FAO/INFOODS Advances in Food Composition and Database Management System

U. Ruth Charrondiere, PhD INFOODS Coordinator FAO, Rome

Outline

- INFOODS
- Achievements of FAO/INFOODS
- Food composition database management system (FCDBMS): Compilation Tool
- · Future plans
- Conclusions

18 INFOODS Regional and Subregional Data Centres

INFOODS

- Established in 1984
- Under UNU and FAO. Is also IUNS Task Force
- Coordination since 1999 in FAO
- Objective: to stimulate and coordinate efforts to improve the quality and availability of food analysis data worldwide

INFOODS achievements

- · Standards and guidelines
- Capacity development
- Publications and Declarations
- · Databases and tables
- Laboratory Quality Assurance
- · Biodiversity
- International Food Data Conferences (IFDC)
- Tool development: FCDBMS

Standards and guidelines

- Component identifiers also called tagnames: Since 1989 over 800 tagnames published
- Food nomenclature (Truswell et al., 1991)
- Interchange of food composition data (Klensin 1992; FAO, 2004)
- Guidelines on compilation of food composition data (Rand et al., 1991)
- New energy conversion factors (FAO, 2003)
- INFOODS Food matching guidelines (2011)

Capacity development

- Involved in/ co-organized **over 20 international training courses**
- Organized 10 training courses
- Published *distance learning* tool **Food composition Study Guide** in *English, French and Spanish* together with *12 PowerPoint presentations* summarizing the main points of the modules

Food Composition Study Guide developed by FAO/INFOODS

Objectives

- To reach a wider audience cost-effectively, which otherwise would never be served
- To assist learners to fill their specific knowledge gaps and assess their knowledge acquisition
- To assist learners to perform better when generating, managing or using food composition data
- To assist teachers to prepare lessons and test students

Target Population

 self-learners, FoodComp courses, universities: compilers and users and also analysts; teachers and students

nposition

Publications and **Declarations**

- Food Composition Data: A User's Perspective (Rand et al., 1987)
- Food Composition Data production, management and use (Greenfield & Southgate) In English (2003), Spanish (2006), French (2007) and Korean (2008)
- Journal of Food Composition and Analysis (JFCA) was the official INFOODS journal from 1987 to 2010
- Indigenous Peoples' food systems: the many dimensions of culture, diversity and environment for nutrition and health. (Kuhnlein et al., 2009)
- Over 20 scientific articles
- AFROFOODS declaration (2010)
- Bangkok Declaration (2009) from the 8th International Food Data Conference

Databases and tables

- co-published 8 FCTs: ASEANFOODS (2000), LATINFOODS (2000), Pacific Islands (2004), Lesotho (2006), Brazil (2008), Armenia (2011), Composition of selected foods in West Africa (2010), West African Food Composition Table (in later 2011)
- Food Composition Database on Biodiversity: first edition in 2010 with solely analytical data on 2400 foods, in July 2011 with 3600 foods
- → Future plans: To publish FCDB with analytical data

Laboratory Quality Assurance

- Several proficiency testing (PT) were organized, especially in ASEANFOODS countries. More PTs are planned in SAARCFOODS countries
- Strengthening laboratory capacity in food composition (including accreditation) in the South Pacific in 2002-2004 through FAO

Food Biodiversity

- Two Nutritional Indicators for Biodiversity in English, French and Spanish:
 - 1. on food composition (FAO, 2008) → yearly reporting (in 2010 over 3600 foods reported in FCDB, scientific literate etc.)
 - 2. on food consumption (2010 and 2011) → reporting every second year (in 2010 over 3000 food reported in food consumption surveys on food biodiversity)
- Food Composition Database on Biodiversity: first edition in 2010 with 2400 foods, in July 2011 with 3600 foods

Differences in food composition due to different varieties

	Protein	Fibre	Iron	Vitamin	Beta-Carotenes
	g	g	mg	C	mcg
				mg	
Rice	5.6 -		0.7 -		
	14.6		6.4		
Cassava	0.7-6.4	0.9-1.5	0.9-2.5	25-34	<5-790
Potato	1.4-2.9	1-2.23	0.3-2.7	6.4-36.9	1-7.7
Sweet potato	1.3-2.1	0.7-3.9	0.6-14	2.4-35	100-23100
Taro	1.1-3	2.1-3.8	0.6-3.6	0-15	5-2040
Eggplant		9 - 19		50 - 129	
Mango	0.3 - 1.0	1.3-3.8	0.4-2.8	22-110	20 - 4320
GAC					6180 - 13720
Apricot	0.8-1.4	1.7-2.5	0.3-0.9	3.5-16.5	200-6939 (beta carotene equivalent)
Banana			0.1-1.6	2.5-17.5	<1 - 8500

Impact of food biodiversity on dietary adequacy

Protein content	Protein content (g/100 g)	Cassava intake in Congo g/d/p	Part of the RDI for protein covered by cassava intake, in %
Average	3.24	286	20.6
Minimum	0.95	286	6.0
Maximum	6.42	286	40.8

Banana	β-carotene content in mcg/100 g	Banana intake in Philippines in g/d/p	Vitamin A intake through banana in mcg RE/d/p	RDI for vitamin A covered by banana intake, in %
USDA	26	93	4	0.7
Lacatan	360	93	56	9.3
Utin Iap	8508	93	1318.7	219.8

International Food Data Conferences (IFDC)

- 1st IFDC: Quality and Accessibility of Food-Related Data. Sydney, Australia, 1993
- 2nd IFDC: Food Composition Research The Broader Context. Lahti, Finland, 1995
- 3rd IFDC. Back to Basics. Rome, Italy, 1999
- 4th IFDC. Bratislava, Slovakia, 2001
- 5th IFDC. Washington DC, USA, 2003
- 6th IFDC: Food Composition Data and the Nutrition Dilemma. Pretoria, South Africa, 2005
- 7th IFDC: Food Composition and Biodiversity, São Paulo, Brazil, 2007
- 8th IFDC: Quality food composition data key for health and trade. Bangkok, Thailand, 2009
- 9th IFDC: Food Composition and Sustainable Diets. Norwich, UK, 14-17 September 2011

Tool development: FCDBMS

- FCDBMS is needed to compile a FCDB
- FCDBMS exist:
 - for national/regional programmes
 - commercial products for different uses (e.g. labelling)
 - for certain projects
- · No FCDBMS exists for international use as yet
- BUT especially developing countries do not have the financial means to develop their own FCDBMS software
- → Compilation tool was developed by FAO/INFOODS to fill this gap

Compilation tool - objectives

- to give compilers a product to compile and manage their food composition database according to international standards
- to be simple in use while allowing comprehensive documentation
- to provide a flexible tool so that users can adapt it to their needs
- to be used with Food Composition Study Guide to practice calculation, documentation and compilation

Compilation tool - structure

- 125 nutrients (macro and micronutrients, AA, FA)
- based on INFOODS interchange (2003) elements (for value documentation, method, bibliography, sampling)
- uses INFOODS tagnames (component names)
- uses Greenfield and Southgate (2003) terminology (archival, reference and user database)
- includes nutrient retention factors from McCance and Widdowson's (6th edition), Bognar (2002) and Bergstroem (1994) – can be replaced by any other factors
- 3 recipe calculation systems (recipe, ingredient and mixed method)

Future Plans of INFOODS

- · Prepare new guidelines
 - conversion of nutrient data
 - selecting appropriate food composition sources
 - on analytical methods
 - set of nutrient retention factors per region
- · Publish new regional food composition tables
- Compile databases
 - on food biodiversity with analytical values (continue)
 - any foods with analytical values
 - density
 - on laboratories indicating which nutrients they analyze together with methods and quality assurance
- · Analyze foods worldwide
- · Capacity development
- Improve INFOODS' communication strategy

Conclusions (1)

Compilation Tool

- → meets an immediate need
- is a simple, cheap, flexible and useful tool for global use according to international standards allowing compilation with full documentation
- is intended for compilers without FCDBMS and learners of Study Guide
- BUT use of spreadsheets are more prone to errors as compared to relational databases and users must know Excel
- → Future development: transfer to SQL or Access relational databases and disseminate it through FAO/INFOODS free of charge

Conclusions (2)

Food composition programmes need

- Motivated people trained in food composition
- Standard procedures and tools in line with international guidelines
- · Integrated in international network
- Steering committee between users, stakeholders and compilers
- Government support
- Funding for data generation, compilation and dissemination

Conclusions (3)

- INFOODS has provided standards and tools for each country to compile a FCDB and to get the necessary knowledge on food composition
- INFOODS has proven to be an excellent network to improve the quality and availability of food composition data but communicates poorly
- INFOODS could do even better if more funds would become available
- Other donor support needs to be explored as traditional supporters provided less funds over time (e.g. UNU, FAO, INF)

For more information

INFOODS website

Subscribe to INFOODS mailing list

Thank you for your attention

Future Plans of INFOODS

- · Prepare new guidelines
 - conversion of nutrient data
 - selecting appropriate food composition sources
 - on analytical methods
- set of nutrient retention factors per region
- Publish new regional food composition tables
- Compile databases
 - on food biodiversity with analytical values (continue)
 - any foods with analytical values
 - density
 - on laboratories indicating which nutrients they analyze together with methods and quality assurance
- Analyze foods worldwide
- · Capacity development
- Improve INFOODS' communication strategy

