Uncovering linkages between soil fauna and ecosystem function using factor analysis and structural equation modelling

Ashley B. Jernigan¹, Matthew Ryan², Kyle Wickings¹

¹Department of Entomology, Cornell Agritech, Cornell University, Geneva, New York 14456, USA

²Soil and Crop Sciences Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York 14853, USA

Soil Fauna Grouping Methods

MICROFLORA AND MICROFAUNA MESOFAUNA MACRO AND MEGAFAUNA

Soil Fauna Groups & Ecosystem Function

Soil Fauna Groups & Environment

Process of Grouping Soil Fauna Soil Fauna Group 1 Fauna Soil Fauna impacts on Group 2 ecosystem Soil Fauna function Group 3

Environment

Grouping Soil Fauna by Environmental Responses to Predict Impacts on Ecosystem Functions

Statistical Techniques to Group Community Data

Statistical Techniques to Group Community Data

- Cluster Analysis
 - Hierarchical clustering (HCA)
 - Disjoint clustering
- Factor Analysis
 - Principle component analysis
 - Common factor analysis
 - Image factoring
 - Maximum likelihood method

Statistical Techniques to Group Community Data

- Cluster Analysis
 - Hierarchical clustering (HCA)
 - Disjoint clustering
- Factor Analysis
 - Principle component analysis
 - Common factor analysis
 - Image factoring
 - Maximum likelihood method

Using Factor Analysis to Group Fauna Based on Responses to Environmental Conditions

Sample

#	Taxa 1	Taxa 2	Taxa 3	Taxa 4	Taxa 5	Таха 6
1	12	0	2	19	0	115
2	53	0	40	66	0	142
3	34	0	31	43	2	97
4	62	0	71	79	0	135
5	78	3	86	85	0	85
6	90	0	102	119	0	117
7	88	2	97	92	0	106
8	47	0	44	55	0	72
9	15	0	24	26	0	93
10	23	0	18	32	11	88

Sample			<u> </u>				
#	Taxa 1	Taxa 2	Taxa 3	Taxa 4	Taxa 5	Таха 6	
1	12	0	2	19	0	115	
2	53	0	40	66	0	142	
3	34	0	31	43	2	97	
4	62	0	71	79	0	135	
5	78	3	86	85	0	85	
6	90	0	102	119	0	117	
7	88	2	97	92	0	106	
8	47	0	44	55	0	72	
9	15	0	24	26	0	93	
10	23	0	18	32	11	88	

0

0

à

Ç

0

Sample						
#	Taxa 1	Taxa 2	Taxa 3	Taxa 4	Taxa 5	Таха б
1	12	0	2	19	0	115
2	53	0	40	66	0	142
3	34	0	31	43	2	97
4	62	0	71	79	0	135
5	78	3	86	85	0	85
6	90	0	102	119	0	117
7	88	2	97	92	0	106
8	47	0	44	55	0	72
9	15	0	24	26	0	93
10	23	0	18	32	11	88
Ster Bil	-	P				Rife

Statistical Techniques to Explore Relationships in Environment

Statistical Techniques to Explore Relationships in Environment

- Canonical Correlation Analysis (CCorA)
- Canonical Correspondence Analysis (CCA)
- Redundancy Analysis (RDA)
- Path Analysis
- Structural Equation Modelling (SEM)
 - Traditional
 - Piecewise

Statistical Techniques to Explore Relationships in Environment

- Canonical Correlation Analysis (CCorA)
- Canonical Correspondence Analysis (CCA)
- Redundancy Analysis (RDA)
- Path Analysis
- Structural Equation Modelling (SEM)
 - Traditional
 - Piecewise

Structural Equation Modelling

- Traditional SEM
 - Variance-covariance matrices
- Piecewise SEM
 - Linear regressions

GOAL: Determine relationships between variables with directionality

Structural Equation Modelling

GOAL: Determine relationships between variables with directionality

Organic Grain Cropping Systems Experiment

Aerial Photo: E. Shields

OGCS Legacy Effects Trial

- Evaluate legacy effects
- Experiment area was moldboard plowed, then disked and harrowed
- Sorghum sudangrass crop
- After planting, no further management before termination

Response Variables

Crop Biomass

Total Weed Biomass

Annual Weed Biomass

Perennial Weed Biomass

Above Ground Plant Biomass

63 days after planting

Indicator Species

Weed Species Richness

Weed Community Composition

Soil Invertebrates 34 and 70 days after planting

Total Abundance

Community Composition

Indicator Species

Family Abundances

Agroecosystem Interactions Piecewise Structural Equation Modelling

SEM: Soil Invertebrates

SEM: Soil Invertebrates

SEM: Soil Invertebrates

SEM: Above Ground Biomass

SEM: Soil Characteristics

Multiple soil characteristics were predictive of FaunaF1

FaunaF2 only impacted by respiration

WeedsF1 only impacted by soil moisture

Crop biomass impacted by diverse factors

Complete SEM model for Organic Grain Cropping Systems

Weeds mediate soil moisture effects on crop productivity

Soil invertebrates mediate microbial community effects on crop productivity

Main Take-Aways from Example

What does this mean for soil ecology?

Another option for identifying correlation structures between taxa in a diverse dataset

Grouping Soil Fauna by Environmental Responses to Predict Impacts on Ecosystem Functions

What does this mean for soil ecology?

A technique to consider to when analyzing how soil fauna communities and their interactions contribute to ecosystem services

What are the next steps?

- Determine which taxonomic level of identification is best when applying these statistical techniques
- Explore fauna relationships using these techniques in different environmental contexts
 - Forests
 - Other Cropping Systems
 - Tropical Environments

Acknowledgements

- Sustainable Cropping Systems Lab (PI: Matthew Ryan)
- Soil Arthropod Ecology Lab (PI: Kyle Wickings)
- Everyone who assisted with the Organic Grains Cropping Systems Experiment
- Cornell Statistical Consulting Unit
- New York State Environmental Protection Fund for the New York Soil Health Initiative, administered through the New York State Department of Agriculture and Markets Contract No. C00178GS-3000000 and the USDA National Institute of Food and Agriculture, Hatch Project 2016-17-252

Contact Information

Ashley Jernigan

- <u>Email</u>: abj35@cornell.edu
- <u>Twitter</u>: https://twitter.com/Jernigan_AB
- <u>LinkedIn</u>: https://www.linkedin.com/in/ashleyjernigan-0a765188/
- <u>ResearchGate</u>: https://www.researchgate.net/profile/As hley_Jernigan

Further Information:

Jernigan, A. B., Wickings, K., Mohler, C. L., Caldwell, B. A., Pelzer, C. J., Wayman, S., and Ryan, M. R.: Legacy effects of contrasting organic grain cropping systems on soil health indicators, soil invertebrates, weeds, and crop yield, Agr. Syst., 177, 102719, https://doi.org/10.1016/j.agsy.2019.102719, 2020.

References

- https://www.researchgate.net/figure/Sizeclassification-of-soil-organisms-according-to-bodywidth-from-Swift-et-al-1979_fig1_234088736
- https://www.cambridge.org/core/books/soil-faunaassemblages/functional-roles-of-soilfauna/2303289DF291C70D0C4FF31228B0BA4B
- https://www.sciencedirect.com/topics/agriculturaland-biological-sciences/soil-ecology
- https://www.frontiersin.org/articles/10.3389/fenvs.201 4.00007/full

