

Climate Change Impact on Key Crops in Africa

Alternative Scenarios Using Biophysical and Economic Models

Mark W. Rosegrant and Timothy S. Thomas Environment and Production Technology Division

- Background and Overview
- Modeling Framework
- Climate Projections
- DSSAT Crop Model Results
- IMPACT Model Results
- Major Policy Conclusions

Background and Overview

Regions for Monographs and Analysis

	Population						
Name	2009	2050					
	2008	Low	Median	High			
	WDI	IMPACT	PACT (UNPOP projections)				
West Africa	287,604	545,233	618,835	697,456			
Ghana	23,351	39,660	45,213	51,163			
Nigeria	151,319	254,129	289,083	326,395			
Southern Africa	135,054	208,209	241,513	277,655			
Mozambique	21,781	38,268	44,148	50,480			
South Africa	48,687	47,536	56,802	67,051			
East Africa	340,843	678,634	773,746	875,639			
Congo, DR	64,205	130,013	147,512	166,249			
Ethiopia	80,713	152,720	173,811	196,245			

	Income Per Capita					
Namo	2009	2050				
Name	2008	Pessimistic	Baseline	Optimistic		
	WDI	IMPACT				
West Africa	324	764	1,423	2,850		
Niger	180	684	1,364	2,491		
Nigeria	487	559	637	1,671		
Southern Africa	1,957	2,708	5,814	11,355		
Botswana	4,440	3,686	25,628	48,646		
Malawi	165	656	744	2,488		
South Africa	3,764	5,409	15,473	29,941		
East Africa	121	564	1,162	1,780		
Congo, DR	99	277	440	715		
Kenya	464	543	2,255	3,286		

Top 5 Crops per Region, Ranked by Hectares Harvested, average 2006-2008

East Africa So		Souther	n Africa	West Africa		
Crop	Hectares	Crop Hectares		Crop	Hectares	
Sorghum	9,893,208	Maize	9,199,950	Millet	16,002,237	
Maize	9,367,883	Cassava	2,015,384	Sorghum	14,288,715	
Millet	3,622,654	Groundnuts	1,073,603	Cowpeas	10,297,759	
Beans	3,512,688	Millet	988,690	Maize	7,747,435	
Cassava	3,474,208	Sorghum	848,518	Rice	5,725,947	

Modeling Framework

Climate Change Model Components

- GCM climate scenarios
 - Multiple GCM using IPCC SRES A1B scenario, downscaled temperature and rainfall
- SPAM
 - Spatial distribution of crops based on crop calendars, soil characteristics, climate of 20 most important crops
- DSSAT crop model
 - Biophysical crop response to temp and precipitation
- IMPACT
 - Global food supply demand model to 2050 with global hydrology and water simulation by river basin

- Simulate plant growth and crop yield by variety day-by-day, in response to
 - Temperature
 - Precipitation
 - Soil characteristics
 - Applied nitrogen
 - $-CO_2$ fertilization
- DSSAT-based simulations at crop-specific locations (using local climate, soil and topographical attributes)
- 10 km by 10 km (East and Southern Africa) and 30 km by 30 km pixels (for West Africa)

Structure of IMPACT Model

Climate Projections

Mean Annual Rainfall, 1950-2000

Change in Mean Annual Rainfall (mm), from 1950-2000 climate to climate of 2050

Model predictions for A1B scenario and 4 AR4 GCMs: CNRM (top left); CSIRO (top right); ECHAM (bottom left; and MIROC (bottom right).

Mean Daily Maximum Temperature for the Warmest Month, 1950-2000

Change in Mean Daily Maximum Temperature for the Warmest Month, 2000 to 2050

Model predictions for A1B scenario and 4 AR4 GCMs: CNRM (top left); CSIRO (top right); ECHAM (bottom left; and MIROC (bottom right).

DSSAT Crop Model Results

Change in Rainfed Maize Yield for East Africa, CNRM

Baseline area lost Yield lost > 25% of baseline Yield lost 5% to 25% of baseline Yield change within 5% of baseline Yield gain 5% to 25% of baseline Yield gain > 25% of baseline New area gained

Change in Rainfed Maize Yield for Southern Africa, CNRM

Baseline area lost Yield lost > 25% of baseline Yield lost 5% to 25% of baseline Yield change within 5% of baseline Yield gain 5% to 25% of baseline Yield gain > 25% of baseline New area gained

Change in Rainfed Maize Yield for West Africa, CNRM

Yield Differences for East Africa Between Climates of 2000 and 2050

Motor	Crop	Yield differences, 2000-2050, %					
water	Crop	CNRM	CSIRO	ECHAM	MIROC		
Rainfed	Groundnuts	-8.3	1.9	2.4	11.6		
Rainfed	Maize	1.5	2.5	-1.7	6.3		
Irrigated	Rice	-19.7	-10.4	-17.3	-18.7		
Rainfed	Rice	2.2	2.8	3.4	6.7		
Rainfed	Sorghum	-15.5	-6.0	-7.4	-0.5		
Rainfed	Soybeans	-21.4	-10.0	-15.9	-10.6		
Irrigated	Wheat	1.7	-12.9	-16.1	-10.1		
Rainfed	Wheat	-6.2	-5.4	-13.8	-7.9		

Yield Differences for Southern Africa Between Climates of 2000 and 2050

\M/ator	Crop	s, 2000-2	050 <i>,</i> %		
vvalei	Стор	CNRM	CSIRO	ECHAM	MIROC
Rainfed	Groundnuts	1.7	3.3	-5.7	2.1
Irrigated	Maize	-5.6	-3.1	-2.8	-4.0
Rainfed	Maize	-1.6	-2.8	-12.9	-4.0
Rainfed	Rice	-0.6	0.1	-0.4	-1.6
Rainfed	Sorghum	-5.8	-4.6	-10.4	-4.8
Rainfed	Soybeans	-15.4	-12.8	-24.7	-7.3
Irrigated	Wheat	-5.1	-5.1	-7.1	-3.8
Rainfed	Wheat	18.5	18.3	11.0	-6.1

Yield Differences for West Africa Between Climates of 2000 and 2050

Motor	Cron	Yield differences, 2000-2050, %					
vvaler	Crop	CNRM	CSIRO	ECHAM	MIROC		
Rainfed	Groundnuts	-5.8	-7.7	-9.2	0.3		
Rainfed	Maize	-2.3	-8.1	-6.0	-4.9		
Irrigated	Rice	-19.9	-12.4	-20.0	-18.2		
Rainfed	Rice	4.4	0.5	0.9	1.0		
Rainfed	Sorghum	-15.9	-9.5	-14.8	-13.0		
Rainfed	Soybeans	-1.5	-8.4	-1.6	-14.2		
Irrigated	Wheat	-37.8	-10.9	-28.5	-14.3		

IMPACT Model Results

IMPACT World Price Changes

	% Change in Price, 2000 to 2050						
Сгор	MIROC		CSIRO		No climate		
	A1B	B1	A1B	B1	change		
Rice	83	87	85	82	54		
Wheat	121	106	99	93	66		
Maize	209	165	156	145	103		
Sweet potatoes & yams	141	96	156	120	60		
Cassava	78	50	64	42	18		
Sugarcane	125	113	108	103	77		
Sorghum	115	104	110	104	82		
Millet	8	8	14	13	8		
Groundnuts	35	33	37	33	13		

IMPACT Results for Maize for East Africa

production (bottom left);

price (bottom right)

Baseline, with clim chg

Optimistic, with clim chg

× Without clim chg

× Without clim chg

IMPACT Results for Maize for Southern Africa

Yield (top left); area (top right); production (bottom left); price (bottom right) Pessimistic, with clim chg Baseline, with clim chg Optimistic, with clim chg

- × Without clim chg
- × Without clim chg
- × Without clim chg

IMPACT Results for Maize for West Africa

Yield (top left); area (top right); production (bottom left); price (bottom right) Pessimistic, with clim chgBaseline, with clim chgOptimistic, with clim chg

- × Without clim chg
- × Without clim chg
- × Without clim chg

IMPACT Yield Changes, East Africa

	% Change in Yield, 2010-2050, IMPACT Model							
	Base	Baseline (Economic-Demographic) Scenario						
Сгор	No Climate Change	CSIRO A1B	MIROC A1B	CSIRO B1	MIROC B1			
Cassava	54.7	46.1	51.4	53.0	47.7			
Groundnuts	12.9	15.8	23.5	16.5	21.6			
Maize	54.0	51.1	73.5	54.7	62.7			
Millet	137.7	139.9	163.8	134.4	147.0			
Rice	120.1	136.6	140.3	136.5	137.4			
Sorghum	77.4	83.0	111.6	75.5	90.7			
Sweet potatoes and yams	161.3	145.0	188.2	162.9	179.2			
Wheat	128.6	119.1	127.2	123.3	118.9			

IMPACT Yield Changes, Southern Africa

	% Cha	nge in Yield	l, 2010-205	0, IMPACT I	Model
	Base	line (Econor	nic-Demog	raphic) Sce	nario
Сгор	No Climate Change	CSIRO A1B	MIROC A1B	CSIRO B1	MIROC B1
Cassava	26.9	27.9	42.0	29.0	39.5
Cotton	155.3	165.3	175.1	155.6	176.5
Groundnuts	47.2	51.6	51.6	50.6	55.4
Maize	46.3	48.6	53.3	44.2	52.5
Millet	243.4	243.1	255.6	247.5	248.5
Potatoes	49.4	53.1	53.4	53.7	52.4
Rice	119.8	109.7	115.2	114.1	102.6
Sorghum	107.0	108.7	109.9	107.8	108.7
Soybeans	61.6	48.9	58.1	47.7	64.3
Sugarcane	60.2	62.3	66.5	63.2	66.5

IMPACT Yield Changes, West Africa

	% Change in Yield, 2010-2050, IMPACT Model Baseline (Economic-Demographic) Scenario						
Сгор	No Climate Change	CSIRO A1B	MIROC A1B	CSIRO B1	MIROC B1		
Cassava	49.5	35.5	37.2	55.5	62.5		
Cotton	90.9	71.4	76.5	89.1	85.2		
Groundnuts	42.0	35.4	43.9	41.1	47.3		
Maize	57.4	53.0	59.8	55.9	58.7		
Millet	147.2	151.9	176.2	147.5	156.2		
Rice	89.3	87.5	89.1	89.1	89.7		
Sorghum	94.1	95.5	106.3	95.2	99.4		
Soybeans	81.5	80.0	77.7	84.6	78.5		
Sweet potatoes and yams	73.5	48.1	49.1	72.3	84.0		

Percent of Malnourished Children Under 5 (%), 2010 and 2050

Number of Malnourished Children Under 5 (millions), 2010 and 2050

Major Policy Conclusions

- Climate change will have negative impacts on food security in Africa
- There is significant variation in severity of impacts across countries and crops (and GCM models)
- In many countries, productivity losses will be experienced in some parts while productivity gains will be experienced in other parts, creating pressure for migration
 - laws in the areas of property rights and in protecting environmentally sensitive areas may need to be examined and improved

- World price increases due to climate change impacts in other regions will be a major determinant of impacts on food security in Africa
- Climate change is a threat multiplier: requires higher investment to reach development goals
- To a significant extent, good agricultural development policy is good adaptation policy
- Greater investment needed in climate-sensitive traits and protection against climate variability and extremes

Key Adaptation Policies and Investments

- Breed crops for biotic and abiotic stresses: agricultural productivity growth is key to future food security under climate change
- Enhance water control
- Implement knowledge, information and risk-sharing approaches to support flexible farmer adaptation
- Support open trading regimes to share climate risk
- Redesign Institutions and policies in agriculture to be more flexible and robust across a range of possible future climates, and diverse outcomes across ecozones

Adaptation through Agricultural Productivity Growth

- Increasing crop productivity: agricultural research, water management, and rural investment
 - Emphasis on crop and livestock breeding (including biotechnology) targeting abiotic and biotic stresses
 - Water harvesting, precision agriculture, minimum tillage, crop protection, integrated soil fertility management, integrated pest management, reduce post harvest losses
 - Rural infrastructure investment to improve access to markets, risk insurance, credit, inputs, mobile phone towers