

Food and Agriculture Organization of the **Jnited Nations**

Determination of the clay content of soils in Brussel, Flanders and Identification of clay Walloon Region (Belgium) and minerals by X-ray Luxembourg diffraction

25 June 2024

Nathalie Fagel AGEs - Géologie, Université de Liège

Identification of clay minerals by X-ray diffraction

Nathalie Fagel

AGEs - Argiles, Géochimie & Environnement sédimentaires Département de Géologie, Université de Liège

- Definition of clays minerals
- Structure
- Main clay minerals
- X-ray diffraction
- Analyse by X-ray diffraction
 - Bulk powder analysis
 - Oriented mounts from fraction < 2 μm
 - Some examples

Clay minerals

© <u>OMNI Laboratories, Inc</u>

- Minerals of small size (μ m)
- Abundant in soils & sediments
- Sheet crystal structure
 - Specific method of study = X-ray Diffraction
- Numerous applications

BESOLAN BELGIAN AND LUXEMBURG SOIL LABORATORY NETWORK

© MEB. Westerwald, Allemagne. Fontaine et al.

2020. Applied Clay Science 187, 105444.

2

Structure of clay minerals

Classification AIPEA

- 1. Tetrahedral-octahedral sheet combination (layer 1:1, 2:1)
- 2. Cation of octahedral sheet (2+, 3+)
- 3. Layer charge
- 4. Interlayer material
- + type of layer stacking, chemical composition,...

source: White, 1999

https://aipea.org/

Determination of the clay content of soils in Brussel, Flanders and Walloon Region (Belgium) and Luxembourg | 25 June 2024 source: Eslinger & Peaver, 1988 3

Main clay minerals

X-ray production

X-ray diffraction

- 1. Production of X-rays
- 2. Interaction with cristalline structure
- 3. Diffraction with same angle
- 4. Detection of X-rays

Bragg law

Two-dimensional interatomic spacings

$$\begin{array}{c} & & & & \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline & & & & \\ \hline & & & \\ K_{\alpha 1}Cu = 1,54 \text{ Å} \end{array} \end{array}$$
 where
$$\begin{array}{c} n = \text{ whole number} \\ \lambda = f(\text{anode}) \\ \theta = \text{ diffraction angle} \\ d = \text{ basal spacing (Å)} \end{array}$$

Reflections of X-ray waves from successive parallel planes of atoms generate sufficient diffraction intensities when interferences of reflected waves are constructive

Source: Heaney, Elements 2(2), 69-70, 2005

XRD on bulk powder

Sample preparation

- Drying at 40°C
- Manual griding in agate mortar
- Preparation of pressed powder
 (Back-side method Moore & Reynolds, 1989)

© PhD Elisa Pleuger 2020

XRD on oriented mounts

Sample preparation

- Suspension in water
- Sieving at 63 μm
- Decarbonation & rising
- Decantation during 50 min
- Extraction of upper cm
- Sedimentation on glass slide

BESOLAN BELGIAN AND LUXEMBURG SOIL LABORATORY NETWORK

Determination of the clay content of soils in Brussel, Flanders and Walloon Region (Belgium) and Luxembourg | 25 June 2024

3 XRD analyses

(1) Air-dried

(2) EG saturation

Examples of XRD on natural soil samples

10

Laterites of Kamboinse (1) Burkina Faso Clay < 2 μ m fraction Tetrahedral sheet Hydrolysing climate Octahedral sheet Complete leaching of cations Tetrahedral sheet Octahedral sheet = dominance of kaolinite Intensity 7.1 Å (n=1) 30000 - Air-dried no peak at 7Å (H) 3.57 Å (n=2) - EG 20000 = deshydroxilation - Heated of kaolinite 10000 3,33826 10,0480 1537 5,01364 angle (2θ) 13 10 12 14 20 22 25 26 27 15 21 11 Determination of the clay content of soils in Brussel, Flanders and Walloon Region (Belgium) and Luxembourg | 25 June 2024

source : PhD. P. Nshimiyimana (2020)

Laterites of Kamboinse (2)

Bulk sample K3-1

- Kaolinite + illite/muscovite
- Quartz
- Goethite, hematite

source : PhD. P. Nshimiyimana (2020)

Determination of the clay content of soils in Brussel, Flanders and Walloon Region (Belgium) and Luxembourg | 25 June 2024

GLOBAL SOIL PARTNERSHIP

Quantitative interpretation (3)

- Mineral identification using EVA ®Bruker software
- Rietveld refinement using TOPAS ®Bruker software
- Preferred orientations & unit cell parameters adjusted progressively to obtain a reconstructed pattern as close as possible to the measured XRD

Quartz 19.51% Goethite 11.64% Muscovite/illite 8.77% Kaolinite 7Å Quartz 3.34Å Hematite 6.99% 3.57Å 100-Muscovite 90-Goethite /illite 10Å 4 18 Å Hematite 2.69Å 30 20 angle 2 θ 22

Topas-derived reconstructed profile (red curve) with the raw XRD profile (blue curve)

Intensity

Determination of the clay content of soils in Brussel, Flanders and Walloon Region (Belgium) and Luxembourg | 25 June 2024

Kaolinite 53.10%

Clayey formations in Belgium (1)

Clayey formations in Belgium (2)

- Libin = Kaol. + Illite
- Gembloux =Illite + Kaol. +Sm.

source : PhD. A. Mango (2019)

Cenozoic estuarine & marine clayey deposits

Weathering Paleozoic shales

Clayey formations in Belgium (3)

Westerwald clays (1)

Westerwald Germany

Parental rock = Devonian fresh slate XRD on clay < 2 μm fraction

Chlorite + Illite = primary mineral

But chlorite sensitive to heating

= gradual transformation into vermiculite

Westerwald clays (2)

Progressive transformation of chlorite into vermiculite through the profile

Food and Agriculture Organization of the United Nations

Thank you

GLOBAL SOIL PARTNERSHIP