

Food and Agriculture Organization of the United Nations

GLOBAL SYMPOSIUM ON SOIL INFORMATION AND DATA

MEASURE MONITOR MANAGE Advances In DSM For Global And **Continental Applications:** Innovative Covariates, Model **Applicability And Spatial** Uncertainty Assessment Laura Poggio - ISRIC

> September 25-28, 2024 Nanjing, China

Advances In DSM For Global And Continental Applications: Innovative Covariates, Model Applicability And Spatial Uncertainty Assessment

Outline

• Models and their inputs

Observations, covariates and models.

- Maps and their evaluation Maps and maps and some numbers. Uncertainty.
- Concluding remarks

main ingredients of DSM

- Training data
- Covariates
- (Spatial) Predictive model
- Maps and their evaluation

The most useful map for the given application at the appropriate scale. Not necessarily the most accurate.

DSM - critical evaluation?

- All training data available even if of dubious quality
- All covariates that can be handled
- Most complex model or ensembles of models
- Simple point wise evaluation

DSM - What users want? an example

CUP4SOIL – User Requirement Study **User Survey – Resolution**

What is your preferred spatial resolution you are working on (in pixel sizes)?

68 50 1.9 40 18 10 11 20 11 10

What accuracy level is still useful/required for your application given the specifications above?

34

Spatial pattern should make sense, no absolute accuracy necessary

- Correct quantitative values necessary 49

Finer resolutions are always desirable. but what are the coarsest reslutions that would still work for your use? (with accuracy matching resolution)

Models and their inputs Observations, covariates and models.

Alom et al, Electronics, 2019

Bianco et al, IEEE Access, 2018

Everything but the kitchen sink?

- Are all these nicely available covariates necessary?
- Are all these nicely available covariates *useful*?
- How many data points available?

Innovative covariates

ID	mtry	ntree	MEC	RMSE
1	27	200	0.38	67.41
2	19	200	0.35	68.68
3	7	200	0.24	74.42
4	21	200	0.37	67.62
5	27	200	0.38	67.49
6	27	200	0.37	67.58
7	26	200	0.38	67.47

Maps and their evaluation Maps and maps and some numbers.

- validation statistics, point-wise usually by cross-validation.
- So we know how well DSM can reproduce these known points.
- map users are looking for areas in the soil landscape.
- evaluate DSM products by their spatial patterns, i.e., how well they reproduce the soil landscape.

Europe as example of data rich continent

Europe as example of data rich continent

About 94K input observations for various properties : SOC,SIC,pH,nitrogen,sand,silt,clay, bulk density, coarse fragments

Europe as example of data rich continent

Not many observations available below 60cm (example for SOC)

Depth interval (cm)	Number	Percentage
0-5	217	0.01
5-15	14074	0.71
15-30	5311	0.27
30-60	94	0.00
>60	None	None

Depth distribution ...

Some maps

SOC

pH - H2O

Some cross-validation

pH - H2O

Some point accuracy

map	Resolution.m.	model	Covariates	rmse	mae	mec	ссс	mtry
r1	100	Europe	63	69.20	34.69	0.34	0.50	14
r2	100	Europe	193	73.64	34.84	0.28	0.45	28
r3	20	Europe	196	67.41	33.35	0.38	0.53	27

Which is the most suitable for the user case?

- the most accurate?
- the one with most reliable landscape link?
- the one created for the scale of the application?
- the most complex?

Maps and their evaluation Uncertainty.

Evaluating DSM products: uncertainty

- Spatial uncertainty assessment is a key aspect of DSM products
- Most often represented with inter-quantile range Q95 – Q05 or ratio (Q95 – Q05)/Q50
- Many components in uncertainty.

Poggio et al, 2021

Some uncertainty maps

SOC

pH - H2O

Evaluating DSM products: uncertainty

- Positional accuracy
- Laboratory measurements
- Model
- Covariates
- ...

Area of Applicability

- Are the sampled locations representative of the covariates space?
- Do we have enough observations?
- Do we have too many covariates?

Area of applicability (AOA)

- area of applicability (AOA) of (spatial) prediction models (Meyer, Pebesma, 2021)
- The AOA is defined as the area where we enabled the model to learn about relationships based on the training data, and where the estimated cross-validation performance holds.
- A dissimilarity index (DI) is calculated based on distances to the training data in the multidimensional predictor variable space.
- variables are weighted by the model-derived importance scores prior to distance calculation.
- The AOA is then derived by applying a threshold based on the DI observed in the training data using cross-validation.

AOA/DI maps

DI example

DI (reclassed percentiles)

DI histogram (property one)

DI histogram (property two)

- QuadMap: Variable resolution maps to better represent spatial uncertainty (Padarian, McBratney, 2023)
- a method to create a single map with the uncertainty encoded as the pixel size.
- based on quadtree algorithm recursively partitioning the map into quadrants until the uncertainty criteria are fulfilled
- Using different uncertainty thresholds can yield dramatically different maps
- The selection of the final target will depend on the application

Quadmap

Low uncertainty threshold

High uncertainty threshold

Percentage of superpixels of different size for three uncertainty thresholds

size	low	medium	high
1	17	24	45
<10	12	40	49
<100	25	32	6
>100	46	4	0

- size 1 correspond to the resolution of the map, size 10 to a superpixel encompassing 10 map pixels
- not many areas support a resolution of 100m

Concluding remarks.

Concluding remarks

- Every statistical model ever created in the history of the human race is subjective
- There are endless possibilities of how data and methods can be combined.
- Uncertainty and error propagation are a crucial issue.

Concluding remarks

• DSM is a crucial tool for integration of soil and land management domains

• Expert knowledge (domain, users, stakeholders) is fundamental to evaluate DSM products

Many thanks to colleagues at ISRIC - World Soil Information and around the World

laura.poggio@isric.org

www.isric.org