

INDIAN AGRICULTURE TOWARDS 2030

Pathways for Enhancing Farmers' Income, Nutritional Security and Sustainable Food Systems

19 - 22 January 2021

Andhra Pradesh: Climate Resilient, Community-Managed Natural Farming

A Systemwide Transformation

Vision 2027 - 50 million people | 6 million farmers | 8 million ha

T. Vijay Kumar
Executive Vice Chairman, APRySS
Govt of A.P

IMPACT OF PRE MONSOON DRY SOWING + A.P.C.N.F Anantapuramu – Conventional scenario – GROUNDNUT 1 acre

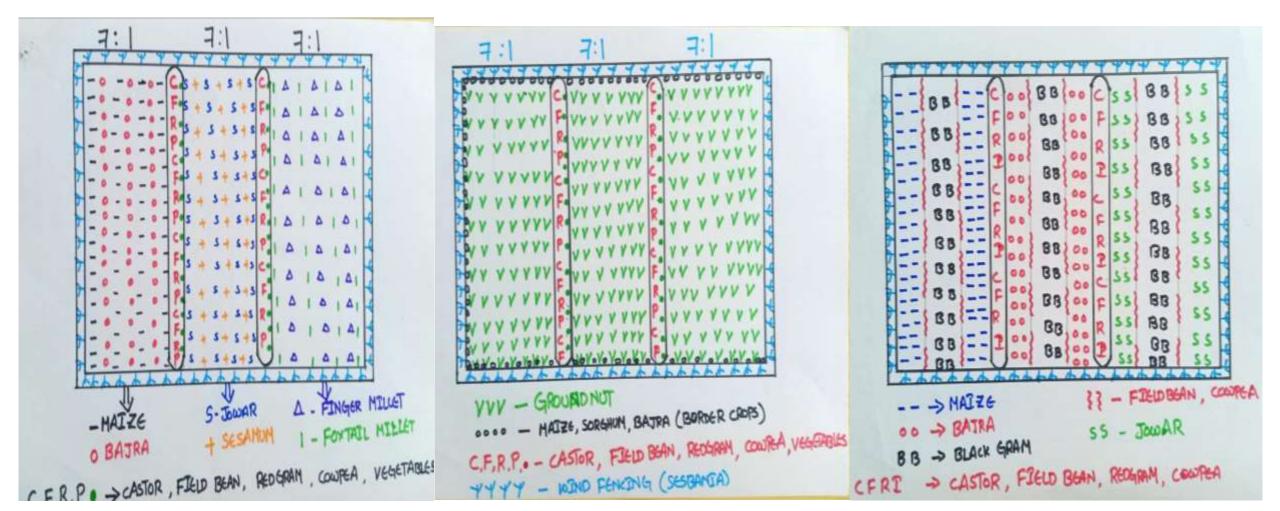
0 income

Crop	Yields (In quintals)	Income (Rs.)		
Groundnut	9	54000		
Redgram	1	4500		
Fodder	2 loads	4000		

0 income

Gross income Rs 62,500
Cost of cultivation Rs 19,200
Net income Rs 43,300

Average rainfall – 550 mm.


17 out of 20 years have been drought years

Droughts results into migration

Keeping lands fallow further aggravates loss of soil fertility Income ranges from – negative to 20,000 a year during drought A good year income can be around Rs. 40,000 – 50,000

365 Day Green Cover - Mallikarjuna, Anantapuramu - 1 acre

Pre-monsoon Dry Sowing (15-21 **Kharif – Groundnut integrated with** Rabi Dry Sowing (12-15 varieties of varieties of seeds sown) **PMDS** seeds sown) **MAR APRIL** MAY **JUNE JULY AUG SEPT OCT** NOV **DEC JAN FEB**

Impact of 365 days green cover through P.M.D.S + A.P.C.N.F Mallikarjuna, farmer, Basampalli, Anantapuramu

Anantapuramu – 365 Days Green Cover

Pre-monsoon Dry Sowing (15- 21 varieties of seeds sown)			Kharif – Groundnut integrated with PMDS			Rabi Dry Sowing (12-15 varieties of seeds sown)					
MAR	APR	MAY	JUNE	JULY	AUG	SEP	т ост	NOV	DEC	JAN	FEB
	Quintals)		Quintals)			Quintals)					
Jowar	1.	6	3200	Ground	dnut	9	54000	Maize	!	4	6000
Sesamum	0.	5	4000	Castor		1	4000	Bajra		2	6000
Korra millet	0.	6	1500	Field bean		1	6000	Jowar		2.5	5000
Bajra	1		3000	Cowpea		1		Black gra	am	1	8000
Maize	3	;	4500				4000	Field be	an	1	6000
Cowpea	0.	5		Fodder		2 loads	8000	Red gra	m	1	4500
Vegetables			2500	Gross income Rs 76,000			Vegetab	les Own c	onsumption	0	
Fodder	2 lo		2500	Cost of cultivation Rs 17400			Casto		0.5	2000	
rouder	2 10	aus	Net income Rs 58600			Fodde	r 2	Loads	4000		

Gross Income Rs 25,200
Cost of cultivation Rs 9200
Net income Rs 16000

TOTAL NET ANNUAL INCOME

365DGC - Rs 1,06,900

Normal Situation - Rs 43,300

Gross income Rs 41,500
Cost of cultivation Rs 9200
Net income Rs 32,300

APCNF Programme at a glance

163,000 farmers

972 villages

2017-18

523,000 farmers 3011 villages

2018-19

25% Villages

10% farmers

695,000 farmers

3011 villages

190,000 Ha

2019-20

34% Villages

16% farmers

10,50,000 farmers

3730 villages

340,000 Ha

2020-21

Source of Funds: Mo Ag (P.K.V.Y, B.P.K.P), Philanthropy, KfW bank

Lower cost Higher Yields

40,656

farmers

704 villages

2016-17

Improved soil and human health

	2019-20	2020-21
Farmers	442,000	700,000
Farm workers	253,000	350,000
Villages	3011	3730
Acreage (Ha)	190,000	340,000

A.P.C.N.F IMPACTS

1.Cost of cultivation - significant reduction - NF costs are much lower than non-NF, across all crops

1. Yield differences are not significant between NF and Non-NF farms

1. Significant increase in net income for NF farmers

A.P Govt - overcoming critical obstacles to scaling

Challenges

Mindset - CHEMICAL ADDICTION of the last 60 years

VESTED INTERESTS

Taking it to every farmer

Handholding until full adoption

Weak extension system

Self sustaining, longlasting

Critical Innovations in AP model

- Govt support and advocacy resources and implementation
- 2. Knowledge POPs, videos, etc
- 3. Women SHG s and federations
- 4. Farmer to farmer extension system
- **5. Facilitating organizations** Govt., NGOs and C.B.Os for long term handholding
- 6. Innovations and continuous learning
- 7. Collaborations with Global and National institutions for Science support
- 8. Convergence with Govt departments

A profound and a simple solution: Farming in harmony with nature

A.P.C.N.F is Regenerative Agriculture. A holistic land management practice that leverages the power of photosynthesis in plants to close the carbon cycle, and build soil health, crop resilience and nutrient density.

Universal Principles of Natural Farming

Soil to be covered with crops 365 days

(Living root)

Diverse crops, trees 15 – 20 crops

Minimal disturbance of soils

Integrate animals into farming

Bio stimulants as necessary catalysts

Increase organic residues on the soil

Use indigenous seed

Pest
management
through
botanical extracts

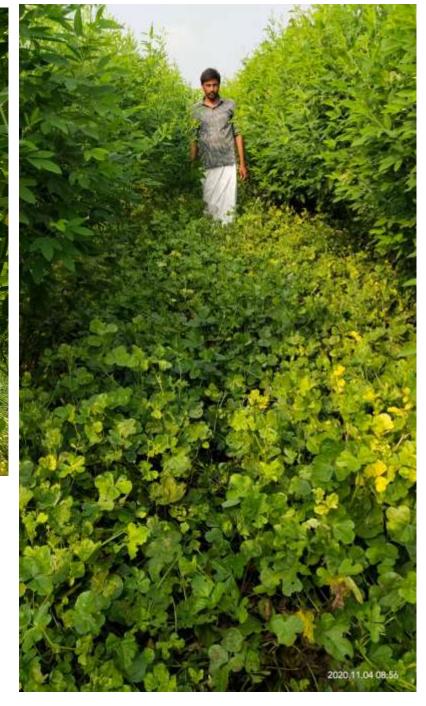
No synthetic fertilizers, pesticides, herbicides, weedicides

Microbial Seed Coating

Beejamrutham - cow urine, cow dung, and lime – fermented

Bio-stimulants

Jeevamrutham (biostimulant) - cow dung, cow urine, soil, jaggery, pulses flour – mixed and fermented


Bio stimulants - unique strength in Indian Agriculture

N.F + Pre monsoon dry sowing – a unique breakthrough in A.P

365 days green cover with crop diversity

maximises photosynthesis rate – and thereby root exudates being pumped into the soil

Microbial seed coating - Beejamrutham

Cow dung – 2 kg

Cow urine – 2 liters

Lime – 40 grams

Handful of chemical free soil

Water – 20 liters

Step 3

Ingredients

Wrap the cow dung in a cloth and submerge in water and let it soak for 12 hours

Squeeze the cloth after 12 hours, add lime, chemical free soil. Mix well in clock wise direction

Spray the concoction on all seeds and ensuring each seed is coated by it before sowing

Step 2

Soil Microbial enhancement – Bio stimulant - Ghanajeevamrutham

Cow dung - 100 kg

Jaggery - 1Kg

Pulse flour- 1 kg

Cow urine - 10 liters

Hand full uncontaminated soil

Step 1

Mix all the ingredients properly

Make cakes and shadow dry for 5 days for fermentation

Apply these cakes in the field

Soil microbial enhancement – Liquid biostimulant - Dravajeevamrutham

Cow dung-100kg Cow urine- 3-6 Itrs Pulse flour- 2 kgs

Jaggery – 2 kgs

Water- 200 ltrs

Hand full of uncontaminated soil

Add all the ingredients and mix them in clock wise direction

Keep it fermented for 5 days. The colour and smell changes. Keep mixing it in between

Spraying of Dravajeevarutham in the field

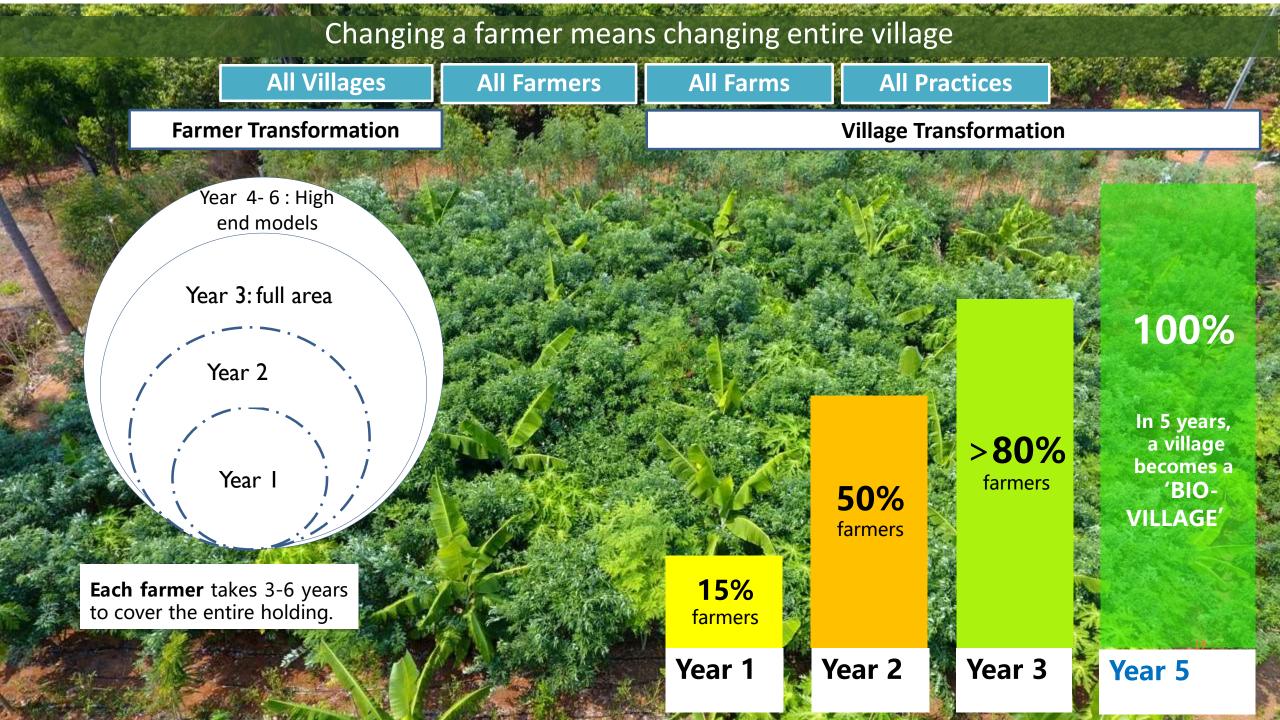
Women in Natural Farming: Our biggest Strength

Programme
Management,
transparency

Collective Action

131,672 women SHGs and their 5491 Federations are in charge

Peer Learning


Farming Plans, and, consumption plans

Inclusive of the poorest

Farmer 'heroes' central to the programme

A Knowledge intensive and not input intensive programme

Costs of transformation vs savings from subsidy avoidance

Year	Transformati on Cost Rs. Cr	Land Lakh Ha.	Electricity savings, Rs. Cr	Fertilizer subsidy Savings, Rs. Cr
21-22	219	2.64	94	188
22-23	640	7.92	302	604
23-24	1,317	15.18	619	1,239
24-25	1,652	23.43	1,023	2,045
25-26	1,721	30.36	1,418	2,836
26-27	1,407	38.94	1,946	3,892
27-28	1,229	44.88	2,400	4,800
28-29	771	50.82	2,908	5,815
29-30	458	55.11	3,374	6,748
30-31	458	60.06	3,934	7,869
Total	9,873	60.06	18,018	36,035

Other direct benefits to farmers: higher yields, better prices, lower financial costs, etc.

Ecosystem benefits

Food, Nutrition and Health
Security

Employment

Soil Health & water security

Coastal ecosystem regeneration

Bio-Diversity

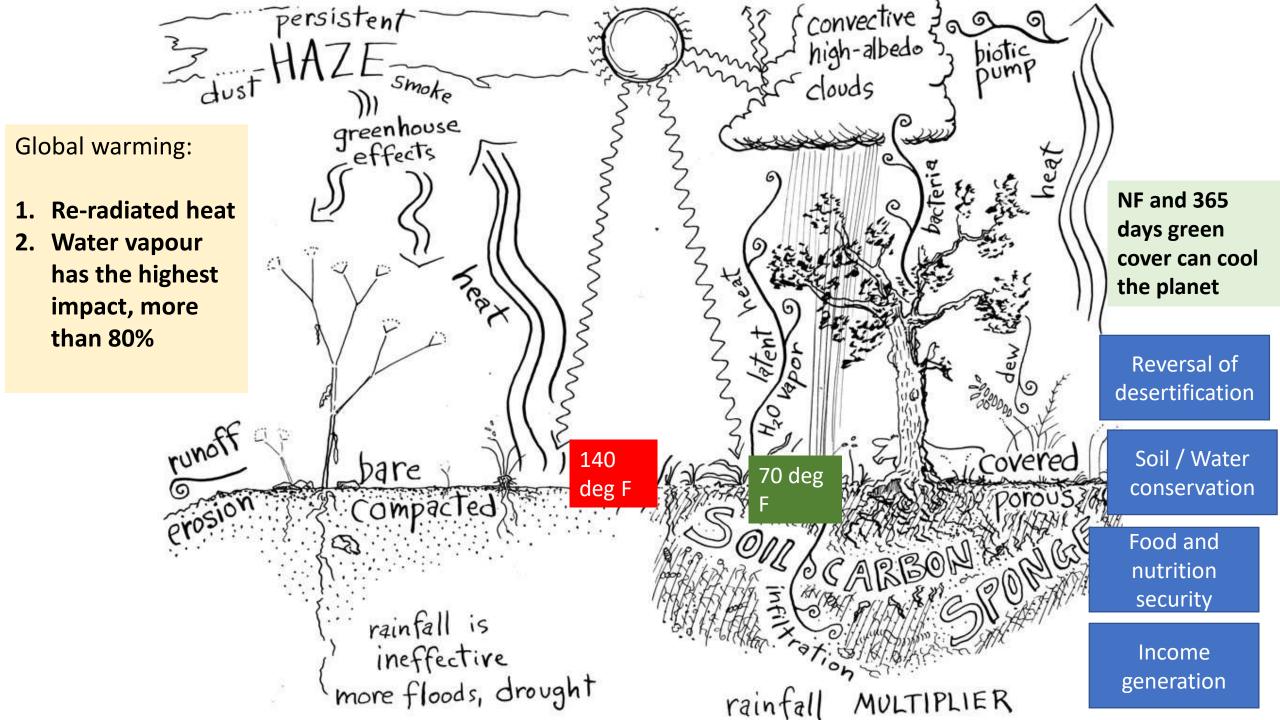
Climate Resilience

Vast areas of arable lands are fallow (2017 - 18)

The A.P.C.N.F + P.M.D.S Promise

				Fallow as % of	
District	Fallow	sown	Fallow + sown	total	Ratio
Y.S.R Kadapa	3.51	3.71	7.22	49%	0.94:1
Nellore	3.26	3.6	6.86	48%	0.90:1
Chittoor	3.79	4.21	8	47%	0.90:1
Prakasam	4.11	5.55	9.66	43%	0.74:1
Anantapuramu	5.46	8.42	13.88	39%	0.64:1
Visakhapatnam	1.63	3.4	5.03	32%	0.47:1
Kurnool	3.15	9.53	12.68	25%	0.33:1
Vizianagaram	1.14	3.72	4.86	23%	0.30:1
Guntur	1.81	7.69	9.5	19%	0.23:1
East Godavari	1.49	6.66	8.15	18%	0.22:1
Krishna	1.3	6.49	7.79	17%	0.20:1
Srikakulam	0.71	4.5	5.21	14%	0.15:1
West Godavari	0.82	6.97	7.79	11%	0.11:1
State	32.18	74.45	106.63	30%	0.43:1

APCNF offers a pathway for reversing this


Dryland crops can become assured crops, and even 3 crops can be taken

Cropping intensity to increase to 2+

Barren and Fallows can be minimized

Vision: To double the Cropped Area

