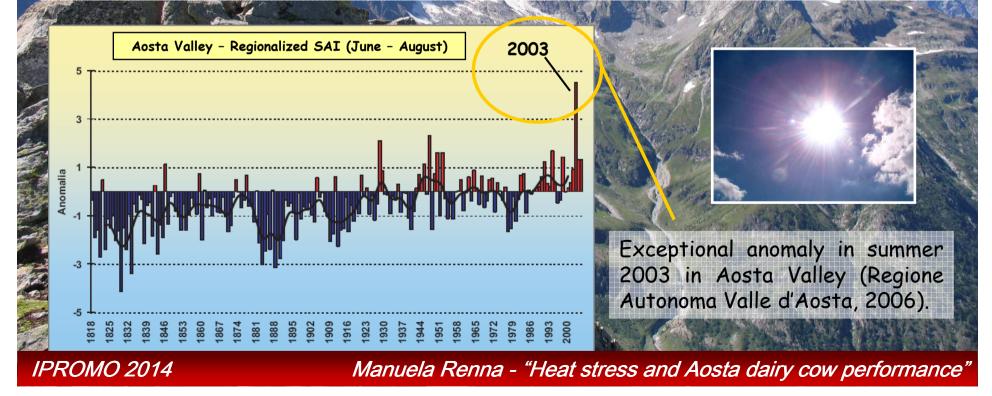
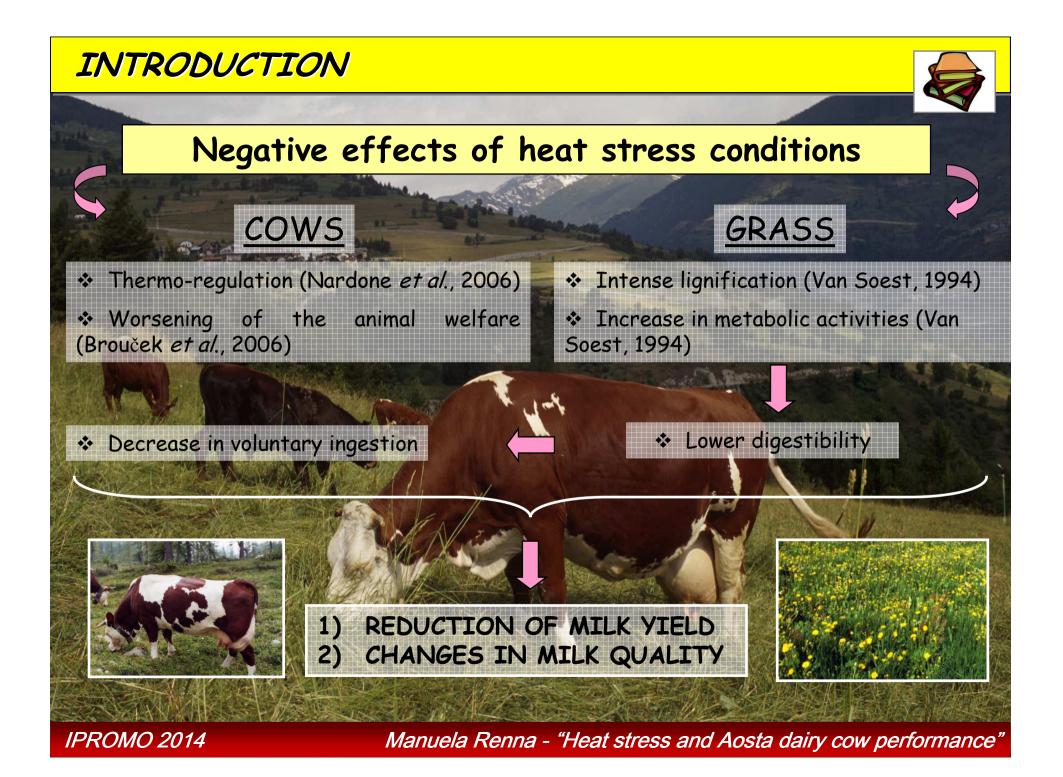
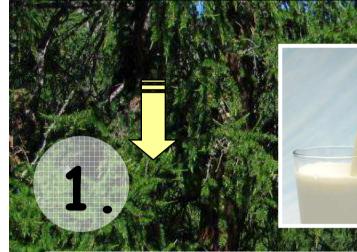
Effect of exposure to heat stress conditions on milk yield and quality of Aosta dairy cows grazing on Alpine pasture


IPROMO 2014


INTRODUCTION

Temperatures increase in the Alpine regions


- Since the end of the 19th century, marked temperatures raise in the Alps (Böhm *et al.*, 2001; Brunetti *et al.*, 2006)
- +1°C in NW Italy in the years 1952-2002 (Hardenberg et al., 2007)
- years 2002-2005: atypical climatic events (Regione Autonoma Valle d'Aosta, 2006)
- year 2003: the hottest summer in the last half millenium (Luterbacher et al., 2004)

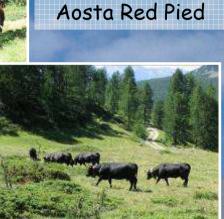
AIMS OF THE STUDY

Lack of knowledge on the effects of heat stress conditions on milk yield and quality while grazing

- Examine how much, at pasture, heat stress can influence:
- a. milk yield
- b. milk fat and protein contents
- c. milk somatic cell count
- d. milk fatty acid composition

Manuela Renna - "Heat stress and Aosta dairy cow performance"

Deepen if differences among cattle breeds exist in response to variation of the climatic settings


MATERIALS AND METHODS

Animals, feed and management

- Two-years research (2003 and 2004)
- 28 dairy cows (14 Aosta Red Pied and 14 Aosta Black Pied-Chestnut)
- Three-months grazing season
- Ad libitum fresh grass + concentrate (1kg)

Aosta Black Pied – Chestnut (vulnerable breed)

IPROMO 2014

MATERIALS AND METHODS

Meteorological data

Data recorded at one-hour interval at the nearest meteorological station:

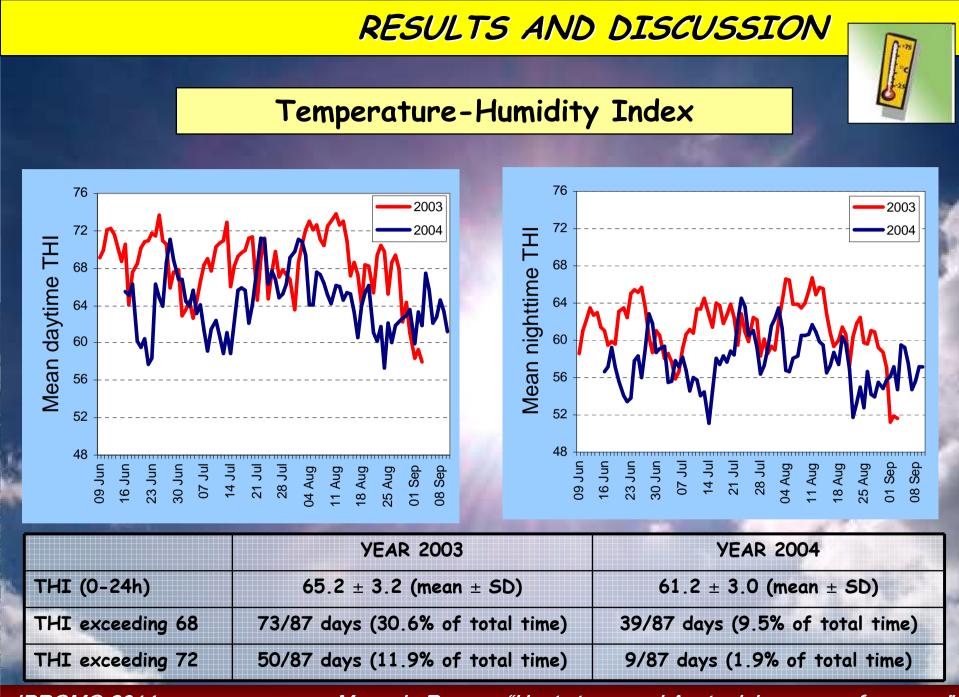
- 1. air temperature
- 2. relative humidity

THI was calculated (Ravagnolo et al., 2000)

Sample collection and analysis

- Monthly milk samples collection
- Grass samples collected twice a week

Chemical analysis of milk: 1. fat and protein (infrared spectroscopy)


- 2. SCC (automatic cell counter)
- 3. fatty acid composition (GC)

Chemical analysis of fresh grass: 1. DM, CP, EE, ash, NDF (AOAC, 2000) 2. fatty acid composition (GC)

Statistical analysis

- ABP and AC: single statistic group
- Data submitted to Analysis of Variance (GLM procedure of SPSS)
- Significance declared at P<0.05

IPROMO 2014

IPROMO 2014

RESULTS AND DISCUSSION

	YEAR 2003	YEAR 2004	Р
Dry Matter (%)	n=22 39.10 ± 11.41	n=23 34.48 ± 2.06	ns
Crude Protein (%DM)	10.73 ± 4.68	14.65 ± 4.12	**
NDF (%DM)	54.71 ± 7.98	49.17 ± 7.03	*
C16:0 (%TFA)	27.66 ± 4.67	19.6 <mark>4</mark> ± 2.08	***
C18:2 n6 (%TFA)	18.78 ± 5.25	21.16 ± 2.98	ns
C18:3 n3 (%TFA)	30.71 ± 8.49	42.30 ± 4.95	***
Total SFA (%TFA)	39.08 ± 6.96	28.79 ± 3.17	***
Total MUFA (%TFA)	11.43 ± 3.41	7.75 ± 1.50	***
Total PUFA (%TFA)	49.49 ± 8.54	63.46 ± 3.45	***

¹Values are expressed as mean ± standard deviation of the mean. TFA = total fatty acids; SFA = saturated fatty acids; MUFA = monounsaturated fatty acids; PUFA = polyunsaturated fatty acids. Significance: ***P<0.001; ** P<0.01; * P<0.05; ns: not significant.

RESULTS AND DISCUSSION

Milk yield, milk components and somatic cell count¹

	AOSTA RED PIED			AOSTA BLACK PIED - CHESTNUT		
	Year 2003 n=42	Year 2004 n=42	- P	Year 2003 n=42	Year 2004 n=42	P
Milk yield (kg*h ⁻¹ *d ⁻¹)	10.29 ± 4.39 ^A	11.14 ± 3.64 ^A	**	7.83 ± 3.06 ^B	7.28 ± 2.15 ^B	ns
DMI ² (kg*h ⁻¹ *d ⁻¹)	13.73 ± 1.23 ^A	14.22 ± 1.28 ^A	**	12.95 ± 0.85 ^B	12.79 ± 0.80 ^B	ns
Fat yield (kg*h ⁻¹ *d ⁻¹)	0.38 ± 0.14 ^A	0.42 ± 0.14 ^	**	0.30 ± 0.12 ^B	0.27 ± 0.10^{B}	ns
Protein yield (kg*h-1*d)	0.33 ± 0.13 ^A	0.38 ± 0.11 ^A	**	0.27 ± 0.09 ^B	0.26 ± 0.07 ^B	ns
SCC (no. 1000 ml ⁻¹)	215.06 ± 80.76	190.07 ± 104.79	ns	179.51 ± 76.75	263.27 ± 104.40	nş

¹Values are expressed as mean ± standard deviation of the mean.

²Estimated according to NRC (2001).

DMI = dry matter intake; SCC = somatic cell count.

Asterisks within rows indicate statistically significant difference between years (** P<0.01; ns: not significant). Different letters within rows indicate, in the same year, statistically significant difference between breeds (A,B: P<0.001).

IPROMO 2014

	RE	SULTS A	ND	DISCUS.	SION	
M	ilk fatty ac	id composit	ion	- %TFA	- (1) ¹	
	AOSTA RED PIED			AOSTA BLACK PIED - CHESTNUT		
Train and	Year 2003 n=42	Year 2004 n=42	Ρ	Year 2003 n=42	Year 2004 n=42	P
SMCFA	43.25 ± 3.29	47.24 ± 4.04 ª	***	41.84 ± 3.71	45.00 ± 3.48 ^b	**
LCFA	56.76 ± 3.29	52.77 ± 4.03 ^b	***	58.17 ± 3.72	55.00 ± 3.48 °	**
Total SFA	55.08 ± 2.85	59.83 ± 3.23 °	***	53.68 ± 3.90	57.46 ± 3.64 ^b	***
Total MUFA	39.29 ± 2.94	35.16 ± 2.95 b	***	40.30 ± 3.79	37.13 ± 3.13 ª	***
Total PUFA	5.63 ± 0.73 ^b	5.01 ± 0.70 ^β	***	6.03 ± 0.80 ª	5.42 ± 0.84 °	**
HSFA	37.99 ± 3.05 ª	41.92 ± 3.85 ª	***	36.50 ± 3.22 ^β	40.03 ± 3.19 ^β	***
SFA/UFA	1.23 ± 0.14	1.51 ± 0.20 °	***	1.17 ± 0.18	1.37 ± 0.20 b	***

¹Values are expressed as mean ± standard deviation of the mean.

SMCFA = short and medium chain fatty acids (C10-C16:1); LCFA = long chain fatty acids (C17-C18:3); HSFA = hypercholesterolemic saturated fatty acids (sum of C12:0+C14:0+C16:0); SFA = saturated fatty acids; MUFA = monounsaturated fatty acids; PUFA = polyunsaturated fatty acids. Asterisks within rows indicate statistically significant difference between years (***P<0.001; ** P<0.01; ** P<0.05; ns: not significant). Different letters within rows indicate, in the same year, statistically significant difference between breeds (A,B: P<0.001; a,B: P<0.01; a,B: P<0.05).

CONCLUSIONS

2

Milk production, fat and protein contents

Under heat stress conditions significative reduction in milk yield, fat and protein yields, but only in Aosta Red Pied cows

Milk fatty acid composition

Significant improvement both in Aosta Red Pied and Aosta Black Pied-Chestnut: 1. decrease in hypercholesterolaemic fatty acids

increase in mono- and polyunsaturated fatty acids, positively correlated with human health

Differences between cattle breeds

Aosta Black Pied-Chestnut cows demonstrated higher degree of heat tolerance and showed a better milk fatty acid composition than Aosta Red Pied ones

Under unfavourable climatic conditions genetic differences among breeds are less pronounced

IPROMO 2014

