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Agricultural GHG emissions
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CH, and N,O emissions by world region, 1990-2020
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« Agriculture - 5.1 to 6.1 GtCO,-eq/yr in 2005 (10-12% of total global
anthropogenic emissions of GHGS).

« CH, contributes 3.3 GtCO,-eqg/yr and N,O 2.8 GtCO,-eq/yr.

 Of global anthropogenic emissions in 2005, agriculture accounts for
about 60% of N,O and about 50% of CH,. Smith et al. (2007)
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Global mitigation potential in agriculture
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High and low estimates of the
mitigation potential in each region
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Effect of C price on implementation
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Global mitigation potential In
agriculture (Mt CO,-eq. yrt)

Price range (USD t CO,-eq. %)

Scenario 0-20
Bl 1925
Alb 1982
B2 2047
A2 2119

0-50
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0-100
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0->>100 (technical
potential)
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o844

2957

Smith et al. (2007a)



Additional mitigation from agriculture

» Feed-stocks for bio-energy (residues, dung and
dedicated energy crops).

« The economic mitigation potential for agricultural
bio-energy in 2030 is estimated to be 70-1260, 560-
2320 and 2720 Mt CO,-eq. yr at prices up to 20, 50
and above 100 USD t CO,-eq.t, respectively (5-
90% of all other measures together).

« Additional mitigation of 770 Mt CO,-eq. yr-* could
be achieved by 2030 by improved energy
efficiency in agriculture

Smith et al. (2007a)



Global economic mitigation potential for
different sectors at different carbon prices
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How do we cut GHG emissions and
how much will 1t cost?

Global GHG abatement cost curve beyond 2030 EAU
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How do we cut GHG emissions and
how much will 1t cost?

Global GHG abatement cost curve for the Agriculture sector
2030 curve in a societal perspective including levers up to € 60 per tCO-e
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How does soll C sequestration work?

Increase C inputs......or reduce C losses
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How does soll C sequestration work?
— reduced disturbance

No-till Tillage
Tillage breaks

% % open aggregates
microbial attack and
weathering
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Mechanisms for soil C sequestration in agriculture

Activity Practice Specific management change  Increase Decrease Reduce
C inputs C losses disturbance
Cropland management Agronomy Increased productivity X
Rotations X
Catch crops X
Less fallow X
More legumes X
Deintensification X
Improved cultivars X
Nutrient management Fertilizer placement X
Fertilizer timing X
Tillage / residue management  Reduced tillage X
Zero tillage X
Reduced residue removal X X
Reduced residue burning X X
Upland water management Irrigation X
Drainage X
Set-aside and land use change  Set aside X X
Wetlands X X
Agroforestry Tree crops inc. Shelterbelts etc. X X
Grazing land management Livestock grazing intensity Livestock grazing intensity X
Fertilization Fertilization X
Fire management Fire management X
Species introduction Species introduction X
More legumes More legumes X
Increased productivity Increased productivity X
Organic soils Restoration Rewetting / abandonment X X
Degraded lands Restoration Restoration X

X X
Smith et al. (2007a)



Minimum detectable difference and sample size
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Time before it is possible to demonstrate a change in SOC for
minimum detectable difference of 3% (solid) and 15% (broken line)

3 parameter, modified single
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Smith (2008) International Journal of
Agricultural Sustainability 6(3),169-170

e “There are a number of well rehearsed arguments against
reliance on carbon sequestration for tackling climate
change, involving saturation of the carbon sink (the carbon
Is only removed from the atmosphere while the tree is
growing or until the soil reaches a new equilibrium soil
carbon level; Smith, 2005), permanence (carbon sinks can
be reversed at any stage by deforestation or poor soil
management; Smith, 2005), leakage/displacement (e.g.
planting trees in one area leads to deforestation in another;
Intergovernmental Panel on Climate Change (IPCC),
2000), verification issues (can the sinks be measured,;
Smith, 2004), and total effectiveness relative to emission
reduction targets (only a fraction of the reduction can be
achieved through sinks; IPCC, 2007)”.



Saturation — the time course of C
sequestration
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« Sink saturation ~ 20-100 years
» Sink strength declines towards new equilibrium
Smith (2004a)



Permanence
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|_eakage / displacement: are we actually
sequestering carbon or just moving It about?

More manure here....but........ less manure here
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Verification

Zero return

Cost

Value of C sequestered

No. of samples required to demonstrate
increase in soil C

Smith (2004b)



“Trying to sequester the geosphere
in the biosphere™

The C we release through fossil fuel burning has been
locked up for ~300 Million years and was accumulated
over many millions of years — we are trying to lock that up
over years / decades — It does not add up!

“It 1s easier to leave the marbles in the jar than to tip them
out and try to pick them all up again” W.H. (Bill)
Schlesinger

Soll C sequestration is time limited, non-permanent,
difficult to verify and is no substitute for GHG emission
reduction

Soil C sequestration may have a role in reducing the short
term atmospheric CO, concentration, and buying us time to
develop longer term solutions, largely in the energy sector
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Copenhagen outcomes...

 Positive
— Negotiation on REDD+

— Developing countries and developed countries striving
for global agreements

« Negative
— Failure to get quantified, binding, time-bound emission
reduction targets
— Most targets very un-ambitious

— Agriculture gets virtually no mention — looks unlikely it
will be included



Implications of not including agriculture. ..

 Possible positive

— Leaves food production un-impinged (good for food
security?)

 Possible negative

— Leaves potential for perverse incentives in the
agricultural sector

— Bars agriculture from easy access to carbon / GHG
trading mechanisms — a market potentially worth 420,
130 or 32 Billion USD yr-* for C prices of 100, 50 and 20
USD t CO,-eq.™, respectively.

— Misses a significant “wedge” of the global mitigation
potential — makes global emission reduction targets less
achievable



Which developing country actions /
Investments would work best?

Global GHG abatement cost curve for the Agriculture sector
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Conclusions |

Agriculture has a significant role to play in climate
mitigation

Agriculture Is cost competitive with mitigation
options in other sectors

Bio-energy crops and improved energy efficiency in
agriculture can contribute to further climate
mitigation, but the savings are usually counted in
other sectors

Agricultural mitigation should be part of a portfolio
of mitigation measures to reduce emissions /
Increase sinks whilst new, low carbon energy
technologies are developed.



Conclusions I

Soil C sequestration Is a globally significant and
cost competitive climate mitigation measure

Solil C sequestration is not permanent and Is of
limited duration (due to sink saturation)

Response of soil C sinks to future climate change
remains uncertain

Agriculture should be included in global climate
agreements — push in Mexico but not likely to be
successful

Agricultural climate mitigation in developing
countries could be encouraged In a number of
ways — | look forward to this workshop!



-




