

Food and Agriculture Organization of the United Nations

Determination of the clay content of soils 25 June 2024

Indicators soil health based on the relation between soil organic matter and clay

Axel Don, Thünen Institute, Germany

Clay: 3% Sand: 93% Topsoil pH (CaCl₂): 4.7 Topsoil TOC: 2.9% SOC stock (0-100 cm): 132 Mg ha⁻¹ Plant available water: 58 mm

Tschernozem

Clay: 23% Sand: 4% Topsoil pH (CaCl₂): 7.1 Topsoil TOC: 2.0% SOC stock (0-100 cm): 213 Mg ha⁻¹ Plant available water : 220 mm

Determination of the clay content of soils | 25 June 2024

Clay content – a central soil property

- is hardly affected by land use or climate
- is result of pedogensis and bedrock
- is pivotal for the water retention function of soil
- is essential for soil carbon stabilisation

Eyles et al. 2015, Soil Res.

Clay in relation to soil organic carbon

Relative variable importance

Webb et al. 2003, SSSAJ

- Mäkipää *et al.* 2024, Geoderma
 - Clay is main predictor for soil carbon at large scale
 - Clay defines a lower limit for SOC

Soil inventories. e.g. in Germany at national scale

- Sampling grid of 8 × 8 km (3104 sites)
- Uniform depth increments:

0-10, 10-30, 30-50, 50-70, 70-100 cm

- 124.000 soil samples
- Firt completed inventory: 2012-2018
- > Data are open access available:

https://doi.org/10.3220/DATA20200203151139

Determination of the clay content of soils | 25 June 2024

Soil organic carbon in Germany

Topsoil (0-30 cm)

THÜNEN

Subsoil (30-100 cm)

Soil texture in Germany

Gebauer et al. 2022, Frontiers Soil Sc.

GLOBAL SOIL PARTNERSHIP

Soil texture in agriculture

 Distribution of agriculture in Germany across texture classes is uneven

Soil texture: The standard soil parameter with the most time consuming analytics.

Texture and C/N ratio

Poeplau *et al.* 2020, JPNSS

Exception: Some sandy soils,
 former heathlands and peatlands
 (C/N>13)

So called **Black sands** can be

found also in The Netherlands

and Denmark

Clay and SOC-fractions

Clay content determines the fraction of particulate organic carbon (light fraction)

Determination of the clay content of soils | 25 June 2024

Clay: 3 mass% Sand: 93 mass% Topsoil pH (CaCl₂): 4.7 Topsoil TOC: 2.9% SOC stock (0-100 cm): 132 Mg ha⁻¹ Plant available water: 58 mm

Clay: 23 mass% Sand: 4 mass% Topsoil pH (CaCl₂): 7.1 Topsoil TOC: 2.0% SOC stock (0-100 cm): 213 Mg ha⁻¹ Plant available water : 220 mm

Are these soils in healthy conditions or degraded?

Tschernozem

Podzol

Soil health indicators

- Should be sensitive to land management and climate (in contrast to soil quality indicators)
- Should be **relevant** due to its relation to soil functions
- The indicator should be measurable with reasonable effort (accessibility)
- Should inform land managers and policymakers

STATUS AND TRENDS			DRIVERS AND PRESSURES	
Observable soil properti (Measurements) SOC. N. P Textural classes. structure pH Depth. stone content, mineralog Bulk density Water content, soil temperature Soil biota (micro, meso, macro) Cation and anion content (contaminants, nutrients, acidifiers salts)	Physical properties Chemical properties Biological properties	Derived soil properties (Modeling) Porosity Aggregate stability Rooting depth Cation exchange capacity Electric conductivity Hydraulic conductivity Water runoff, infiltration Erodibility Adsorption and cation exchange capacity	External (environm factors (climate, la emissions) Non-Soil ind	ental) nd use, inputs, dicators
Soil quality sets the condition for Soil threat indicators Soil nutrient loss – N and P Soil acidification Soil pollution Soil pollution Soil biodiversity loss Soil erosion Conditioning the extend of soil threats	Soil functional indicators Biomass productivity Water storage capacity	Soil functions Food production Water retention	Ecosystem services Provisionir	
	iffect on soil functions	Soil moisture deficit Groundwater reproduction Carbon storage capacity	Water purification and regulation Carbon pool and climate regulations	Regulation
Soil compaction Salinisation (*) Soil sealing		Nutrient mobilisation and buffering capacity Habitat provision capacity	Nutrient dynamics Habitat	Supporting
	Thresholds Critical levels			Î
Level to which soil functions are fulfilled			IMPACT	

SOC/clay ratio as indicator

- Attempt to turn SOC levels into a soil health indicator
- Normalisation for clay as main SOC driver
- Clear relation of SOC/clay to soil physical parameters

Johannes et al. 2017, Geoderma

SOC/clay ratio as indicator

- We applyed SOC/clay ratio to 2958 agricultural soils in Germany
- Almost all clayey soil were "degraded"
- Almost all sandy soils were "very good"
- Normalisation with clay is too strong
- U We propose an alternative ratio:
 - SOC/SOC_{exp}
- With SOC_{exp} as the expected SOC content using a SOC~clay regression/model
- Poeplau and Don, 2023, Soil use manag

SOC/SOC_{exp} indicator for soil structure

SOC/SOC_{exp} can better predict soil porosity than SOC/clay

SOC/clay should not be used as soil health indicator

Poeplau and Don, 2023, Soil use manag

Clay lab analysis vs. texture by feel

- Texture by feel analysis (estimation) by trained soil scientists has surprisingly high precision compared to lab measurement (measurement)
- It can substitute time consuming lab analysis in some cases

Conclusions

- Clay is a key parameter for soil quality
- Clay and soil carbon are closely linked
- Also soil carbon quality is related to soil texture
- SOC/clay ratio is a biased indicator for soil health
- Clay content need to be accounted for to
 differentiate between managable (soil health) and
 static (soil quality) soil parameters.

Food and Agriculture Organization of the United Nations

Thank you

GLOBAL SOIL PARTNERSHIP

