# Development of methodologies for the first National Forest Inventory in PNG 

$$
20^{\text {th }}-22^{\text {nd }} \text { May } 2014
$$

Hotel Hodava, Port Moresby

## Learning from PSP Data

# Objective: To determine Optimal plot size, number and shape of plots required for the Multipurpose National Forest Inventory (NFI) in PNG 

To achieve this: Need to access and use available country specific data/information

## Use of existing PSP data set

## PSP Database

1. Total of 135 plots
2. 8 in Unlogged forest
3. 127 in Logged over forest
4. Distributed within 3 major forest types

Lowland forest on plains and fans
Lowland forest on uplands
Lower Montane Forest

## Use of Country specific data



## Use of existing country specific data



- Numerical example of calculating number of plots:

$$
N=\left(C^{*} t / e\right) \wedge 2
$$

- Where $N=$ \# of units required;
- $\mathrm{C}=$ coefficient of variation - a normalised measure of dispersion of a probability distribution. Defined as the ratio of the standard deviation to the mean;
- $e=$ required precision; $t=$ student's $t$ at the nominated probability level and the appropriate \# of degrees of freedom.


Number of PSP plots in different forest type and disturbance

|  |  | Forest type |  | Disturbance |  |
| :--- | :--- | :--- | :--- | :--- | ---: |
| PSP plot | Lowland forest | 127 | Logged | 119 |  |
|  |  |  | Primary | 8 |  |
|  |  | Montane forest <br> (>1,000m asl) | 8 | Logged | 6 |
|  |  | Primary |  |  |  |

Number of plots for analysis in different plot size

|  |  | $100 \times 100 \mathrm{~m}$ | $40 \times 100 \mathrm{~m}$ | $20 \times 100 \mathrm{~m}$ | $40 \times 40 \mathrm{~m}$ | $20 \times 40 \mathrm{~m}$ | $20 \times 20 \mathrm{~m}$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  | 1 ha | 0.4 ha | 0.2 ha | 0.16 ha | 0.08 ha | 0.04 ha |
| Lowland forest | Logged | 119 | 238 | 595 | 476 | 1,428 | 2,975 |
|  | Primary | 8 | 16 | 40 | 32 | 96 | 200 |
| Montane <br> forest | Logged | 6 | 12 | 30 | 24 | 72 | 150 |
|  | Primary | 2 | 4 | 10 | 8 | 24 | 50 |

Required number of plots for logged over lowland forests

|  | 100x100 m (1 ha) |  | 20x40 m (0.08 ha) |  | 20x20 m (0.04 ha) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of samples | 7 |  |  | 38 | 1,9 |  |
| Allometric model | Brown 1 | Brown 2 | Brown 1 | Brown 2 | Brown 1 | Brown 2 |
| Mean biomass(kg) | 178,254 | 191,660 | 13,828 | 14,840 | 7,020 | 7,561 |
| SD | 47,049 | 45,239 | 8,294 | 7,608 | 5,483 | 5,067 |
| SE | 5,545 | 5,331 | 358 | 328 | 123 | 114 |
| CV | 0.26 | 0.24 | 0.60 | 0.51 | 0.78 | 0.67 |
| t | 1.994 | 1.994 | 1.960 | 1.960 | 1.960 | 1.960 |
| 95\%CI 5\%E | 111 | 89 | 553 | 404 | 938 | 690 |
| 95\%CI 10\%E | 28 | 22 | 138 | 101 | 234 | 173 |
| 95\%CI 20\%E | 7 | 6 | 35 | 25 | 59 | 43 |



Tentative conclusions

- General preference of circular plot were observed at previous workshop.
- Circular plot is not appropriate where larger plot size is required.
- PSP data show that smaller size plot are more cost efficient.
- Five circular plots ( 0.1 ha ) per cluster maybe the way to go.
- 400-500 plots are required if we want $95 \% \mathrm{Cl} \& 5 \%$ precision with 0.1 ha circular plot.

Ended...

Thank you...

