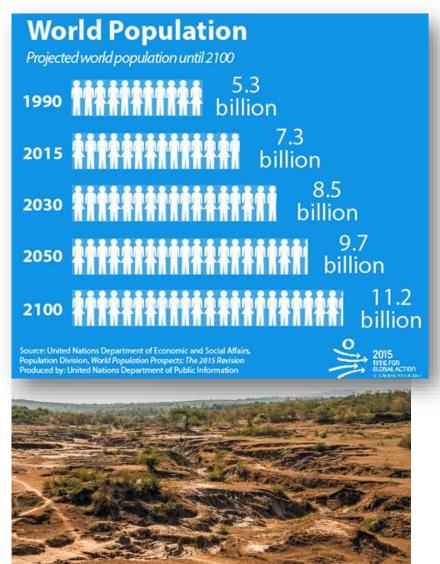
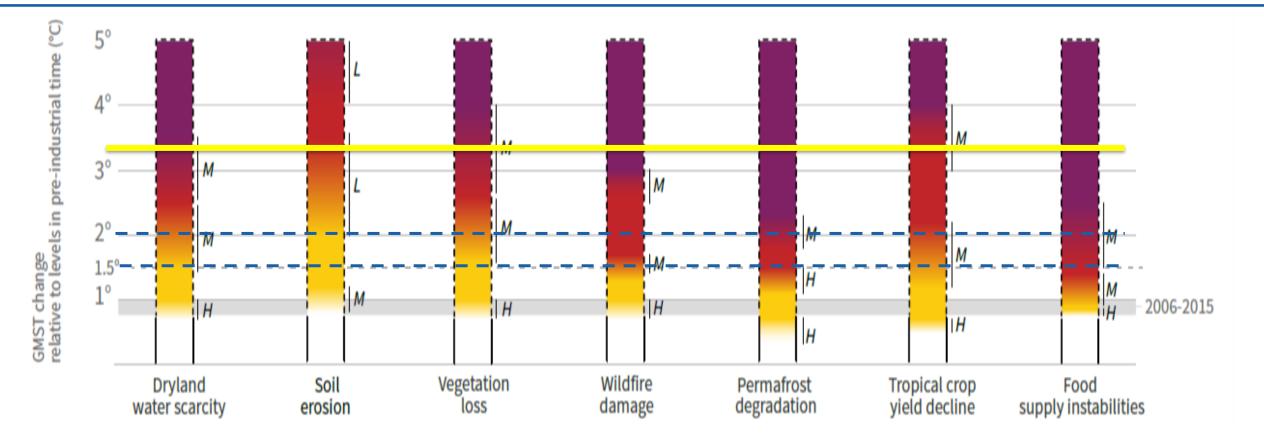
Climate Change Policy and Governance

...with a focus on land sector

Lucia Perugini lucia.perugini@cmcc.it **iPROMO** 2/10/2019


SCIENTIFIC EVIDENCE OF SEVERE IMPACTS ON MOUNTAIN AREAS


CONTEXT

- Unprecedented overexploitation of natural resources in human history
- 70% of the global ice-free land surface is affected by human use.
- Croplands cover 12–14%
- Since 1961:
 - Per capita consumption of vegetable oils and meat x2
 - Use of inorganic nitrogen fertiliser x9,
 - Water for irrigation x2
 - Human use, at varying intensities, affects about 60– 85% of forests and 70–90% of other natural ecosystems (e.g., savannahs, natural grasslands)
 - Land use caused global biodiversity to decrease by around 11–14%

Risks to humans and ecosystems from changes in land-based processes

Purple very high probability of severe impacts/risks persiistence of climate hazards limited ability to adapt

Red: significant and widespread impacts/risks

Yellow: Impacts&/risks are detectable and attributable to cc

White: impacts/risks are undetectable

Observed regional hazards in the high mountain

Glacier, snow and permafrost decline has altered the frequency, magnitude and location of most related natural hazards

Disaster risks to human settlements and livelihood options are **expected to increase**

• Changing water availability and water quality affects households, agriculture, energy systems, and people both in the region and beyond

Photo: Yungdrung Tsewang

670 Million People live in High Mountain Regions

- Lower-elevation vegetation and wildlife have changed abundance, extended upslope;
- Changes in cryosphere also alters the land and freshwater habitats of mountain vegetation and wildlife
- Changes have contributed to declines
 Tourism in many regions and in agricultural yields including the Hindu Kush Himalaya and the tropical Andes

Sources of GHG concentrations in the atmosphere

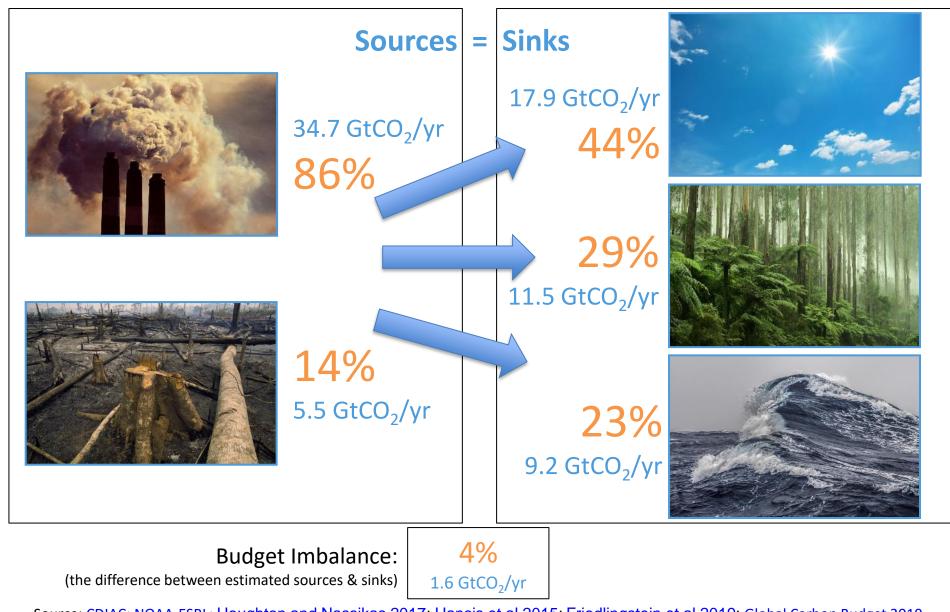
Global greenhouse gas emissions, per type of gas and source, including LULUCF gigatonnes CO, eq 60 Land Use. Land-Use Change 6.4% 24% 21% 14% and Forestry (LULUCF) Building 5% Sector Agriculture, Transport Industry Forest and peat fires forests and 50 $(N_0 O and CH_1)$ other land uses Energy Sector Land-use change emissions (CO₂) 40 ····· Total emissions, excluding 2010 GHG emissions *********** LULUCF WGIII SPM Atmospheric CO₂ concentration Our World in Data F-gases – Total Global average long-term atmospheric concentration of carbon dioxide (CO₂), measured in parts per million (ppm). 30 Long-term trends in CO₂ concentrations can be measured at high-resolution using preserved air samples from ice N₂O – Energy indirect/waste cores. N₂O – Industrial processes 400 ppm World N₂O – Agriculture 20 CH₄ – Waste and other 350 ppm CH₄ – Agriculture 10 300 ppm CH₄ – Energy CO₂ – Other (non-energy) 250 ppm CO₂ – International 0 transport 200 ppi 1990 1995 2000 2005 2010 2015 2020 CO, – Energy 150 ppm Source: EDGAR v4.3.2 (EC-JRC/PBL 2017); Houghton and Nassikas (2017); GFED 4.1s (2017) 100 ppm

50 ppm

Source: EPICA Dome C CO₂ record (2015) & NOAA (2018)

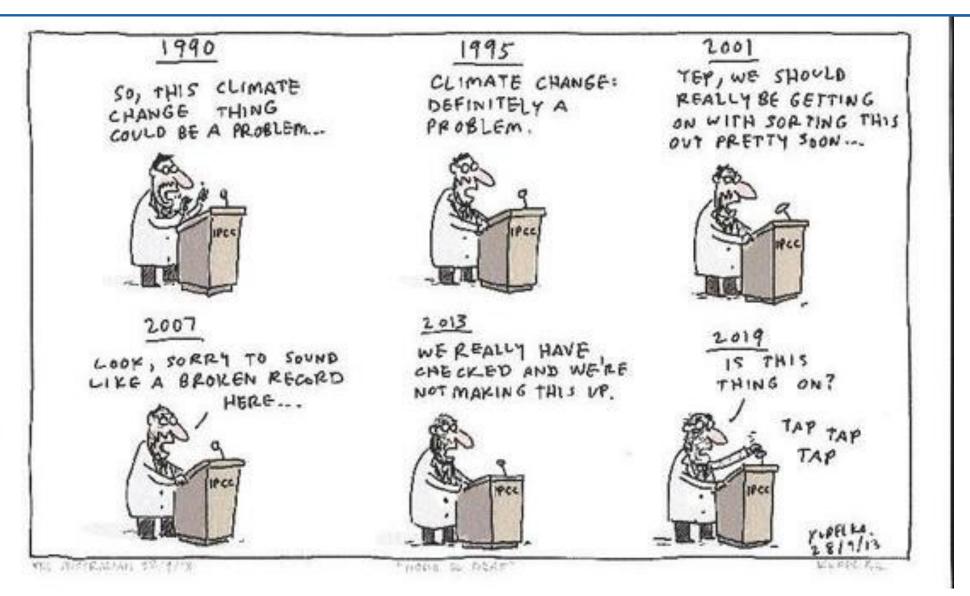
600,000 BCE

400,000 BCE


200,000 BCE

Energy production remains the primary driver of GHG emissions

2018


GLOBAL CARBON PROJECT

Fate of anthropogenic CO₂ emissions (2009–2018)

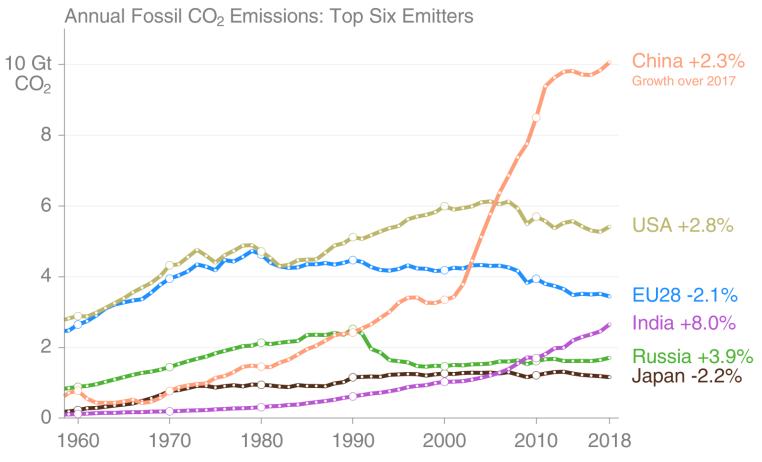
Source: CDIAC; NOAA-ESRL; Houghton and Nassikas 2017; Hansis et al 2015; Friedlingstein et al 2019; Global Carbon Budget 2019

From science to action

MILESTONE	YEAR	IMPORTANCE
First World Climate Conference	1979	Lays the foundation for some international climate programmes including the Intergovernmental Panel on Climate Change (IPCC)
IPCC's First assessment report	1990	Provides the first estimates of confidence about the extent of global climate change and the human influences behind it
UN Framework Convention on Climate Change (UNFCCC) signed	1992	A major international climate change treaty representing worldwide agreement that action is needed against climate change
UNFCCC enters into force	1994	Countries signing the UNFCCC are now bound by its rules.
First Conference of the Parties (COP) of the UNFCCC	1995	The first of the (generally annual) international negotiations on climate change stipulated by the UNFCCC, leading to the Kyoto Protocol
Kyoto Protocol signed	1997	Thirty-seven developed nations and economies in transition commit to reducing their emissions by at least five per cen below 1990 levels from 2008-2012
Kyoto Protocol enters into force	2005	Countries with greenhouse gas reduction targets are now committed to them
IPCC's Fifth assessment report	2013- 2014	Follows reports in 1995, 2001 and 2007. Makes strong statements about the high likelihood of human influence on the global climate and the consequent impacts
Twenty-first UNFCCC COP in Paris	2015	The meeting is aiming for an agreement to succeed the Kyoto Protocol

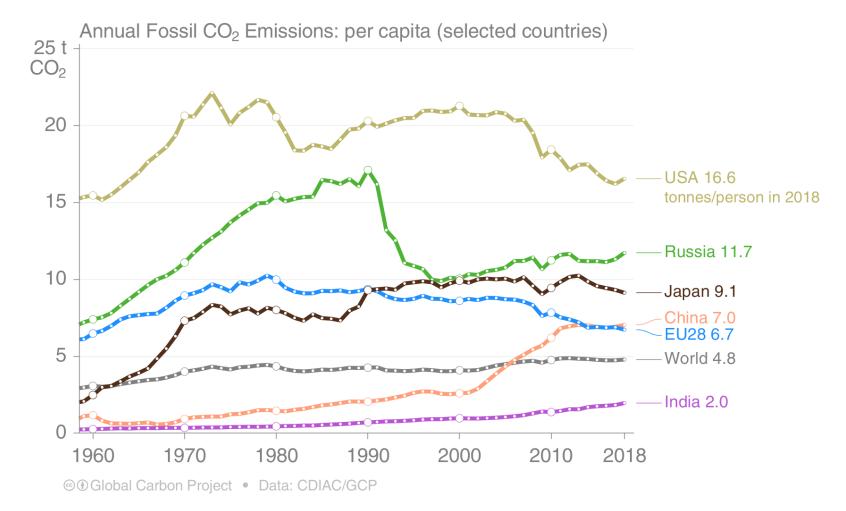
United Nations Climate Change Conference COP18/CMP8 Doha, Gatar

International context: Kyoto Protocol 2 - 2013-20


- Lentght **2013-2020** (8 years)
- Not signing: Canada, Russia, NZ, Japan and USA
- Target review in 2014 (reach 25-40% reduction)
- Entry into force: ratification of 144 Parties on 194 (44 to date excluding EU)

Parties on 194 (44 to date excluding	Country	Commitment KP-CP2 pledged by countries (2013-2020) compared to base year
	Australia	-0.5%
	Belarus ²	-12%
	Croatia ³	-20%
	EU-274	-20%
	Iceland ³	-20%
	Kazakhstan ²	-5%
	Liechtenstein	-16%
	Monaco	-22%
Partias: Appay 1.8 II sountries with hinding targets	Norway	-16%
Parties; Annex I & II countries with binding targets Parties; Developing countries without binding targets	Switzerland	-15.8%
States not Party to the Protocol	Ukraine	-24%
Signatory country with no intention to ratify the treaty, with no binding targets Countries that have denounced the Protocol, with no binding targets	TOTAL	-18%
Parties with no binding targets in the second period, which previously had targets	TOTAL excl. EIT ⁵	-18%

The top six emitters in 2018 covered 67% of global emissions China 28%, United States 15%, EU28 9%, India 7%, Russia 5%, and Japan 3%

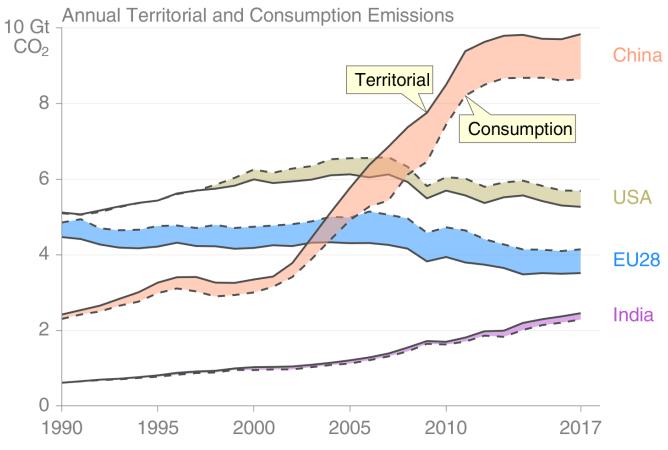


☺ Iclobal Carbon Project • Data: CDIAC/GCP

Bunker fuels, used for international transport, are 3.4% of global emissions. Source: <u>CDIAC</u>; <u>Peters et al 2019</u>; <u>Friedlingstein et al 2019</u>; <u>Global Carbon Budget 2019</u>

Countries have a broad range of per capita emissions reflecting their national circumstances

Source: CDIAC; Friedlingstein et al 2019; Global Carbon Budget 2019


Allocating fossil CO₂ emissions to consumption provides an alternative perspective. USA and EU28 are net importers of embodied emissions, China and India are net exporters.

Consumption-based emissions (carbon footprint)

CARBON

PROJECT

GLOBAL

© I Global Carbon Project • Data: CDIAC/GCP/Peters et al 2011

Consumption-based emissions are calculated by adjusting the standard production-based emissions to account for international trade Source: <u>Peters et al 2011</u>; <u>Friedlingstein et al 2019</u>; <u>Global Carbon Project 2019</u>

Whose fault is it?

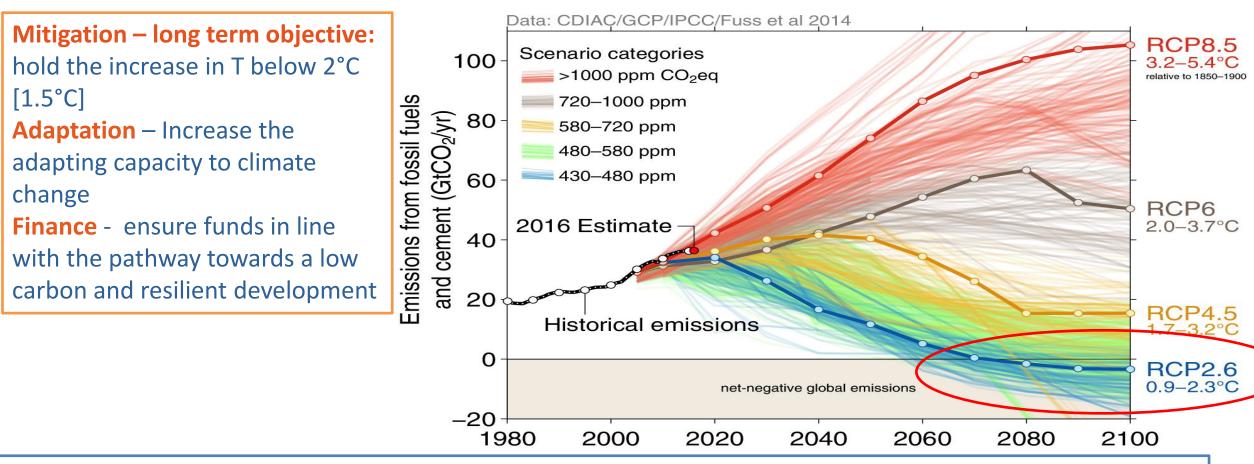
UNFCCC principle: "Common but differentiated responsibilities and respective capabilities, in the light of different national circumstances"

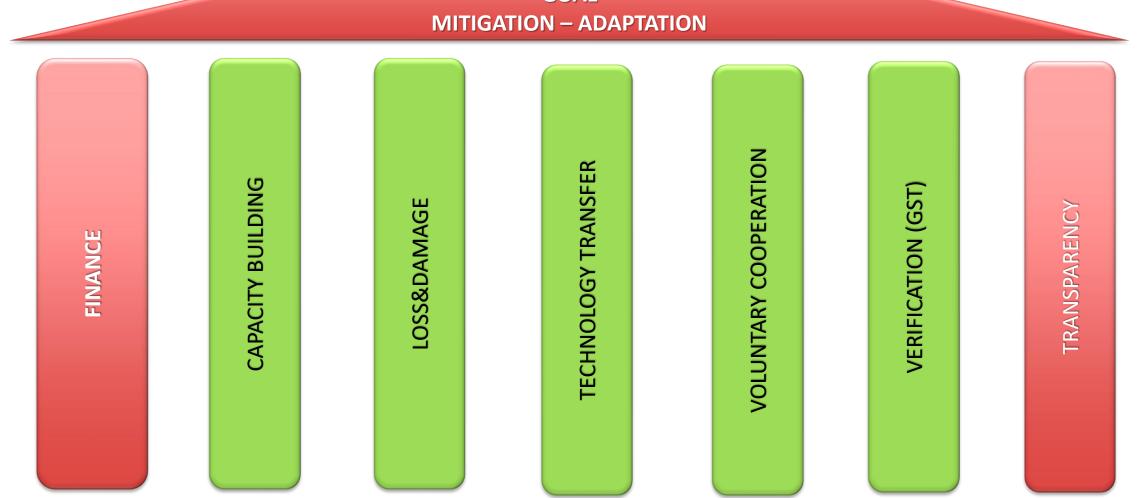
The G20 countries are responsible for around 80% of global GHG emissions and 85% of the world GDP

PARIS AGREEMENT

To this date, 189 Parties have ratified of 197 Parties to the Convention

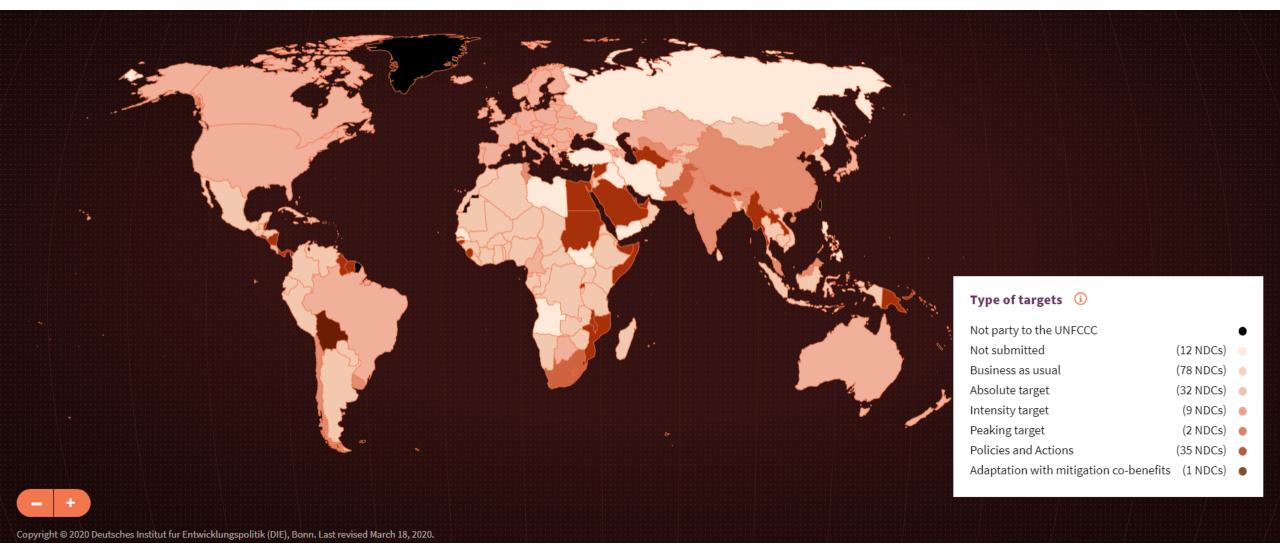
The Paris Agreement entered into force on 4 November 2016



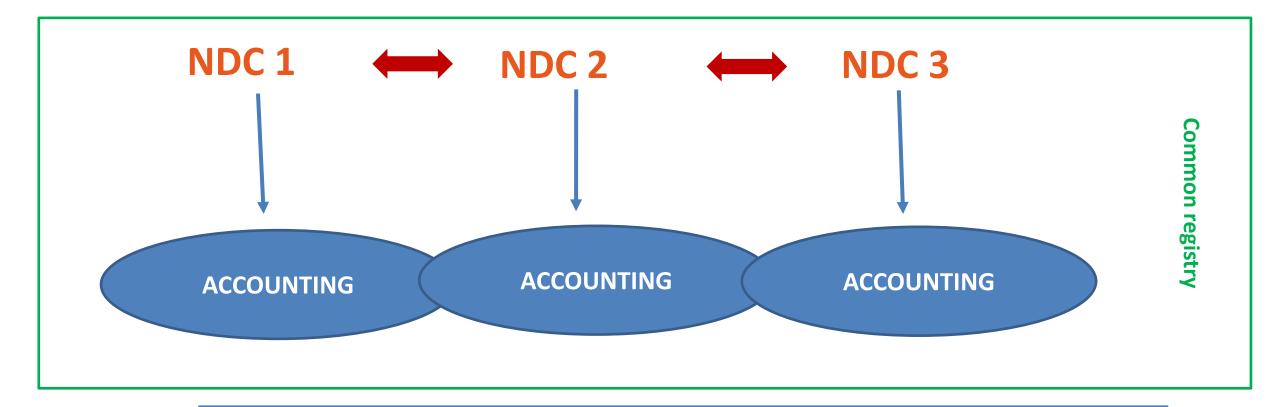

PARIS AGREEMENT

«BOTTOM UP» agreement based on National Determined Contribution (NDC) with a long term ambition

The stabilization of the temperature increase below 2° C is considered the level that allows the adaptation to climate change to human being at a reasonable level of social, economic and environmental costs.


PARIS201

FULL PARTICIPATION OF ALL PARTIES WITH AMBITIOUS TARGETS


GOAL

IN COOPERATION WITH THE UNFCCC SECRETARIAT

Guidance for robust accounting - ensure avoidance of double counting

PARIS2015 UN CLIMATE CHANGE CONFERENCE COP21.CMP11 The modalities, procedures and guidelines of the Paris' transparency framework are defined in the Katowice Rulebook

All Parties provide, on a biennial basis and starting from 2024, in their Biennial Transparency Report (BTR) (dec. 18/CMA.1):

- The national inventory report of anthropogenic emissions and removals, consisting of a
 national inventory document (including a description of the methods used) and common reporting
 tables (noting that developed countries the still have to provide flux estimates annually, i.e. at the
 same frequency and details as done in the past);
- The information to track progress of targets as defined in the NDCs;
- The information on support provided to developing countries in terms of financial support, capacity building and technology transfer (by the developed countries only), or information on support needed and received (by the developing countries only);
- The adaptation actions (if a country wishes).

Article 13 of the Paris Agreement: transparency of action and support

	All Parties (shall)	Developed country Parties (shall) and other Parties that provided support (should)	
• Reporting	 National greenhouse gas (GHG) inventory report (Article 13.7(a)) Progress made in implementing and achieving nationally determined contribution (NDC) (Article 13.7(b)) 	Financial, technology transfer and capacity- building support provided to developing country Parties under Article 9, 10 and 11 (Article 13.9)	
	All Parties (should, as appropriate)	Developing country Parties (should)	
	 Climate change impacts and adaptation (Article 13.8) 	Financial, technology transfer and capacity- building support needed and received under Articles 9, 10 and 11 (Article 13.10)	IPCC200 For all!
Technical expert review	All Parties (shall)	Developed country Parties (shall)	
	 Undergo technical expert review of information submitted under Articles 13.7 [Article 13.11] 	Undergo technical expert review of information submitted under Articles 13.9 {Article 13.11}	
Multilateral	All Parties (shall) Multilateral facilitative consideration of progress with respect to efforts under Article 9, and its respective implementation and achievement of its NDCs (Article 13.11) 		

their capacities {Article 13.2}; * The transparency framework shall recognize the special circumstances of the least developed countries and small island developing States {Article 13.3}.

ADAPTATION GOAL

The Paris Agreement **aims to strengthen the global climate change response by increasing the ability of all to adapt to adverse impacts of climate change** and foster climate resilience.

Global goal on adaptation:

•to enhance adaptive capacity and resilience;

•to **reduce vulnerability**, with a view to contributing to sustainable development;

• ensuring an adequate adaptation response in the context of the goal of holding average global warming well below 2 degrees C and pursuing efforts to hold it below 1.5 degrees C.

Image: Climate Reality @ WWF

ADAPTATION

Adaptation planning and implementation

- The Agreement requires all Parties, to engage in adaptation planning and implementation through e.g. national adaptation plans, vulnerability assessments, monitoring and evaluation, and economic diversification.
- All Parties should, communicate their priorities, plans, actions, and support needs through adaptation communications, which shall be recorded in a public registry.

Transparency

 Parties should provide information related to climate change impacts and adaptation within the Ehanced Transparency Framework

Global stocktake

Article 14 of the Paris Agreement requires the <u>CMA</u> to periodically take stock of the implementation of the Paris Agreement in order to assess collective progress towards achieving the purpose of the Agreement and its long-term goals, including **Adaptation goal**

Ph credit: Steve Hamilton

Warsaw International Mechanism for Loss and Damages (WIM)

IPCC WGII AR5 primarily associates losses and damages with extreme weather events and economic impacts, and treats it primarily as a future risk

The <u>Warsaw International Mechanism</u> for Loss and Damage promotes the implementation of approaches to address <u>loss and damage associated with</u> <u>climate change impacts</u> (See <u>decision 2/CP.19</u> for the details).

E stablished under UNFCCC (2014) and reaffirmed under the Paris Agreement (Article 8) process to avert, minimize and address loss and damage associated with climate change impacts, including extreme weather events and slow onset events.

Mechanism for developing countries that are particularly vulnerable to the adverse effects of climate change by:

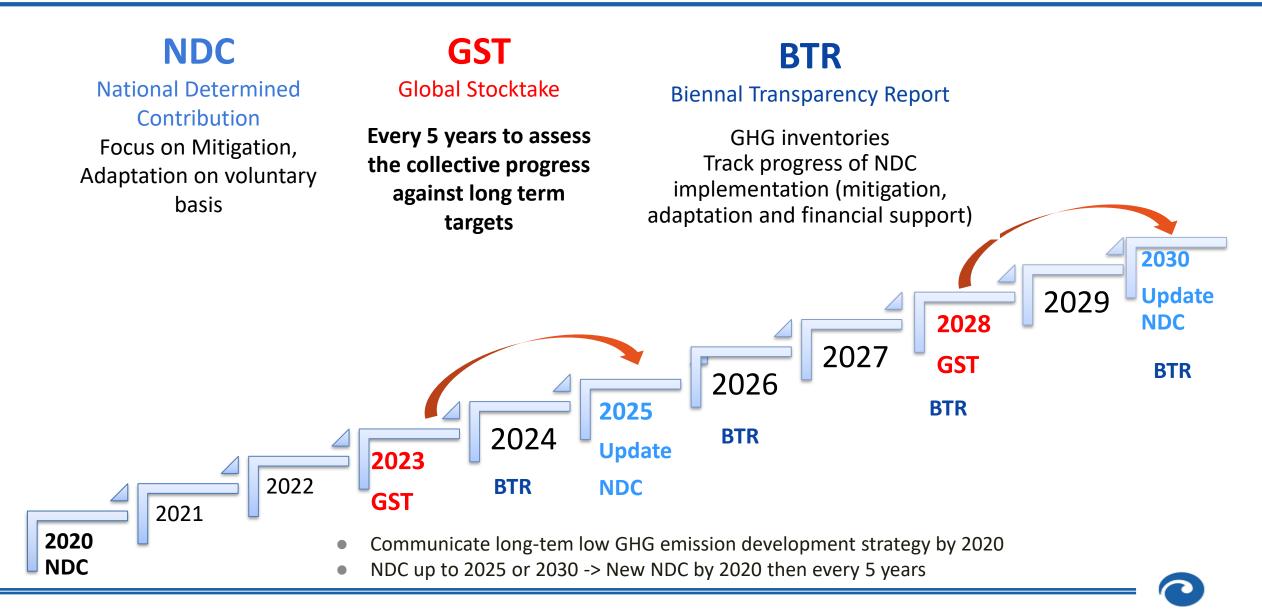
- Enhancing knowledge and understanding of comprehensive risk management approaches to address loss and damage
- Strengthening dialogue, coordination, coherence and synergies among relevant stakeholders
- Enhancing action and support, including finance, technology and capacity-building

Executive Committee of the WIM

 The <u>Executive Committee</u> guides the implementation of the <u>functions of the Mechanism</u> through the <u>workplan</u> of the Committee.

The Executive Committee currently has four thematic expert groups on:

- slow onset events
- non-economic losses
- displacement related to the adverse impacts of climate change
- comprehensive risk management and transformational approaches

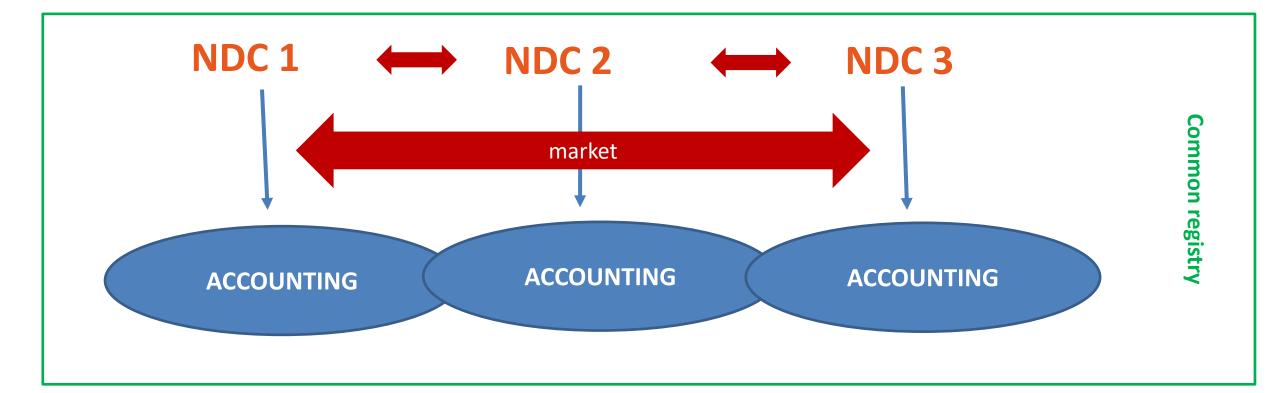

- "ex-ante" information on public finance for developing countries to be communicated every 2 years
- New global financial target –at least 100 billion \$/yr starting from 2020
- Green Climate Fund, Global Environmental Facility, Adaptation fund shall serve the Paris Agreement
- A technology framework is established and capacity-building activities will be strengthened, as well as through education

Transparency (Art.13)

- 120
- Transparency guidelines include also financial and technical support and capacity buiding:
 - o provided/mobilized- developed countries
 - needed/recieved Developing countries

Global Stocktake

PARIS2015


Article 6.2 – COOPERATION APPROACHES refers to countries engaging on a voluntary basis in cooperative approaches to use "internationally transferred mitigation outcomes" to fulfil their NDCs

Article 6.4 – CENTRALIZED MARKET MECHANISM is commonly understood to establish a mitigation mechanism under UNFCCC authority, with provisions that for many Parties could resemble those of the CDM/JI. The mechanism has a dual objective of **supporting mitigation action** as well as **sustainable development**; it is supervised by a UNFCCC body; it involves public as well as private entities

Guidance for robust accounting - ensure avoidance of double counting, rules, modalities and procedures are still to be defined

- (a) To promote the **mitigation of GHG** emissions while fostering **sustainable development**;
- (b) To **incentivize and facilitate participation** in the mitigation of GHG emissions **by public and private entities** authorized by a Party;
- (c) To contribute to the reduction of emission levels in the host Party, which will benefit from mitigation activities resulting in emission reductions that can also be used by another Party to fulfil its NDC; and
- (d) To deliver an overall mitigation in global emissions.

Guidance for robust accounting - ensure avoidance of double counting

PARIS2015 UN CLIBATE CHANGE COMPRENCE COP21.CMP11

Open issues to be decided at COP26 (Glasgow, UK – November 2021)

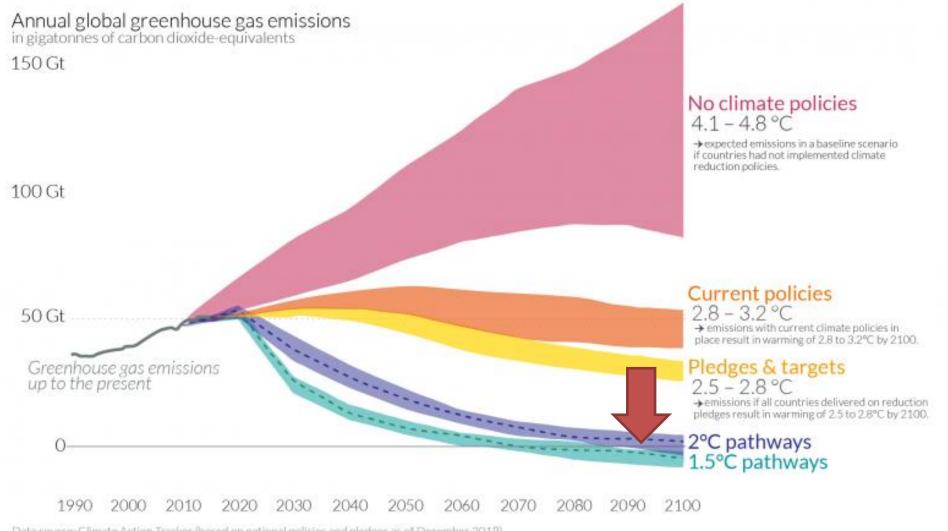
Transparency:

- Outline of the reporting
- Common reporting formats and tables

Art.6 (voluntary cooperation appraches/market mechanism)

- correct quantification of units and avoid double accounting
- Involvement of the private sector
- How to avoid double counting and increase ambition
- Ouside or inside the NDC?
- CDM will continue in the future?
- Pre-2020 unit transition?
- Finance for adaptation

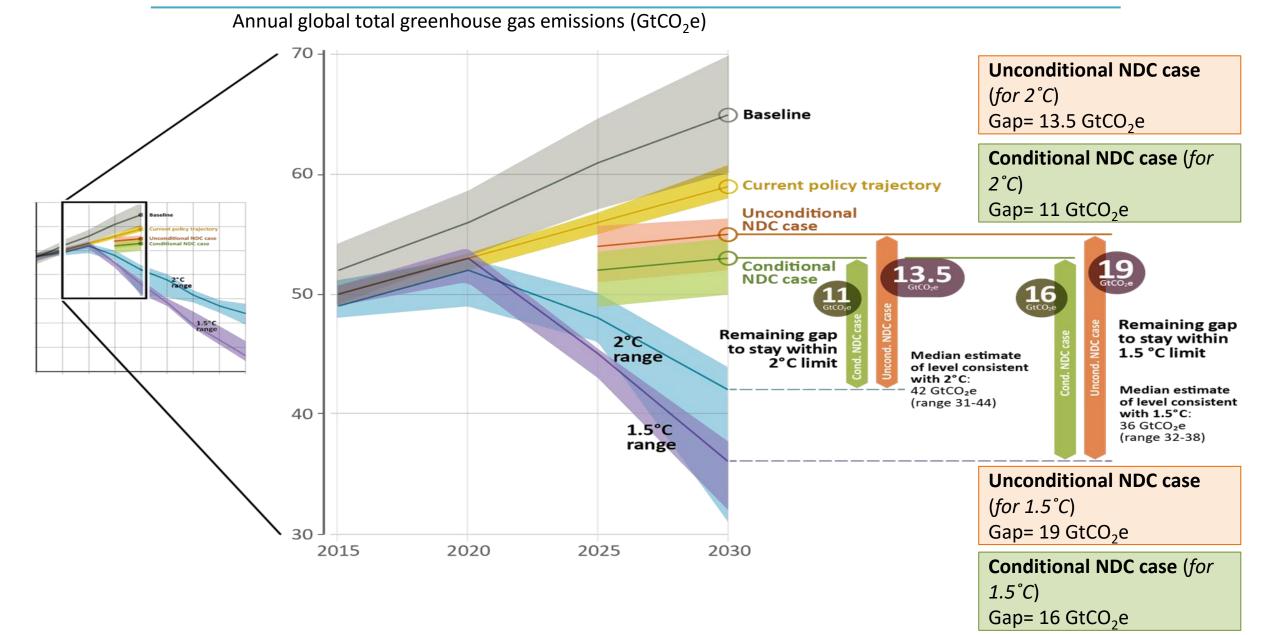
Are we on track?



Global greenhouse gas emissions and warming scenarios

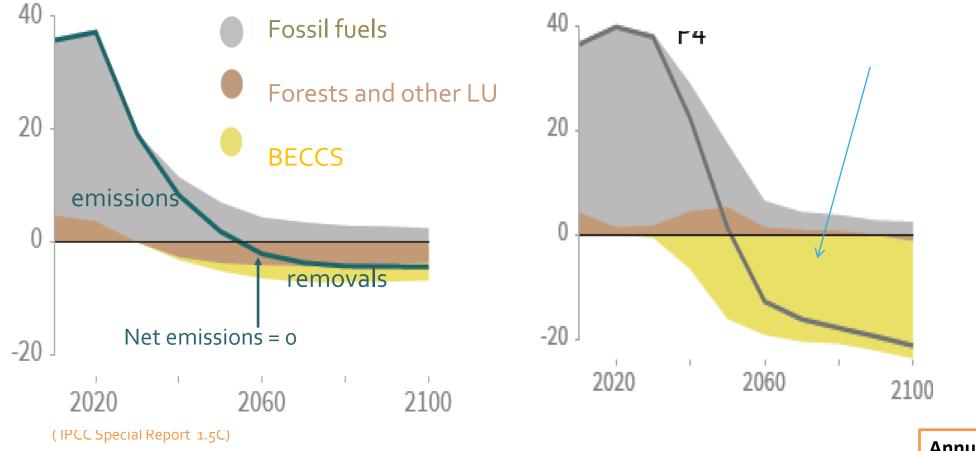
- Each pathway comes with uncertainty, marked by the shading from low to high emissions under each scenario.

- Warming refers to the expected global temperature rise by 2100, relative to pre-industrial temperatures.



Data source: Climate Action Tracker (based on national policies and pledges as of December 2019). OurWorldinData.org – Research and data to make progress against the world's largest problems.

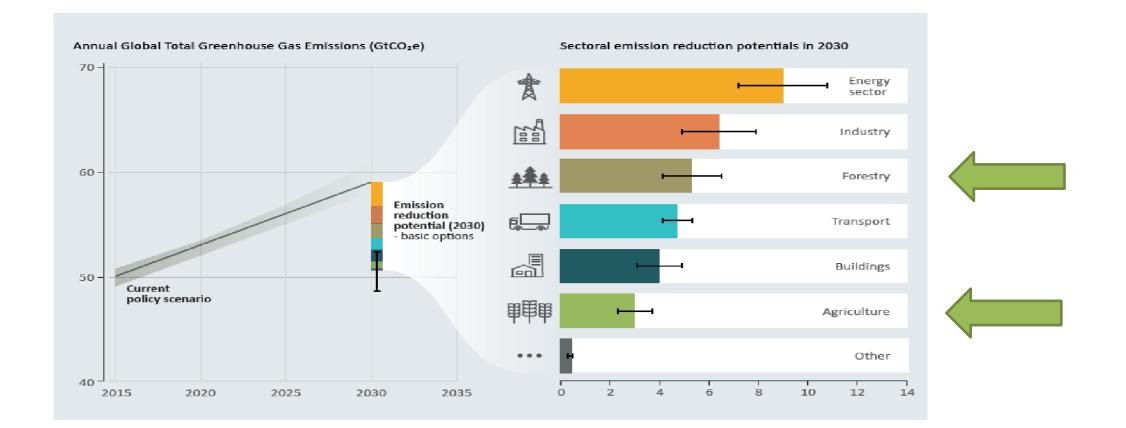
Licensed under CC-BY by the authors Hannah Ritchie & Max Roser.



NDC contributions and the emissions gap

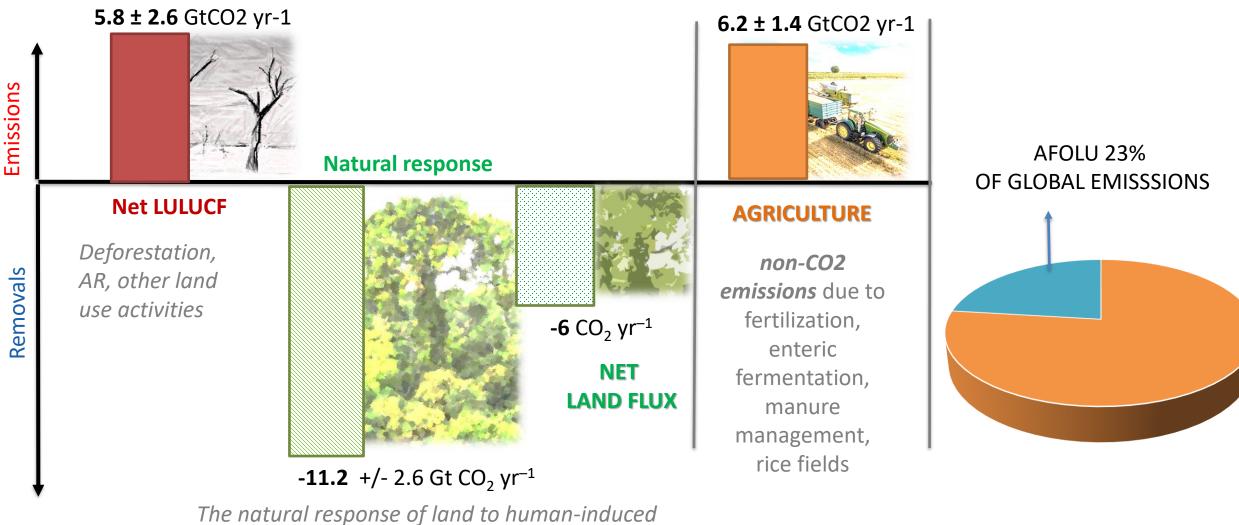
Billion tonnes CO₂ per year (GtCO₂/yr)

Annual emission reduction


1,5°C → -7,6% up to 2030 2°C → -2,6% up to 2030

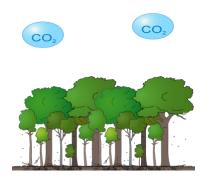
```
(1,5°C 10 yr→-3%!)
```


Sectoral emission reduction potentials in 2030


- The emissions reduction potential in six key sectors, at cost <US\$100/tCO₂e, is sufficient to close the emissions gap in 2030 - if implemented immediately and at scale
- Such action would provide benefits for other important environmental, social and economic goals

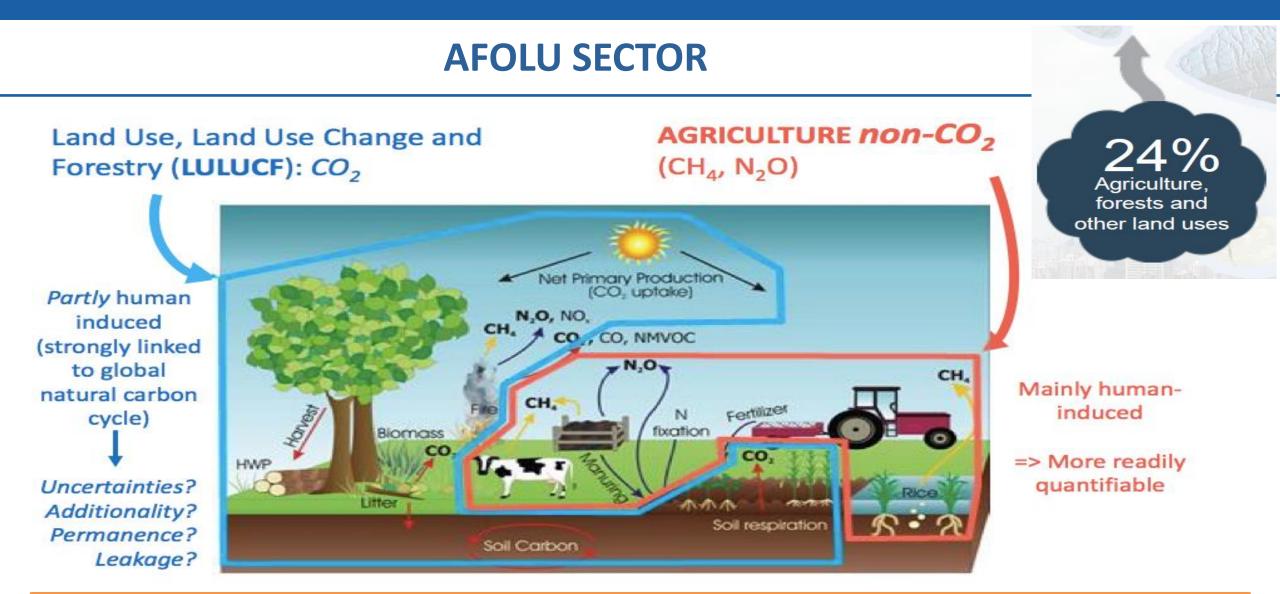
ROLE OF LAND SECTOR IN CLIMATE POLICY

ANNUAL AFOLU BALANCE (2007-2016)



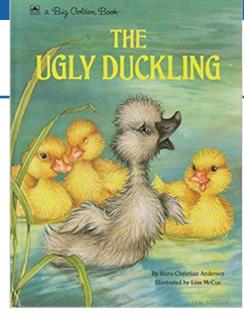
environmental changes

MITIGATION POLICIES IN FOREST SECTOR


- 1. Enhancement of C sink (new forests, increased C stocks in existing forests)
- 2. Reduction of C sources (reduce deforestation and forest degradation)
- 3. C substitution (wood replacing fossil fuels or other products)

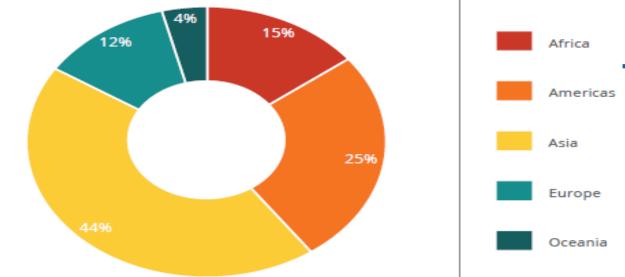
Forests offer synergies between mitigation (at low cost), adaptation, biodiversity ... forests are a key element in climate policy debate

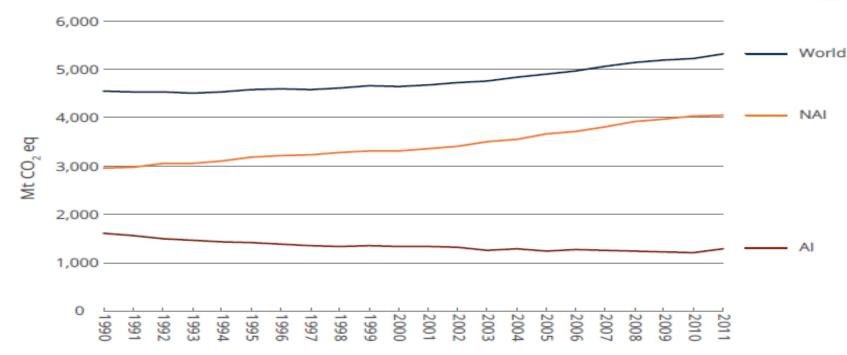
LAND SECTOR IS PART OF THE PROBLEM BUT ALSO PART OF THE SOLUTION


Emissions will remain high and increasing following the increasing demand of food, biofuel, fibers linked with the population increase

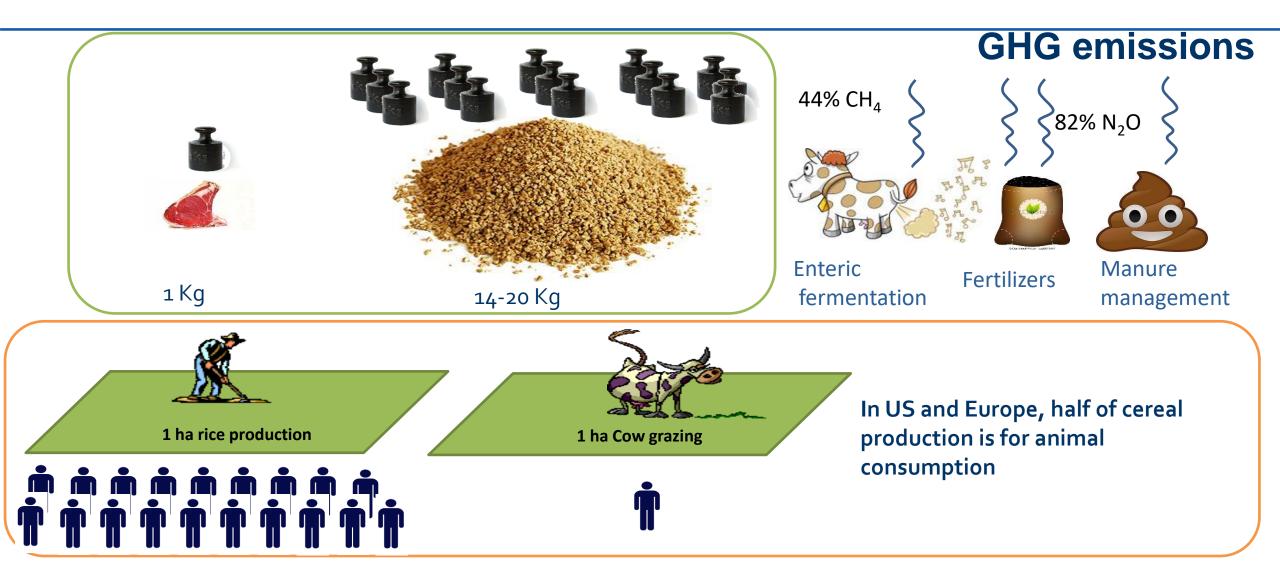
Specific issues in the land sector

- Natural component
- Non-permanence
- Long time scales
- Saturation
- Uncertainity (e.g. UE uncertainties for land sector ~30% other sectors <5%)




Terrestrial ecosystems provide food, fuel, and shelter; preserve biodiversity; and supply other services and environmental benefits. The sector offers opportunities for synergies between mitigation, sustainable development, biodiversity and adaptation, but also potential conflicts.

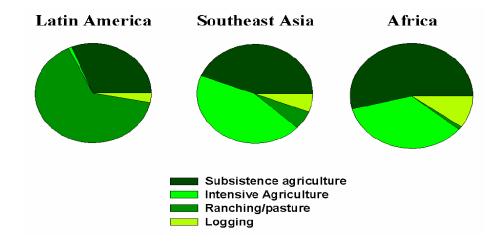
Emissions in Agriculture


Increases in emissions of agriculture (from 4.6 to 5.0 Gt CO2 eq yr-1 in 1990s and 2000s; 5.3 Gt CO2 eq yr-1 in 2011)



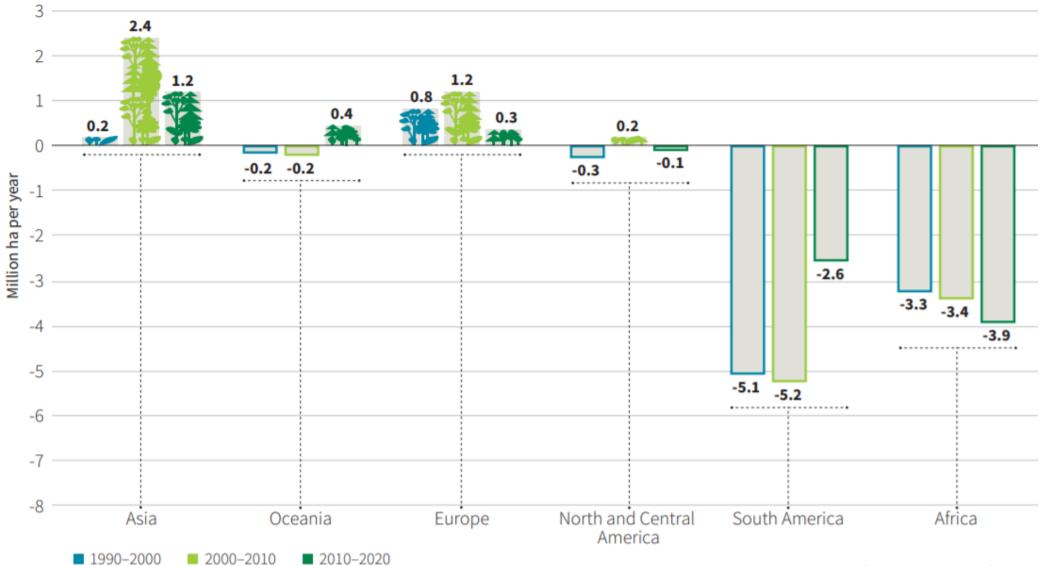
GHG intensity of products (i.e., GHG emissions per unit commodity produced) decreased during 1990-2010, but that if no further mitigation measures and technical efficiency improvements are implemented, future emissions may further increase by up to 30% by 2050.

AGRICULTURE



Annual rate of forest expansion and deforestation, 1990–2020

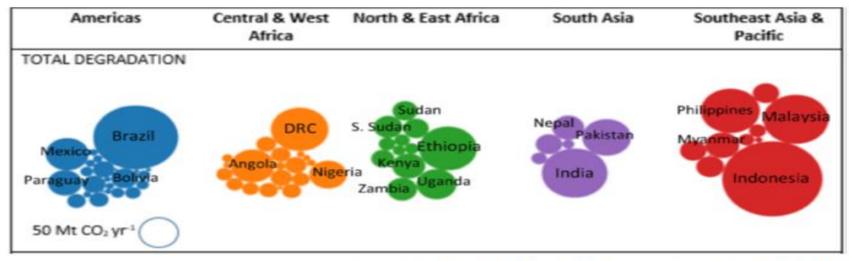
34 of tropical deforestation is linked to cash crops



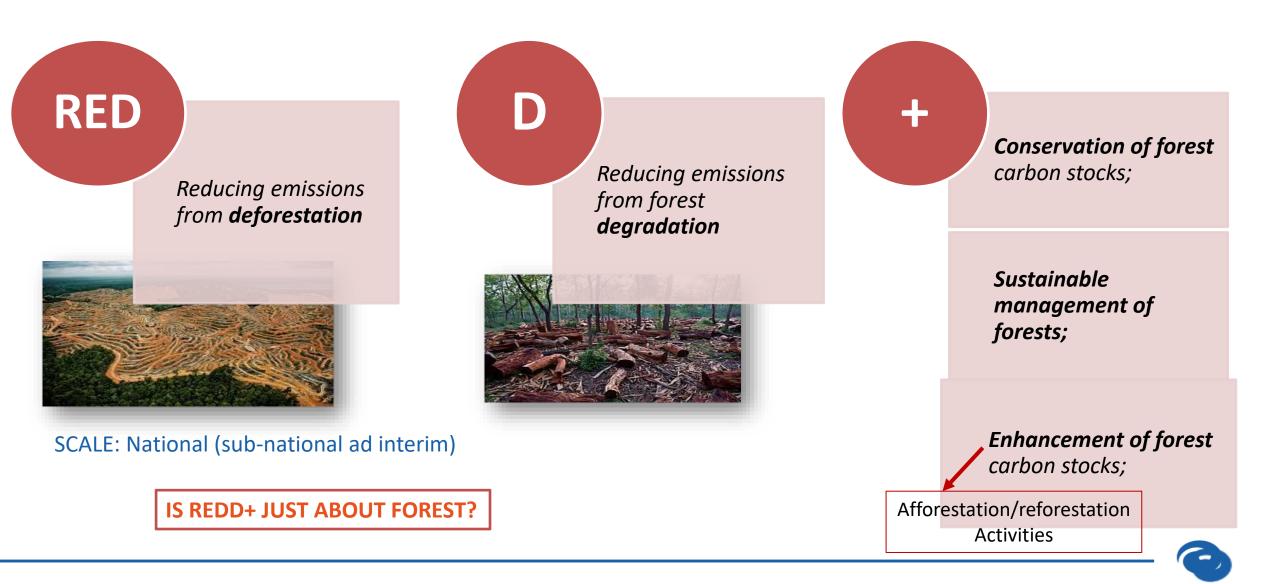
- An estimated 420 million ha of forest has been lost worldwide through deforestation since 1990
- The rate of forest loss has declined substantially.
- In 2015–2020, the annual rate of deforestation was estimated at 10 million ha, down from 12 million ha in 2010–2015.

(FAO FRA 2020)

Annual forest area net change, by decade and region, 1990–2020


(FAO FRA 2020)

FOREST DEGRADATION EMISSIONS


Forest degradation emissions = 2.2 Gt CO₂ year⁻¹

25% of the summed emissions from defore station and forest degradation (8.28 $\,$ Gt CO _2 year ^ 1)

Pearson et al. Carbon Balance Manage (2017) 12:3

REDD+ scope (Dec. 1/CP.16 par. 70)

REDD+ framework

Framework of 13 decisions developed in 7 years

- Covers all the aspects of the framework:
- **Step-wise approach** -> from readiness to result based payment
- Criteria for access (National strategy; FRL/FREL; Monitoring system; SIS)
- •Forest reference level/Emissions level + Tech. Assessment process
- Safeguard information system
- •MRV
- Financing -> role of GCF; private and public sectors, coordination of support
- Information hub -> publish information on the results of REDD+ activities, and corresponding results-based payments (Lima REDD+ Information Hub)

Phase 1: Readiness

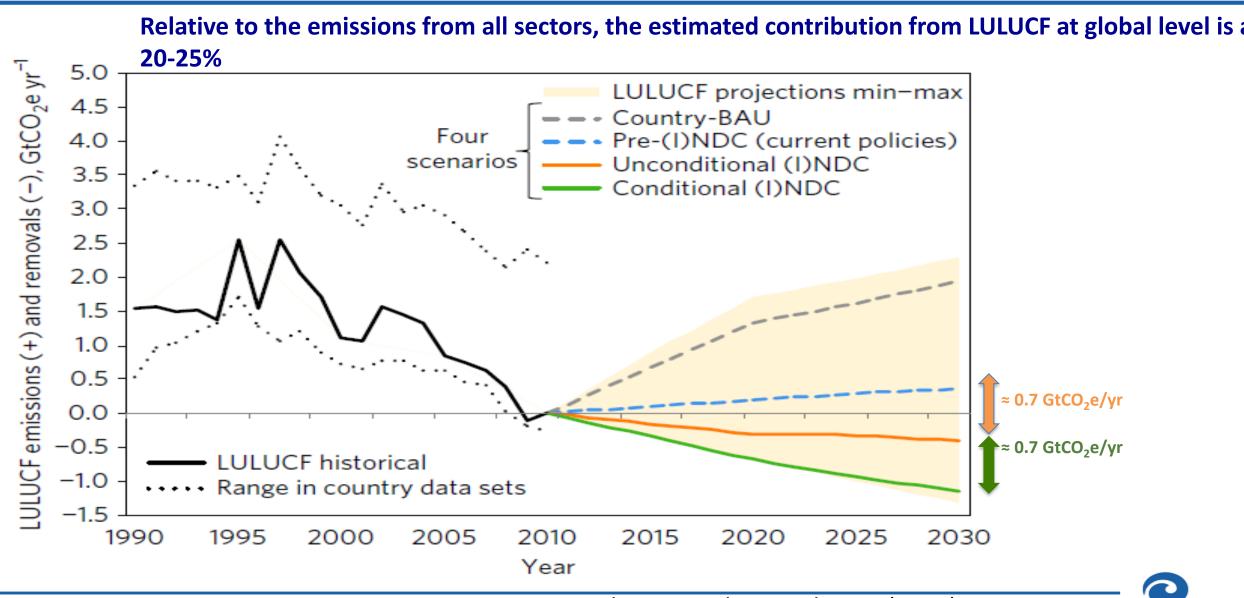
Countries design national strategies and action plans with relevant stakeholders, build capacity for REDD+ implementation, work on policies and measures for REDD+ implementation and design demonstration activities

Phase 2: Implementation

National strategies and action plans proposed in Phase I are implemented and tested. This phase may include results-based demonstration activities and require additional capacity building, technology development and transfer. Subnational demonstration activities on an interim basis are allowed as countries scale up to national implementation

Phase 3: Results-based actions

Results-based REDD+ actions are implemented at the national level and results are fully measured, reported and verified


LAND SECTOR IN THE PA: Article 5

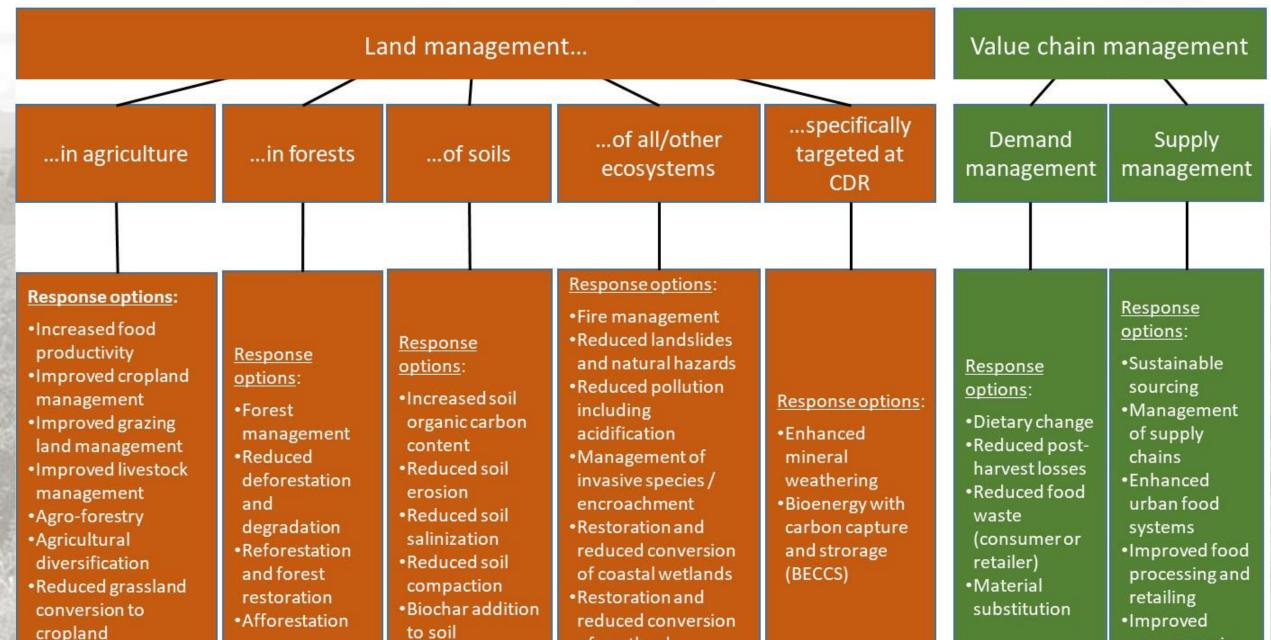
Land use is the only sector that has a dedicated Article in the Paris Agreement

- Parties should take actions to conserve, enhance, sinks and reservoirs of GHG
- Parties are <u>encouraged</u> to take action to implement and support, including through results-based payments, <u>the existing framework</u> <u>under UNFCCC for REDD+</u>
- *Dec. 1/CP21->* Recognizes the **importance of adequate and predictable financial resources**, including for results-based payments, for the implementation of REDD+

What is the contribution of land in NDC?

Grassi et al. Nature Climate Change (2017)

LAND USE SECTOR


							2030	
	1990	2000	2010	Country- BAU	Pre- INDC	Unconditional INDC	Conditional INDC	Comment
			LULUC	F emissions	(+) and remo	ovals (-), Gt CO2e/	y	
Developed countries	- 1.02	- 1.44	- 1.77	-1.51	-1.51	-1.71	-1.71	The most important country in explaining the difference between Country-BAU and Unconditional INDC is USA (see refs 17)
								The most important countries in explaining the difference between
Developing countries	2.56	2.54	1.78	3.45	1.87	1.30	0.56	Country-BAU and Unconditional INDC are Brazil (≈1.4 GtCO2e/y), Indonesia (≈0.5 GtCO2e/y), Gabon (≈0.1 GtCO2e/y) and Mexico (≈0.05 GtCO2e/y). See "Country
								examples" for more details.
TOTAL	1.54	1.10	0.00	1.94	0.36	-0.41	-1.14	

IPCC special report on Land

Response options

40 options identified

Assessment

Comments of	and and a set	and the state	40.3
		Star Star	and a start
a s		Large	ALL THE
Positive		Moderate	
		Small	
		Negligible	
Negative	-	Small	Contraction in
Neg	-	Moderate	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	Large	
Sec. A	- Cart		
Constitution of			

Res	oonse options based on land management	Mitigation	Adaptation	Desertification	Land Degradation	Food Security	Cost
	Increased food productivity	L	М	L	М	Н	
	Agro-forestry	М	М	м	М	L	
a	Improved cropland management	М	L	L	L	L	••
Itur	Improved livestock management	М	L	L	L	L	
Agriculture	Agricultural diversification	L	L	L	М	L	•
٩	Improved grazing land management	М	L	L	L	L	
	Integrated water management	L	L	L	L	L	
	Reduced grassland conversion to cropland	L		L	L	- L	
Forests	Forest management	М	L	L	L	L	
ğ	Reduced deforestation and forest degradation	Н	L	L	L	H L L L L L L L L L L L L L L L L L L L	
	Increased soil organic carbon content	Н	L	М	М	L	
Soils	Reduced soil erosion	←→ L	L	М	М	L	
Š	Reduced soil salinization		L	L	L	L	
	Reduced soil compaction		L		L	L	
s	Fire management	М	М	М	М	L	
ecosystems	Reduced landslides and natural hazards	L	L	L	L	L	
soa	Reduced pollution including acidification	→ M	М	L	L	L	
other 6	Restoration & reduced conversion of coastal wetlands	М	L	М	М	←→ L	
ð	Restoration & reduced conversion of peatlands	М		na	М	– L	

Response options based on value chain management

Reduced post-harvest losses	н	м	L	L	н —
Dietary change	н		L	Н	н —
Reduced food waste (consumer or retailer)	н		L	М	м
Sustainable sourcing		L		L	L
Improved food processing and retailing	L	L			L
Improved energy use in food systems	L	L			L

Response options based on risk management

Demand

Supply

	ener epicere zacea en ner namegenien						
	Livelihood diversification		L		L	L	
Risk	Management of urban sprawl		L	L	М	L	
	Risk sharing instruments	←→ L	L		←→ L	L	

FOREST MANAGEMENT

Responsible of the 12% of global emissions (deforestation, forest degradation) Context Natural sink of 30% of human emissions Potential Land Food **Response options** Desertification Costs GtCO₂ yr⁻¹ Mitigation Adaptation degradation security Forests 0.4 - 2.1Forest management М 0.4-5.8 Reduced deforestation and forest degradation н L .

Reforestation and land restoration (MAX 1.5-10.1 $GtCO_2\,yr^{-1}$)

Afforestation (MAX 0.5-8.9 $GtCO_2 yr^{-1}$)

- Afforestation helps to address land degradation and desertification (water retention capacity, quality by reducing runoff, trapping sediments and nutrients
- Food security could be hampered since an increase in global forest area can increase Food prices through land competition
- Side-effects occur when afforestation is based on non-native species,

AGRICULTURE MANAGEMENT

Context

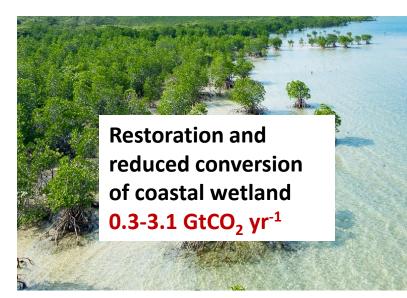
11% of global emissions: CH_4 (enteric fermentation); N_2O (fertilizer) CO_2 emissions from soil disturbances

Resp	onse options based on land management	Mitigation	Adaptation	Desertification	Land Degradation	Food Security	Cost	$GtCO_2 yr^{-1}$
	Increased food productivity	L	м	L	М	н		>13
	Agro-forestry	м	м	М	М	L		0.1 - 5.7
a	Improved cropland management	М	L	L	L	L		1.4 - 2.3
culture	Improved livestock management	М	L	L	L	L		
Agrici	Agricultural diversification	L	L	L	М	L		
۲	Improved grazing land management	М	L	L	L	L		
	Integrated water management	L	L	L	L	L		
	Reduced grassland conversion to cropland	L		L	L	- L		

Improved cropland management (1.4-2.3 GtCO2e year)

- a) management of the crop (crop rotation, use of cover crops, perennial cropping systems)
- b) nutrient management: including optimized fertiliser application rate, fertiliser type
- c) reduced tillage intensity and residue retention
- d) *improved water management*

e) *improved rice management*: including water management such as mid-season drainage f) *biochar application*.


 \bigcirc

Potential

Other ecosystems

	Response option	Mitigation		Adaptation	Desertification	Land degradation	Food security	Costs
s	Fire management		M	М	М	М	L	
stem	Reduced landslides and natural hazards		L	L	L	L	L	
eco s)	Reduced pollution including acidification	\longleftrightarrow	М	М	L	L	L	
here	Restoration & reduced conversion of coastal wetlands		M	L	М	М	←→ L	
ō	Restoration & reduced conversion of peatlands		М		na	М	- L	

Restoration and reduced conversion of peatland 0.6-2 GtCO₂ yr⁻¹

Soil

Context

Soils contains twice carbon than the atmosphere Soil erosion can be 20 (no tillage) to 100 times higher than the soil formation rate

	r	Vitigation	Ad	aptation	Desertification	Land degradation	Food security	Cos	Potential ts GtCO ₂ yr ⁻¹
	Increased soil organic carbon content		H	L	М	М	L		0.4-8.6
oils	Reduced soil erosion	\longleftrightarrow	L	L	М	М	L		
S	Reduced soil salinization			L	L	L	L		
	Reduced soil compaction			L		L	L		

Biochar (MAX: 6.6 GtCO2 yr⁻¹)

Biochar is an organic compound used as soil amendment

Biochar could provide moderate benefits for food security by improving yields by 25% in the tropics, but with more limited impacts in temperate regions, or through improved water holding capacity and nutrient use efficiency.

Large scale production can compete with food production

D

FOOD SYSTEM

Context 37% OF GLOBAL EMISSIONS (8-10% FOOD WASTE) +40% increase of food waste since'60 – TODAY: 30% wasted or loss									
	Demand side		Supply side						
Losses			Waste	Consum.					
Production Post har	rvest Processing	Distribution	Retailers Consumers						
		**		-					
Redudction of post harvest l Free 2 Mkm² from agricultu	E		Reduction: 0.8 to 4.5 GtCO₂ yr ⁻¹ Free: 0,8-2,4 Mkm ²	0.7 to 8 GtCO ₂ yr ⁻¹ 0,8-2,4 Mkm ²					

Conclusions

Land management has high mitigation potential

Land is under

growing human

pressure

- When sustainable, proper land management has the potential to provide multiple co-benefits
- Rapid reductions in anthropogenic GHG emissions across all sectors reduce negative impacts of climate change on land ecosystems and food systems (medium confidence).
- Delaying climate mitigation and adaptation responses across sectors would lead to increasingly negative impacts on land and reduce the prospect of sustainable development

Land is a part

of the solution

But land can't

do it all

lucia.perugini@cmcc.it

