

Artificial intelligence and machine learning in soil spectroscopic modelling

Dr. Zefang Shen and Prof. Raphael Viscarra Rossel

Soil and Landscape Science Curtin University, Australia

5th July 2023

Diffuse reflectance spectroscopy

AI and machine learning

• Examples in soil spectroscopic modelling

Challenges

- Hyperparameter tuning
- Interpretation
- Localisation

Spectroscopy

Sensors are becoming smaller, smarter, cheaper, faster, more energy efficient...

Soil diffuse reflectance spectroscopy

Spectra measure the composition of soil which determines soil properties

A single spectrum can provide information on the soil and its properties

Soil spectroscopic modelling - Multivariate regression

- A soil spectral library with spectra and corresponding soil properties.
- Statistical and machine learning can be used as the predictive models.
 - Hyperparameters of the models need to be tuned for accurate predictive models.

Artificial intelligence and machine learning

Soil spectroscopy with Machine Learning

Large-scale

Soil spectroscopy for mine site rehabilitation

56 sampling plots, 280 subplots.

SOIL, 8, 467–486, 2022 https://doi.org/10.5194/soil-8-467-2022 @ Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License. Miniaturised visible and near-infrared spectrometers for assessing soil health indicators in mine site rehabilitation Zefang Shen¹, Haylee D'Agui², Lewis Walden¹, Mingxi Zhang¹, Tsoek Man Yiu¹, Kingsley Dixon², Paul Nevill^{2,3}, Adam Cross^{2,4}, Mohana Matangulu¹, Yang Hu¹, and Raphael A. Viscarra Rossel¹

Physical property (5)	Unit	Mean	SD
Sand	%	51.44	12.38
Slit	%	24.10	12.22
Clay	%	24.46	17.12
Bulk density	g cm ⁻³	1.36	0.15
Electrical conductivity	dS m ⁻¹	0.19	0.49
Biological property (5)	Unit	Mean	SD
CO ₂ production	mg L-1	30.41	29.22
Fungal richness	-	52.26	39.87
Fungal diversity	-	2.82	0.65
Bacterial richness	-	656.64	249.81
Bacterial diversity	-	5.58	0.60

Chemical property (19)	Unit	Mean	SD
pH _{Ca}	-	5.74	1.20
рН _w	-	6.68	1.06
Organic C	%	1.21	1.07
Total N	mg kg ⁻¹	14.52	23.50
P (Colwell)	mg kg ⁻¹	4.53	2.62
K (Colwell)	mg kg ⁻¹	191.71	145.15
В	mg kg ⁻¹	0.73	1.04
S	mg kg ⁻¹	60.13	225.00
Cu	mg kg ⁻¹	0.84	0.72
Fe	mg kg ⁻¹	18.24	16.89
Mn	mg kg ⁻¹	13.94	15.64
Zn	mg kg ⁻¹	0.56	0.35
Exchangeable Ca	meq 100 g ⁻¹	6.09	5.67
Exchangeable Mg	meq 100 g ⁻¹	1.91	1.81
Exchangeable Na	Meq 100 g ⁻¹	0.65	1.53
Exchangeable K	meq 100 g ⁻¹	0.38	0.31
Exchangeable Al	meq 100 g ⁻¹	0.12	0.14
Ammonium N	meq 100 g ⁻¹	3.39	3.27
Nitrate N	meq 100 g ⁻¹	11 .13	21.66

Shen et al., 2022

Soil spectroscopy for mine site rehabilitation

Soil spectroscopy for mine site rehabilitation

- The visible range spectrometer (A) accurately estimated soil texture (sand, silt, clay)
- The NIR spectrometers (B, C, D) estimated most of the soil properties with moderate or greater accuracy.
- Combining visible and NIR spectrometers produced more accurate estimates.
- Miniaturised spectrometers and their combinations estimated 24 out of 29 properties with moderate or greater accuracy.

Hyperparameter tuning

Selection of hyperparameters are critical for the performance of machine learning models.

Interpretation

Machine learning models are usually considered as 'black-boxes' because they are difficult to interpret by humans.

Localisation

Models developed with large and diverse spectral datasets usually generalize poorly at more local scales.

Grid search

Evaluate all possible hyperparameter configurations

Random search	Algorithm	Hyperparameters	evaluations
Evaluate randomly sampled hyperparameter configurations	Partial least squared regression	1	~20
Hyperparameter optimization, e.g. Bayesian	Cubist	2	~80
optimization Use information from the previous evaluations to guide the hyperparameter search.	Convolutional Neural network	104	$> 2^{104} \sim 10^{31}$

Grid search

Number of model

Number of

Hyperparameter tunning – Bayesian optimisation

Hyperparameter tunning – Neural Networks

Artificial Neural Networks

One-dimensional convolutional neural networks

Hyperparameter tunning – Bayesian optimisation

Building blocks are optimsed for best cross-validation performance using Bayesian optimisation.

Objective:

Mean RMSE from 10-fold cross-validation

Hyperparameters:

- # Conv-blocks
- # FC-blocks
- Hyperparameters in the Conv- and FC-blocks

Hyperparameter tunning – Bayesian optimisation

Optimal 1D-CNN on the LUCAS dataset.

- Bayesian optimization produced the most accurate 1D-CNN.
- Bayesian optimization take much less trials to converge.
- Bayesian optimization can automatically discover an optimal 1D-CNN with best accuracy.

Explainability

Explainable Artificial intelligence (XAI)

Tools and methods to help understand and interpret predictions made by your machine learning models

Examples:

- Perturbation-based feature importance
- SHapley Additive exPlanations (SHAP)

Understanding soil fungal abundance drivers

An example with perturbation-based XAI.

Models tested:

- Partial lest squared regression (PLSR)
- Support vector machines (SVM)
- Random forests (RF)
- eXtreme Gradient Boosting (XGBoost)
- 1D-CNN

Understanding soil fungal abundancy drivers

1D-CNN produced the most accurate predictions for the fungal properties.

Perturbation-based Feature Importance

- 1. Perturb a predictor of interest.
- 2. Predict on validation data.
- 3. Calculate the changes in accuracy (R²).

Interpreting soil spectroscopic modeling with SHAP values

SHAP values

- SHAP values are based on cooperative game theory and derive from Shapley values.
- Determine the contribution of each feature for a prediction.
- A background dataset is used as a reference for calculating the expected value.

Understanding SHPA values

- Positive SHAP values indicate that the feature increases the prediction compared to the expected value
- Negative values indicate the opposite.

Haghi et al., 2021

"Global" models built with large and diverse datasets do not generalise well on more homogeneous "local" data.

Localisation methods

- Spiking
 - Augment the local data with the soil spectral library
- Conditional filtering
 - Filter the soil spectral library with pedologic, geographic, land use information etc.
 - Augment the local data with the filtered library
- Distance-based deterministic search
 - Use distance metrics (e.g. Mahalanobis distance) to select spectral neighbours in the soil spectral library.
 - Develop spectroscopic modelling on the selected neighbours and predict on local data.
- Data-driven heuristic search
 - Generate subsets from the soil spectral library
 - Evaluate the subsets on the analysed local data
 - Augment the local data with the best subset
- Reusing feature representations
 - Train a neural network on the soil spectral library
 - Freese the early layers and re-train the neural network on local data

Localisation as a Transfer Learning problem

Classification of Transfer Learning

- Distance-based deterministic sea
- Data-driven heuristic search

Local soil organic carbon (SOC) modelling Deep transfer learning for localising spectroscopic estimates of soil organic carbon at the farm-scale with a global soil spectral library (SSL).

	Dataset	# samples
SSL	Global	50,422
	China	5,183
	Sweden	2,319
	USA	4,155
Local	China	135
	Sweden	108
	USA	216

Global SSL — Country SSL — Local

Shen et al. (2022), Viscarra Rossel et al. (2016).

Transferring instances RS-LOCAL-v2.0

Resampling search Repeat 1. Random selection of k instances from SSL (K) 2. Fit PLSR on k instances 3. Evaluate PLSR on local data (*n*) 4. Assign and record RMSE Localisation Rank SSL instances by RMSE Remove instances with largest RMSE Update SSL Yes SSL > kLocalised data (k+n)PLSR—partial least square regression; RMSE—root means squared error.

RS-Local-v2.0 selects relevant samples from SSL to augment local data for modelling.

1D-CNN and transferring representations

Lobsey et al., (2017), Shen and Viscarra Rossel (2021), Shen et al. (2022)

- (1) Local: 1D-CNN developed on local data (n=30).
- 2 Global/Country: 1D-CNN developed on Global/Country SSL(s)
- 3 DTL-I: Deep transfer learning of Instances
- (4) DTL-R: Deep transfer learning of Representations
- 5 DTL-IR: Deep transfer learning of Instances and Representations.

 $\Delta RMSE = (RMSE_{Local} - RMSE_{Other}) \times 100$

- DTL-I from global SSL improved local SOC prediction accuracy by 25.8% on average.
- DTL-R and DTL-IR did not show consistent improvement.

- Soil spectroscopy is cost-effective for predicting soil properties.
- Al and machine learning are commonly used for soil spectroscopic modelling.
- Hyperparameter tunning is critical for obtaining accurate predictive models.
- Explainable Artificial intelligence (XAI) can help derive understanding of machine learning-based soil spectroscopic modelling.
- Transfer learning is the key for accurate local modelling with large spectral libraries.

References

- Shen, Z. and Viscarra Rossel, R.A., 2021. Automated spectroscopic modelling with optimised convolutional neural networks. Scientific Reports, 11(1), pp.1-12.
- Shen, Z., Ramirez-Lopez, L., Behrens, T., Cui, L., Zhang, M., Walden, L., Wetterlind, J., Shi, Z., Sudduth, K.A., Baumann, P., Song, Y., Catambay, K., Viscarra Rossel, R.A., 2022. Deep transfer learning of global spectra for local soil carbon monitoring. *ISPRS Journal of Photogrammetry and Remote Sensing*, 188, pp.190-200.
- Viscarra Rossel, R.A., Behrens, T., Ben-Dor, E., Brown, D.J., Demattê, J.A.M., Shepherd, K.D., Shi, Z., Stenberg, B., Stevens, A., Adamchuk, V. and Aïchi, H., 2016. A global spectral library to characterize the world's soil. Earth-Science Reviews, 155, pp.198-230.
- Lobsey, C.R., Viscarra Rossel, R.A., Roudier, P. and Hedley, C.B., 2017. RS-Local data-mines information from spectral libraries to improve local calibrations. European Journal of Soil Science, 68(6), pp.840-852.
- Yang, Y., Shen, Z., Bissett, A. and Viscarra Rossel, R.A., 2022. Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions. Soil, 8(1), pp.223-235.
- Shen, Z., D'Agui, H., Walden, L., Zhang, M., Yiu, T.M., Dixon, K., Nevill, P., Cross, A., Matangulu, M., Hu, Y. and Viscarra Rossel, R.A., 2022. Miniaturised visible and near-infrared spectrometers for assessing soil health indicators in mine site rehabilitation. Soil, 8(2), pp.467-486.
- Haghi, R.K., Pérez-Fernández, E. and Robertson, A.H.J., 2021. Prediction of various soil properties for a national spatial dataset of Scottish soils based on four different chemometric approaches: A comparison of near infrared and mid-infrared spectroscopy. *Geoderma*, *396*, p.115071.

Thank you!

Dr. Zefang Shen

Research Associate

Soil & Landscape Science

Curtin University, Australia

Email: zefang.shen@curtin.edu.au

