MRLs and for dietary intake assessment.

It was scheduled by the 47th Session of the CCPR for the evaluation of additional uses by the 2016 JMPR and the Meeting received new GAP and residue information on pome fruit, stone fruit and hops from the manufacturer.

New GAP information on grapes and fruiting vegetables was also provided by the manufacturer, together with an ambient temperature metrafenone residue stability study in homogenised melons.

Methods of analysis

The 2014 JMPR reviewed and summarized analytical method descriptions and validation data for metrafenone in crop and animal matrices. These included The QuEChERS 1 method and Method 535/3 used to measure metrafenone in the new supervised residue trials. Method validation data for pome fruit, stone fruit and hops were provided to the Meeting. LOQs for all matrices were 0.01 mg/kg.

Stability of pesticide residues in stored analytical samples

Plant matrices-fresh analytical sub-samples

The Meeting received an ambient storage residue stability study on melons where homogenised samples were spiked with 0.1 mg/kg metrafenone and stored at 19 °C \pm 1 °C for up to 16 hours before analysis for metrafenone. Residues were stable (more than 79% residues remaining) for up to 16 hours at room temperature.

The Meeting concluded that if samples from supervised residue field trials were sub-sampled (quartered or sliced) in the field, and frozen within 16 hours of sampling, the results from those trials were suitable for estimating maximum residue levels.

Plant matrices-stored analytical samples

The 2014 JMPR concluded that metrafenone residues were stable for up to 24 months in analytical frozen samples of a range of representative substrates (at least 31 months in high starch and high water content matrices). In general, residues in the stored samples were greater than 80% of the spiked levels. Frozen sample storage times in the new trials were within the storage intervals considered acceptable by the 2014 JMPR

Results of supervised residue trials on crops

The Meeting received new supervised trial data for foliar applications of metrafenone on pome fruit, stone fruit and hops. Trials on grapes and fruiting vegetables evaluated by the 2014 JMPR were re-assessed in light of new GAP information provided to the Meeting.

The results from these new trials and those previously reported by the 2014 JMPR and matching critical GAP were used to estimate maximum residue levels, STMRs and HRs for a number of commodities for which GAP information was available.

Pome fruit

Results from supervised trials on apples and pears conducted in USA were provided to the Meeting.

The critical GAP for metrafenone on pome fruit in Canada and USA is for up to 3 foliar applications of 0.336 kg ai/ha applied at least 7–14 days apart with a PHI of 7 days, applying a total of 1.01 kg ai/ha/season.

In 11 independent trials on <u>apples</u> in USA matching this GAP, residues were: 0.08, 0.2, 0.22, 0.22, 0.23, 0.31, 0.45, 0.49, 0.54 and 0.76 mg/kg.

In six independent trials on <u>pears</u> in USA matching this GAP, residues were: 0.14, 0.16, <u>0.19</u>, <u>0.39</u>, 0.41 and 0.48 mg/kg.

The Meeting noted that the data sets for apples and pears were not statistically diffferent (Mann-Whitney) and agreed to combine the data sets for apples and pears to estimate a pome fruit group maximum residue level.

The combined data set for metrafenone residues in apples and pears from trials matching the GAP for pome fruit in Canada and USA is: 0.08, 0.14, 0.16, 0.19, 0.2, 0.22, 0.22, 0.22, 0.23, 0.31, 0.39, 0.41, 0.45, 0.48, 0.49, 0.54 and 0.76 mg/kg.

The Meeting estimated an STMR of 0.23 mg/kg and a group maximum residue level of 1 mg/kg for metrafenone on pome fruit.

Stone fruit

Results from supervised trials on cherries and peaches conducted in USA were provided to the Meeting.

Cherries

The critical GAP for metrafenone on cherries in Canada and USA is for up to 2 foliar applications of 0.336 kg ai/ha applied at least 7–14 days apart with a PHI of 7 days, applying a total of 0.67 kg ai/ha/season.

In 12 independent trials in USA matching this GAP, residues in cherries (without stones) were: 0.32, 0.37, 0.39, 0.43, 0.44, 0.49, 0.55, 0.6, 0.65, 0.7, 0.97 and 1.2 mg/kg.

The Meeting noted that the GAP in USA and Canada covered the Codex Cherries sub-group and based on the data for cherries (without stones), estimated an STMR for metrafenone of 0.52 mg/kg for cherries (sub-group).

The Meeting also noted that cherry stones do not contribute significantly to the total fruit weight and agreed to use the above data set to estimate a maximum residue level of 2 mg/kg for metrafenone for cherries (sub-group).

Peaches (including Nectarine and Apricots)

The critical GAP for metrafenone on peaches (including nectarines) in Canada and USA is for up to 2 foliar applications of 0.336 kg ai/ha applied at least 7–14 days apart with a PHI of 7 days, applying a total of 0.67 kg ai/ha/season.

In 14 independent trials on <u>peaches</u> in USA matching this GAP, residues in peaches (without stones) were: 0.05, 0.14, 0.17, 0.19, 0.2, 0.21, <u>0.21</u>, 0.22, 0.23, 0.25, 0.28, 0.29 and 0.49 mg/kg.

The Meeting noted that the GAP in USA for apricots was the same as for peaches, and thus covered the Codex Peaches sub-group (i.e. including apricots) and estimated an STMR for metrafenone of 0.21 mg/kg for peaches sub-group.

The Meeting also noted that peach (and nectarine) stones do not contribute significantly to the total fruit weight and agreed to use the above data set to estimate a maximum residue level of 0.7 mg/kg for metrafenone for peaches (sub-group).

Small fruit vine climbing

Grapes

The Meeting received new GAP information for grapes in USA, up to 3 foliar applications of 0.336 kg ai/ha, 14–21 day retreatment interval and a PHI of 14 days.

In eight independent trials from the USA, evaluated by the 2014 JMPR and matching the new USA GAP, residues in grapes were: 0.22, 0.34, 0.35, 0.45, 0.46, 0.47, 0.48 and 1.0 mg/kg.

Noting that the 2014 JMPR had estimated an STMR of 0.76 mg/kg and a maximum residue level of 5 mg/kg for metrafenone on grapes based on data matching the Canadian GAP (up to 6 foliar applications of 0.225 kg ai/ha, PHI 14 days), the Meeting agreed that the new GAP in USA would be accommodated by the existing STMR and maximum residue level.

Fruiting vegetables, Cucurbits

The Meeting received new GAP information for cucurbits in Canada and USA, up to 3 foliar applications of 0.336 kg ai/ha, 7–14 day retreatment interval and a PHI of 0 days.

Cucumber

The Meeting agreed to review the data on cucumbers provided to the 2014 JMPR in light of the new GAP for fruiting vegetables, cucurbits in Canada and USA.

In six independent trials from USA on <u>cucumbers</u> matching the new GAP in Canada and USA, residues were: 0.05, 0.08, <u>0.1, 0.1</u>, 0.14 and 0.16 mg/kg.

Squash, Summer

The Meeting agreed to review the data on summer squash provided to the 2014 JMPR in light of the new GAP for fruiting vegetables, cucurbits in Canada and USA.

In 14 independent trials from North America on <u>summer squash matching this new GAP</u>, residues in summer squash were: 0.07, 0.1, 0.1, 0.11, 0.11, 0.12, <u>0.13</u>, 0.13, 0.14, 0.17, 0.22, 0.28, 0.29 and 0.31 mg/kg.

Melons (except watermelon)

The Meeting noted that the 2014 JMPR had reviewed the data from melon trials but was unable to estimate a maximum residue level because the melon samples had been quartered in the field and no information was available on residue stability in chopped or sliced samples.

Based on new information showing that metrafenone residues were stable for up to 16 hours in homogenised samples at room temperatures, the Meeting reviewed the data on melons provided to the 2014 JMPR in light of the new critical GAP in Canada and USA.

In 12 independent trials on <u>melons</u> (cantaloupes) in North America matching the new GAP in Canada and USA, residues were: 0.04, 0.08, 0.09, 0.13, 0.13, 0.13, 0.15, 0.18, 0.18, 0.21, 0.23 and 0.28 mg/kg.

Metrafenone

The Meeting noted that the GAP in Canada and USA was for the cucurbit group, that median residues in cucumber, summer squash and melons were within a 5-fold range (0.1 - 0.14 mg/kg) and that the data sets were not from different populations (Kruskal-Wallis). The Meeting therefore agreed to combine these data sets to recommend a group maximum residue level for fruiting vegetables, cucurbits.

Residues in cucumber, summer squash and melons from trials matching the GAP in Canada and USA for fruiting vegetables, cucurbits were: 0.04, 0.05, 0.07, 0.08, 0.08, 0.09, 0.1 (4), 0.11, 0.12, 0.13 (5), 0.14, 0.14, 0.15, 0.16, 0.17, 0.18, 0.18, 0.21, 0.22, 0.23, 0.28, 0.28, 0.29 and 0.31 mg/kg.

The Meeting estimated an STMR of 0.13 mg/kg and a group maximum residue level of 0.5 mg/kg for metrafenone on fruiting vegetables, cucurbits and to withdraw the previous recommendations for cucumber, summer squash and gherkin.

Fruiting vegetables, other than Cucurbits

The Meeting received new GAP information for fruiting vegetables (other than cucurbits) in Canada and USA, up to 3 foliar applications of 0.336 kg ai/ha, 7–14 day retreatment interval and a PHI of 0 days.

Peppers

In nine independent trials from USA on <u>peppers</u> matching this new GAP, residues were: 0.08, 0.15, 0.25, 0.27, <u>0.35</u>, 0.4, 0.41, 0.43 and 0.5 mg/kg.

The Meeting noted that the 2014 JMPR had estimated STMRs of 0.115 mg/kg and maximum residue levels of 2.0 mg/kg for metrafenone on sweet pepper and on Chili pepper based on glasshouse sweet pepper trials conducted in Europe matching the GAP in France (up to 2 foliar applications of 0.15 kg ai/ha, PHI 3 days).

The Meeting agreed that the new GAP in Canada and USA would be accommodated by the existing maximum residue level but that since the STMR from the USA trials was higher than that estimated by the 2014 JMPR, the Meeting agreed to use the 0.35 mg/kg STMR from the trials matching the USA GAP for dietary intake estimation for peppers, sweet and peppers, Chili.

Tomato

The Meeting agreed to review the data on tomatoes provided to the 2014 JMPR in light of the new GAP in Canada and USA.

In 19 independent trials from North America on <u>tomatoes</u> matching this new GAP, residues were: 0.08, 0.09, 0.09, 0.1 (3), <u>0.11</u> (3), 0.17, 0.18, 0.2, 0.22, 0.23, 0.25, 0.26, 0.29, and 0.43 mg/kg.

The Meeting estimated an STMR of 0.11 mg/kg and a maximum residue level of 0.6 mg/kg for metrafenone on tomato to replace the previous recommendation and noting that the GAP in Canada and USA included use on eggplants, agreed to extrapolate the above estimations to eggplants.

Dried herbs

Results from supervised trials on hops conducted in Europe and North America were provided to the Meeting.

Hops

The GAP for metrafenone on hops in USA is for up to 2 foliar applications of 0.336 kg ai/ha with a PHI of 3 days. In trials in North America matching this GAP, metrafenone residues in dried hop cones were: 13, 17, 21 and 24 mg/kg. In trials conducted in Europe and matching the GAP in USA, residues were 13, 20, 21, 23, 33 and 34 mg/kg.

Since the European and North American data sets were not from different populations (Mann-Whitney), the Meeting agreed to use the global data set approach and combined these data sets to recommend a maximum residue level for hops, dry.

Residues from trials in North America and Europe matching the USA GAP for hops were: 13, 13, 17, 20, <u>21, 21</u>, 23, 24, 33 and 34 mg/kg

The Meeting estimated an STMR of 21 mg/kg and a maximum residue level of 70 mg/kg for metrafenone on hops, dry.

Fate of residues during processing

Processing studies on apples, tomatoes and hops were among those reviewed by the 2014 JMPR and the processing factors estimated by that Meeting for the commodities considered at this Meeting are summarized below.

RAC	Matrix	Processing Factors ^a	STMR (mg/kg)	STMR-P (mg/kg)
Apple	fruit		0.23	
••	canned	0.12		0.028
	juice	0.21		0.048
	wet pomace	1.2		0.28
	dried slices	0.56		0.13
	sauce	4.45		1.0
Tomato	fresh		0.11	
	preserved	< 0.02		< 0.002
	juice (raw)	0.34		0.037
	wet pomace	5.5		0.61
	paste	0.385		0.042
	puree	0.81		0.089
Hops	dried cones		21	
	extracted hops	1.8		38
	brewers yeast	0.01		0.21
	beer	< 0.0005		< 0.01

Summary of selected processing factors and STMR-P values for metrafenone

^a Each PF value is the median of 2–4 separate studies where residues were above the LOQ in the RAC. The PF in each study was the ratio of the metrafenone residues in the processed item divided by the residues in the RAC.

The Meeting noted that in the above studies, metrafenone residues did not concentrate in food commodities during processing except in tomato sauce and wet tomato pomace and apple pomace.

For dried chili peppers, applying the default processing factor of 10 to the STMR and the maximum residue level estimated for peppers, the Meeting estimated an STMR of 3.1 mg/kg and a maximum residue level of 20 mg/kg for metrafenone on peppers Chili, dried.

Residues in animal commodities

Farm animal dietary burden

The Meeting noted that the 2014 JMPR had calculated beef and dairy cattle maximum dietary burdens of 9.3 ppm (dw) and mean dietary burdens of 4.9 ppm (dw) for beef and dairy cattle based on the Australian livestock diet listed in Appendix IX of the FAO Manual.

Noting that the addition of wet apple pomace would not significantly change the estimated livestock dietary burdens (wet apple pomace not being a component of the Australian beef and dairy cattle livestock diet), the Meeting agreed that the maximum and mean livestock dietary burdens for beef and dairy cattle calculated by the 2014 JMPR did not need to be recalculated.

The Meeting also agreed that the maximum dietary burdens (2.0 ppm dw) and the mean dietary burdens (1.3 ppm dw) for poultry, calculated by the 2014 JMPR did not need to be

recalculated as none of the feed items from the commodities considered by the Meeting contributed to any of the poultry diets.

RECOMMENDATIONS

On the basis of the data from supervised trials the Meeting concluded that the residue levels listed below are suitable for establishing maximum residue limits and for IEDI assessment.

Definition of the residue (for compliance with the MRL and for dietary risk assessment) for plant and animal commodities: *metrafenone*

The residue is fat soluble.

	Commodity	Re Maxim	STMR or STMR-P		
CCN	Name	New	Previous		
FS 0013	Cherries	2		0.52	
VC 0424	Cucumber	W	0.2		
VO 0440	Egg plant	0.6		0.11	
VC 0045	Fruiting vegetables, Cucurbits	0.5		0.13	
VC 0245	Gherkin	W	0.2		
DH 1100	Hops, dry	70		21	
FS 2001	Peaches	0.7		0.21	
HS 0444	Peppers Chili, dried	20	20	3.5	
VO 0444	Peppers, Chili	2	2	0.35	
VO 0445	Peppers, Sweet (including Pimento or pimiento)	2	2	0.35	
FP 0009	Pome fruits	1		0.23	
VC 0431	Squash, Summer	W	0.06		
VO 0488	Tomato	0.6	0.4	0.11	
JF 0226	Apple juice			0.048	
DF 0226	Apples, dried			0.13	
	Apple sauce			1.0	
	Apple pomace, wet			0.28	
JF 00488	Tomato juice			0.037	
JF 00488	Tomato juice			0.037	
VW 0488	Tomato paste			0.042	
MW 0448	Tomato puree			0.089	
	Tomato (canned)			0.002	
	Tomato pomace (wet)			0.61	
	Beer			< 0.01	

DIETARY RISK ASSESSMENT

Long-term dietary exposure

The International Estimated Daily Intake (IEDI) for metrafenone was calculated for the food commodities for which STMRs or HRs were estimated and for which consumption data were available. The results are shown in Annex 3 to the 2016 Report.

The International Estimated Daily Intakes of metrafenone for the 17 GEMS/Food cluster diets, based on estimated STMRs were 0-1% of the maximum ADI of 0.3 mg/kg bw. The Meeting

concluded that the long-term dietary exposure to residues of metrafenone, from uses that have been considered by the JMPR, is unlikely to present a public health concern.

Short-term dietary exposure

The 2014 JMPR decided that an ARfD was unnecessary. The Meeting therefore concluded that the short-term exposure to metrafenone residues is unlikely to present a public health concern.

REFERENCES

Code	Author(s)	Year	Title, Institute, Report reference
JMPR 2014	Anon	2014	Pesticide residues in food—2014 Evaluations. Part I. Residues. Metrafenone (278), pp 1179–1296. FAO Plant Production and Protection Paper 222, 2015. Published.
2010/1089964	Lehmann, A	2010	Validation of BAS 560 F with BASF Method No. 535/3 (L0076/03) in hops and beer. BASF SE, Limburgerhof, Germany Fed.Rep. GLP/GEP: yes. Unpublished
2011/1041879	Braun, D	2011	Determination of residues of BAS 560 F in hops and its processed products after two applications of BAS 560 02 F in Germany. BioChem agrar Labor fuer biologische und chemische Analytik GmbH, Gerichshain, Germany Fed.Rep. GLP/GEP: yes. Unpublished
2011/1041886	Plier, S	2011	Determination of residues of BAS 560 F (Metrafenone) in hops after two applications of BAS 560 02 F in Germany. BioChem agrar Labor fuer biologische und chemische Analytik GmbH, Gerichshain, Germany Fed.Rep. GLP/GEP: yes. Unpublished
2012/7004394	Carringer, SJ	2013	Magnitude and decline of the residue of Metrafenone in or on pome fruit raw agricultural commodities following three foliar applications of BAS 560 03 F fungicide. The Carringers Inc., Apex NC, USA. GLP/GEP: yes. Unpublished
2013/7001794	Homa, K	2013	Metrafenone: Magnitude of the residue on cherry. IR-4 Project Headquarters, Princeton NJ, United States of America. GLP/GEP: yes. Unpublished
2013/7001795	Homa, K	2013	Metrafenone: Magnitude of the residue on hops. IR-4 Project Headquarters, Princeton NJ, United States of America. GLP/GEP: yes. Unpublished
2013/7001835	Homa, K	2013	Metrafenone: Magnitude of the residue on peach. IR-4 Project Headquarters, Princeton NJ, United States of America. GLP/GEP: yes. Unpublished
2015/1196811	Meridian, H	2015	Storage stability of Metrafenone in melon under ambient storage conditions. Eurofins Agroscience Services Chem Ltd., Melbourne Derbyshire DE73 8AG, United Kingdom. GLP/GEP: yes. Unpublished