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Diffuse reflectance spectroscopy

AI and machine learning

•  Examples in soil spectroscopic modelling

Challenges

•  Hyperparameter tuning

•  Interpretation

•  Localisation



Spectroscopy



Soil diffuse reflectance spectroscopy

Spectra measure the composition of soil which determines soil properties

A single spectrum can provide information on the soil and its properties​
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Soil spectroscopic modelling - Multivariate regression

• A soil spectral library with 

spectra and corresponding 

soil properties.

• Statistical and machine 

learning can be used as the 

predictive models.

• Hyperparameters of the 

models need to be tuned for 

accurate predictive models.
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Artificial intelligence

Machine learning

Deep Learning

Artificial intelligence and machine learning

…and also SOIL SCIENCE



Soil spectroscopy with Machine Learning

Soil 

spectroscopy 

+

Machine 

Learning

Rapid

Accurate

Cost-efficient

Non-polluting

Large-scale

Portable



Soil spectroscopy for mine site rehabilitation

Physical  
property (5)

Unit Mean SD

Sand % 51.44 12.38

Slit % 24.10 12.22

Clay % 24.46 17.12

Bulk density g cm-3 1.36 0.15

Electrical 
conductivity

dS m-1 0.19 0.49

Biological 
property (5)

Unit Mean SD

CO2 
production

mg L-1 30.41 29.22

Fungal 
richness

- 52.26 39.87

Fungal 
diversity

- 2.82 0.65

Bacterial 
richness

- 656.64 249.81

Bacterial 
diversity

- 5.58 0.60

Chemical  
property (19)

Unit Mean SD

pHCa - 5.74 1.20

pHW - 6.68 1.06

Organic C % 1.21 1.07

Total N mg kg-1 14.52 23.50

P (Colwell) mg kg-1 4.53 2.62

K (Colwell) mg kg-1 191.71 145.15

B mg kg-1 0.73 1.04

S mg kg-1 60.13 225.00

Cu mg kg-1 0.84 0.72

Fe mg kg-1 18.24 16.89

Mn mg kg-1 13.94 15.64

Zn mg kg-1 0.56 0.35

Exchangeable Ca meq 100 g-1 6.09 5.67

Exchangeable 
Mg

meq 100 g-1 1.91 1.81

Exchangeable Na Meq 100 g-1 0.65 1.53

Exchangeable K meq 100 g-1 0.38 0.31

Exchangeable Al meq 100 g-1 0.12 0.14

Ammonium N meq 100 g-1 3.39 3.27

Nitrate N meq 100 g-1 11 .13 21.66

56 sampling plots, 280 subplots.

Shen et al., 2022



29 soil health indicators
• Physical (5)
• Chemical (19)
• Biological (5)

Predict soil health indicators

Spectrometers

Soil spectroscopy for mine site rehabilitation

Soil samples

Miniaturised Research-grade

Machine learning



Soil spectroscopy for mine site rehabilitation

• The visible range spectrometer (A) accurately 

estimated soil texture (sand, silt, clay)

• The NIR spectrometers (B, C, D) estimated 

most of the soil properties with moderate or 

greater accuracy.
• Combining visible and NIR spectrometers 

produced more accurate estimates.

• Miniaturised spectrometers and their 

combinations estimated 24 out of 29 properties 

with moderate or greater accuracy.

Poor

Moderate

Substantial

Near-perfect



Challenges in soil spectroscopic modelling

Hyperparameter tuning

Selection of hyperparameters are critical for the performance of machine 

learning models.

Interpretation

Machine learning models are usually considered as ‘black-boxes’ because 

they are difficult to interpret by humans.

Localisation

Models developed with large and diverse spectral datasets usually 

generalize poorly at more local scales.



Hyperparameter tunning

Grid search

Evaluate all possible hyperparameter 

configurations

Random search

Evaluate randomly sampled hyperparameter 

configurations

Hyperparameter optimization, e.g. Bayesian 

optimization

Use information from the previous evaluations to 

guide the hyperparameter search.

Algorithm
Number of 

Hyperparameters
Number of model 

evaluations

Partial least 
squared 

regression
1 ~20

Cubist 2 ~80

Convolutional 
Neural 

network
104 > 2104 ~ 1031

Grid search



Hyperparameter tunning – Bayesian optimisation

Optimal hyperparameter configuration

Randomly sample a 
hyperparameter configuration

Calculate the objective

Max. # random configurations reached? 

Calculate the objective

Propose a promising configuration

Objective

Surrogate 
function

Performance 
Metric

Stopping criteria reached?

Yes

No

Yes

No



Hyperparameter tunning – Neural Networks

Output

Artificial Neural Networks

Input

Hidden

One-dimensional  convolutional neural networks

Convolutional 
layer

Fully-connected 
layer

Flatten layer



Hyperparameter tunning – Bayesian optimisation

Building blocks are optimsed for best cross-validation 

performance using Bayesian optimisation.

Objective:

Mean RMSE from 10-fold cross-validation

Hyperparameters:

• # Conv-blocks
• # FC-blocks 

• Hyperparameters in the Conv- and FC-blocks



Hyperparameter tunning – Bayesian optimisation

Optimal 1D-CNN on the LUCAS dataset.

• Bayesian optimization produced the most accurate 1D-CNN.
• Bayesian optimization take much less trials to converge.
• Bayesian optimization can automatically discover an optimal 1D-CNN with 

best accuracy.



Interpretation of machine learning

Explainability
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Deep Neural 
Networks

Support 
Vector 

Machines

Gaussian
Processes

Regression/ 
Decision 

Trees

Explainable Artificial intelligence (XAI)

Tools and methods to help understand 

and interpret predictions made by your 

machine learning models

Examples:

• Perturbation-based feature 

importance

• SHapley Additive exPlanations 

(SHAP)



Understanding soil fungal abundance drivers

Models tested:
• Partial lest squared regression 

(PLSR)

• Support vector machines 

(SVM)

• Random forests (RF)

• eXtreme Gradient Boosting 

(XGBoost)

• 1D-CNN

Climate
Terrain
Vegetation
Parent material

An example with perturbation-based XAI.



Understanding soil fungal abundancy drivers

1D-CNN produced the most accurate predictions for the 
fungal properties.

Perturbation-based Feature Importance
1. Perturb a predictor of interest.
2. Predict on validation data.
3. Calculate the changes in accuracy (R2).



Interpreting soil spectroscopic modeling with SHAP values

SHAP values
• SHAP values are based on cooperative game theory and 

derive from Shapley values.
• Determine the contribution of each feature for a 

prediction.
• A background dataset is used as a reference for calculating 

the expected value.

Understanding SHPA values
• Positive SHAP values indicate that the feature increases 

the prediction compared to the expected value
• Negative values indicate the opposite.

Haghi et al., 2021
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Localising soil spectroscopic modelling

“Global” models built with large and diverse datasets do not 
generalise well on more homogeneous “local” data.

Spectra
Soil

property

Soil spectral library

spectra

Local data

Inaccurate 
estimates

Train Predict



Localisation methods

• Spiking
• Augment the local data with the soil spectral library 

• Conditional filtering
• Filter the soil spectral library with pedologic, geographic, land use information etc.
• Augment the local data with the filtered library

• Distance-based deterministic search
• Use distance metrics (e.g. Mahalanobis distance) to select spectral neighbours in the soil spectral 

library.
• Develop spectroscopic modelling on the selected neighbours and predict on local data.

• Data-driven heuristic search
• Generate subsets from the soil spectral library
• Evaluate the subsets on the analysed local data
• Augment the local data with the best subset

• Reusing feature representations
• Train a neural network on the soil spectral library 
• Freese the early layers and re-train the neural network on local data



Localisation as a Transfer Learning problem

Source (global) 
domain

Information

Target (local) 
domain

Instances 
(samples)

Representations

Data Modelling Prediction

Data Modelling Prediction

Parameters



Classification of Transfer Learning

Transfer learning

Analysed data available 
in the local domain

Inductive TL Transductive TL

Instance-based TL Representation-based TL Parameter-based TL

Yes No

• Spiking
• Conditional filtering
• Distance-based deterministic search
• Data-driven heuristic search

• Reusing feature representations



Localisation with Deep Transfer Learning (DTL)

Shen et al. (2022), Viscarra Rossel et al. (2016).

Dataset # samples

SSL

Global 50,422

China 5,183

Sweden 2,319

USA 4,155

Local

China 135

Sweden 108

USA 216

China Sweden USA
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Local soil organic carbon (SOC) modelling
Deep transfer learning for localising spectroscopic 
estimates of soil organic carbon at the farm-scale 
with a global soil spectral library (SSL).



Localisation with Deep Transfer Learning (DTL)

a

b c

a

b c

Transferring instances 1D-CNN and transferring representations

Lobsey et al., (2017), Shen and Viscarra Rossel (2021), Shen et al. (2022)
RS-Local-v2.0 selects relevant samples from 
SSL to augment local data for modelling.

PLSR—partial least square regression; 
RMSE—root means squared error.



Localisation with Deep Transfer Learning (DTL)a

b c

① Local: 1D-CNN developed on local data (n=30).
② Global/Country: 1D-CNN developed on Global/Country SSL(s)
③ DTL-I: Deep transfer learning of Instances
④ DTL-R: Deep transfer learning of Representations
⑤ DTL-IR: Deep transfer learning of Instances and Representations.

Shen et al. (2022)



Localisation with Deep Transfer Learning (DTL)

• DTL-I from global SSL improved local SOC 
prediction accuracy by 25.8% on average.

• DTL-R and DTL-IR did not show consistent 
improvement.

Δ𝑅𝑀𝑆𝐸 = (𝑅𝑀𝑆𝐸𝐿𝑜𝑐𝑎𝑙 − 𝑅𝑀𝑆𝐸𝑂𝑡ℎ𝑒𝑟)× 100

ME—Mean error; 
𝜌𝑐—Concordance correlation coefficient.



Take-home messages

• Soil spectroscopy is cost-effective for predicting soil properties.

• AI and machine learning are commonly used for soil spectroscopic modelling.

• Hyperparameter tunning is critical for obtaining accurate predictive models.

• Explainable Artificial intelligence (XAI) can help derive understanding of machine 
learning-based soil spectroscopic modelling.

• Transfer learning is the key for accurate local modelling with large spectral libraries.



References

• Shen, Z. and Viscarra Rossel, R.A., 2021. Automated spectroscopic modelling with optimised convolutional neural 

networks. Scientific Reports, 11(1), pp.1-12.

• Shen, Z., Ramirez-Lopez, L., Behrens, T., Cui, L., Zhang, M., Walden, L., Wetterlind, J., Shi, Z., Sudduth, K.A., 

Baumann, P., Song, Y., Catambay, K., Viscarra Rossel, R.A., 2022. Deep transfer learning of global spectra for 

local soil carbon monitoring. ISPRS Journal of Photogrammetry and Remote Sensing, 188, pp.190-200.

• Viscarra Rossel, R.A., Behrens, T., Ben-Dor, E., Brown, D.J., Demattê, J.A.M., Shepherd, K.D., Shi, Z., Stenberg, 

B., Stevens, A., Adamchuk, V. and Aïchi, H., 2016. A global spectral library to characterize the world's soil. Earth-

Science Reviews, 155, pp.198-230.

• Lobsey, C.R., Viscarra Rossel, R.A., Roudier, P. and Hedley, C.B., 2017. RS‐Local data‐mines information from 

spectral libraries to improve local calibrations. European Journal of Soil Science, 68(6), pp.840-852.

• Yang, Y., Shen, Z., Bissett, A. and Viscarra Rossel, R.A., 2022. Estimating soil fungal abundance and diversity at a 

macroecological scale with deep learning spectrotransfer functions. Soil, 8(1), pp.223-235.

• Shen, Z., D'Agui, H., Walden, L., Zhang, M., Yiu, T.M., Dixon, K., Nevill, P., Cross, A., Matangulu, M., Hu, Y. and 

Viscarra Rossel, R.A., 2022. Miniaturised visible and near-infrared spectrometers for assessing soil health 

indicators in mine site rehabilitation. Soil, 8(2), pp.467-486.

• Haghi, R.K., Pérez-Fernández, E. and Robertson, A.H.J., 2021. Prediction of various soil properties for a national 

spatial dataset of Scottish soils based on four different chemometric approaches: A comparison of near infrared 

and mid-infrared spectroscopy. Geoderma, 396, p.115071.



Dr. Zefang Shen

Research Associate

Soil & Landscape Science

 Curtin University, Australia

Email: zefang.shen@curtin.edu.au

Thank you!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

