Sustainable rehabilitation, bridging yield gaps and increasing farmers' income in salt affected rice-wheat agroecosystems: A farmers' participatory assessment Parvender Sheoran*, Raman Sharma, Arvind Kumar, Ranjay K. Singh, Arijit Barman, Kailash Parjapat, R. Raju, Yousuf Jaffer Dar and Satyendra Kumar ICAR-Central Soil Salinity Research Institute, Karnal, INDIA ### INTRODUCTION With shrinking land resources, sustainable restoration of degraded lands is vital to ensure food security and address livelihood concerns in arid and semi-arid regions worldwide. Continuous use of bicarbonate dominated poor quality water results in the build-up of sodium saturated soil colloids and dispersion of clay particles causing soil sodicity/alkalinity problems and negatively impacting agricultural productivity. To improve current understanding and stabilize crop production, it is imperative to assess farmers' traditional salinity the management strategies and also develop a climate resilient integrated soil-crop management system to harness the potential of salt-affected soils. ### **METHODOLOGY** The present study focuses on small-scale production systems in sodicity-affected Ghaghar basin of Kaithal district in Haryana (India) where input-intensive, highly mechanized rice-wheat rotation is followed for more than two decades (Figure 1). Five villages adopted under CSSRI Farmer FIRST Project were purposively selected on account of prevalence of sodic soils (40% area; soil pH>8.5) and high residual (90% alkalinity in groundwater area; $RSC_{iw} > 2.5 \text{ me L}^{-1}$) (Fig 1). Fig. 1 Extent and distribution of soil sodicity in saltaffected Ghaghar Basin of Haryana Location: 29.762°-29.838° N and 76.426°-76.518° E To validate the synergy among selected management practices and their associated impact in alleviating the sodicity stress and improving plant physiological relations, yield traits and economic feasibility; paticipatory trials were conducted at farmers' fields representing variable sodicity stress (soil pH: 8.56-9.52; RSC_{iw}: 2.6-6.1 me L^{-1}). • Sodic soils amelioration with $GR_{25}+PM_5$ accelerated the reclamation process, improved plants salt tolerance and enhanced rice-wheat system performance by 26% compared to unamended control and by 5% over GR_{50} . **RESULTS** - Curve Expert model revealed genotypic variation in N requirements attaining economic optima at 90 kg ha⁻¹ in CSR30 Basmati, 140 kg ha⁻¹ in PB1121, 173 kg ha⁻¹ in KRL210 and 188 kg ha⁻¹ in HD 2967. - Transplanting rice using 2 seedlings hill⁻¹ at 20 \times 15 cm spacing, managing multiple resistance in *Phalaris* minor through sequential herbicides and foliar K-nutrition in wheat maximized opportunities for optimal resource-use and sustainably enhance yields and profit margins compared to farmers' practice of randomly transplanting one seedling hill-1, sole dependency on post-emergence herbicides and ignorance to foliar K fertilizers. - Integrated approach involving gypsum and pressmud-mediated sodic land reclamation, use of stress tolerant varieties and crop-specific agronomic manipulations (denser planting, balanced nutrition, effective weed control) in rice-wheat system displayed appreciable reductions in soil sodification, improved plant physiological and growth traits, and enhanced system yields, profit margins and benefit:cost ratio (8.29 t ha⁻¹, 2103 US\$ ha⁻¹ and 3.21) in comparison to existing recommendations (7.86 t ha⁻¹, 1943 US\$ ha⁻¹ & 3.05) and farmers' practices (6.63 t ha^{-1} , 1503 US\$ ha^{-1} & 2.60), respectively. **Table 2.** System productivity and economic analysis of management practices. | FMPs | BMPs | MMPs | |-------------------|---|---| | | | | | 2.86 ^c | 3.35 ^b | 3.54 ^a | | 3.77 ^c | 4.51 ^b | 4.75 ^a | | 6.63 ^c | 7.86 ^b | 8.29a | | | | | | 429 | 437 | 438 | | 942 | 950 | 951 | | 1503 ^c | 1943 ^b | 2103a | | | 2.86 ^c 3.77 ^c 6.63 ^c 429 942 | 2.86 ^c 3.35 ^b 3.77 ^c 4.51 ^b 6.63 ^c 7.86 ^b 429 437 942 950 | | Table 1. Catalogue of management practices in rice-wheat rotation. Fig. 2. Changes in soil ESP in response to management practices. | | | | | | |---|--|--------------------------------|--|--|--| | Management practices | Reclamation amendments [†] | Variety | Planting techniques | Fertilizer management | Weed Management | | FMPs | GR ₅₀ mediated soil amelioration | Rice: CSR 30
Wheat: HD 2967 | | - | Rice: Pretilachlor @ 1 kg ha ⁻¹ within 2–3 DAT Wheat: Tank mix application of 2–4 times higher dose of post-emergence herbicides 35–75 DAS | | GMPs | GR ₅₀ mediated soil amelioration | Rice: CSR 30
Wheat: KRL 210 | 15 cm spacing
Wheat: Zero-till sown (22.5 | Rice: 75–13–5 kg N–P–Zn ha ⁻¹
Wheat: 150–26 kg N–P ha ⁻¹ ; foliar
sprays of 1 kg K ha ⁻¹ each at 5–
10% heading and 15–20 days of
first spray –50 kg N–P–K ha ⁻¹ | Wheat: Sequential application of pendimethalin at 1.5 kg ha ⁻¹ after sowing with clodinafop 60 g/pinoxaden 50 g ha ⁻¹ at 35–40 DAS | | MMPs | GR ₂₅ +PM ₅
mediated soil
amelioration | Same as GMPs | Same as GMPs | Rice: 90–13–5 kg N–P–Zn ha ⁻¹
Wheat: 172–26 kg N–P ha ^{-1;} foliar
sprays of 1 kg K ha ⁻¹ each at 5–
10% heading and 15–20 days of | Same as GMPs | ### CONCLUSIONS This study highlights the need of devising ecosystem-based approach involving combinations of genetic tolerance with affordable soil, nutrient crop and management practices in alleviating the sodicity stress, bridging yield gaps with optimal resource use, socio-economic development and eventually achieving the UN-SDGs of land degradation neutrality, food security and environmental protection. Sustainable use of sugarcane pressmud compensating 25% gypsum requirement affordable alternative for provided an reclaiming sodic soils. Yield enhancement with added N beyond the existing recommendations suggests upward revision and corrective N applications to compensate sodicity stress. Effective management of resistant *Phalaris minor* weed through sequential use of herbicides and foliar-K nutrition provided affordable options to sustainably enhance wheat yields compared to farmers' dependency on post-emergence herbicides and ignorance to foliar fertilizers. ## Global Symposium on SALT AFFECTED SOILS 20-22 October 2021 first spray