COMPOSTING OF MUNICIPAL SOLID WASTE A REMEDY FOR WATER POLLUTION AND SOIL FERTILITY DECLINE IN UGANDA By; Mugambe Christopher

SOILS: WHERE FOOD BEGINS

Background

- Food insecurity enigma is currently much associated with soil fertility decline and water pollution in Africa
- One of the efforts made was to increase fertilizer use in Africa to at least 50kg ha-1 year-1 (Fertilizer Summit, 2006).
- However, its not successful;
 - Not affordable by farmers
 - Not environmentally friendly
 - \circ Not available

Global Symposium on S

Background...

- Several efforts to curb the declining soil fertility in Africa have been undertaken
- Some of the endeavors have been aimed at increasing fertilizer use in the continent (Fertilizer summit, 2006)
- Compost of municipal solid wastes is a promising deal (1.3 billion tonnes -2.2 billion tonnes by 2025)
- However, at present there exists no industry wide sampling and testing protocols and quality of compost products.

Background

- Compost is a dark, crumbly earthysmelling material produced by the natural decomposition of organic materials.
- It plays a very big role in the soil and generally the environment
- Improving plant growth, conservation of water
- Sequestration of carbon in the soil
- Reduction of reliance on chemical pesticides and inorganic fertilizers. (Cambardella *et al.*, 2003).
 Global Symposium on

Main objective

Assess whether municipal solid waste can be used beneficially as a resource after composting without damaging human and environmental health

Specific objectives

- To investigate compliance of municipal compost with national and international standards for good quality compost
- To examine the impact of maturity on compost quality

Materials and Methods

Study area – South Western Uganda – Mbarara Municipal Composting Plant

Treatments,

Main factor - time of composting (8 levels)

F 1	W1-1	W2-1	W3-1	W4-1	W5-1	SF1	FP1
F 2	W1-2	W2-2	W3-2	W4-2	W5-2	SF2	FP2
F 3	W1-3	W2-3	W3-3	W4-3	W5-3	SF3	FP3
F 4	W1-4	W2-4	W3-4	W4-4	W5-4	SF4	FP4

Experimental design – RCBD, four replications(8*4)

Data analysis

- Data compilation: Microsoft excel
- Genstat 14th Edition Data subjected to two way ANOVA to generate means, F values for comparison.
- Significant difference between means separated using
 Fisher's protected LSD at 5% level

RESULTS

Means of chemical parameters measured in Municipal Solid Waste at various stages of composting as a factor of age at MMCP

Parameters analysed for compost							Days	
% Ca Cu (ppm) C/N	% Ca	TK (%)	TP (%)	TN (%)	% OM	% OC	pH (H ₂ O)	
0.29±0.09 ^a 32.01±1.46 ^a 40.72	$0.29{\pm}0.09^{a}$	2.05±0.3 ^{ab}	$0.44{\pm}0.07^{a}$	$0.84{\pm}0.08^{ab}$	57.25±5.91 ^b	33.2±3.43 ^b	9.9±0.02 ^b	14
0.4 ± 0.02^{b} 30.94±1.24 ^a 21.15	$0.4{\pm}0.02^{b}$	$1.92{\pm}0.20^{a}$	0.46 ± 0.05^{a}	$0.82{\pm}0.03^{a}$	30.01±3.66 ^a	17.4±2.12 ^a	10 ± 0.01^{bc}	28
0.41 ± 0.02^{b} 45.87 ± 2.58 27.03	$0.41{\pm}0.02^{\text{b}}$	$1.89{\pm}0.02^{a}$	$0.47{\pm}0.01^{a}$	$0.91{\pm}0.05^{abc}$	$42.34{\pm}8.33^{ab}$	$24.56{\pm}4.83^{ab}$	9.6±0.15 ^a	42
0.42±0.01 ^b 71.87±5.25 ^c 24.1	$0.42{\pm}0.01^{b}$	$2.52{\pm}0.13^{bcd}$	$0.51{\pm}0.02^{a}$	$1.08{\pm}0.02^d$	$44.92{\pm}4.48^{ab}$	$26.06{\pm}2.60^{ab}$	$9.8{\pm}0.06^{ab}$	56
0.45±0.03 ^b 69.69±2.81 ^{bc} 26.16	0.45 ± 0.03^{b}	$2.33{\pm}0.01^{abc}$	$0.51{\pm}0.05^{a}$	1 ± 0.07^{bcd}	42.96 ± 7.24^{ab}	24.92±4.20 ^{ab}	$9.9{\pm}0.07^{b}$	70
0.48±0.03 ^b 60.55±2.02 ^b 19.94	0.48±0.03 ^b	$2.96{\pm}0.20^{d}$	$0.51{\pm}0.03^{a}$	$1.07{\pm}0.05^{cd}$	36.94±2.98ª	21.42±1.73 ^a	10 ± 0.10^{bc}	84
0.41 ± 0.01^{b} 66.52±3.87 ^{bc} 18.02	0.41 ± 0.01^{b}	2.58 ± 0.13^{cd}	$0.48{\pm}0.02^{a}$	$0.86{\pm}0.05^{ab}$	26.79±5.98ª	15.54 ± 3.47^{a}	$10.2 \pm 0.02^{\circ}$	98
0.4±0.01 ^b 86.49±3.41 23.94	0.4 ± 0.01^{b}	2.14 ± 0.08^{abc}	0.46±0.01 ^a	$0.79{\pm}0.04^{a}$	$32.89{\pm}3.04^{a}$	19.08 ± 1.77^{a}	$9.8{\pm}0.01^{ab}$	112
0.063 <.001 0.04	0.063	0.002	0.82	0.006	0.034	0.034	0.006	P-value
0.107 8.055 12.7	0.107	0.485	0.112	0.163	17.259	10.01	0.22	LSD (5%)
		-	-	>1.00**	>20*	12*	8.4*	Standards
0.052 3.873 6.11	0.052	0.33	0.054	0.079	8.299	4.814	0.1	S.e.d
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.063 0.107 - 0.052	0.002 0.485 - 0.33	0.43±0.01 0.82 0.112 - 0.054	0.006 0.163 >1.00** 0.079	0.034 17.259 >20* 8.299	0.034 10.01 12* 4.814	0.006 0.22 8.4* 0.1	P-value LSD (5%) Standards S.e.d

Key: ** represents MSW compost International Standards as by Seema (2007), * represents UNBS

compost standards.

OC in relation to **OM** of **MMCP** at different stages of decomposition

■ OC(%) ■ OM (%)

GLOBAL SOIL PARTNERSHIP

Conclusion

- Age has an impact on compost quality of compost produced
- Texture of compost was found to be sandy loam for all compost substrates and final compost product at different stages of decomposition
- The composting technology can be a great deal if adapted in all districts of Uganda & beyond.

Recommendations

- Encouraging and enhancing strictness on source separation
- The source of high sand content at MMCP should be investigated.
- A well-equipped laboratory for testing compost

Thank you !

