

Food and Agriculture Organization of the United Nations

GLOBAL SYMPOSIUM ON SOIL INFORMATION AND DATA

MEASURE MONITOR MANAGE

Incorporating cultivation features for soil salinity mapping in cropland

Caiyun Wen, Miao Lu*

September 25-28, 2024 Nanjing, China

Soil salinization is the main type of land degradations

Soil salinization is one of the major hazards to global agricultural production, and is particularly prevalent in arid and semi-arid regions;
Soil salinity mapping helps to support local agricultural management by providing predicted content and spatial distribution of soil salinity.

(Science of The Total Environment, 2016) (RSE, 2019) (Science of The Total Environment, 2016)

Remote sensing is an important tool on a large scale

- Bare soil period: As the salt content increases, the soil surface develops more features that are clearly different from healthy soil, which facilitates the application of remote sensing imagery.
- Vegetation cover period: crop growth condition under salinity stress has significant differences, which is also able to be acquired by remote sensing.

The selection of input variables is a critical step

Indices derived from remote sensing imagery are widely used in soil salinity mapping, including salinity indices (SIs) and vegetation indices (VIs).

러는

Environmental variables

Spectral indices

NDSI	(B4 - B8)/(B4+B8)	NDVI	I	(B8 - B4)/(B8+B4)
CRSI	$\{[(B8 \times B4) - (B3 \times B2)]/[(B8 \times B4) + (B3 \times B2)]\}^{0.5}$	NDR	E	(B8 - B5)/(B8+B5)
SI1	$(B2 \times B4)^{0.5}$	EVI		$2.5 \times (B8-B4)/(B8+6 \times B4-7.5 \times B2+1)$
SI2	2×B3 - (B4+B8)	RVI		B8/B4
S13	(B2+B4) ^{0.5}	CIre		B8/(B5 - 1)
SI4	(B2 - B4)/(B2+B4)	BI		(B4 ² +B8 ²) ^{0.5}
SI5	(B3×B4)/B2	GI		B3/B4
SI6	(B2×B4)/B3	TCAR	21	3×1/R5 - R4)-0.2 × (R5 -R3) × (R5/R4)1
S17	(B4×B8)/B3	Term	u .	5.7(65-64)-6.2 * (65-65) * (65/64)/
SI8	B2/B4	NAVI		1 - B4/B8
SI9	(B3×B4) ^{0.5}	RG		B4/B3
SI10	$(B4^2+B3^2)^{0.5}$	GARI		$\{B8 - [B3 - (B2 - B4)]\}/\{B8 + [B3 - (B2 - B4)]\}$
SI11	(B3 ² +B4 ² +B8 ²) ^{0.5}	VARI		(B3 - B4)/(B3+B4 - B2)

Human activity information have great potential

Cultivation features are extracted for soil salinity mapping

Crop type feature

 Crop classification tasks are simpler than salt prediction tasks

☑ Salinity tolerance varies among crops

Crop	Threshold value	10% yield loss	25% yield loss	50% yield loss	100% yield loss	
EC _e (dS.m ⁻¹		EC _e (dS.m ⁻¹)	EC _e (dS.m ⁻¹)	EC _e (dS.m ⁻¹)	$EC_e (dS.m^{-1})$	
Beans (field)	1.0	1.5	2.3	3.6	6.5	
Cotton	7.7	9.6	13.0	17.0	27.0	
Maize	1.7	2.5	3.8	5.9	10.0	
Sorghum	4.0	5.1	7.2	11.0	18.0	
Sugar beets	7.0	8.7	11.0	15.0	24.0	
Wheat	6.0	7.4	9.5	13.0	20.0	

Table 1.2. Salinity tolerance of some kinds of crops

adapted from Doorenbos and Kassam (1979)

Study area and ground samples

352 crop samples in 2022:

- Other crops include wheat, vegetable, and soybean with small planting areas and similar salt tolerance.
- **218 soil samples from 0-**5cm in October 2022:
- Samples were divided into four levels, including nonsaline (<1 g/kg), lightly (1-2 g/kg), moderately (2-4 g/kg), and severely saline (4-6 g/kg).

Data Source: Sentinel-2 in 2022

Images from June through October were used to calculate SIs and VIs for crop classification and soil salinity inversion.

Data Source: Environmental variables

All data were resampled to 10 m for consistent spatial resolution.
The main applications of CLCD: (1) Masking croplands on images in 2022 for crop classification; (2) Calculating the cultivation feature using the spatial distribution information of cropland from 1990 to 2022.

Feature type	Name	Spatial resolution	Time range
Terrain	ALOS PALSAR	12.5m	2006-2011
Soil property	Basic soil property dataset of high- resolution China Soil Information Grids (2010-2018)	90m	2010-2018
Land cover	China Land Cover Dataset (CLCD)	30m	1990-2022

The flowchart of soil salinity mapping

3.1 Continuous cropping year

Continuous cropping year (CCY) is the number of years of continuous agricultural production activities on cropland.

3.2 Crop type feature

Features: spectral bands and VIs from June through October ;

Classifier: RF;

Evaluation metrics: OA, Kappa.

 Quantifying crop types based on the training set using Target Encoding (TE).

Name	Central wavelength (nm)	Vegetation index	Formula		Soil samples					
Blue (B)	496.6					· ·				
Green (G)	560.0	VIgreen	$\frac{Green - Red}{Green + Red}$		ļ					
Red (R)	664.5	NDVI	NIR - Red	d Training		6)	Test set (30%)			
Red Edge 1 (RE1)	703.9		NIR + Red			ı				
Red Edge 2 (RE2)	740.2	NDTI	$\frac{SWIR_1 - SWIR_2}{SWIR_1 + SWIR_2}$							
Red Edge 3 (RE3)	782.5		$SWIR_1 - Red$	Corn	Sunflower	RICE				
Near infrared (NIR)	835.1	NDSVI	$\overline{SWIR_1 + Red}$							
Red Edge 4 (RE4)	864.8	LSWI	$\frac{NIR - SWIR_1}{NIR + SWIR_2}$	The average of soil salinity content						
SWIR1	1613.7		$NIR + SWIR_1$		ļ	+	,			
SWIR2	2202.4	EVI	$2.5 \times \frac{NIR - Red}{NIR + 6 \times Red - 7.5 \times Blue + 1}$	0.96	2.74	2.23	0.48			

3.3 Soil salinity modelling

Besides environmental variables such as DEM and soil properties, NDVI was calculated from June to October and salinity indices in October;
Feature dimension reduction was achieved using principal component analysis (PCA) to reduce information redundancy.

	×			
	Туре	Name	Formula	
	VI	NDVI	$\frac{NIR - R}{NIR + R}$	
1		SI_1	$\frac{NIR \times R}{G}$	
		SI_2	$\frac{B-R}{B+R}$	
	SI	SI ₃	$\sqrt{R^2 + G^2 + NIR^2}$	Principal components
		SI_4	$\sqrt{NIR imes R}$	(cumulative contribution)
		CRSI	$\sqrt{(\text{NIR} \times \text{R} - \text{G} \times \text{B}) / (\text{NIR} \times \text{R} + \text{G} \times \text{B})}$	rate > 80%)

3.4 Comparison designs and accuracy evaluation

- Features: Terrain, soil property, pc_{SI}, pc_{NDVI}, Continuous cropping year, Crop type feature;
- > Model: XGBoost;

Evaluation metrics: R², MAE

ID	Feature combination
S1	Terrain + Soil property
S2	S1 + pc _{si}
S3	S2 + pc _{NDVI}
S4	S3 + Continuous cropping year
S5	S3 + Crop type feature
S6	S4 + Crop type feature

Evaluation metrics

R² (**R**-Square) :
$$R^2 = 1 - \frac{\sum_{i} (\hat{y}_i - y_i)^2}{\sum_{i} (\overline{y}_i - y_i)^2}$$

MAE (Mean Absolute Error) :

$$AAE = \frac{1}{m} \sum_{i=1}^{m} |(y_i - \hat{y}_i)|$$

4.1 Continuous cropping year

- Cropland that has been continuously cultivated for more than 20 years is mainly located in the northern plain;
- Newly reclaimed cropland is mainly located in the east.

4.2 Crop classification result

- After extracting cropland using CLCD in 2022, the OA of crop classification was 97.17%, and Kappa was 0.96;
- > The SSC of sunflower, rice, corn, and other crops gradually decreases.

4.3 Soil salinity mapping

Soil salinity inversion using DEM, 2 soil properties, 2 principal components of SIs, 1 principal component of NDVI, continuous cropping year and crop type feature had an R² of 0.74 and an MAE of 0.39.

4.4 Comparison experiments

Compared with the traditional feature combination of environmental variables and spectral features (S2, S3), the addition of cultivation features can further improve the inversion accuracy (S4-S6).

9	0		- 0.75					0 73	0.74	0 80
	ID	Feature combination	0.75				0.60			
	S1	Terrain + Soil property	0.60			0.58	0.00			-
	S2	S1 + pc _{si}	0.45 -							⊢ 0.60 - ⊔
	S3	S2 + pc _{NDVI}	°∠ 0.30 –		0.34			<u></u>		MA N
	S4	S3 + Continuous cropping year							\	- 0.40
	S5	S3 + Crop type feature	0.15	0 1 5						
	S6	S4 + Crop type feature	0.00							⊥ 0.20
	<			S1	S2	S 3	S4	S5	S6	

THANKYOU

