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To improve remediation of radiocaesium contamination in agriculture
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Outline
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1. Our application domain & problem statement

2. Can soil spectroscopy help?

3. Model- vs. Data-centric approach

4. Our path ahead



1. Fate of radioisotopes in soil after nuclear accidents
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Radionuclides fallout

soil

Fate of radioisotopes in soil after nuclear accidents
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soil

Fate of radioisotopes in soil after nuclear accidents

Migration to deeper
soil layers
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soil

Fate of radioisotopes in soil after nuclear accidents

137Cs

134CsRoot uptake
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K
ex

 competes with 137Cs in root-uptake process

K fertilizer application to remediate

Where and how much to apply?

The role of K (Potassium)
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For a wide range of soils & ecosystems

Rapidly & at minimum cost

Up to landscape & regional scale

Wet chemistry

How much K
ex

?
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2. Infrared spectroscopy to the rescue? 
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Infrared spectroscopy to the rescue? 

https://www.sciencedirect.com/science/article/pii/S2589721722000186
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Predicting K
ex 

used to be challenging
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No strong spectral features to support calibration model

Small & local SSLs impose low model capacity (overfitting)

“Blind” to complex spectral patterns



Our hypothesis, success conditioned:
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Availability of large SSLs

Use of model class with highly scalable model capacity



Investigate Deep Learning (CNN) properties
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Does including all Soil Taxonomy orders (Global) work?

Interpretability

Prediction uncertainty

Viable candidate for global soil prediction service?



The USDA/KSSL Soil Spectral Library (~45K)
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A “simple” (though deep) CNN architecture
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Capacity to leverage growing data regime
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Some metrics
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Model-centric: iterate on model ↗ R2 ~ 0.84
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https://docs.fast.ai

…



All good but …
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Large-scale deployment would tell a different story

Iterate around data rather than model mainly

Error analysis is crucial lever to activate



3. Model- vs. Data-centric approach
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Data-centric approach: iterate on data
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1. to identify lack of consistency of annotation (wet chemistry)

2. To debug algorithm & model

3. To gain further insight on data (distribution, typology)

4. To inform further data collection



Annotation error (wet chemistry)?
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What are the performance by  Soil Taxonomy orders?
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A thorough analysis of the learning process
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What does the model consider important?
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What does the model consider important?
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Similarity between Soil Taxonomy Orders?
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Data-centric approach: iterate on data (illustrated)
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1. to identify lack of consistency of annotation (wet chemistry)

2. To debug algorithm & model

3. To gain further insight on data (distribution, typology)

4. To inform further data collection



The key reasons we use DL & CNN

1. Reuse learned features across Soil Taxonomy Orders

2. Tap into vast amount of model zoology & best practices

3. Introspection allowed

4. Transfer Learning (instrument cross-calibration also?)
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A very different mindset
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Domain expertise downstream rather than upstream

Don’t inject a priori domain expertise

Let the Neural Net learn it >> Data greedy (variability needed)

Reuse, reuse, reuse, …



Our path ahead
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- MIRS + NIRS + Remote Sensing (Multi+hyperspectral) +soil forming predictors
- Taking up the challenge of transfer learning, instrument cross-calibration along the way…
- Leveraging FAO/IAEA SSLs on underrepresented soils (e.g Andisols)
- …



Thank you for the attention!

32

https://fr.anckalbi.net/mirzai


