

Food and Agriculture Organization of the United Nations

8thAsian Soil Partnership MEETING

2 May 2023

STRENGTHENING OF THE INDONESIAN NATIONAL SOIL INFORMATION SYSTEM

Markus Anda and Team

Indonesian Center for Agricultural Land Resources Standardization (ICALRS)

Indonesian Agency for Agricultural Instrument Standardization (IAAIS) Ministry of Agriculture (MoA)

STRENGTHENING OF THE INDONESIAN NATIONAL SOIL INFORMATION SYSTEM

Key points of presentation

- Success progress on the establishment of Indonesian National Soil Information System (NSIS).
- II. Are NSISs useful?
- III. What is their practical impact?
- IV. What steps did you take to establish/strengthen the NSIS of Indonesia (link to the AFACI project)
- V. What is still missing?
- VI. Way forward

Location of Indonesia in South East Asian countries Land Area : ~ 190 million ha

Indonesia's Land Area : ~ 190 million ha

- Sumatera's Land Area : 47.3 million ha
- Profile distribution : 1202 points

- Success progress on the establishment of Indonesian National Soil Information System (NSIS).
 - Soil Atlas of Asia and National Soil Information System of Indonesia
 - Soil Organic Carbon (SOC) map of Indonesia
 - Map of Soil Properties:
 - Map of soil salinity; map of zinc (Zn) and manganese (Mn) micronutrients in Karawang Regency, west Java, Indonesia
 - Map of post-mount Semeru eruption hazard for rehabilitation of agricultural crops and ecosystem in Lumajang Regency, East Java, Indonesia
 - Development of database of soil profiles and their mineralogical constituents in Indonesia
 - Capacity building of soil atlas of Indonesia:
 - Soil survey and mapping
 - training for soil organic C sequestration potential (GSOCseq)
 - Addition of new soil profile database to increase Indonesian National soil information system

Distribution of Reference Soil Group (RSG) in Indonesia

No	Reference	Area (x 1,000)			
NO.	Soil Group	ha	%		
1.	Plinthosols	1.086	0,57		
2.	Andosols	4.569	2,39		
3.	Luvisols	6.373	3,33		
4.	Lixisols	7.990	4,18		
5.	Phaeozems	1.915	1,00		
6.	Ferralsols	5.712	2,98		
7.	Nitisols	37	0,02		
8.	Acrisols	27.051	14,14	2	
9.	Cambisols	79.787	41,70	1	
10.	Chernozems	610	0,32		
11.	Arenosols	2.299	1,20		
12.	Regosols	4.095	2,14		
13.	Durisols	11	0,01		
14.	Vertisols	445	0,23		
15.	Gleysols	19.666	10,28	3	
16.	Histosols	13.431	7,02		
19.	Leptosols	2.696	1,41		
18.	Fluvisols	7.073	3,70		
19.	Podzols	1.416	0,74		
20.	Settlement, water body, etc	5.095	2,66		
	Total	191.358	100,00		

Note: Indonesia has an area of 191 million hectares, consisting of 17,000 islands. Based on WRB, Indonesia consists of 19 RSGs, and 3 of them have the widest distribution, which is Cambisols (41.70%), Acrisols (14,14%) and Gleysols (10.28%).

LEGEND OF INDONESIAN SOIL ATLAS OF ASIA

Acrisols		CMhu	Eutric Cambisols (Humic)	GLhu	Reductigleyic Dystric Gleysols (Humic)		Nitisols	
ACcr	Chromic Acrisols	CMle	Leptic Cambisols	GLoy	Oxygleyic Eutric Gleysols	NTal	Alic Nitisols	
ACfl	Ferralic Acrisols	CMro	Rhodic Cambisols	GLoy	Oxygleyic Gleysols	NTro	Rhodic Nitisols	
ACgl	Gleyic Acrisols	CMvi	Vitric Eutric Cambisols	GLpl	Plinthic Gleysols		Phaeozems	
ACha	Haplic Acrisols	CMvr	Vertic Cambisols	GLry	Reductigleyic Dystric Gleysols	PHch	Chernic Phaeozems	
AChu	Humic Acrisols		Chernozems	GLSZ	Eutric Gleysols (Salic)	PHgi	Vertic Phaeozems (Gleic)	
ACle	Leptic Acrisols	CHha	Haplic Chernozems	GLti	Thionic Gleysols	PHha	Haplic Phaeozems	
ACpl	Plinthic Acrisols	CHle	Leptic Chernozems	GLum	Umbric Dystric Gleysols	PHIe	Leptic Phaeozems	
ACro	Rhodic Acrisols		Durisols	Glue	Eutric Gleysols (Vertic)	PHIv	Luvic Phaeozems	
ACfr	Ferralic Acrisols	DUdy	Dystric Durisols	GLVI	Oxygleyic Gleysols (Vertic)	PHph	Luvic Phaeozems (Pachic)	
	Andosols		Ferralsols		Histosols		Vertic Phaeozems	
ANdu	Duric Andosols	FRac	Acric Ferralsols	HSfi	Fibric Histosols	[Plinthosols	
ANdy	Dystric Andosols	FRdy	Rhodic Ferralsols (Dystric)	HShm	Hemic Histosols	PTat	Haplic Plinthosols (Acric)	
ANeu	Eutric Andosols	FReu	Rhodic Ferralsols (Eutric)	HSji	Hemic Histosols (Hyperthionic)	РТрк	Pisoplinthic Plinthosols	
ANgl	Glevic Andosols	FRha	Haplic Ferralsols	HSsa	Sapric Histosols		Podzols	
Anha	Haplic Andosols	FRhu	Humic Ferralsols	HSef	Hemic Histosols (Sulfidic)	PZfg	Ortsteinic Podzols (Fragic)	
ANIe	Leptic Andosols	FRIx	Lixic Ferralsols	11331	Sapric Histosols (Sulfidic)	PZgl	Gleyic Podzols	
ANIe	Leptic Andosols	FRpl	Plinthic Ferralsols	LUC+i	Thionic Hemic Histosols	PZhi	Histic Podzols	
ANmo	Mollic Andosols	FRpp	Petroplinthic Ferralsols	nsu	Thionic Sapric Histosols	PZos	Ortsteinic Podzols	
ANum	Umbric Andosols	FRro	Rhodic Ferralsols	HStr	Hemic Histosals (Terric)	PZpi	Glevic Podzols (Placic)	
Anvi	Vitric Andosols	FRxa	Xanthic Ferralsols	HSwg	Hypohionic Hemic Histosols	PZum	Umbric Podzols	
	Arenosols		Fluvisols	HSwi	Hypothionic Hemic Histosols (Terric)		Regosols	
ARdy	Dystric Arenosols	FLax	Gleyic Eutric Fluvisols (Alcalic)		Hypothionic Sapric Histosols (Terric)	RGdy	Dystric Regosols	
AReu	Eutric Arenosols	FLdy	Dystric Fluvisols		Leptosols	RGeu	Eutric Regosols	
ARgl	Gleyic Arenosols	FLeu	Eutric Fluvisols	LPli	Lithic Leptosols	RGgl	Gleyic Regosols	
ARhu	Dystric Arenosols (Humic)	FLgi	Gleyic Fluvisols		Lixisols	RGle	Leptic Regosols	
ARle	Leptic Arenosols	FLhi	Histic Fluvisols	LXcr	Chromic Lixisols	RGtf	Tephric Regosols	
ARso	Sodic Arenosols	FLhu	Gleyic Fluvisols (Humic)	LXha	Haplic Lixisols		Vertisols	
	Cambisols	Flat	Glevic Dystric Fluvisols (Sulfidic)	LXhu	Humic Lixisols	VRcr	Chromic Vertisols	
CMan	Andic Cambisols	T LON	Histic Glevic Fluvisols (Sulfidic)	LXro	Rhodic Lixisols	VRha	Haplic Vertisols	
CMar	Dystric Cambisols (Arenic)	FLgi	Gleyic Sodic Fluvisols		Luvisols	VRd	Chromic Vertisols (Gleyic)	
CMcr	Chromic Cambisol	FLti	Thionic Fluvisols	LVan	Chromic Luvisols (Andic)		Pellic Vertisols (Glevic)	
CMdy	Dystric Cambisols		Gleysols	LVcr	Chromic Luvisols	VRpe	Pellic Vertisols	
CMeu	Eutric Cambisols	GLdy	Dystric Gleysols	LVgl	Gleyic Luvisols			
CMfr	Ferralic Cambisols	GLeu	Eutric Gleysols	LVha	Haplic Luvisols			1
CMfv	Fluvic Cambisols	GLfc	Dystric Gleysols (Fractic)	LVIe	Leptic Luvisols			
CMgl	Gleyic Cambisols	GLfv	Fluvic Gleysols	LVro	Rhodic Luvisols			
CMhi	Histic Cambisols	GLhi	Histic Gleysols	LVvr	Vertic Luvisols			2

INDONESIAN SECTION OF THE SOIL ATLAS OF ASIA

Note: Indonesia has an area of 191 million ha, consisting of 17,000 islands. Based on WRB, Indonesia consists of 19 RSGs, and 3 of them have the widest distribution, namely Cambisols (41.70%), Acrisols (14,14%) and Gleysols (10.28%).

8thAsian Soil Partnership Meeting | 2 May 2023

II. Are National Soil Information Systems useful?

- NSISs is useful for students, researchers, and academicians
- Ministry of Agriculture
- Policy makers at local, regency, province and national levels
- Other departments:
 - $\circ~$ Ministry of Coordinating for Maritime Affairs and Investment,
 - $\circ~$ Ministry of Coordinating for Economy
 - $\circ~$ Ministry of environment and forestry,
 - Ministry of National Development Planning/Bappenas,
 - Ministry of Agrarian Affairs and Spatial Planning/ National Agency for Land and spatial planning)

 \circ Etc.

III. Practical impact of Indonesian Soil Information Systems

- Source of soil information in relation to soil productivity and ecosystem functions
- The information has positive impacts in assessment of land suitability for strategic national commodities
- Soil property maps give the guide to determine targeted areas for allocation of fertilizer subsidy, conservation, and rehabilitation
- Soil maps as a basis for policy makers to prepare spatial planning for various usages at Regency, Province and National levels

IV. steps have been made to strengthen the NSIS of Indonesia

- Updating soil legacy data and is still ongoing
- Production of soil organic carbon (SOC) map
- Production of Soil properties Maps:
 e.g. National soil pH, CEC, and clay content.
- Development of database of soil mineralogical constituents (primary minerals/sand fraction and secondary minerals/clay fraction
- Capacity building :
 - Soil survey and mapping
 - training for soil organic C sequestration potential (GSOCseq)
- Addition of new soil profiles to database

Example of updating of legacy soil data points/profiles

8th Asian Soil Partnership Meeting | 2 May 2023

- 2016 2019 Data
- r² for soil organic carbon map: 10%

V. What is missing?

Required information for sustainable soil management but is absence in the soil map

- Landform/topographic/slope (e.g. Plain, undulating, rolling, hilly etc)
- Soil parent materials
- Elevation
- The scale is too small (e.g. 1:3 000 000 for global soil map), led to limited implementation

What is still missing

Erosion threat VS conservation practices on Andreals

volcanic mountain

volcanic plain

Required information for sustainable soil management, which is not available in digital soil map. We know eg. Dystric Andosol, but not for its environment (landform/slope, parent materials, elevation)

Planting area, parallel intensive contour line

VI. Way forward

- Addition of new soil profile database to strengthen Indonesian National soil information system
- Enrichment of database of soil mineralogical constituents in Indonesia
- Harmonization of Soil Atlas of Indonesia using three soil classification systems (USDA, WRB/FAO, National system) at 1:250.000, which was developed from 1:50.000
- Develop soil map at national soil partnership, regency soil partnership to support implementation of SSM, improved soil productivity associated with ecosystem functions/services
- Soil suitability maps for various crops as basis to promote sustainable soil management
- Peatland maps associated to land use and their protection
- Thematic Maps of soil landform/sloping, elevation, and parent materials
- Website development of national soil information system
- Expected financial support from AFACI to be extended for another two years to allow full development of Indonesian soil information system.

INA SOIL AGRO

http://awr.litbang.pertanian.go.id/

- Soil Map
- Thematic Map

INA SOIL AGRO

Soil Map

Thematic Map

Sistem InformasiPeta Tanah

+ Peta Tanah Skala 1:1.000.000

II Titik Observasi

📰 Informasi Agroklimat dan

🖽 Peta Tematik

📰 Peta Cemaran

i Kontak Kami

I Tim Penyusun

Hidrologi

Contamination

Map

Food and Agriculture Organization of the United Nations

8thAsian Soil Partnership MEETING 2 May 2023

