An introduction to soil spectroscopy

Bo Stenberg

Soil and Environment Swedish university of Agricultural Sciences

Soil Visible and near infrared (vis-NIR) Spectroscopy

Vis-NIR spectroscopy

Advantages with Vis-NIR

- + Rapid analysis in real-time
- + Minimum sample preparation
- + Non-destructive, Non-invasive
- + Flexible
- + Several parameters can be analyzed simultaneously
- + Rugged instruments for field analyses can be built

Visible and near infrared spectroscopy (vis-NIR)

- Absorption at different wavelengths hold information on the chemical composition of the material.
- In the visible region absorption is due to excitation of electrons.

 With longer wavelengths, the absorptions is due to vibrations in chemical bonds within molecules, with the primary absorption in the MIR and overtones and combinations in the NIR region.

Example for liquid H₂O

Combinations

 $v_1 + v_2$ or $v_2 + v_3 = 1/(1/\lambda_1 + 1/\lambda_2)$ or $1/(1/\lambda_2 + 1/\lambda_3)$

	Fundamental	1 st Overtone	Combinations
	(λ nm)	(λ nm)	(λ nm)
v_1	3050	1525	2031 (v ₁ + v ₂)
v_2	6080	3040	
ν_{3}	2870	1435	1950 (v ₂ + v ₃)

What kind of information can be found in the vis-NIR?

- Strong absorption by water (1400 & 1900 nm)
- Absorbtion by vibrations of molecular bonds (C-H, O-H, N-H and C=O), Combination bands and overtones from longer wavelengths

Successfully used for numerous applications:

- Agriculture Forage and grain quality, soil mapping...
- Food industry Process and quality control...
- Pharmaceutical industry Process and quality control...
- Medicine Blood status, body fat...
- Petrochemical industry quality, polymers, plastics...
- Etc.

Pioneers for a wider use

William Herschel discovered NIR radiation in 1800

Karl Norris at USDA chose NIR for fast, quantitative determination of moisture, protein and oil in wheat in the 1950s. "Father of modern NIR spectroscopy"

He applied MLR for calibration in a publication in 1968 – the multivariate approach.

Phil Williams converted protein testing for Canada's export wheat to NIRS on the first commercial instrument (Dickey-John) in 1975-1976. Spread the technology over the world.

John S. Shenk installed in 1978 a portable instrument in a mobile van that brought the technology to the farm, hay-markets, etc. Former of ISI software

Soil – complex and diverse

Two main constituents – a mineral and an organic fraction

Mixture of numerous minerals at different particle sizes

 Humus and residues at different degree of degradation and origin

Structure

Main factors influencing soil spectra

Water Clay minerals Organic matter Structure

Main soil spectral features (Water)

General influence of water on spectra

Clay fraction

- Size fraction <0.002 mm (2µ)
- Secondary, layered clay minerals (illite, smectite, kaolinite, etc.)
- Primary minerals (quartz, feldspars, etc.)
- Carbonates
- Sesquioxides or metal oxides (gibbsite, goethite, hematite)

Vis-NIR clay mineral fingerprints

Natural soils – a mixture of everything

В

Effect of organic matter on soil spectra

Interaction between texture and SOM

100% Sand

~2% SOC

0% Sand (~40% clay)

0% SOC

~0.5% SOC

0% SOC

Common absorption bands of organic matter in soil

Alkyl fundamental at 3413 and 3509 nm in Mid-IR

Example of alkyl groups

Effect of structure

- Sieving and grinding

Scatter correction through transformation

Plus and minus with diffuse reflectance

- + Rapid analysis in real-time
- + Minimum sample preparation
- + Non-destructive, Non-invasive
- + Flexible
- + Several parameters can be analyzed simultaneously
- + Rugged instruments for field analyses can be built
- Results can typically not be red directly, reference required
- Calibration is empirical

Statistical estimates of model performance

- Validation statistics
- R² = Explained variance by model
- RMSE = Root Mean Squared Error $RMSEP = \sqrt{\left[\left(\sum_{i=1}^{n} d_i^2\right)/n\right]}$

• RPD = Ratio of performance to deviation = <u>Stdev</u> RMSE

What is good enough?

Large soil spectral libraries (SSL)

- Much effort to build large SSL's and gain efficiency through general calibrations at the global/national/regional scale
- Many perform well when validated at their own scale

The Swedish national SSL ~12 000 samples Agricultural top soil

В

Large soil spectral libraries (SSL) for farm or field scald applications?

- Are large scale calibrations suitable to resolve small scale variations?
- Can this be better than local few-sample-calibrations (10-50 samples)

SLU

J

Validation at the field scale

- We compared the National scale global PLS calibration with:
- The MBL (Memory Based Learner) PLS
- The National SSL spiked with 10-40 local samples
- PLS on 10-40 local samplas only

National and farm data sets

slu

J

Instrument transfer

J

The Swedish national SSL ~12 000 samples Agricultural top soil

Memory Based Learner PLS in soil spectroscopy

- For each sample to predict, a number of similar samples in the SSL are chosen for the calibration.
- Principal components distance using the spectral features

 Ramirez-Lopez et al. 2013. The spectrum-based learner: A new local approach for modeling soil vis–NIR spectra of complex datasets. Geoderma, 195–196, p. 268-279

Distribution of Farm RMSEP - Clay Content

SLU

Distribution of Farm RMSEP – SOM

J

Exampel of local predictions

J

Conclusions

- Large systematic errors with any national model
- Instrument transfer enhanced these systematic errors
- Spiking with N=10 reduced the systematic error to correspond to a local farm calibration with N=40
- Spiking reduced the instrument transfer effect substantially
- Wet chemistry on 10 local samples is affordable on most farms
- Combining an SSL with few local samples combine the robustness and precision of many samples with the accuracy of local samples