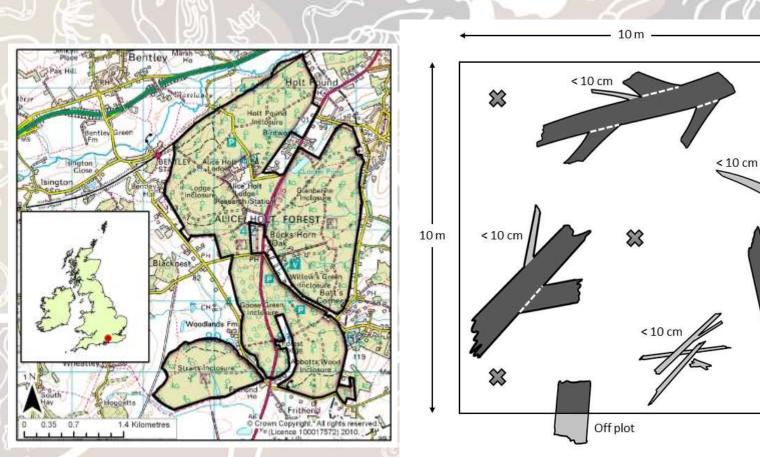
Frank Ashwood

Introduction

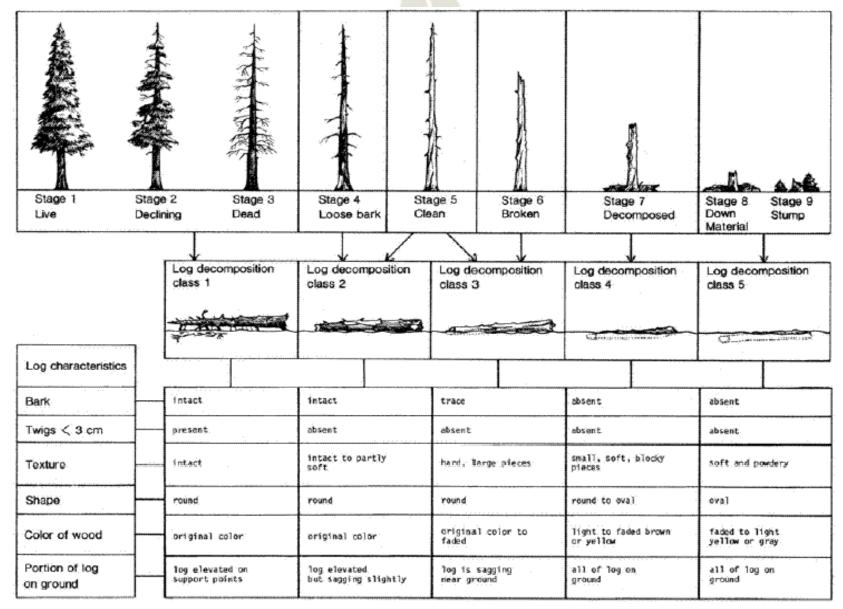
- Traditional sampling methods may miss earthworm species in alternative habitats such as deadwood
- This can lead to false classifications regarding species distributions and conservation status and value
- Resolving the lack of a systematic methodology for surveying earthworms in microhabitats may give valuable insights into earthworm ecology

Pilot Deadwood Survey

- Alice Holt Forest in Surrey, England, is one of 11 terrestrial Environmental Change Network
 (ECN) long-term monitoring sites across the UK
- Marked out square plots of 10 m \times 10 m within each forest stand (n = 12)
- Three woodland ages: young (30 to 40 yrs.), mid-rotation (70 to 90 yrs.) & old (> 190 yrs.)


Soil pit (0.1 m²)

Include


Exclude

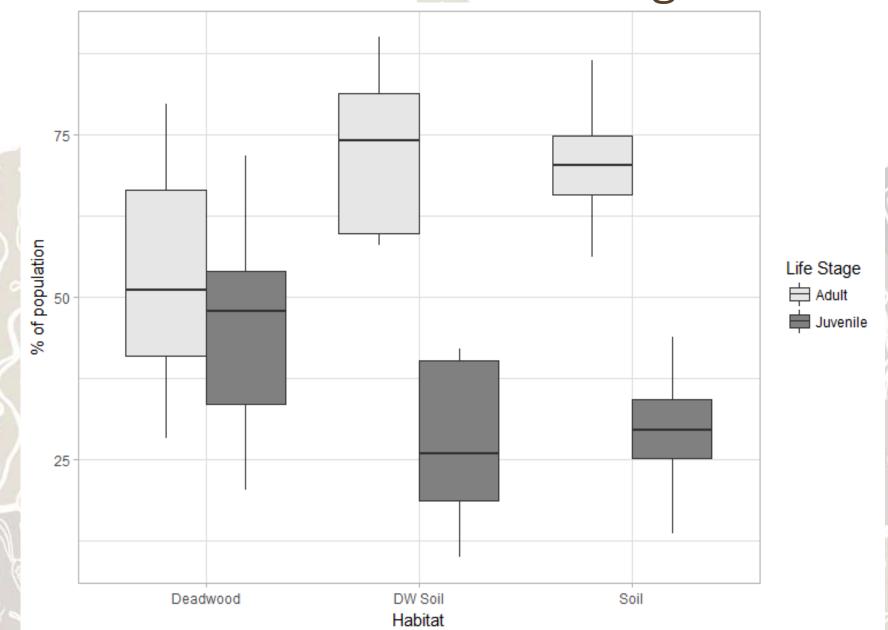
Off plot

Off plot

Deadwood Decay Class

Decay class (1 – 5). The deadwood decomposition is assigned in 5 decay classes according to Hunter, 1990.

Data Collection & Soil Sampling


Deadwood Sampling

Results – Earthworm Communities

Earthworm species	Habitat		
	Soil	Deadwood soil	Deadwood
Allolobophora chlorotica	19.5 ± 23.8 a	9.8 ± 13.9 a	0.6 ± 1.3 b*
Aporrectodea caliginosa	2.2 ± 3.9	1.0 ± 2.9	-
Aporrectodea longa	0.8 ± 2.9	0.2 ± 0.6	-
Aporrectodea rosea	0.5 ± 1.2 †	-	-
Bimastos eiseni	0.2 ± 0.6 a	0.3 ± 0.8 a	1.9 ± 2.3 b**
Bimastos rubidus	4.5 ± 7.5	6.5 ± 7.8	2.8 ± 3.1
Dendrobaena attemsi	8.8 ± 25.3	6.7 ± 17.8	0.9 ± 2.4
Dendrobaena octaedra	16.8 ± 23.8	12.5 ± 17.2	3.2 ± 4.6
Dendrobaena pygmaea	0.3 ± 1.8	0.2 ± 0.6	
Eisenia fetida	-	-	0.2 ± 0.5 †
Lumbricus castaneus	0.3 ± 1.2	0.3 ± 1.2	-
Lumbricus rubellus	19.2 ± 10.5 a	13.8 ± 9.9 a	1.6 ± 1.4 b***
Octolasion lacteum	0.2 ± 0.6	0.5 ± 1.7	-
Total abundance (Ind. m ⁻²)	102.0 ± 63.8 a***	21.33 ± 15.0 b	21.18 ± 10.1 b
Total biomass (g m ⁻²)	23.8 ± 9.1 a***	5.0 ± 2.8 b	2.6 ± 1.3 b

Results – Earthworm Life Stages

Key Findings

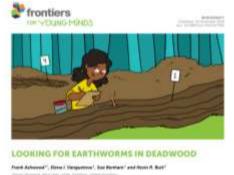
- One earthworm species found in deadwood that wasn't also captured during soil sampling, though very variable at plot level
- Deadwood added ~20% earthworm abundance and ~10% biomass data per plot
- Soil below deadwood less habitable than uncovered soil (moisture, pH, SOM)
- Presence of bark and moss not measured, but observed in the field to have an influence – needs recording in future surveys
- No effect of woodland stand age

Conclusions

- Excluding deadwood microhabitats from woodland earthworm surveys can underestimate total earthworm populations and species richness.
- Systematic deadwood surveys cannot replace traditional soil pit sampling alone but should be considered as additional and complementary, to provide a realistic estimate of earthworm populations in woodland systems.

Next Steps & Improvements

- Collaboration? e.g. LOGLIFE experiment, Zuo et al. 2020.
- Collection of other invertebrate fauna groups
- Alternative microhabitats (e.g. stones and other debris)
- Collecting and incubating/DNA sequencing cocoons


Ashwood, F., Vanguelova, E. I., Benham, S. and Butt, K. R. (2019). Developing a systematic sampling method for earthworms in and around deadwood. *Forest Ecosystems*. 6:33.

Ashwood, F., Vanguelova, E., Benham, S. & Butt, K. (2020). Looking for Earthworms in Deadwood. *Front. Young Minds.* 8:547465. doi: 10.3389/frym.2020.547465

Thank you for your attention