# Climate Smart Agricultural Practices for Food Security in the Mountain Areas of Eastern Himalayas

V. P. Singh\*, D. Nayak\*, L. Nabachandra Singh\*\*
and Gyambo Tshering\*\*\*

\* ICRAF, India, \*\*CAU, India,\*\*\* RDC, Bajo,
Wangdue, Bhutan

#### **Eastern Himalayas: Case Studies**



#### Some features

- Rainfed upland/hill (high slope land) agro-ecosystem
- Area: 90 % hills & 10 % valley
- Climate: Mild tropical to temperate
- Rainy season : May to October
- Rainfall: 1500 mm (Annual average)
- Temperature : 0.5 to 35°C
- Humidity: 40 to 100 %
- Soil : Clay to clay loam(valley), Red lateritic soil (hills)
- pH: 4.5 to 6.5
- Severe soil erosion



#### Sand deposit over highly fertile lowlands



### Some major farming systems in Mountain Areas of Eastern Himalayas

- Jhum cultivation system (clearingburning- cultivating for 6-7 yearsabandoning for 4-5 years and coming back there again)
- Maize, Potato, Pastoral, Tree crops, and Rice based farming



### Issues related to the target environment/ecosystem

- \* No income during initial one and half year
- \* Degradation of forest/vegetation in *jhum* system due to shortening of *jhum* cycle
- \* In-situ depletion of soil productivity due to surface soil erosion, and at ex-situ due to sand deposits
- \* Lack of moisture during dry season
- \* Flooding due to excessive run off during rains
- \* Unavailability of appropriate technology for sustainable productivity

#### Manipur, India and Salamjee, Bhutan





# Discussion and diagnosis camps at pilot villages







Participating farmers at Kairembikhok village

#### Benefits of working in group

- Solution to labor shortage
- Sharing of indigenous knowledge
- Completing work within shorter time period
- Sharing of harder part of the work by stronger and weaker populace
- Strengthened social relations and improved cooperation and cohesion
- Equity for the weaker sections of society to be taken on-board
- Capacity to extend their efforts through coordinated effort and united decision making process

# The group decided that the interventions:

- Cover entire landscape
- Provide early income, increase with time
- Be regular source of income
- Focus on crops farmers are familiar with
- Build capacity on specific aspects

### Technology adoption to be accelerated for the target site

- Agro-horti-silviculture farming
- Intercropping between horticultural and silvicultural plants with adapted varieties of suitable crop species as filler crop
- Agronomic measures for soil and water conservation, such as the contour planting, mixed cropping, etc.

#### Agro-horti-silvicultural farming system adopted

- \*Timber crops -1. Teak (*Tectonia grandis*) 2. Champa (Michelia champaka) 3. Wang (Gmelina arborea) \*Fruit crops 1. Citrus sp.(Citrus raticulata, C. aurantifolia, C. macrotera) 2. Pineapple (Ananas comosus) 3. Jackfruit (Autocarpus heterophyllus) 4. Passion fruit (Passiflora edulis Sims.) 1. Arhar (Cajanus cajan) \* Field crops 2. Ricebean (Vigna umbellata) 3. Groundnut (*Arachis hypogae*)
  - 4. Soybean (*Glycine max*)
  - 5. Rice and Wheat

#### Start of income

- Field crops, including tubers 4-6 months
- Pineapple
- Passion fruit
- Grafted citrus
- Jackfruit
- Timber trees

- 18 months onwards
- 24 months onwards
- 24 months onwards
- 5 years onwards
- After 10 years

#### Cultivation system of agro-hortisilviculture

- 1. Timber crops as pure crops at the upper most crest (upper slopes)
- 2. Pineapple, citrus, Jackfruit and some timber planted on mid slopes as pure as well as inter-crop with pulses/oilseeds and other crops
- 3. Bottom lands are grown to rice and upland crops

### New crops introduced by farmers themselves

- 1. Passion fruit in eroded lands.
- 2. Ginger, turmeric and colocassia as inter-crops in between pineapple.
- 3. Mustard and peas in bottom lands after rice.

#### **❖** Forest resource mapping, and citrus nursery raising



#### \* Citrus Patch and T-budding, and backyard kitchen gardening



#### **❖** Nursery raisin and tree plantation and management



#### Performance of timber crops

| Tree species                            | Planted          | %Survival      |
|-----------------------------------------|------------------|----------------|
| Teak ( <i>Tectonia grandis</i> )        | 1,000<br>(1,980) | 67.6<br>(60.2) |
| Champa (Michelia champaka               |                  | 68.9<br>(58.2) |
| Wang ( <i>Gmelina arboria</i> )         | 1,000<br>(765)   | 63.4<br>(65.4) |
| Total                                   | 3,000<br>(3,290) | 66.6<br>(61.3) |
| Figures in parenthesis are for previous |                  |                |

#### Performance of fruit crops

| Fruit species | Planted    | % Survival |  |
|---------------|------------|------------|--|
|               |            |            |  |
| Citrus sp.    | 3,690      | 68.5       |  |
|               | (3,250)    | (57.7)     |  |
| Pineapple     | 1,20,000   | 91.9       |  |
|               | (1,39,000) | (100)      |  |
| Jackfruit     | 300        | 81.1       |  |
|               | (447)      | (48.8)     |  |
| Passion fruit | 570        | 74         |  |

Figures in parenthesis are for the year before

# Performance of intercrops with pineapple

| Intercrop               | Productivity(kg/ha) |              |  |
|-------------------------|---------------------|--------------|--|
|                         | Current yr.         | previous yr. |  |
| Arhar(Cajanus cajan)    | 1,450               | 665          |  |
| Ricebean(Vigna umbella  | te) 1,635           | _            |  |
| Groundnut (Arachis hypo | 678                 |              |  |
| Soybean(Glycine max)    | 683                 | _            |  |

# Pineapple intercropped with ground nuts and pigeon pea





### Pineapple – ginger and Pineapple – soybean intercropping in old tree systems, Manipur







Kairenbikhok Awang hill in Saram hill range, Thoubal Dist. (Manipur), then



Kairenbikhok Awang hill in Saram hill range, Thoubal Dist. (Manipur), Now



Agro-horti-silviculture system, now





#### Salamjee, Bhutan at present





Locally fabricated equipment for measuring soil erosion

#### Soil erosion loss under different land uses

| Land use           | Soil erosion loss |               |  |
|--------------------|-------------------|---------------|--|
|                    | Mild slope        | Steep slope   |  |
|                    | up to 30 %        | > 30 %        |  |
| Jhum (Traditional) | 140 t/ha/year     | 170 t/ha/year |  |
| Agroforestry       | 15 t/ha/year      | 27 t/ha/year  |  |
| (Adopted)          |                   |               |  |

#### Key results so far

- 1. Area covered by the adopted technologies is increasing
- 2. Productivity of introduced crops is increasing
- 3. Farm level biodiversity is increasing
- 4. Cropping intensity is increasing
- 5. Soil losses are decreasing
- 6. System is providing regular income; seasonal, yearly, after two years and so on
- 7. Farm income is increasing with the progress of time
- 8. Employment opportunities are increasing

The introduced agro-horti-silvi culture system as chosen and modified by the farmers is increasingly contributing to the livelihoods of these farmers

## Problems faced in the implementation of the project

- 1. Lack of seedlings and quality planting material of desired species.
- 2. Farmer's new interventions making the comparison difficult.

#### Lessons learnt

- Land degradation issues can better addressed through community-based approach
- Manageable group size is between 20-25 HH
- A start up fund support is a must
- Capacity building should be the integral component
- Committed leadership required (to start and to take it further)
- HH be in dire need for implementing SLM

#### **Lessons learnt**

- Farmers wanted a high level of biodiversity at the farm level and were interested in mixed planting rather than pure crop block planting (minimizing risk from failure
- Joint planning with multi-stakeholders made the implementation easy
- Providing support for weakest input (seedlings)
  was essential for accelerating the technology
  adoption
- The participation of entire village community was a key to the success of the project, e.g. protecting from stray cattle and stealing, etc.

