

INTRODUCTION

Fertilizing the land with the same land can represent a viable and easy implementation option for small and medium agricultural producers.

INTRODUCTION

The technique known as *rochagem*, *stonemeal*, *rocks of crops* consist of the addition of rock powder as a way of increasing soil fertility conditions, considering rocks as natural sources of a series of macronutrients and micronutrients.

- Use of mineral waste
- Reduced use of high-cost fertilizers
- CO₂ capture due weathering of silicate minerals
- Reduction of leaching losses
- Improvement of the fertility of degraded soils

PROBLEM STATEMENT

In this presentation, preliminary studies on the potential use of basalt rock powder residue from agate and amethyst mining in Uruguay as a source of agrominerals are presented.

The rocky material must be previously evaluated before being considered as a possible agromineral for the rochagem technique. The geochemical analysis of the residues obtained from the mining activity is the first step for this evaluation.

LOCATION AND GEOLOGY OF THE STUDY AREA

LOCATION AND GEOLOGY OF THE STUDY AREA

The lithology is defined by a succession of basaltic spills, among which sheets and barjanes (half-moon dune) of aeolian sands, currently silicified, were deposited.

The most characteristic rocks are massive, fine-grained, dark-colored basalts.

SAMPLING

For this work, three dump areas were surveyed with a total of 10 samples:

Dump 1 (E1): It is located in the surroundings of the quarry where the piles of oldest material, characterized by being heterogeneous in size.

Dump 2 (E2): Material composed mainly of vacuolar basalt levels, less degree of alteration than the material sampled in the E1 piles, but also easily shelled.

Dump 3 (E3): Represent the piles of material recently removed from the mineralized basalt level.

SAMPLE TREATMENT

The analytical techniques used were X-Ray Fluorescence to determine the percentage by weight of the oxides present; and Inductively Coupled Plasma Source Emission Spectrometry (ICP – OES), to determine the chemical composition of elements in ppm.

RESULTS and DISCUSSION

Percentage by weight of the oxides present in the samples of basalt:

SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P_2O_5
	- % -								
50.02	13.36	14.12	0.261	2.12	4.98	2.23	1.12	1.92	0.24
46.89	17.77	14.44	0.169	2.23	1.81	0.58	1.57	1.62	0.12
47.74	13.85	13.76	0.113	3.24	5.29	1.98	1.01	2.05	0.27
49.41	13.11	14.41	0.15	2.81	4.90	1.99	1.59	1.96	0.24
[]	50.02 46.89 47.74	50.02 13.36 46.89 17.77 47.74 13.85	50.02 13.36 14.12 46.89 17.77 14.44 47.74 13.85 13.76	50.02 13.36 14.12 0.261 46.89 17.77 14.44 0.169 47.74 13.85 13.76 0.113	50.02 13.36 14.12 0.261 2.12 46.89 17.77 14.44 0.169 2.23 47.74 13.85 13.76 0.113 3.24	-% - 50.02	-%%	-%- 50.02 13.36 14.12 0.261 2.12 4.98 2.23 1.12 46.89 17.77 14.44 0.169 2.23 1.81 0.58 1.57 47.74 13.85 13.76 0.113 3.24 5.29 1.98 1.01	-%- 50.02 13.36 14.12 0.261 2.12 4.98 2.23 1.12 1.92 46.89 17.77 14.44 0.169 2.23 1.81 0.58 1.57 1.62 47.74 13.85 13.76 0.113 3.24 5.29 1.98 1.01 2.05

RESULTS and DISCUSSION

Concentration of some trace elements in the samples of basalt:

SAMPLE	Mn	Li	As	V	Cr	Ni	Cu	Zn	Pb	Ва
	- ppm -									
E1 mean (n=4)	2008	28.28	< 3	207.75	38.75	11.25	95	136	15	546
E2	1360	27	< 3	398	83	64	137	88	7	834
E3a mean (n=3)	886	65.3	3.99	283	11	11.66	132.33	295.33	13.66	351.66
E3b mean (n=2)	1150	50	< 3	282	16.5	12.5	103.5	195	13.5	2

CONCLUSIONS

- The basalts analyzed for this study show favorable results to be considered as a source of macro and micronutrients for the soil, mainly: Ca, Mg, Si, Fe, Na, Mn, K, P, Cu and Zn.
- More geochemical studies are needed in addition to agronomic tests and evaluation
 of its economic feasibility to confirm the viability of developing this technology
 (stonemeal).
- The use of mining waste as agrominerals (fertilizers) is considered an alternative for better disposal and use of rocky waste generated by the mine.
- The concept of circular economy would be applied very well to the proposal to produce agrominerals from the discarded material from the extraction of agates and amethyst in Uruguay.

Contact us

LETICIA CHIGLINO

leticia.chiglino@cure.edu.uy

Centro Universitario Regional del Este, Polo de desarrollo en Geología y Recursos Minerales, Ruta 8 km 282, Treinta y Tres, Uruguay

JOHANA BALLESTERO

jballestero@fagro.edu.uy

Facultad de Agronomía , Departamentos de Suelos y Agua ,Grupo Disciplinario Fertilidad, Avenida Garzón 780, 12900 Montevideo, Uruguay. Montevideo , Uruguay

