

Background

- Micronutrients are critical to crop health and productivity.
- Copper and zinc are vital in enzyme activation, chlorophyll formation, carbohydrate and protein syntheses.
- Chemistry vary with climate and soil characteristics (temporally and spatially).
- Climate change (variability in weather patterns) compounds nutrient management problems.
- Climate—smart practices are inevitable.
- Fertilizer shortage, wars, pandemic, and environmental deterioration call for need to maximize natural soil and crop potential.

Cu and Zn Chemistry: Reactions and Interactions

Soil Reactions

- Complexation
- Ion Exchange
- Adsorption
- Desorption
- Precipitation
- Dissolution
- Acid-Base Equilibria

Copper	Zinc						
Cu ²⁺	$\mathbf{Z}\mathbf{n}^{2+}$						
Soil pH: -	Soil pH: -						
Texture: Poor in coarse texture	Soil OM: - or +						
Soil OM: Strong OM-Cu-Clay complex	Interaction with other nutrients, e.g., Cu ²⁺ , Fe ²⁺ , Mn ²⁺ inhibit Zn ²⁺ High P affects Zn uptake						
Interaction with other nutrients, e.g., High P, Zn, and Fe lowers root Cu absorption	Climate and soil condition, e.g., cold weather induces deficiency; flooding may as well under acid soil (ZnFe ₂ O ₄)						

Study Site Significance

- Site: Lubbock, TX
 (Located in the Southern High Plains, USA)
- Climate: Semi-arid to Arid
- Rainfall: 18.65 inches ~ 470 mm (111-year average); 2022 so far (3.96 inches)
- Mean Annual Temp: ~ 16 °C
- Soil: Mostly pH 7.52 to 8.39; aridic; thermic
- Aquifer: Ogallala
- Agriculture: 30-40% of US cotton
- Challenges of SHP: Drought, wind erosion, hail, salinity, declining aquifer, water quality, micronutrient deficiency

Global Symposium on Soils for Nutrition | 26-29 July 2022

Objectives

- 1. Draw inferences from two previous studies:
 - Udeigwe et al. (2016). Copper micronutrient fixation kinetics and interactions with soil constituents in semi-arid alkaline soils. *Soil Science and Plant Nutrition*, 62(3), 289-296. https://doi.org/10.1080/00380768.2016.1197046
 - Udeigwe et al. (2017). Plant-available zinc fixation kinetics in semi-arid alkaline soils of the Southern High Plains. *Archives of Agronomy and Soil Science*, 63(4), 553-564. https://doi.org/10.1080/03650340.2016.1227068
- 2. Extrapolate the findings from the referenced studies to the management of these micronutrients in a time of climate change.

Methodology: Soil Sampling and Tests

- Soil Samples: Six different production sites in West Texas, USA at <u>0 -15</u> cm and <u>15 -30</u> cm depths (for a total of <u>12</u> soil samples).
 - Amarillo 1
 - Amarillo 2
 - Pullman
 - Acuff
 - Pyron
 - Mansker

- Soil Tests
 - Soil pH
 - Electrical Conductivity (EC)
 - **OM**
 - % CaCO₃
 - Total Carbon (TC), Total Nitrogen (TN)
 - Exchangeable Cations
 - Particle Size Analysis
 - DTPA Extractable Cu, Fe, Mn, and Zn
 - Total Elemental Analysis

Methodology: Kinetic Modeling

Approach

- DTPA extraction was conducted at a specified interval over a period of approximately 90 days.
- Extracts were analyzed for micronutrients using ICP-OES
- Data was fitted to various kinetic models: zero, first, second, and power functions.
- All statistical analyses were conducted using Statistical Analysis Software (SAS, ver. 9.3).

Kinetic Models

	Kinetic model	Equation	Parameter
1	Zero order	$q_t = q_0 - k_0 t$	k ₀ , zero-order rate constant (mg kg ⁻¹ day ⁻¹)
2	First order	$\ln q_t = \ln q_0 - k_1 t$	k ₁ , first-order rate constant (day ⁻¹)
3	Second order	$1/q_t = 1/q_0 + k_2 t$	k_2 , second-order rate constant [(mg kg ⁻¹) ⁻¹ day ⁻¹]
4	Power function	$q_t = at^b$	 a, initial reaction magnitude constant [(mg kg⁻¹ (day⁻¹)^b] and b, reaction rate constant

 q_0 and q_t are the amount of micronutrient at times zero and t, respectively.

Results: Soil Characteristics

Table 1. Soil classification, identification and selected properties of the studied semi-arid alkaline soils of the Southern High Plains, USA.

	Sample	Sampling	pН	EC	OM	CaCO ₃	Clay	Sand	Silt	Textural
Series (classification)	identification	location		dS m ⁻¹			%			class*
Pyron (Fine, mixed, superactive, thermic Typic Argiustolls)	Sa	32.7211°N,	7.52	0.22	1.56	2.34	32.8	39.9	27.3	CL
	Sb	100.8386°W	8.02	0.24	1.57	4.16	33	38.7	28.3	CL
Acuff (Fine-loamy, mixed, superactive, thermic Aridic Paleustolls)	Oa	33.8403°N,	8.39	0.35	1.31	4.68	29.7	49.1	21.3	SCL
	Ob	101.6999°W	8.36	0.27	1.43	4.55	37.6	50.7	11.7	SC
Amarillo (Fine-loamy, mixed, superactive, thermic Aridic Paleustalfs)	A1 _a	33.5935°N,	8.18	0.23	1.7	1.95	26	61.1	12.9	SCL
	A1 _b	101.9058°W	8.24	0.21	1.35	1.17	24.7	61.7	13.6	SCL
	A2 _a	33.6058°N,	8.32	0.17	0.59	0.46	19.4	72.4	8.2	SL
	A2 _b	101.9073°W	8.3	0.17	0.75	0.65	23.2	65.7	11.1	SCL
Pullman (fine, mixed, superactive, thermic Torrertic Paleustolls)	Pa	34.05901°N,	8.07	0.24	1.05	2.41	17.8	74.9	7.4	SL
	Pb	101.4773°W	8.35	0.22	0.93	5.59	24	64.2	11.8	SCL
Mansker (coarse-loamy, carbonatic, thermic Calcidic Paleustolls)	Ma	34.1261°N,	8.12	0.27	1.63	0.98	27.9	56.5	15.6	SCL
	Mb	101.5899°W	8.2	0.25	1.24	0.13	41.9	40.9	17.2	C

EC, electrical conductivity; OM, organic matter; CaCO₃, calcium carbonate; SCL: sandy clay loam; SC: sandy clay; SL: sandy loam; CL: clay loam; C: clay; a = 0–15 cm; b = 15–30 cm.

Environmental Characteristics: Semi arid to arid, drought, wind erosion, hail, salinity, declining aquifer, water quality, micronutrient deficiency

Results & Discussion: Cu Kinetics (90 d)

Zero Order

Second Order

Global Symposium on Soils for Nutrition | 26-29 July 2022

Power

Function

First

Order

Results & Discussion: Zn Kinetics (90 d)

ARCHIVES OF AGRONOMY AND SOIL SCIENCE

Global Symposium on Soils for Nutrition | 26-29 July 2022

Results & Discussion: Cu and Zinc Micronutrients

- Most Cu (80%) was fixed within the first 14 days
- Short term (14 days) Cu fixation controlled by OM + pH
- Long term (90 days) Cu fixation controlled by pH and pH + CaCO₃.
- Cu Fixation within 35 d better described by second order model ($R^2=0.98$)
- Cu Fixation within 90 d better described by power function model ($R^2=0.90$)
- Most Zn (57%) was fixed within the first 14 days
- Zinc fixation within 90 d showed a weak +trend with pH and Total P
- Zn Fixation kinetic (35 d) better described by second order model ($R^2=0.91$)
- Zn fixation (90 d) better described by the power function model (R^2 =0.93)
- Reaction rates for Zn higher (more rapid fixation) in the subsurface soils

Conclusion and Recommendations

- Timing is critical (most Cu and Zn fixed within 14 days)
- Chelated compounds of Cu and Zn should be used (supported by a comparative study)
- Foliar application recommended given interactions with soil constituents
- Organic residue incorporation is encouraged (relevant to soil recovery, productivity, and sustainability
- Think regenerative....cover cropping, rotation, mulching, conservation tillage, waste incorporation...
- Biotechnology (biostimulants) incorporation to maximize natural plant and soil potentials is more paramount now.

T.K. UDEIGWE G.M. ZOLUE J.A. MOMO

Micronutrient
management
adaptations to climate
change: Extrapolations
from findings on
copper and zinc
chemistry in semi-arid
to arid climate of the
United States

udeigwe@bioterraglobal.com

